Imperial College London

Identification, diagnosis and management of persistent Hepatitis E virus infection

$B y$:
Dr Michael James Ankcorn

Department of Infectious Diseases
Wright-Fleming Institute
Imperial College London

A thesis submitted for the Degree of Doctor of Philosophy
November 2021

Statement of originality

This body of work is all my own that I have instigated, co-ordinated and completed. However, there are a number of people who assisted me in various aspects all detailed and acknowledged.

Specifically, I co-ordinated all three prevalence studies and undertook HEV RNA testing, HEV serology and HEV antigen detection for all prevalence studies. I performed HEV cell culture for all HEV antigen neutralisation work. I co-ordinated and assisted in clinical data collection for all studies and performed all the data analysis for the prevalence studies.

I performed all the statistical analysis and cost-effectiveness analysis with close collaboration and guidance. Whole genome sequencing was performed at the CVR, but I undertook all bioinformatics analysis.

In the descriptive cases series diagnostics including phylogenetic analysis were performed through the routine clinical diagnostics service. I undertook the phylogenetic analysis for the write-up.

Copyright declaration

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are licensed under a Creative Commons Attribution-Non Commercial 4.0 International Licence (CC BY-NC). Under this licence, you may copy and redistribute the material in any medium or format. You may also create and distribute modified versions of the work. This is on the condition that: you credit the author and do not use it, or any derivative works, for a commercial purpose. When
reusing or sharing this work, ensure you make the licence terms clear to others by naming the licence and linking to the licence text. Where a work has been adapted, you should indicate that the work has been changed and describe those changes. Please seek permission from the copyright holder for uses of this work that are not included in this licence or permitted under UK Copyright Law.

Acknowledgements

I would like to thank my supervisors Professor Myra McClure and Professor Richard Tedder for expert guidance. This body of work involved extensive collaboration with a number of parties whom I am extremely grateful to. I would like to thank the following for their contributions to this work:

NHS Blood and Transplant for funding this research and for donation of anonymised blood donor samples.

Dr Samreen Ijaz (Public Health England) for guidance on laboratory techniques, logistics, data interpretation and general support and encouragement.

Professor James Neuberger (University Hospitals Birmingham), Dr David Lowe (Royal Free Hospital, London) and Dr Mallika Sekhar (UCLH, London) for being clinical study leads for the three HEV prevalence studies and providing guidance on study design, logistics, data collection and data interpretation.

Dr WaiKeong Wong (UCLH), Dr Kirsty Thompson (UCLH) and Dr Frank Mattes (UCLH) with assistance in arranging logistics.

Birmingham laboratory staff (Dr Robert Cramb and Dr Erasmus Smit), Royal Free Immunology team (Fernando Moreira, Sarita Workman and Andrew Symes) and staff at the UCLH Health Services Laboratory (Jim Waite and Siddra

Noureen) for assistance with the logistics of identifying clinical samples and arranging shipping samples to PHE.

Swathi Ravi (University Hospitals Birmingham), Claire Nicholas (UCLH), Eric Houston (UCLH), Dr Deepak Suri (UCLH), Dr Tom Fox (UCLH) for assistance in clinical data collection.
lan Longair (UCLH) for assistance in transfusion history data collection for haemato-oncology patients.

Dr Ahmed Elsharkawy for expert opinion informing the cost-effectiveness analysis.

Dr John Poh, Roza Zuhdi, Felicia Stanford and Justin Shute at BBVU, PHE for HEV PCR and sequencing for clinical diagnostic phylogenetics work.

Becky Haywood (PHE) for her donation of HEV virus-like particles.

Dr Matthew Hannah (PHE) for assistance in electron microscopy of HEV viruslike particles.

Sammy Ho (PHE) and Katja Hoschler (PHE) for technical support using the JANUS Automated Workstation with Varispan (Perkin Elmer) for minipooling plasma samples.

Kate Martin (NHSBT), Dr Nick Andrews (PHE), Fiona Warburton (PHE) and Jemma Walker (PHE) for guidance and discussion of statistical analyses.

Dr Frank Sandmann (PHE) and Professor John Cairns (LSHTM) for guidance on the use and application of Markov models for cost-effectiveness analysis.

Siobhain McKeigue (LSHTM) for her input into the first iteration of the Markov model for the implementation of screening for HEV in blood donors

Dr Matthew Buckland (Royal Free), Dr Bengu Said (PHE), Dr Dilys Morgan (PHE), Dr James Maggs (Stoke Mandeville Hospital), Dr Stephen Ryder (Nottingham University Hospitals), Dr Talal Valliani (North Bristol NHS Trust), Dr Fiona Gordon (North Bristol NHS Trust), Dr Kushala Abeysekera (North Bristol NHS Trust), Dr Stuart McPherson, (Newcastle upon Tyne Hospitals), Dr Jack Galliford (Hammersmith Hospital), Dr Belinda Smith (Hammersmith Hospital), Dr Emanuela Pelosi (University Hospital Southampton), Dr Sanjay Bansal (King's College Hospital), Dr Claire Bethune (University Hospitals Plymouth), Dr David Sheridan (University Hospitals Plymouth) and Dr Louisa Vine (University Hospitals Plymouth) for contributing clinical data and samples.

Katherine Smollett (CVR, Glasgow) and Ana Fellipe (CVR, Glasgow) for undertaking Illumina whole genome sequencing on HEV samples.

Marc Niebels (CVR, Glasgow), Professor Emma Thomson (CVR, Glasgow), Sreenu Vattipally (CVR, Glasgow), Josh Singer (CVR, Glasgow) and David Williams (PHE) for guidance and assistance with reference mapping and Illumina sequence analysis

my friends, family and wife Esther, for their unwavering support, patience and encouragement.

And lastly to all those patients that took part in these studies and contributed samples without whom none of this would have been possible.

Abstract

Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis in the UK and leads to persistent HEV infection in immunosuppressed individuals. The prevalence and clinical outcomes of persistent HEV are unknown in the UK. It is hypothesized that persistent HEV is an under-recognised disease in the UK, that screening of high-risk immunocompromised patients will be cost-effective and enhanced surveillance of persistent HEV cases will identify pragmatic parameters for clinical monitoring.

Within this study, the prevalence of HEV infection was investigated in three distinct immunocompromised cohorts. A commercial assay for detecting HEV antigen (HEV-Ag) was explored for use as a screening assay and monitoring tool. A costeffectiveness analysis modelled the impact of annual HEV screening in solid organ transplant (SOT) recipients. The diagnostic findings and clinical outcomes were reported on a case series of persistent HEV infections across England and Wales and whole genome sequencing (WGS) was utilized to explore viral mutations with and without antiviral pressure.

This work demonstrates that persistent HEV infections are under-recognised in transplant recipients, with biochemical abnormalities often attributed to other causes by clinicians. Viraemia rates were similar to other European studies among SOT recipients. HEV-Ag had both high sensitivity and specificity as a screening assay for persistent HEV infections. The annual screening of SOT recipients either by RNA or HEV-Ag testing is projected to be cost-effective for the NHS. The case series showed that a broad range of immunosuppressed patients are at risk of

persistent infection, however the magnitude of risk in antibody-deficient patients and those with a haematological malignancy were lower than in SOT. Finally, WGS revealed the emergence of mutations in the RNA-dependent RNA polymerase region associated with clinical phenotypic resistance to ribavirin. However, further optimization of HEV sequencing is required to investigate samples with lower HEV viral loads.

Table of contents

1 General Introduction 23
1.1 Hepatitis E virus as an emerging viral infection 23
1.1.1 The changing epidemiology of HEV infection 23
1.1.2 HEV in the UK 25
1.1.3 Seroprevalence of HEV 28
1.1.4 Transmission routes of HEV 30
1.1.4.1 HEV as a foodborne zoonosis 30
1.1.4.2 HEV transmission from substances of human origin 31
1.1.4.3 Other routes of transmission 36
1.2 The Virology of HEV 37
1.2.1 Genomic structure and replication of HEV 37
1.2.2 Genotypic diversity of HEV 40
1.3 Clinical manifestations 42
1.3.1 Acute hepatitis E 42
1.3.2 Extra-hepatic manifestations of HEV infection 42
1.3.3 Persistent HEV infection. 43
1.3.4 Prevalence of HEV infection in immunocompromised cohorts. 44
1.3.5 Risk factors for persistent HEV infection 48
1.3.6 Natural history of persistent HEV infection 49
1.3.7 Diagnosis of persistent HEV infection 49
1.3.8 Clinical management of persistent HEV infection 50
1.3.8.1 Reduction of iatrogenic immunosuppression 51
1.3.8.2 Antiviral therapy 51
1.3.8.2.1 Ribavirin therapy 51
1.3.8.2.2 Evidence for clinical efficacy of ribavirin 51
1.3.8.2.3 Alternative treatment options 53
1.3.8.2.4 Relapses and treatment failures 54
1.4 Research hypotheses 56
1.5 Objectives 57
2 Materials and Methods 58
2.1 Clinical studies methods 58
2.1.1 Study sites and patient samples 58
2.1.2 Study approvals 58
2.1.3 Communication of results and management of HEV-infected patients. 60
2.1.4 Clinical data collection 60
2.2 Laboratory Materials and Methods 63
2.2.1 Sample preparation 63
2.2.1.1 Processing of faecal samples 63
2.2.1.2 Minipooling of plasma samples 63
2.2.1.3 Preparation of normal human plasma 64
2.2.1.4 HEV quantitative standards 64
2.2.1.5 Generation of tissue culture-derived HEV-Ag 64
2.2.1.6 Preparation of internal quality control materials 67
2.2.1.7 Generation of HEV virus-like particles 67
2.2.1.8 Production of a putative HEV-Ag containing pool. 67
2.2.1.9 Production of a putative HEV-Ag neutralising reagent. 68
2.2.2 RNA extraction, PCR and serological assays 69
2.2.2.1 Nucleic acid extraction 69
2.2.2.2 Preparation of HEV and MS2 TaqMan primer and probe mix 69
2.2.2.3 Real-time PCR for HEV RNA detection 70
2.2.2.4 HEV PCR and sequencing of ORF2 for phylogenetics 73
2.2.2.5 HEV serology 77
2.2.2.6 HEV-Ag detection. 78
2.2.2.7 Measurement of HEV-Ag neutralising activity 79
2.2.2.8 Illumina whole genome sequencing of HEV 79
2.2.2.8.1 Design of target enrichment probes 79
2.2.2.8.2 NGS library preparation 80
2.2.2.8.3 Target enrichment 82
2.2.2.8.4 Amplifying captured multiplex DNA using LM-PCR 84
2.2.2.8.5 Double target enrichment 85
2.2.2.8.6 Illumina whole genome sequencing 85
2.2.3 Bioinformatics analysis of Illumina sequences 86
2.2.3.1 Reference mapping 86
2.2.3.2 Data analysis 86
2.2.3.3 Analysis of published sequences 87
2.2.3.4 Diversity analysis 87
2.2.3.5 Statistical analyses 88
2.3 Health economic analyses 89
2.3.1 Development and modification of Markov model 89
2.3.2 Model assumptions 92
2.3.3 HEV screening algorithms and modelling the impact of screening 93
2.3.4 Input parameters of model 96
2.3.5 Uncertainty analyses 105
3 HEV-Ag detection as a screening modality 107
3.1 Introduction 107
3.2 Results 109
3.2.1 Selection of reagents and validation of HEV-Ag neutralisation 109
3.2.2 Demonstration of neutralising activity in various incubation conditions 111
3.2.3 Dilution effect reduced by using low volume neutralising reagent. 114
3.2.4 Neutralisation of tissue culture antigen, virus-like particles and the HEV-Ag ELISA kit positive control 116
3.2.5 Neutralisation of HEV-Ag in analytes other than plasma 119
3.2.6 HEV-Ag detection and neutralisation for screening immunocompromised patients for HEV infection 121
3.2.7 Sensitivity of HEV-Ag detection 121
3.2.8 Specificity of HEV-Ag reactivity 122
3.2.9 HEV-Ag detection throughout the course of HEV infection 128
3.3 Discussion 134
3.4 Conclusions 140
4 HEV infection in immunocompromised cohorts 141
4.1 Introduction 141
4.2 Results 144
4.2.1 HEV infection in transplant recipients 144
4.2.1.1 Characteristics of transplant patients 144
4.2.1.2 Viraemic transplant patients 147
4.2.1.3 Predictive factors for HEV viraemia in transplant patients 150
4.2.1.4 Predictive value of a raised serum ALT value for HEV viraemia 154
4.2.1.5 HEV markers in viraemic patients 154
4.2.2 HEV infection in patients with haematological malignancies 155
4.2.2.1 Characteristics of haemato-oncology patients. 155
4.2.2.2 Transfusion exposure to HEV infection in haemato-oncology patients 160
4.2.2.3 Viraemic haemato-oncology patients 162
4.2.2.4 Anti-HEV IgG seroprevalence in haemato-oncology patients 165
4.2.3 HEV infection in patients with antibody deficiency 167
4.2.3.1 Characteristics of antibody-deficient patients 167
4.2.3.2 HEV markers in antibody-deficiency patients 171
4.2.3.3 Factors associated with seropositivity for anti-HEV IgG 173
4.2.3.4 HEV ORF2 antigen neutralising activity of patient plasma samples and immunoglobulin products 179
4.2.3.5 HEV antigen neutralising capacity in sera post-IVIG in comparison to sera from patients recovered from acute and persistent HEV infection183
4.3 Discussion 185
4.3.1 HEV infection in transplant recipients 185
4.3.2 HEV infection in patients with haematological malignancies 188
4.3.3 HEV infection in patients with antibody deficiency 190
4.3.4 Summary discussion 194
4.4 Conclusions 197
5 Demography, virology and outcomes of persistent HEV infection across England and Wales 198
5.1 Introduction 198
5.2 Results 200
5.2.1 Clinical case definitions and terms 200
5.2.2 Cases of persistent Hepatitis E diagnosed between 2009 and 2017 201
5.2.3 Blood markers and liver disease at diagnosis 205
5.2.4 Virology and phylogenetic analysis of persistent HEV cases 208
5.2.5 Delays in the clinical diagnosis of persistent HEV infection 211
5.2.6 Serological responses at diagnosis 211
5.2.7 Sustained serological responses throughout and after HEV infection 214
5.2.8 Treatment and outcomes of patients with persistent HEV infection 216
5.2.9 Outcomes in anti-HEV IgG seronegative patients 218
5.2.10 Virological recurrence after treatment 220
5.3 Discussion 224
5.4 Conclusions 229
6 Cost-effectiveness analysis of screening for persistent HEV infection in SOT recipients 230
6.1 Introduction 230
6.2 Results 232
6.2.1 Base-case results 232
6.2.2 Incremental cost-effectiveness analysis 235
6.2.3 Deterministic sensitivity analysis 238
6.2.4 Scenario analyses 241
6.2.5 Probabilistic sensitivity analysis 249
6.3 Discussion 254
6.4 Conclusions 260
7 Evolution of HEV quasispecies during persistent infection 261
7.1 Introduction 261
7.2 Results 263
7.2.1 Patient Characteristics 263
7.2.2 Quality of sequencing data 263
7.1.1 HEV Polymerase region (RdRp) analysis 270
7.1.1.1 HEV RdRp mutations detected in baseline samples 270
7.1.1.2 Evolution of RdRp mutations after ribavirin treatment 270
7.2.2.1 Evolution of RdRp mutations in absence of ribavirin treatment 271
7.2.2.2 Presence of RdRp mutations occurring in conserved regions 276
7.2.2.3 Determination of frequency of RdRp mutations in published Genbank sequences 278
7.2.3 HEV ORF2 analysis 280
7.1.2 Quasispecies diversity analysis 283
7.3 Discussion 284
7.4 Conclusions 291
8 General discussion 292
List of Appendices
Appendix 1. Chapter 2 supplementary materials and methods 340
A1.1 Clinical data collection tool for persistent HEV cases 340
A1.2 Generation and purification of genotype 1 and 3 HEV virus-like particles 343
A1.3 Electrophoresis image of denatured HEV VLPs. 344
A1.4 Electron microscopy of HEV G3 VLPs. 345
A1.5 Diagnostic testing algorithms for HEV considered in CEA 346
A1.6 Diagnostic testing algorithms for HEV considered in CEA 347
A1.7 Diagnostic testing algorithms for HEV considered in CEA 348
A1.8 Linux commands used for whole genome sequence analysis 349
Appendix 2. Chapter 3 supplementary results 353
A2.1 Plasma HEV-Ag in untreated patients 354
A2.2 Plasma HEV-Ag in antiviral treated patients 355
Appendix 3. Chapter 4 supplementary results 357
A3.1 Immunosuppressive medication given to patients with haematological malignancy prior to HEV RNA testing 358
Appendix 4. Chapter 6 supplementary results 361
A4.1 Cost effectiveness planes for HEV screening strategies 362
A4.2 Scenario analysis of the mean age at transplantation. 363
A4.3 Scenario analysis of the mortality rate of SOT recipient 364
A4.4 Scenario analysis on the HRQoL of SOT recipient 365
A4.5 Scenario analysis on discounting of costs and utilities 366
A4.6 Scenario analysis on the specificity of HEV-Ag testing 367
A4.7 Scenario analysis on healthcare costs of treating/monitoring persistent HEV infection 368
A4.8 Scenario analysis on mortality rate from compensated cirrhosis 369
A4.9 Scenario analysis on mortality rate from decompensated cirrhosis. 370
A4.10 Scenario analysis on the probability an HEV-infected patient has an abnormal ALT 371
Appendix 5. Chapter 7 supplementary results 372
A5.1 Virological profiles of patients undergoing HEV Illumina whole genome sequencing 373
A5.2 Summary of HEV whole genome sequencing results 376
A5.3 Reference sequences used by HEV GLUE 378
A5.4 Summary reports for patient samples undergoing Illumina HEV whole genome sequencing. 379

List of tables

Table Page
Table 1.1 HEV genotypes that commonly affect humans 26
Table 1.2 Seroprevalence in blood donors and the general population 29
Table 1.3 Prevalence of HEV viraemia in blood donors in Europe 34
Table 1.4 Prevalence of HEV viraemia in blood donors outside Europe 35
Table 1.5 Prevalence of HEV infection in immunosuppressed cohorts 47
Table 2.1 Primers and probes for detecting of HEV and MS2 bacteriophage 72
Table 2.2 Primers for ORF2 HEV PCR for phylogenetics 76
Table 2.3 Screening strategies for HEV infection in SOT recipients 95
Table 2.4 Input parameters for cost-effectiveness model 97
Table 2.5 Healthcare costs to treat persistent HEV Infection 100
Table 2.6 Calculations for Markov Model parameters 102
Table 3.1 Neutralisation of HEV-Ag from variety of sources 117
Table 3.2 Neutralisation of HEV-Ag in non-plasma analytes 120
Table 3.3 Neutralisation of HEV RNA-positive/HEV-Ag reactive samples 124
Table 3.4 Neutralisation of samples HEV RNA-negative but HEV-Ag reactive

\qquad126
Table 3.5 Specificity of HEV-Ag assay 127
Table 4.1 Characteristics of HEV viraemic transplant patients 149
Table 4.2 HEV viraemic and HEV RNA-negative transplant patients 151
Table 4.3 Comparison of ALT values of HEV viraemic and aviraemic patients by transplant group 153
Table 4.4 Haemato-oncology patients screened for HEV 157
Table 4.5 Immunosuppression of haemato-oncology patients prior to HEV testing 158
Table 4.6 Factors affecting likelihood of anti-HEV IgG seroreactivity 166
Table 4.7 Characteristics of antibody-deficient patients tested for HEV 168
Table 4.8 latrogenic immunosuppression in antibody deficient patients 170
Table 4.9 Seropositive and seronegative antibody-deficient patients 174
Table 4.10 Correlation between immunoglobulin product type and patient seropositivity 176
Table 4.11 Anti-HEV IgG reactivity in immunoglobulin products 177
Table 4.12 Pre and Post IVIG anti-HEV IgG levels and neutralisation 182
Table 5.1 Characteristics of patients with persistent HEV infection 204
Table 5.2 Liver imaging in persistent HEV infection 207
Table 5.3 Outcomes of patients who did not seroconvert to anti-HEV IgG 219
Table 5.4 Patients with virological relapse 222
Table 6.1 Projected preventable complications in base-case 234
Table 6.2 Incremental cost-effectiveness for all HEV screening strategies 236
Table 6.3 Incremental cost-effectiveness for HEV screening using PCR only 237
Table 7.1 Characteristics of patients analysed by Illumina WGS 265
Table 7.2 Amino acid polymorphisms in RdRp of patient samples 272
Table 7.3 Frequency of HEV RdRp mutations in published sequences 279
Table 7.4 Amino acid polymorphisms in ORF2 of patient samples 281

List of figures

Figure Page
Figure 1.1 Acute hepatitis E in England and Wales 27
Figure 1.2 Genomic structure of HEV 39
Figure 2.1 Markov Model for HEV Infection in SOT recipients 91
Figure 3.1 HEV-Ag assay reactivity in pooled samples 110
Figure 3.2 Trial of HEV-Ag neutralisation in blood donors 112
Figure 3.3 Neutralisation of HEV-Ag pool by convalescent donor plasma 113
Figure 3.4 Optimisation of antigen and antibody concentrations for neutralisation 115
Figure 3.5 Stability of HEV-Ag ELISA reactivity of G3 VLPs 118
Figure 3.6 Correlation between HEV viral load and reactivity by HEV-Ag ELISA in HEV viraemic patients 123
Figure 3.7 HEV-Ag ELISA reactivity of viraemic and aviraemic patients 125
Figure 3.8 Plasma HEV-Ag in untreated patients 130
Figure 3.9 Plasma HEV-Ag in antiviral treated patients 131
Figure 3.10 Stool HEV-Ag in antiviral-treated patients 133
Figure 4.1 Timing of HEV screen in relation to transplant 145
Figure 4.2 Proportion of patients with abnormal ALT in relation to transplant 146
Figure 4.3 Comparison of ALT values of HEV viraemic and aviraemic transplant patients 152
Figure 4.4 Patients receiving HEV unscreened transfusions prior to HEV testing 161
Figure 4.5 Diagnostic markers in HEV viraemic haemato-oncology patients. 164
Figure 4.6 Anti-HEV IgG reactivity in antibody-deficient patients compared with HEV-uninfected blood donors 172
Figure 4.7 Correlation of patient seropositivity and anti-HEV IgG concentration in the immunoglobulin product. 178
Figure 4.8 HEV-Ag neutralising activity of immunoglobulin products 180
Figure 4.9 Correlation of Anti-HEV IgG level and HEV-Ag neutralisation 181

$$
\begin{aligned}
& \text { Figure 4.10 } \text { Comparison of HEV-Ag neutralisation by plasma from acute clinical } \\
& \text { cases of HEV, recovered persistent cases of HEV and patients post- } \\
& \text { IVIG ... } 184
\end{aligned}
$$

Figure 5.1 Available samples and clinical information from patients with persistent HEV infection 202
Figure 5.2 Cases of persistent HEV infection by year and diagnosis 203
Figure 5.3 Liver enzyme values in persistent HEV infection 206
Figure 5.4 Phylogeny of persistent HEV infections across England and Wales 209
Figure 5.5 Anti-HEV serological responses in persistent HEV infection 213
Figure 5.6 Persistence of anti-HEV IgM after clearance of HEV viraemia in persistent HEV infection 215
Figure 5.7 Treatment and outcomes in persistent HEV infection 217
Figure 6.1 Cost-effectiveness plane of base-case 233
Figure 6.2 Summary results of deterministic sensitivity analysis 239
Figure 6.3 Altering the annual dietary risk of HEV 243
Figure 6.4 Altering the probability of developing persistent HEV infection 244
Figure 6.5 Altering the annual probability of developing cirrhosis 245
Figure 6.6 Altering the probability of being diagnosed in the absence of HEV screening 246
Figure 6.7 Altering the costs of HEV testing 247
Figure 6.8 Cost-effectiveness acceptability curve for HEV screening by any strategy 250
Figure 6.9 Cost-effectiveness acceptability curve for all HEV screening strategies considered (A-D) 251
Figure 6.10 Cumulative rank probability of HEV screening being cost- effective 252
Figure 6.11 Cost-effectiveness acceptability frontier 253
Figure 7.1 Virological profiles of patients demonstrating ribavirin resistance. 267
Figure 7.2 Correlation of viral load and genome coverage 268
Figure 7.3 Single and double probe target enrichment of HEV samples 269
Figure 7.4 Evolution of fixed RdRp mutations associated with treatment failure in patient Q.. 273
Figure 7.5 Evolution of transient RdRp polymorphisms in patient Q............... 274
Figure 7.6 Evolution of all RdRp mutations in patient I 275
Figure 7.7 Location of RdRp mutations with or without drug pressure in conserved motifs .. 277
Figure 7.8 Site of ORF2 mutations in relation to defined domains and T-cell epitopes.. 282

List of publications

Ankcorn MJ, Tedder RS. Hepatitis E: the current state of play. Transfus Med. 2017 Apr;27(2):84-95. doi: 10.1111/tme.12405. PMID: 28382704.

Ankcorn MJ, Ijaz S, Haywood B, Neuberger J, Elsharkawy AM, Maggs J, Tedder RS. Confirmation of specificity of reactivity in a solid phase ELISA for the detection of hepatitis E viral antigen improves utility of the assay. J Virol Methods. 2018 Feb;252:42-48. doi: 10.1016/j.jviromet.2017.11.007. Epub 2017 Nov 20. PMID: 29158182.

Ankcorn MJ, ljaz S, Poh J, Elsharkawy AM, Smit E, Cramb R, Ravi S, Martin K, Tedder R, Neuberger J. Toward Systematic Screening for Persistent Hepatitis E Virus Infections in Transplant Patients. Transplantation. 2018 Jul;102(7):11391147. doi: 10.1097/TP.0000000000002097. PMID: 29953421; PMCID: PMC7228632.

Ankcorn MJ, Fox TA, Ijaz S, Nicholas C, Houston E, Longair I, Suri D, Mattes FM, Walker JL, Tedder RS, Sekhar M. Characterising the risk of Hepatitis E virus infection in haematological malignancies: a UK prospective prevalence study. Br J Haematol. 2019 Jul;186(1):191-195. doi: 10.1111/bjh.15796. Epub 2019 Feb 15. PMID: 30768677.

Ankcorn M, Moreira F, Ijaz S, Symes A, Buckland MS, Workman S, Warburton F, Tedder RS, Lowe DM. Absence of Persistent Hepatitis E Virus Infection in Antibody-Deficient Patients Is Associated With Transfer of Antigen-Neutralizing Antibodies From Immunoglobulin Products. J Infect Dis. 2019 Jan 7;219(2):245253. doi: 10.1093/infdis/jiy504. PMID: 30137432.

Ankcorn M, Said B, Morgan D, Elsharkawy AM, Maggs J, Ryder S, Valliani T, Gordon F, Abeysekera K, Suri D, McPherson S, Galliford J, Smith B, Pelosi E, Bansal S, Bethune C, Sheridan D, Vine L, Tedder RS, Ijaz S; enhanced persistent HEV surveillance group. Persistent Hepatitis E virus infection across England and Wales 2009-2017: Demography, virology and outcomes. J Viral Hepat. 2021 Feb;28(2):420-430. doi: 10.1111/jvh.13424. Epub 2020 Nov 2. PMID: 33073452.

Ankcorn MJ, Tedder RS, Cairns J, Sandmann FG. Cost-Effectiveness Analysis of Screening for Persistent Hepatitis E Virus Infection in Solid Organ Transplant Patients in the United Kingdom: A Model-Based Economic Evaluation. Value Health. 2020 Mar;23(3):309-318. doi: 10.1016/j.jval.2019.09.2751. Epub 2019 Nov 15. PMID: 32197726.

1 General Introduction

1.1 Hepatitis E virus as an emerging viral infection

1.1.1 The changing epidemiology of HEV infection

Hepatitis E virus (HEV) is a positive-sense RNA virus in the widespread Hepeviridae family [1]. HEV strains infecting humans are found within species A of the Orthohepevirus genus which consists of eight recognised genotypes [1, 2]. Of these genotypes four are recognised to commonly infect humans (Table 1.1). The anthropotropic genotypes (G1 and G2) are obligate human pathogens and do not infect other hosts. They are predominantly acquired through the consumption of food or water contaminated with human faecal material shed from an acutely infected person. This can lead to large outbreaks in areas of poor sanitation such as refugee camps. In contrast, the enzootic genotypes (G3 and G4) have a wider host range of mammals and lead to human infection through the consumption of food containing virus, though in this case it is through eating meat from an animal that is viraemic at the time of slaughter. A single case of genotype 7 HEV human infection has been reported, but the extent to which these other genotypes (G5-8) can infect humans is largely unknown $[3,4]$. Species B and C of the Orthohepevirus genus were not known to lead to human infection, however highly divergent strains of HEV within species C commonly infecting rats have been recently recognised to cause human infections and may be underrecognised [5-7].

The virus was first isolated during an outbreak in a soviet military camp in Afghanistan in the early 1980s. A member of the research team confirmed the presence of an infective agent in an unorthodox manner by ingestion of pooled faecal extract from the affected soldiers [8]. This novel virus, later cloned and named HEV, was seen by electron microscopic examination of his stool after he fell ill with jaundice [9]. Prior to this time a large waterborne outbreak of acute nonA non-B hepatitis and jaundice in Kashmir, India in 1978 had been suspected to be caused by a novel virus [10]. Retrospective serological testing of clinical samples from an outbreak in Delhi, India in the 1950s confirmed the presence of circulating HEV at that time [10]. Since its discovery large epidemics of HEV affecting thousands of people have continued to occur periodically in the developing world, particularly in parts of Africa, Asia and Mexico [11].

HEV was considered a disease of poor sanitation in certain developing countries and only occurring in developed countries as a travel-associated infection until the late 1990s. At this time anti-HEV seroprevalence rates of 1% to 4% in developed countries considered non-endemic for HEV suggested local acquisition was occurring [12]. This was subsequently confirmed and at a similar time novel related viruses, designated swine HEV, were identified circulating amongst pigs [13]. HEV is now considered endemic amongst swine in Europe and are an important transmission source leading to zoonotic infections.

The World Health Organization (WHO) estimate that 20 million HEV infections occur annually leading to over 3 million symptomatic cases globally leading to 44 000 HEV-related deaths [14]. These figures are approximated from the
epidemiology in endemic regions particularly developing countries in Africa and Asia where large waterborne outbreaks of G1 and G2 HEV occur. In Europe where G3 HEV is the dominant genotype, reported hepatitis E case numbers have been increasing year on year particularly in Western European countries [15]. Such cases are typically sporadic but outbreaks linked to commercially catered events are documented [16, 17].

1.1.2 HEV in the UK

Across England and Wales specifically, similar to other Western European countries, the reported clinical cases of acute hepatitis E have followed an upward trend since 2010 peaking at 1243 cases in 2016 (Figure 1.1) [15, 18-21]. If one extrapolates from blood donors presenting for donation in South-East England with HEV viraemia between 80000 and 100000 HEV infections occur in England annually, most of which are asymptomatic [22]. The majority of these HEV infections in humans in the UK are not acquired from UK pigs and are likely to arise from the importation of continental pigmeat of animals viraemic at the time of slaughter [23]

Table 1.1 HEV genotypes that commonly affect humans

	Genotype 1	Genotype 2	Genotype 3	Genotype 4
Species infected	Humans only		Primarily pigs but many other mammals including humans	
Route of infection	Waterborn Direct pers spread	aeco-oral to-person limited	Direct pers spread n	-person oven
Epidemiological pattern	Sporadic cases epid	between large ics	Sporad	ses
Clinical features	Acute hepatiti Severe dis preg	an be severe seen in ny	Symptomatic he elderly Chronic in imm	s common in es ompromised
Geographical distribution	Asia \& Africa	Mexico \& Africa	Worldwide	Asia, recent spread to Europe

Comparison of the epidemiology and clinical features of the four main HEV genotypes causing disease in humans.

Figure 1.1 Acute hepatitis E in England and Wales

Reported cases of acute HEV infection reported across England and Wales. Cases include those virologically diagnosed at the Public Health England's (PHE) bloodborne virus unit (BBVU) at Colindale and Birmingham public health laboratory and those reported to the second generation surveillance system (SGSS) by diagnostic laboratories across England and Wales [21].

1.1.3 Seroprevalence of HEV

Anti-HEV IgG seroprevalence data, reflecting prior HEV infection from various countries, demonstrate that the areas of highest seroprevalence are observed in geographical areas considered HEV-endemic such as Nepal (47\%) and Bangladesh (50\%), with much lower seroprevalence figures found in Argentina (11\%), Uruguay (10\%), USA (9.5\%), Brazil (6\%), New Zealand (4\%), Australia (6\%), Canada (6\%), and Scotland (5\%) [24-33]. However, many European countries such as France (25-56\%) and the Netherlands (21-27\%) also demonstrate high seroprevalence figures [34-36].

In Europe HEV seroprevalence figures range from 0.6% to 53% [37]. Some of the variation observed has been blamed on the variable performance of different antiHEV assays [38]. When analysis is restricted to comparison of studies using the Wantai IgG ELISA, regarded as the most sensitive ELISA, there remains a wide variation of seroprevalence between countries (Table 1.2) [39]. Within countries there are also large regional variations, most marked in France, with areas including the southwest and southeast of France considered hyperendemic for HEV [40]. The consumption of regional delicacies such as the raw liver sausage figatellu and fitone may partly explain these variations but obvious regional dietary delicacies are not evident in other countries [3]. Such high seroprevalence figures in industrialized European countries seem surprising when relatively few clinically symptomatic cases are identified but can be understood in the context of blood donor studies where asymptomatic infections are the norm [41].

Table 1.2 Seroprevalence in blood donors and the general population

	Country	Anti-HEV IgG in blood donors	Anti-HEV IgG in general population	Year of sampling
$\begin{aligned} & \text { 을 } \\ & \text { 를 } \end{aligned}$	Austria	14\%		2013/2014 [42]
	Denmark	20\%		2013 [43]
	England	12\%		2010 [44]
	France	56\%		2017/2018 [36]
		25\%		2012/2013 [29]
			34\%	2010/2011 [35]
		53\%		2003/2004 [35]
	Germany		30\%	2010 [45]
	Ireland	5\%		2012 [46]
	Italy	9\%		2015/2016 [47]
	Netherlands	27\%		2011/2012 [34]
		21\%		2011 [48]
	Scotland	5\%		2004-08 [27]
	Spain	20\%		2013 [50]
	Switzerland	20\%		2014-2016 [51]
	South Africa	43\%		2014-2015 [52]
	New Zealand	10\%		2014/2015 [53]
	USA	16\%		2012 [54]
	Canada	6\%		2013 [26]
	Hong Kong	16\%		2015 [55]

Prevalence of anti-HEV IgG in blood donors and the general population using the Wantai IgG assay (Fortress Diagnostics Ltd). All percentages rounded up to whole numbers.

1.1.4 Transmission routes of HEV

In broad terms transmission of HEV to humans can be considered as either enteric or parenteral. G1 and G2 HEV are transmitted faeco-orally when water sources become contaminated with faecal material. In contrast, the most significant transmission route of G3 and G4 is through consumption of meat from an infected animal. However, other routes of transmission remain possible.

1.1.4.1 HEV as a foodborne zoonosis

G3 HEV is of particular importance because it is found worldwide in a wide variety of animals including pigs, wild boar, deer, rabbits, cattle, sheep, horses and mongooses [56-61]. Seropositivity has also been found in primates, cats and dogs [62-65].

Pork meat, in particular that which contains liver, is the predominant food source for G3 and G4 HEV but infection from venison and wild boar is also recognised [3]. Multiple questionnaire-based case-control studies indicate the consumption of pork products as a risk for HEV infection and molecular phylogeny has proven direct transmission from raw pig liver sausages [40, 66, 67]. Bacon, pigs' liver and cured pork meats were strongly associated with HEV infection in English blood donors [68]. Porcine blood as a distinct ingredient in other meat products is also considered high risk for HEV acquisition [69]. HEV is highly transmissible amongst pigs and there is evidence of HEV infection in more than 80% of pig herds in the US, Canada and the UK [23, 70, 71]. Furthermore, HEV viraemia is common at
the time of pig slaughter and infectious virus has been detected at every step of the food chain in several European countries [23, 72-76]. Meat from rabbits may also lead to human infection [77]. A distinct subtype of G 3 was identified in rabbits in France and human infections with such subtypes do occur, albeit rarely [78-80]. Other food products including shellfish, soft fruits and vegetables may be contaminated by pig effluent or irrigation water and lead to HEV infection [81-83]. An outbreak of HEV on a cruise ship was linked to shellfish consumption, but overall there is scarce evidence that these foodstuffs contribute significantly to HEV transmission [83].

1.1.4.2 HEV transmission from substances of human origin (SOHO)

Where acutely infected viraemic individuals occur in the human population from which blood donors are drawn, blood and its components will also infect those who receive such substances. Initially transfusion transmission of HEV was described in HEV-endemic countries where G1 is dominant [84]. More recently transmission of G3 HEV by transfusion has been reported in European countries including France, the UK and Germany [22, 85-87]. In Europe prevalence rates of G3 viraemia in blood donors varies significantly between countries but also within countries over time. Of particular note was the significant increase in the prevalence of G3 viraemia in Scottish blood donors from 1 in 14520 in 2012 to 1 in 2841 in 2016 [49]. Similar rises have been seen in other countries including the Netherlands (Table 1.3 and Table 1.4) [88].

Transmission is described for red blood cells, platelet preparations, pooled granulocytes and fresh frozen plasma including pathogen-inactivated plasma [89, 90]. The risk of transmission is influenced by the presence of antibody, the viral load in the donor and the volume of plasma transfused in the final blood component [22]. Overall, the risk of a viraemic donation leading to infection in the recipient is estimated to be 40-50\% [22]. Extrapolating figures from a transmission study in the UK, the lowest total virus inoculum of G3 known to have led to infection in the recipient is 2×10^{4} international units (IU) [22].

Transmission of HEV can also occur through the transplantation of both hepatic and non-hepatic infected solid organ grafts [91-94]. The receipt of a liver transplant containing HEV from a donor who was aviraemic at the time of donation led to cirrhosis in the recipient [91]. Two further kidney transplant recipients were infected with HEV by kidney grafts from a single donor [92]. To date there are no published cases of stem cell donation leading to infection in the recipient, but a potential stem cell donor was identified as having HEV viraemia prior to donation and a second donor in Ireland was found to be viraemic on the day of stem cell harvest [95, 96]. To mitigate the risk of HEV acquisition from substances of human origin, eight countries in the European Union have introduced blood donation screening for HEV RNA since 2012 [97, 98]. Of these eight countries, three have a universal screening strategy (UK, Ireland and the Netherlands) and the remaining five (France, Austria, Luxembourg, Spain and Germany) have a selective screening strategy for blood donations [98, 99]. Testing varies by country; either individual donation testing or the testing of mini-pools for HEV RNA [98]. Despite mini-pool
testing there remains a residual risk of transfusion-transmitted HEV infection [100, 101]. In addition, stem cell donors and solid organ transplant donors are screened for HEV RNA in a number of countries. However, even in countries where screening is not performed, the dietary risk of HEV acquisition is far greater than unscreened substances of human origin [102, 103].

Table 1.3 Prevalence of HEV viraemia in blood donors in Europe

	Country	Blood donors HEV RNA positive	Year of sampling
$\begin{aligned} & \text { 을 } \\ & \text { 을 } \\ & \text { 랑 } \end{aligned}$	Austria	1:5369	2016/2017 [98]
		1:8416	2013/2014 [42]
	Denmark	1:2331	2015 [101]
	England	1:4736	2017 [98]
		1:2848	2012/2013 [22]
	France	1:2218	2012/2013 [29]
		1:591	2011 [40]
	Germany	1:1294	2015-2017 [104]
		1:1240	2011 [105]
		1:4525	2011 [106]
	Ireland	1:4997	2012 [46]
	Italy	0:10 011	2015/2016 [47]
	Luxembourg	0:914	2017 [98]
	Netherlands	1:2179	2017/2018 [98]
		1:762	2013/2014 [88]
		1:2671	2011/2012 [34]
	Poland	1:1266	2014/2015 [107]
	Scotland	1:14 520	2012 [27]
		1:2841	2016 [49]
	Spain	1:3846	2017-2018 [98]
		1:3333	2013 [50]
	Sweden	1:7986	2011 [106]

Table 1.4 Prevalence of HEV viraemia in blood donors outside Europe

	Country	Blood donors HEV RNA positive	Year of sampling
	USA	1:42 673	2015 [108]
		1:9500	2013 [31]
		0:1939	2011 [106]
	Canada	0:5000	2013 [26]
		0:13993	2013 [109]
	Uruguay	1:133	2017/2018 [30]
$\frac{\pi}{8}$	Cambodia	1:301	2014 [110]
	China	1:486	2013/2014 [111]
	Thailand	1:1158	2015 [112]
	Hong Kong	1:5000	2015 [55]
	India	1:1864	2017 [113]
	Japan	1:15075	2004-2014 [114]
	Australia	1:74 131	2016 [115]
		1:14799	2014 [116]
	New Zealand	0:5000	2014/2015 [53]
	Ghana	0:239	Not stated [117]
	South Africa	1:10 000	2014/2015 [52]

1.1.4.3 Other routes of transmission

The frequent finding of higher anti-HEV seroprevalence in people with exposure to pigs and other livestock via their occupation including veterinarians, pig handlers, forestry workers, slaughterhouse workers and butchers is suggestive that direct animal contact may also lead to HEV infection [118-122].

Direct human to human transmission of G1 HEV also occurs in outbreaks leading to prolonged epidemics, but is considered extremely rare the zoonotic genotypes of HEV including G3 [123, 124].

The evidence for sexual transmission is mixed and inconclusive [125-128]. A recent study did not find any increased anti-HEV seroprevalence in a high-risk cohort among men taking pre-exposure prophylaxis (PrEP) against HIV [129]. Mother to child transmission occurs commonly with G1 HEV infection in pregnancy with reported ranges of $33-100 \%$, particularly if HEV is acquired in the third trimester, but it is not known whether transmission occurs in utero, through labour, breastfeeding or close contact post-delivery [130].

In addition to liver tissue, plasma and stool, HEV RNA has been detected in cerebrospinal fluid, bone marrow, urine and breast milk, but the infectivity and thus the likelihood of transmission from these bodily fluids is unknown [131-136].

1.2 The Virology of HEV

1.2.1 Genomic structure and replication of HEV

HEV is a small (27-34nm), non-enveloped, positive sense single-stranded RNA virus. Both plasma-derived virus and cell culture-derived virus exists in a quasienveloped form in which virions are surrounded by a lipid coat derived from host membranes [137].

The $\sim 7.2 \mathrm{~Kb}$ genome contains multiple, separately transcribed genes with three partially overlapping open reading frames (ORFs). ORF1 encodes a polyprotein with multiple putative functional domains vital for RNA replication (Figure 1.2) [138]. These include a methyltransferase, Y , papain-like cysteine protease, X, helicase, and RNA-dependent RNA polymerase domains. ORF2 immediately follows ORF1 and is the source of the single capsid protein essential for virion assembly, host cell interaction and immunogenicity [138]. The immunogenicity of the ORF2 product has been exploited to generate a vaccine by expressing high levels of the antigen in vitro [139]. It has four defined domains, namely the N terminus, the middle (m), protruding (p) and shell (s). Monoclonal antibodies directed against the m and p domains have demonstrated neutralising capacity therefore are considered important regions for cell binding and entry [140]. ORF2 is also the source of the recently recognised secreted form of ORF2 which is nonvirion associated but whose biological function remains unclear [141]. Both products of ORF2 are thought to share the major neutralising epitopes [141]. ORF3 codes for a small phosphoprotein which is considered vital for virion assembly and
release [142]. In G1 only, a fourth ORF has been recently recognized, the product of which controls the activity of the viral polymerase [143].

Figure 1.2 Genomic structure of HEV

${ }^{\text {a }}$ ORF4 found only in G1 HEV.

Abbreviations: C, cap; CP, capsid protein; CRE, cis-reactive elements; Hel, helicase; HVR, hypervariable region; JR, junction region; MFP, multifunctional protein; Met, methyltransferase; ORF, open reading frame; PCP, papain-like cysteine protease; RdRp, RNA-dependent RNA-polymerase; SL, stem loop structure; UTR, untranslated region; X, macro domain; Y, Y domain. Adapted from van Tong et al [144].

1.2.2 Genotypic diversity of HEV

There is considerable sequence diversity found across the genome within Orthohepevirus A. The large sequence diversity led to the classification of eight distinct genotypes and numerous subtypes. G1 HEV has six subtypes (1a to 1f), G2 has two subtypes (2 a and 2 b), G3 currently has ten subtypes (3 a to 3 j) in addition to rabbit G3 (3ra) and G4 nine subtypes (4a to 4i) [2, 145]. There are also unassigned subtypes within G3 [146]. However, the subtypes remain controversial since the criteria for assigning subtypes has been inconsistent between genotypes partly due to varying methodologies and the inadequate numbers of reference strains available [145]. Proposed reference sequences of whole genomes have been put forward by the International Committee on Taxonomy of Viruses and proposals for defining subtypes published [145, 147, 148]. As exemplified by the numbers of subtypes, the greatest variation is seen with G3 and G4 viruses.

The sequence variation across the HEV genome is relatively constant with a strong selection pressure against non-synonymous mutations, however there are notable exceptions. The region of overlap between ORF2 and ORF3 is highly conserved, whereas between the papain-like cysteine protease and X domains lies a region termed the hypervariable region (HVR). This HVR contains a highly disordered region rich in proline and serine residues, which may have an important, but as yet undefined, structural role [149]. Cell culture studies have identified human coding sequences which have been incorporated in-frame into this region which appear to enhance the replication efficiency in vitro [150, 151].

The biological significance of different genotypes is evident from the contrasting epidemiological patterns and clinical presentations as described. However, the biological significance of subtypes remains unclear. Among blood donors with G3 infection, those infected 3efg subtypes had higher viral loads and more severe symptoms than those infected with subtype 3abchij in one study [41]. Several other reports have found associations between specific variants and severe outcomes; in particular progression to fulminant hepatitis [152-154]. However, a re-analysis of such reported associations concluded that sampling bias may have led to the incorrect attribution of viral variants with the development of fulminant hepatitis and that host-specific factors are more likely responsible [155].

1.3 Clinical manifestations

1.3.1 Acute hepatitis E

Many HEV infections will be completely asymptomatic, more so in the case of the zoonotic G3 and G4 infections than in G1. Where symptoms arise they do so with a prodrome of non-specific malaise late in the incubation period followed by onset of acute jaundice. This clinical symptomatology is indistinguishable from other causes of acute viral hepatitis, including hepatitis A [156].

The overall mortality from G1 infections ranges from 0.5 to 3.0%, but is significantly lower with G3 infections. Severe courses of infection with G1 may occur in pregnancy, particularly in the third trimester, with an excess mortality rate of approximately 25% [157, 158]. By contrast in developed countries G3 infections do not express this increased pathogenicity in pregnant women [159, 160].

Acute G1 infections in the context of chronic liver disease can lead to decompensation with excess mortality [161].

1.3.2 Extra-hepatic manifestations of HEV infection

Infection has been associated with a wide range of extra-hepatic disease processes including neurological, immune complex and haematological complications [162, 163].

Neurological symptoms: Neurological symptoms have been observed during G1 and up to 5% of both acute and chronic G3 cases [164]. Symptoms may be more commonly seen in younger males and with only modestly deranged liver function
tests which can mislead clinicians [164]. Manifestations include Guillain-Barré syndrome, neuralgic amyotrophy, Bell's palsy, acute transverse myelitis and acute meningoencephalitis. Bilateral neuralgic amyotrophy is a specific variant clinical phenotype associated with HEV [165].

Non-neurological: Glomerulonephritis, myocarditis, polyarthritis and haematological complications such as autoimmune haemolytic anaemia, severe thrombocytopenia, macrophage activation syndrome and cryoglobulinaemia have all been associated with acute HEV infection [166]. Acute pancreatitis, including necrotizing forms, is also described with G 1 infections within one to three weeks of hepatitis onset [167].

1.3.3 Persistent HEV infection

Persistent HEV infections were first described in France in solid organ transplant recipients in 2008 and since then have been increasingly recognised [168]. They are also reported in other immunosuppressed patients including haematopoietic stem cell transplantation (HSCT) recipients, those co-infected with HIV, those receiving immunosuppressive therapy for chronic inflammatory diseases and patients undergoing chemotherapy [169-171]. Immunosuppression appears to be a pre-requisite for development of persistent HEV infection. Of the cases of persistent HEV infection described to date in patients without iatrogenic immunosuppression all have invariably had some level of occult immunosuppression from underlying medical disorders [172-176].

Nearly all described cases have been caused by G3, however persistent G4 cases are increasingly recognised in Asia [177, 178]. Single cases of G7 HEV acquired from a camel and of a highly divergent strain of HEV found in rats have evolved to persistence in liver transplant recipients [4, 7]. G1 and G2 HEV were considered not to cause persistent infections until case reports in recent years have challenged that concept [179-182]. Such reports have been challenged due to significant limitations and where systematic studies have attempted to look for persistent infections in G1-endemic areas they have not found it [183].

Currently, persistent HEV infection is defined as "ongoing viraemia in excess of three months duration" [184]. It is likely in an immunosuppressed patient that the detection of viraemia at a steady level over a period of a month or longer is a more timely working definition of persistence. However, this definition may not hold true in patients with fluctuating levels of immunosuppression in particular HSCT recipients and is not universally accepted.

1.3.4 Prevalence of HEV infection in immunocompromised cohorts

The prevalence of persistent HEV infection in a specific patient cohort varies by a number of factors influenced by the individual HEV exposure risk including country of residence and dietary habits, but also their predisposition to developing a persistent infection largely influenced by the patients' net immunosuppression (Table 1.5).

Solid organ transplant (SOT) recipients represent a uniquely high-risk cohort for persistent HEV infection likely reflecting the duration and intensity of
immunosuppression. The prevalence of persistent HEV infection in cohorts of SOT patients in Western Europe typically range between 0.7% and 1.5%, but smaller studies have found higher prevalence figures of up to 4.4% [185-193]. A retrospective study of 328 allogeneic HSCT patients in the Netherlands found a prevalence of HEV viraemia of $2.4 \%(8 / 328)$ of whom 63% developed persistent infection [194].

Several studies across Europe have systematically tested for HEV in HIV cohorts and found six cases of active viraemia amongst over 3000 patients tested. Of these six infections, two patients had preserved CD4 counts but follow up was insufficient to confirm persistent infection [171]. Studies in Iran, China and West Africa found no evidence of persistent HEV infection amongst HIV cohorts [195-198]. One case of persistent HEV infection was found amongst nearly 3000 HIV infected patients in the US [197].

The extent to which immunosuppressed patients beyond transplantation and advanced HIV can support persistent HEV is not known. Cases of persistent HEV leading to rapidly progressive liver fibrosis have been reported in patients treated with rituximab-based chemotherapy for underlying haematological malignancies [170]. In one study of 14 HEV viraemic patients with underlying haematological malignancy (one case with recent allogeneic HSCT), 5 (36\%) developed persistent infection [199].

Studies following the outcome of 23 cases of acute HEV in patients with inflammatory arthritidies on a variety of immunosuppressants did not identify any chronic cases suggesting that the risk is not high in this cohort [200]. However,
another European study in a similar cohort of internal medicine/rheumatology patients found seven cases of acute HEV infection (33\%) developed into persistent HEV infection amongst 21 patients [201]. Early manipulation of patients' immunosuppression and the use of ribavirin in both studies make it difficult to determine the natural history of HEV infection in such patients [200, 201]. Large studies investigating the prevalence of HEV infection amongst immunocompromised patients in the UK have not been undertaken.

Table 1.5 Prevalence of HEV infection in immunosuppressed cohorts

Patient group	Patient category	Cohort size	Country	Prevalence of persistent infection	Reference
HSCT	Allogeneic-HSCT	328	The Netherlands	1.52\%	[194]
SOT	Heart	274	Germany	1.5\%	[185]
	Kidney	1469	Germany	1.09\%	[186]
	Kidney/Liver	871	France	0.7\%	[187]
	Liver	206	France	1.5\%	[193]
	Liver	226	Germany	0.9\%	[188]
	Liver	80	Canada	1.3\%	[202]
	Liver	76	Greece	0\%	[189]
	Kidney - paediatric	90	Germany	4.4\%	[190]
	Kidney	316	Brazil	0\%	[203]
	Lung	95	Germany	3.2\%	[191]
	Heart/Lung/Liver/Kidney	1200	The Netherlands	0.9\%	[192]
HIV	HIV	123	Germany	0\%	[204]
	HIV	115	Spain	0.87\%	[205]
	HIV	86	Iran	0\%	[195]
	HIV	770	China	0\%	[196]
	HIV	1544	Ghana/Cameroon	0\%	[198]
	HIV	2919	USA	0.03\%	[197]

Abbreviations: HIV, human immunodeficiency virus; HSCT, haematopoietic stem cell transplant; SOT, solid organ transplant.

1.3.5 Risk factors for persistent HEV infection

An estimated 60% of SOT patients who acquire HEV infection will develop persistent infection [168]. Amongst SOT recipients risk factors for the development of a persistent infection include a shorter time from the transplant to diagnosis, a recent episode of acute rejection and low CD4 and CD8 T cell counts [206]. Multivariable regression analysis in one study demonstrated the use of the calcineurin inhibitor immunosuppressant, tacrolimus, as opposed to ciclosporin A and low platelet counts as independent risk factor for persistent infection in this cohort [207].

There has been significant interest in which immunosuppressants pose the greatest risk of chronic HEV infection. In vitro studies demonstrate increased HEV replication in cell culture in the presence of both mammalian target of rapamycin (mTOR) inhibitors and calcineurin inhibitors (tacrolimus and ciclosporin), but mycophenolic acid has an inhibitory effect in these models [208, 209]. Analysis of small numbers of cases in heart transplant recipients suggest that mycophenolate mofetil is associated with spontaneous clearance of HEV [185]. In contrast once persistent HEV is established the response to antiviral treatment does not appear to be influenced by the specific drug regime, but by the net level of immunosuppression [210].

Outside of transplantation the risk factors for persistent infection are poorly defined. The severity of immunosuppression and co-morbidities including graft versus host disease (GvHD) affect the chance of HEV clearance. Persistent HEV
infection is usually observed only with advanced HIV with CD4 counts below $200 \mathrm{~mm}^{3}$ [171].

1.3.6 Natural history of persistent HEV infection

Persistent infections are frequently pauci-symptomatic and the transaminitis usually mild, if the infection persists for a long time chronic hepatitis, fibrosis and rapidly progressive cirrhosis may follow, which can occur within two years [168]. Up to 15% of SOT recipients with persistent HEV infection will develop cirrhosis [207]. This has led to retransplantation in select cases of persistent HEV infection in liver graft recipients [207].

HEV infections are considered clinically indistinguishable from other viral causes of chronic hepatitis and may be misdiagnosed as other conditions including druginduced liver injury and graft-versus host disease (GvHD) [211-213]. Histological analysis may also show the typical, but non-specific, changes seen in chronic hepatitis, however some patients may exhibit a florid cholangitis with a significant infiltrate of polymorphonuclear leucocytes [214].

Hepatocellular carcinoma may be a rare complication of HEV-induced cirrhosis but the incidence and mechanism is unknown [215].

1.3.7 Diagnosis of persistent HEV infection

An imputable diagnosis of acute hepatitis E in jaundiced immunocompetent patients is by the detection of HEV RNA in plasma with coincident IgM anti HEV
and IgG seroconversion. In the absence of RNA testing a diagnosis can usually be made by the interpretation of titres or reactivity of anti-HEV IgG and IgM results. In contrast, diagnosis of HEV in many persistently infected hosts relies solely on HEV RNA because of a delayed or non-existent serological response [216]. RNA assays were historically of limited availability, usually restricted to reference laboratories and are inherently expensive. As a result there has been some interest in the utility of assays for plasma HEV antigen (HEV-Ag) to detect infection. These relatively simple and inexpensive tests are less sensitive than RNA testing so are unlikely to be recommended for the diagnosis of acute HEV. Since the viral load in persistent infection is high it is possible such assays may find a niche in identifying persistent infections and perhaps in the monitoring of response to treatment with antivirals in chronic infection [217].

1.3.8 Clinical management of persistent HEV infection

It is considered best practice to attempt HEV clearance in patients presenting with persistent HEV in order to prevent liver disease and rarer neurological and renal complications which can develop during the course of persistent infection. Some patients will tolerate persistent infection with minimal disease progression, however currently there are no reliable tools to predict those patients who will progress to severe liver disease. Clearance can be achieved by reducing iatrogenic immunosuppression or by the use of antivirals.

1.3.8.1 Reduction of iatrogenic immunosuppression

Up to one third of SOT patients may clear HEV following reduction of immunosuppression and this should be considered first in those whose graft will tolerate this [218]. This however may be considered an overestimate due to publication bias [219]. Drugs that specifically target T cells should be tapered preferentially since it is known that HEV-specific T-cell responses are decreased in SOT patients with chronic HEV [220-222].

1.3.8.2 Antiviral therapy

1.3.8.2.1 Ribavirin therapy

If the reduction of immunosuppression is not possible, is contraindicated or unsuccessful then ribavirin should be considered. Ribavirin has become the treatment of choice for persistent HEV because of its high efficacy, relative good safety profile and low cost, however no placebo-controlled trial data are available to support its use [223]. The mechanism of action of ribavirin against HEV is unknown, but it is effective against a broad range of viruses and multiple different mechanisms of antiviral activity have been proposed [224].

1.3.8.2.2 Evidence for clinical efficacy of ribavirin

The best available evidence comes from a multicentre retrospective study of 59 SOT patients that found 78% of patients achieved a sustained virological response
(SVR), defined as an undetectable serum HEV RNA level at least six months after cessation of ribavirin therapy, following treatment for a median of three months (range 1-18) [223]. The SVR rates were lower in studies which took a more standardised treatment protocol of three months of ribavirin for all patients [210]. A recent meta-analysis including 395 patients taking ribavirin therapy estimated a pooled SVR rate of 78\% [219].

There are few clinical predictors of successful therapy. A higher lymphocyte count at ribavirin initiation was positively correlated with the chance of achieving a SVR [223]. An on-treatment fall of greater than 0.5 log copies/ml drop at day seven of ribavirin therapy had positive predictive values of greater than 88% with three months of therapy in one study [210]. Interestingly, there does not appear to be an association with ribavirin plasma levels and SVR rates [210]. However, the optimal duration and dosing of ribavirin is undefined and should be tailored to individual patients by monitoring HEV RNA in both plasma and stool. Therapy should only be discontinued once clearance from both plasma and stool has been achieved. Persistence of RNA in the stool indicates that the infection has not been cleared and is predictive of relapse if ribavirin is stopped [225].

Not all patients will tolerate ribavirin due to frequently occurring side effects, particularly anaemia, which can be significant but rarely life threatening. In the inaugural paper on the use of ribavirin in persistent HEV infection, 29\% of patients required dose reduction of ribavirin, 54% required supportive erythropoietin and 12% required blood transfusion [223]. Therapeutic drug monitoring may assist in some cases to balance the efficacy and toxicity of ribavirin [226].

Both HIV infected patients and HSCT recipients present unique treatment decisions and there is sparse evidence on which to base treatment decisions. HIV infected patients have cleared persistent HEV with immune reconstitution following the introduction of antiretroviral therapy and this should be considered first [227]. However, others have been successfully treated with interferon with or without ribavirin [135, 228].

Likewise, haemato-oncology or HSCT patients may spontaneously clear HEV as immunosuppression varies. However, this is highly unpredictable and treatment for HEV is often given to these patients to enable them to complete the therapeutic schedule for their primary haematological disorder. Ribavirin is effective in this cohort but decisions on timing of treatment are more complex in the context of a recent HSCT and a fragile bone marrow [199].

1.3.8.2.3 Alternative treatment options

Few alternative antiviral strategies to ribavirin currently exist; pegylated interferon a (PEG-IFN- α) has been used with some success as monotherapy and in combination with ribavirin with which it shows synergy in vitro [229, 230]. Therefore it remains an option for some liver transplant recipients and perhaps HSCT recipients, but interferon has no role in the treatment of HEV in in heart, lung and renal transplant patients because of the high risk of acute rejection [230].

Sofosbuvir, an NS5B polymerase inhibitor which was developed against Hepatitis C virus (HCV), shows activity against HEV in vitro and has a favourable safety profile in transplant patients [231]. Virological responses with falling levels of
viraemia are seen when using sofosbuvir in vivo, but no patients treated to date either as monotherapy or in combination with ribavirin or daclatasvir have achieved a sustained virological response [232-238]. Zinc and silvesterol showing inhibition of HEV replication in vitro but have not been studied in humans [239, 240]. Finally, the use of high-titre convalescent plasma is a potential therapeutic approach. Passive immunoprophylaxis has been used successfully to prevent cynomolgus monkeys from developing hepatitis following an intravenous challenge if HEV, however whether convalescent plasma would be successful in eradicating an established hepatic infection in an immunocompromised patient is not known [241, 242].

1.3.8.2.4 Relapses and treatment failures

Relapses occur when infection rebounds following cessation of ribavirin therapy and in general may be predicted by detectable HEV RNA in the stool of patients displaying plasma clearance [225]. The majority of patients who relapse will clear HEV with a further six months of ribavirin if this can be tolerated [210]. Whether these relapses constitute ongoing biliary excretion of hepatic-derived virus in the absence of plasma spillover or an as-yet unidentified extrahepatic site of replication is unresolved. Animal models in pigs and rabbits suggest there may be important extrahepatic sites of HEV replication [243]. Intestinal cells are susceptible to HEV infection and may be the predominant site of extrahepatic replication [244].

A minority of patients are unable to clear HEV infection with ribavirin alone. Studies in these treatment failures have revealed that under drug pressure of ribavirin a number of mutations emerge in the viral polymerase region which may contribute to drug resistance (G1634R, K1383N, D1384G, V1479I, Y1587F and Y1320H) [245-247]. However, the association is not straightforward since G1634R variants have been detected before therapy in patients achieving a SVR as well as those not achieving a SVR [245]. Furthermore in vitro studies demonstrate that some mutations such as G1634R leads to increased viral replicative capacity rather than drug resistance per se, yet other mutations such as K1383N lead to reduced replicative capacity, so there is much still to learn regarding the clinical relevance of these mutations [247].

1.4 Research hypotheses

Persistent hepatitis E virus infection is an under-recognised emerging disease in the UK.

It is predicted that due to a number of factors including the non-specific and paucisymptomatic clinical presentation of HEV infection and a lack of awareness of among clinicians that HEV infections will not have been clinically identified in immunosuppressed cohorts

Screening of high-risk immunocompromised patient cohorts will be costeffective.

If the expectation of significant numbers of undiagnosed cases of persistent HEV infection in immunosuppressed cohorts holds true, screening of such cohorts for may be indicated. It is predicted that screening for HEV infection in a systematic manner using relatively inexpensive diagnostic assays will be justified by the excess healthcare costs and morbidity associated with the complications of persistent HEV infection.

Enhanced monitoring of persistent HEV infection will identify vital clinical monitoring parameters.

Given the limited clinical experience of persistent HEV infection in single clinical centres, it is predicted that by describing a national cohort of patients being
monitored and treated for HEV infection, the data generated will identify key parameters important for monitoring the efficacy of treatment.

1.5 Objectives

The hypotheses will be tested by

1. defining appropriate strategies for the identification of persistent HEV infection.
2. identifying high-risk cohorts for persistent HEV infection.
3. undertaking a cost-effectiveness analysis of HEV screening of identified high risk cohorts.
4. describing the demographics, virology, serological responses and clinical outcomes of persistent HEV infections across England and Wales.
5. characterising viral quasi-species evolution in both treated and untreated patients.

2 Materials and Methods

2.1 Clinical studies methods

2.1.1 Study sites and patient samples

Patients were recruited from three sites for the three separate prevalence studies. Transplant recipients (solid organ transplant and haematopoietic stem cell transplant recipients) undergoing therapeutic drug monitoring were recruited from the Queen Elizabeth Hospital, University Hospitals Birmingham. Patients with haematological malignancy were recruited from University College London Hospitals (UCLH) Haematology department. Antibody-deficient patients on immunoglobulin replacement therapy were recruited from the Royal Free Hospital Immunology department, London.

Archived, residual samples that were sent to the National reference Laboratory for routine diagnostics work were used for assay development work. Anonymised blood donor and convalescent blood donor samples from a previous HEV donortransmission study were donated by NHS Blood and Transplant (NHSBT) [22].

2.1.2 Study approvals

The prevalence study in transplant recipients at the Queen Elizabeth Hospital, Birmingham did not require approval through the centralised NHS research ethics
committee process. The protocol was approved by University Hospital Birmingham Clinical Audit Department (registration no. CARMS-12238).

The prevalence study in antibody-deficient patients at the Royal Free Hospital was approved under a research biobank approval (National Health Service [NHS] Research Ethics Committee reference 04/Q0501/119). All patients provided written informed consent.

The prevalence study in haematological malignancies was approved as a service improvement project by the haematology department at UCLH. Patients were informed of HEV testing by patient information leaflets and were given the choice of opting out of the testing service. Telephone or direct face-to-face support by a clinical nurse specialist was offered to any patient with specific queries about the study.

An enhanced surveillance system for persistent HEV across England and Wales was approved by Public Health England (PHE) to collect clinical data on persistent HEV infections identified by the national infection service (NIS). The collection of patient identifiable information was approved under the current PHE permissions for public health surveillance under Section 251 of the NHS Act 2006 and the Health Service (Control of Patient Information) Regulations 2002 ('section 251 support').

All other experiments on clinical samples were performed in accordance with the ‘Guidance on Conducting Research in Public Health England’ (Version 3, October 2015; Document code RD001A). Experiments used archived, residual samples that were sent to the National Reference Laboratory for routine diagnostics work
with consent for residual sample to be used in other assays. The use of anonymised blood donor samples was approved by the Blood Supply Clinical Audit, Risk and Effectiveness Committee at NHSBT.

2.1.3 Communication of results and management of HEV-infected patients

All positive HEV RNA results were communicated to a dedicated study lead onsite for each of the three prevalence studies. Results were discussed with the relevant clinical team and HEV viraemic patients were informed of the result. As part of the ongoing clinical management of a patient, a confirmatory test was taken and expert clinical advice offered, including a Hepatology assessment in accordance with standard clinical practice.

2.1.4 Clinical data collection

To characterise patients tested in the prevalence studies of HEV viraemia, clinical information was collected in line with each study protocol. For transplant patients from Birmingham, the demographic data (age, gender, postcode), transplant details (type and date of procedure), immunosuppressive medication and blood results (ALT, bilirubin, ciclosporin/tacrolimus/everolimus/sirolimus level) were triangulated from the local pathology results system and the electronic prescribing system. Test results and prescription details were recorded for the date of the HEV plasma sample.

For haemato-oncology patients from UCLH, patient demographics (age and gender), underlying primary haematological disease, disease status (classified as no remission, partial remission, complete remission, progressive disease), lines of treatment, previous use of small molecule inhibitors, monoclonal antibodies or history of autologous stem cell transplantation, specific immunosuppressive medication in the preceding six months and blood results (total white cell count, lymphocyte count, neutrophil count, ALT and bilirubin values) at the time of HEV RNA testing were collected directly from patient records. The numbers of transfused blood components given to each patient in the preceding five years before enrolment was taken from the blood transfusion laboratory information management system (Bank Manager, Sussex Biologicals, UK). Transfusions were only considered in the five years prior to HEV RNA testing for each individual patient and any transfusions given after $10^{\text {th }}$ April 2017 were excluded, as this was the implementation date of universal screening of blood donors in England for HEV RNA.

For antibody-deficient patients, data on demographics (age and gender), underlying diagnosis, immunoglobulin product infused and date of most recent infusion, iatrogenic immunosuppression and blood results (ALT, bilirubin, total lymphocytes, counts of $\mathrm{CD}^{+}, \mathrm{CD4}^{+}, \mathrm{CD}^{+}, \mathrm{CD19}{ }^{+}$and $\mathrm{CD16}^{+} 56^{+}$cells) were recorded directly from patient records.

The following clinical data were collected for cases of persistent HEV infection diagnosed through the NIS: underlying diagnosis, co-morbidities, immunosuppressive medication at the time of HEV diagnosis, liver assessment,
treatment and clinical outcomes. Clinical data were collected primarily by completion of a questionnaire via an online encrypted questionnaire (Select Survey https://surveys.phe.org.uk/) or paper form (available in Appendix A1.1) and supplemented with discussions with the primary clinician (or local infection specialist). In the final analysis, additional steps were taken to ensure this dataset was available for relapse patients and present the data collected on the case series as a whole.

2.2 Laboratory Materials and Methods

2.2.1 Sample preparation

2.2.1.1 Processing of faecal samples

Faecal suspensions for HEV-Ag testing and HEV RNA testing were made using a $10 \mu \mathrm{l}$ disposable loop half-filled with raw faeces resuspended in $1000 \mu \mathrm{l}$ of stool transport and recovery buffer (S.T.A.R. buffer, Roche Diagnostics) which was vortexed and centrifuged for 5 minutes at 18500 xg for 5 minutes. A further 1:10 dilution was made in the same buffer.

For cell culture infection a 10% weight/volume suspension was prepared in 10 mM Tris hydrochloride using a faecal sample from a patient with persistent HEV infection (quantified at $1.0 \times 10^{8} \mathrm{IU} / \mathrm{ml}$) and vortexed. This faecal suspension was centrifuged at $1600 \times g$ at $4^{\circ} \mathrm{C}$ for 30 minutes, the supernatant was recovered and centrifuged again at $6200 \times g$ at $4^{\circ} \mathrm{C}$ for 10 minutes [248]. The supernatant obtained was diluted 1:5 in Dulbecco's phosphate buffered saline ((PBS), D8537, Sigma-Aldrich) and filtered through a $0.45 \mu \mathrm{~m}$ and $0.22 \mu \mathrm{~m}$ filter (Sartorius). Aliquots of $500 \mu \mathrm{l}$ were labelled and stored at $-80^{\circ} \mathrm{C}$.

2.2.1.2 Minipooling of plasma samples

Minipools were made using 16 plasma samples of 100μ each by the JANUS Automated Workstation with Varispan (Perkin Elmer).

2.2.1.3 Preparation of normal human plasma

Pooled normal human plasma (NHP) used for controls and dilutions were a kind gift from the clinical services unit (CSU), PHE, Colindale. Citrate plasma packs from NHS Blood \& Transplant which had been screened for markers including HEV RNA, anti-HEV IgG and IgM were treated with preservative (Bronidox) and filtered prior to storage at $-30^{\circ} \mathrm{C}$.

2.2.1.4 HEV quantitative standards

HEV quantitative standards were prepared from a faecal sample harbouring a high titre of HEV which was diluted in NHP and assayed to quantify it against the WHO standard. Dilutions of a stock sample quantified at $1 \times 10^{8} \mathrm{IU} / \mathrm{ml}$ were made in NHP to generate standards of $1 \times 10^{7}, 1 \times 10^{6}, 1 \times 10^{5}, 1 \times 10^{4}, 1 \times 10^{3}$ and 1×10^{2} IU/ml.

2.2.1.5 Generation of tissue culture-derived HEV-Ag

HEV-Ag from tissue-culture was generated to provide a stock of HEV-Ag used as internal quality control material for HEV-Ag testing and neutralization.

Cell line: HepG2/C3a cells were obtained from ATCC $^{\circledR}$ (CRL-10741 ${ }^{\text {TM }}$ lot 61777384) and upon receipt were kept frozen in liquid nitrogen vapour phase [249].

Resuscitation of cells: A cryovial of frozen cells was removed from the liquid nitrogen storage facility and transferred to the clean tissue culture room. The
cryovial surface was decontaminated with a 70% alcohol wipe. The cap was turned a $1 / 4$ to release any residual trapped liquid nitrogen and gently warmed in a shallow water bath at $37^{\circ} \mathrm{C}$. Prior to completely thawing, 1 ml of pre-warmed Dulbecco's modified Eagle's medium (DMEM, D86429, Sigma-Aldrich) supplemented with 10\% heat-inactivated fetal bovine serum (FBS, 10500064, Invitrogen) and 1\% penicillin-streptomycin (11568876, Invitrogen) was added to the vial of cells, gently mixed and transferred into a pre-labelled $25 \mathrm{~cm}^{2}$ flask containing 5 ml of medium. Cells were incubated at $37^{\circ} \mathrm{C}$ in a humidified $5 \% \mathrm{CO}_{2}$ atmosphere (standard conditions).

Cell culture: After 24 hours the complete cell culture medium was replaced with fresh medium using a sterile 10 ml pipette. Cells were inspected daily by phase contrast microscopy and passaged at 80% confluency on day two by complete removal of culture medium, followed by a single wash of the adherent monolayer with 5 ml of PBS. Approximately 1 ml of 0.25% trypsin-EDTA solution (T4049, Sigma-Aldrich) was added to cover the cell monolayer which was incubated for five minutes. The flask was gently tapped to remove any adherent cells and the 1 ml of solution was transferred into 11 ml of culture medium in a pre-labelled $75 \mathrm{~cm}^{2}$ flask. Cells were passaged 1:3 following a further 48 hours of incubation under standard conditions and the flask transferred to CL3 conditions. Once the monolayer of cells was confluent, the culture medium was removed and the cells were washed once with 5 ml of PBS and 1.5 ml of 0.25% Trypsin-EDTA was added prior to incubation under standard conditions for five minutes. Approximately 10.5 ml of medium was added and the flask tapped gently to remove any adherent
cells. Cells were counted manually in a haemocytometer by addition of $15 \mu \mathrm{l}$ of cells to $15 \mu \mathrm{l} 0.4 \%$ Trypan Blue solution (93595, Sigma-Aldrich). Six-well microplates were prepared with 2 ml of standard culture media with the addition of 1% dimethyl sulfoxide (DMSO, D4540 Sigma). Cells were seeded at a concentration of 5×10^{5} cells per well.

Cell line infection and maintenance: Virus inoculation and work with infected cells was carried out under CL3 conditions. Aliquots of filtered faecal suspensions were thawed and diluted 1:10 in PBS. Confluent monolayers of cells were washed once with 1.5 ml of PBS and 200μ l of diluted filtered faecal suspension was inoculated on to the cells in each well. The 6-well plates were gently rocked for 30 minutes. Into each well 2 ml of standard medium supplemented with 1% DMSO was added. Plates were incubated at $35.5^{\circ} \mathrm{C}$ from this point on. On day 1 postinfection, the culture medium was totally removed and the cells washed ten times with 1 ml of PBS before replenishing the culture medium. Every 2-3 days 1 ml of cell culture supernatant fluid was harvested and replenished with an equal volume of medium. Supernatant harvests were stored at $-80^{\circ} \mathrm{C}$. Viral culture was monitored by RT-PCR of 100μ l of harvested supernatant which was added to 100 μ l of lysis buffer (MagNA Pure 96 External Lysis Buffer, Roche).

Derogation from CL3: To enable HEV-Ag work to proceed in CL2 conditions permission was given to remove inactivated HEV cell culture supernatant from CL3 conditions. A sample on day 45 post-inoculation with a known titre of 1.11×10^{7} $\mathrm{IU} / \mathrm{ml}$ was removed from the $-80^{\circ} \mathrm{C}$ freezer and thawed in the microbiological safety cabinet. A 1:10 dilution of the culture material was made in NHP to lower the viral
genome concentration to the level found in clinical specimens. The exterior of the vial was decontaminated with chlorine wipes and placed in a sealed plastic container prior to removal from the CL3 suite.

2.2.1.6 Preparation of internal quality control materials

For HEV-Ag detection, internal quality control (IQC) material was prepared using the derogated sample described above. The sample was further diluted 1:100 (high IQC) and 1:1000 (low IQC) in NHP and aliquoted into 250μ l volumes prior to storage at $-20^{\circ} \mathrm{C}$.

For anti-HEV IgG, IQC material was prepared from the plasma packs of blood donors in convalescence from HEV infection and aliquoted into $50 \mu \mathrm{l}$ volumes prior to storage at $-20^{\circ} \mathrm{C}$.

2.2.1.7 Generation of HEV virus-like particles

G1 and G3 HEV virus-like particles (VLP) were a kind gift from Becky Haywood, BBVU, NIS, PHE, Colindale (see Appendix A1.2-A1.4 for details of generation and purification).

2.2.1.8 Production of a putative HEV-Ag containing pool

Plasma samples from five patients with HEV viraemia persisting for more than two months with a high HEV-Ag binding ratio $(\mathrm{S} / \mathrm{CO}>18.0)$ were pooled to generate a
standard antigen. This pooled plasma was titrated in half $\log _{10}$ dilutions in NHP and tested in the HEV-Ag assay.

2.2.1.9 Production of a putative HEV-Ag neutralising reagent

Ten plasma samples from convalescent blood donors previously HEV viraemic with high lgG binding ratios (Anti-HEV IgG S/CO >20.0) and HEV-Ag non-reactive (S/CO <1.0) were selected and screened for neutralising activity (Methods 2.2.2.7). Four of the ten convalescent donor plasma samples which demonstrated potent neutralising activity were used to make an equivolumetric pool of neutralising reagent

2.2.2 RNA extraction, PCR and serological assays

2.2.2.1 Nucleic acid extraction

For the purposes of HEV RNA detection from individual samples, nucleic acid was extracted from 200μ l of each primary sample (plasma or faecal suspension) on the MagNA Pure 96 (Roche Diagnostics Ltd. Burgess Hill, UK; virus-specific cell-free protocol) and eluted into $50 \mu \mathrm{l}$ of MP96 elution buffer (Roche). In the case of minipooled samples of 1.2 ml total volume, nucleic acid was extracted on the QiaSymphony platform (Qiagen, Crawley, UK; virus-specific cell-free protocol) and eluted into $60 \mu \mathrm{l}$ of buffer. Samples were spiked with the bacteriophage MS2 (whole virus) prior to extraction which acted as an internal control. Extracts were stored at $-80^{\circ} \mathrm{C}$ if not being tested within 24 hours.

For whole genome sequencing, samples were extracted using the NucliSENS easyMAG extraction platform (BioMérieux, Basingstoke, UK; generic 2.0.1 protocol) from $200 \mu \mathrm{l}$ of each primary plasma sample without the addition of an internal control and eluted into $40 \mu \mathrm{l}$ of EasyMag elution buffer (BioMérieux).

2.2.2.2 Preparation of HEV and MS2 TaqMan primer and probe mix

Prior to use, batches of primer and probe mixes were made for HEV and MS2. For HEV, $120 \mu \mathrm{l}$ of $100 \mathrm{pmol} / \mu \mathrm{l}$ stocks of forward primer, reverse primer and probe were mixed and aliquoted into single-use quantities of $36 \mu \mathrm{l}$ prior to freezing at $-20^{\circ} \mathrm{C}$. For MS2, $30 \mu \mathrm{l}$ of $100 \mathrm{pmol} / \mathrm{\mu l}$ stocks of forward primer, reverse primer and probe
were mixed with $510 \mu \mathrm{l}$ of nuclease-free water and aliquoted into single-use quantities of $24 \mu \mathrm{l}$.

2.2.2.3 Real-time PCR for HEV RNA detection

HEV RNA was detected and quantified using a validated 'in-house' quantitative reverse transcription Taqman HEV PCR targeting a highly conserved region of HEV ORF 3 [250, 251]. A real-time PCR mastermix was prepared using Qiagen Quantitect probe RT-PCR kit (Qiagen, Crawley, UK) for n+1 reactions. Each HEV reaction contained $12.5 \mu \mathrm{l}$ of Quantitect probe RT-PCR mastermix, $0.3 \mu \mathrm{HEV}$ primer \& probe mix, 0.25μ l of Quantitect RT enzyme and 1.95μ l of nuclease-free water. Each MS2 reaction contained $12.5 \mu \mathrm{l}$ of Quantitect probe RT-PCR mastermix, $0.4 \mu \mathrm{l}$ MS2 primer \& probe mix, $0.25 \mu \mathrm{l}$ of Quantitect RT enzyme and $1.85 \mu \mathrm{l}$ of nuclease-free water.
15μ l of reaction mixture was dispensed into each well of a microAmp ${ }^{\text {TM }}$ optical 96 -well reaction plate and $10 \mu \mathrm{l}$ of nucleic acid extract was added to each well prior to thermocycling as follows; 1 cycle at $50^{\circ} \mathrm{C}$ for 30 minutes, 1 cycle at $95^{\circ} \mathrm{C}$ for 15 minutes followed by 45 cycles of 15 seconds at $95^{\circ} \mathrm{C}$ then $60^{\circ} \mathrm{C}$ for 60 seconds.

The HEV and MS2 are assayed in parallel (dual well) with one well for HEV RNA detection and a second for the MS2 internal control. HEV and MS2 are detected in real-time by differently labelled TaqMan probes by an ABI 7500 real-time PCR system (Applied Biosystems).

Quantification is achieved by the generating a standard curve from the results of five quantitative standards calibrated to the WHO standard and the result is expressed in international units per ml (limit of detection $22 \mathrm{IU} / \mathrm{ml}$). Results were plotted on Levey-Jennings charts in Microsoft Excel 2010 (Microsoft, Redmond, WA, USA). The Levey-Jennings charts were analysed using Westgard rules, a multirule quality control system, to monitor performance variation of the assay to detect factors which may affect the quantitative value assigned to a positive sample [252]. Assay runs were repeated if the Westgard rules were broken.

Table 2.1 Primers and probes for detecting of HEV and MS2 bacteriophage

Name	Direction	Residue co-ordinate ${ }^{\text {a, b }}$	Sequence
HEV P1	Forward	5261-5278	5'-GGTGGTTTCTGGGGTGAC-3'
HEV P2	Reverse	5284-5301	5'-AGGGGTTGGTTGGATGAA-3'
HEV Probe	-	5313-5330	5'-FAM- TGATTCTCAGCCCTTCGC-MGB-3'
MS2 P1	Forward	289-314	5'-TGGCACTACCCCTCTCCGTATTCACG-3'
MS2 P2	Reverse	366-387	5'-GTACGGGCGACCCCACGATGAC-3'
MS2 Probe	-	330-358	5'-JOE-ACATCGATAGATCAAGGTGCCTACAAGCBHQ1-3'

Forward and reverse oligonucleotide primers and probes for the detection of HEV and MS2 bacteriophage internal control. All primers and probes were used at a stock concentration of $100 \mathrm{pmol} / \mu \mathrm{l}$.
${ }^{\text {a }}$ For HEV based on GenBank accession no. M73218.
${ }^{\mathrm{b}}$ For MS2 based on GenBank accession no. EF204940.
Abbreviations: FAM, 6-Carboxyfluorescein fluorophore; MGB, minor grove binder quencher; JOE, 4,5-dichloro-dimethoxy-fluorescein fluorophore; BHQ1, black hole quencher; TAMRA.

2.2.2.4 HEV PCR and sequencing of ORF2 for phylogenetics

The first viraemic sample for a given patient underwent sequence and phylogenetic analysis of a 1.3 kb region of the ORF2 of HEV to ascribe genotype and subtype [20]. Where viral load was sufficient this was also undertaken in cases of virological relapse following cessation of therapy. The primers used for ORF2 PCR are shown in Table 2.2.

First strand cDNA synthesis

A $10 \mu \mathrm{l}$ aliquot of nucleic acid extract was heated to $98^{\circ} \mathrm{C}$ for 5 minutes in a thermocycler, spun in a picofuge then snap frozen for 3 minutes. To each sample, $1 \mu \mathrm{l}$ of R30 primer ($10 \mathrm{pmol} / \mu \mathrm{l}$) and $1 \mu \mathrm{l}$ of dNTP mix (10 mM) were added, briefly centrifuged and heated to $65^{\circ} \mathrm{C}$ for 5 minutes before snap-freezing for 3 minutes. Subsequently, $4 \mu \mathrm{l}$ of 5 X first strand buffer (Invitrogen 18064014), $2 \mu \mathrm{l}$ of 0.1M DTT (Invitrogen 18064014) and $1 \mu \mathrm{l}$ of RNaseOUT (Invitrogen 10777019) were added, centrifuged and incubated for 2 minutes at $42^{\circ} \mathrm{C}$. Finally, 200 units ($1 \mu \mathrm{l}$) of SuperScript II (Invitrogen 18064014) were added to each sample, mixed and centrifuged prior to incubation at $42^{\circ} \mathrm{C}$ for 50 minutes, then $70^{\circ} \mathrm{C}$ for 15 minutes.

First round PCR

A first-round PCR mastermix was prepared for $n+1$ reactions. Each mastermix reaction contained $25.0 \mu \mathrm{l}$ of 2 x MyFi Mix (Bioline BIO-25050), 18.0 $\mathrm{\mu l}$ of nucleasefree water, $1.0 \mu \mathrm{l}$ of primer R30 ($10 \mathrm{pmol} / \mu \mathrm{l}$) and $1.0 \mu \mathrm{l}$ of primer ORF2FWD1 (10pmol/ $\mu \mathrm{l}$). A $5 \mu \mathrm{l}$ aliquot of cDNA was added to $45 \mu \mathrm{l}$ of PCR mastermix and thermocycled as follows; at $92^{\circ} \mathrm{C}$ for 2 minutes, followed by 35 cycles of $95^{\circ} \mathrm{C}$ for

15 seconds, $52^{\circ} \mathrm{C}$ for 30 seconds and 2 minutes at $72^{\circ} \mathrm{C}$. The reaction was subsequently kept at $72^{\circ} \mathrm{C}$ for 10 minutes.

Second round PCR

A second-round PCR mastermix was prepared for $\mathrm{n}+1$ reactions. Each mastermix reaction contained $25.0 \mu \mathrm{l}$ of $2 x \mathrm{MyFi}$ Mix (Bioline BIO-25050), 18.0 $\mu \mathrm{l}$ of nucleasefree water, $1.0 \mu \mathrm{l}$ of primer R30 ($10 \mathrm{pmol} / \mathrm{\mu l}$) and $1.0 \mu \mathrm{l}$ of Primer ORF2-G3 (10pmol/ $\mu \mathrm{l}$). A $5 \mu \mathrm{l}$ aliquot of first-round product was added to $45 \mu \mathrm{l}$ of PCR mastermix and thermocycled as follows: at $92^{\circ} \mathrm{C}$ for 2 minutes, followed by 35 cycles of $95^{\circ} \mathrm{C}$ for 15 seconds, $52^{\circ} \mathrm{C}$ for 30 seconds and 2 minutes at $72^{\circ} \mathrm{C}$. The reaction was subsequently kept at $72^{\circ} \mathrm{C}$ for 10 minutes.

Gel electrophoresis and purification

A 1.5% agarose gel was prepared with the addition of Red Safe Nucleic Acid Staining Solution (iNtRON IB-21141). A volume of $2 \mu \mathrm{I}$ of PCR product was mixed with $6 \mu \mathrm{l}$ of water and $2 \mu \mathrm{l}$ of gel loading dye (Invitrogen 10816015). The agarose gel was poured into the electrophoresis tank ensuring 1X Tris/Borate/EDTA (TBE) buffer covered the gel. A volume of $10 \mu \mathrm{l}$ of the mixture containing the PCR product were loaded into the wells alongside a mixture containing a 1 Kb DNA ladder (Invitrogen 10787018). The gel was run for 20 minutes at 130 V , visualised using a Biorad UV transilluminator and photographed.

Second-round PCR products were purified prior to sequencing using the Illustra GFX PCR DNA and gel band purification kit (Illustra 28903470). A GFX column was placed into a labelled collection tube and $500 \mu \mathrm{l}$ of capture buffer were added to each
column. A volume of $40 \mu \mathrm{l}$ of PCR product was added to the column and mixed by pipetting. Columns were centrifuged at $18500 \times \mathrm{g}$ for 1 minute, the eluate discarded and $500 \mu \mathrm{l}$ of wash buffer added. Columns were then centrifuged again at 18500 xg for 1 minute and the eluate discarded. The column was transferred to a clean labelled collection tube and $40 \mu \mathrm{l}$ of nuclease free water added to the column matrix. This was incubated at room temperature for 1 minute and centrifuged a further time at $18500 \times \mathrm{g}$ for 1 minute. The columns were then discarded.

Sequencing

A sequencing plate was set up with a total of six reactions for each sample each containing a different primer (A-F Table 2.2). Each reaction mix consisted of $1 \mu \mathrm{l}$ purified PCR product, $3 \mu \mathrm{l}$ nuclease-free water and $2 \mu \mathrm{l}$ of sequencing primer A-F. The plate was submitted to the Genomic Services and Development Unit for Sanger sequencing on Applied Biosystems' Capillary platforms.

Sequence analysis

A 'contig' was built for each sample from the six sequences A-F using DNASTAR software and checked for mixed bases or gaps and edited as appropriate. Consensus sequences were aligned with HEV reference sequences and ascribed a genotype and subtype based on maximum-likelihood phylogenetic trees drawn in MEGA 7.0 (Version 7.0.26) [145].

Table 2.2 Primers for ORF2 HEV PCR for phylogenetics

Primer label	Name	Direction	ORF2 residue co-ordinate	Sequence
-	ORF2-FWD1	Forward	$258-280$	5^{\prime}-TTGGCGTGACCAGKCCCAGCGCC
A	ORF2-G3	Forward	$538-560$	5^{\prime}-TCYAAYTAYGCYCAGTAYCGGGT
B	MENG-F1	Forward	$826-846$	5^{\prime}-GTYATGYTYTGCATACATGGCT
C	MENG-R1-FWD	Forward	$1152-1172$	5^{\prime}-GACAGAATTGATTTCGTCGGC
D	MENG-R1	Reverse	$1152-1172$	5^{\prime}-AGCCGACGAAATYAATTGTGTC
E	MENG-R0	Reverse	$1249-1271$	5^{\prime}-CCCTTATCCTGCTGAGCATTCTC
F	R3O	Reverse	$1951-1980$	5'-AGACTCCCGGGTTTTACCTACCTT
				CATTTT

Forward and reverse oligonucleotide primers to generate ORF2 PCR product for phylogenetic analysis. All primers kept at stock concentration of $100 \mathrm{pmol} / \mathrm{pl}$ Abbreviations: ORF2, open reading frame 2.

2.2.2.5 HEV serology

HEV antibodies were detected using the Wantai IgM and IgG detection assays (Fortress Diagnostics, Antrim, Northern Ireland, UK). The IgG assay is an indirect ELISA in which HEV recombinant antigen is bound to the solid phase and the conjugate comprises horseradish peroxidase (HRP) bound to anti-human IgG. The IgM assay is a capture ELISA with anti- μ chain antibodies bound on the solid phase and a conjugate comprising recombinant ORF2 antigen bound to HRP. The procedure for both assays is the same.

Briefly, $10 \mu \mathrm{l}$ of sample are added to $100 \mu \mathrm{l}$ of specimen diluent in each well and incubated at $37^{\circ} \mathrm{C}$ for 30 minutes. The wells were washed five times using the supplied buffer and tapped dry. One hundred microliters of horseradish peroxidase-conjugate were added to each well and the plate incubated for a further 30 minutes at $37^{\circ} \mathrm{C}$. The wells were washed again five times using the supplied buffer, then chromogen added. Following a third incubation in the dark for 15 minutes at $37^{\circ} \mathrm{C}$, the reaction was stopped using 'Stop' solution. Optical densities (OD) were measured immediately with an ELISA plate reader (EL808 ${ }^{\text {TM }}$ Absorbance Microplate Reader, BioTek; OD $450 / 630$). The assay cut-off value (CO), the OD threshold above which determines the positive status of a sample (S), was calculated using the mean OD absorbance value of the three negative controls plus 0.16 (or 0.26 for anti-HEV IgM assay) in accordance with the manufacturer's criteria. Samples with sample/cut-off (S/CO) ratios ≥ 1.1 were considered reactive.

In addition to fulfilling the manufacturer's quality control criteria for the $O D$ absorbance values of blank wells, negative controls and positive controls, further internal quality control reagents were added to each run. The OD absorbance values of the internal control reagents were plotted on a Levey-Jennings chart and analysed using Westgard rules. If the internal quality control results failed Westgard rules, the assay was repeated.

2.2.2.6 HEV-Ag detection

HEV-Ag was detected using a commercial sandwich ELISA (HEV-Ag ELISA, Fortress Diagnostics, Antrim, Northern Ireland, UK) according to the manufacturer's recommendations. The assay is a sandwich ELISA with polyclonal antibodies directed against the ORF2 product on the solid phase with enzymelinked monoclonal antibodies in the detection system. Briefly, $50 \mu \mathrm{~L}$ of sample were added to the ELISA plate and incubated for 1 hour at $37^{\circ} \mathrm{C}$. Horseradish peroxidase-conjugated monoclonal anti-HEV ORF2 antibody was added, followed by a further incubation for 30 minutes at $37^{\circ} \mathrm{C}$. The wells were washed five times using the supplied buffer and then chromogen added. Following a third incubation in the dark for 15 minutes at $37^{\circ} \mathrm{C}$, the reaction was stopped using 'Stop' solution. Optical densities (OD) were measured immediately with an ELISA plate reader (EL808 ${ }^{\text {TM }}$ Absorbance Microplate Reader, BioTek; OD450/630). The assay cut-off value (CO), the OD threshold above which determines the positive status of a sample (S), was calculated using the mean OD absorbance value of the three negative controls plus 0.16 . Any sample with a S / CO ratio >1.0 on initial testing
was labelled reactive (IR) and if on repeat testing a $\mathrm{S} / \mathrm{CO}>1.0$ as repeat reactive (RR).

2.2.2.7 Measurement of HEV-Ag neutralising activity

Neutralising activity was determined as a percentage of the reduction in binding in the HEV-Ag assay of the test incubation mixture (antigen sample plus neutralising reagent) when compared to a non-neutralising control mixture (antigen sample plus NHP) using the following formula:

$$
\% \text { neutralisation }=\frac{\left(O D_{\text {sample+neutralising reagent }}-O D_{N H P}\right) \times 100}{\left(O D_{\text {sample+NHP }}-O D_{N H P}\right)}
$$

For stool samples the OD of STAR buffer was subtracted from the test OD rather than OD of NHP.

2.2.2.8 Illumina whole genome sequencing of HEV

Nucleic acid extracts were sent to the Centre for Virus Research Glasgow for whole genome sequencing.

2.2.2.8.1 Design of target enrichment probes

A custom set of SeqCap EZ HEV probes (Roche) were used for target enrichment of HEV in clinical samples. The probes were designed by Roche following submission of 241 full genome sequences of HEV recovered from human
infections. Briefly, the submitted sequences were split into 50 -mers and all exact duplicates removed to minimise biasing the probe pool towards highly represented sequences. An overlapping probe set was designed to cover the whole genome and was subsequently screened against human and porcine sequences to reduce the risk of enriching host sequences.

2.2.2.8.2 NGS library preparation

RNA libraries were prepared using the KAPA stranded RNA-Seq protocol (KAPA Biosystems). An aliquot of $10 \mu \mathrm{l}$ of extracted RNA was mixed thoroughly with $10 \mu \mathrm{l}$ of 2 X fragment, prime and elution buffer prior to fragmentation by incubation for 2 minutes at $85^{\circ} \mathrm{C}$.

The first strand of cDNA was synthesised by adding $10 \mu \mathrm{l}$ of first strand mastermix (containing KAPA reverse transcriptase and random primers) to $20 \mu \mathrm{l}$ of fragmented, primed sample and incubated at $25^{\circ} \mathrm{C}$ for 10 minutes to allow primer extension, then $42^{\circ} \mathrm{C}$ for 15 minutes for first strand synthesis, and finally at $70^{\circ} \mathrm{C}$ for 15 minutes to inactivate the enzymes.

The second strand of cDNA was synthesised by adding $30 \mu \mathrm{l}$ of second strand mastermix (containing enzyme and dUTP to mark the $2^{\text {nd }}$ strand) to $30 \mu \mathrm{l}$ of the sample, mixing thoroughly and incubated at $16^{\circ} \mathrm{C}$ for 60 minutes to allow second strand synthesis and marking.

The sample was purified by adding 1.8X volume of AMPure XP beads (Beckman Coulter) to each sample and incubated at room temperature for 5-15 minutes before placing on a magnetic rack until the beads and solution had fully separated.

The supernatant was discarded and the beads were washed twice with $200 \mu \mathrm{l}$ of 80% ethanol before air drying for 3-5 minutes.

A polyadenylation tail was added by suspending the beads in $30 \mu \mathrm{l}$ of A-tailing mastermix (containing A-tail buffer, A-tail enzyme and nuclease-free water) and incubated at $30^{\circ} \mathrm{C}$ for 45 minutes for A-tailing and then at $60^{\circ} \mathrm{C}$ for 30 minutes to inactivate the enzyme.

The adapters, containing illumina sequences and the indexes for multiplexing, were ligated to the cDNA by adding 35μ l of adapter ligation mastermix (containing ligation buffer and DNA ligase) to $5 \mu \mathrm{l}$ of 10 nM diluted adapter stock and $30 \mu \mathrm{l}$ of the beads with A-tailed DNA and subsequently incubated at $20^{\circ} \mathrm{C}$ for 60 minutes. The samples were then subjected to two post-ligation clean-up steps. Initially an equal volume of solid-phase reversible immobilisation solution (SPRI: 20\% Polyethylene glycol $8000 ; 2.5 \mathrm{M} \mathrm{NaCl} ; 10 \mathrm{mM}$ Tris-HCl pH 8.0) was added to each sample and incubated at room temperature for 5-15 minutes. The beads were then separated from the solution by placing on a magnetic rack until they had fully separated and the supernatant discarded. The beads were washed twice with $200 \mu \mathrm{l}$ of 80% ethanol before air drying for 3-5 minutes and eluting in $50 \mu \mathrm{l}$ TrisCl pH 8.0. A further $50 \mu \mathrm{l}$ of SPRI (1.0X SPRI:sample) was added to each sample and then incubated at room temperature for 2 minutes, the beads separated on a magnetic rack and washed twice with $200 \mu \mathrm{l}$ of 80% ethanol. The beads were then air dried for 3-5 minutes and eluted in $22 \mu \mathrm{l} 10 \mathrm{mM}$ TrisCl pH 8.0.

The library was amplified by adding $30 \mu \mathrm{l}$ of library amplification mastermix (containing KAPA HF HotStart ReadyMix and 10X Library Amplification primers
targeting the ligated illumina adapters) to each sample and incubated at $98^{\circ} \mathrm{C}$ for 45 seconds for the initial denaturation. This was followed by 18 cycles at $98^{\circ} \mathrm{C}$ for 15 seconds to denature, $60^{\circ} \mathrm{C}$ for 30 seconds to anneal and $72^{\circ} \mathrm{C}$ for 30 seconds to allow extension to take place, before the final extension at $72^{\circ} \mathrm{C}$ for 5 minutes. The sample was subjected to a final purification step by adding 45μ of AMPure XP beads to each sample (0.9X AMPure:sample) of amplified library DNA, incubated at room temperature for 5-15 minutes and separated on a magnetic rack. The beads were washed twice with $200 \mu \mathrm{l}$ of 80% ethanol and air dried for 35 minutes prior to elution into $22 \mu \mathrm{l}$ of 10 mM TrisCl pH 8.0.

2.2.2.8.3 Target enrichment

Libraries were quality checked and quantified using the 2200 Tapestation (Agilent) and Qubit 3.0 fluorometer (Invitrogen) and pooled to ensure viral loads were in equivalent proportions within each pool to generate a multiplexed library (max 16 samples per pool, range 4-16). The library was then enriched using NimbleGen SeqCap EZ library SR Kit (Roche, UK), according to the manufacturer's instructions.

Approximately $1 \mu \mathrm{~g}$ of multiplexed library was added to $5 \mu \mathrm{l}$ of COT DNA and $2 \mu \mathrm{l}$ of xGen Universal Blocking Oligos TS mix (IDT). To this, 2 X volume of AMPure XP beads were added, thoroughly mixed and incubated at room temperature for 10 minutes, prior to separation of the beads on a magnetic rack. The supernatant was discarded and the beads were washed once in 80% ethanol and air-dried for 3-5 minutes. The DNA was eluted by adding $10.5 \mu \mathrm{l}$ of mastermix (containing 2 X
hybridisation buffer and hybridisation component A), mixing thoroughly and incubating at room temperature for 2 minutes. The tubes were placed on a magnetic rack and the entire volume was eluted into a new PCR tube containing $4.5 \mu \mathrm{l}$ SeqCap EZ HEV probe pool (Methods 2.2.8.1). This was mixed thoroughly and incubated at $95^{\circ} \mathrm{C}$ for 5 minutes, then at $47^{\circ} \mathrm{C}$ for 72 hours.

The SeqCap EZ Pure Capture Bead Kit and streptavidin capture beads were equilibriated to room temperature for 30 mins prior to use. The streptavidin beads were vortexed for 15 seconds and $100 \mu \mathrm{l}$ of beads was transferred to a 1.5 ml tube for each capture. Each tube was placed on a magnet and the excess liquid discarded. The beads were washed twice in 1 x bead wash buffer by adding $200 \mu \mathrm{l}$ of 1 x bead wash buffer to each tube, vortexing for 10 seconds, placing back on the magnet and the excess liquid discarded. After washing, the beads were then resuspended in 200μ of $1 x$ bead wash buffer by vortexing and $100 \mu \mathrm{l}$ of resuspended beads was added to a 0.2 ml PCR tube for each capture. The tube was placed on a magnet and the liquid discarded. Next, $15 \mu \mathrm{l}$ of the sample which had been incubated for 72 hours with the probe pool was added and thoroughly mixed and incubated for 45 mins at $47^{\circ} \mathrm{C}$, mixing every 15 minutes. A volume of $100 \mu \mathrm{l}$ of pre-warmed 1 x wash buffer 1 was added and vortexed for 10 seconds, placed on a magnet and the excess liquid discarded. The beads were washed twice in pre-warmed 1x Stringent Wash Buffer (pre-warmed to $47^{\circ} \mathrm{C}$) by placing the tube on a magnet, discarding the excess liquid, adding $200 \mu \mathrm{l}$ of $1 x$ Stringent Wash Buffer, mixing thoroughly and then incubated at $47^{\circ} \mathrm{C}$ for 5 mins. The mixture was then transferred to a 1.5 ml DNA LoBind tube (Eppendorf), placed on a magnet
and the excess liquid discarded. A volume of $200 \mu \mathrm{l}$ of 1 x Wash Buffer 1 at room temperature was added and vigorously vortexed. The tube was then placed on a magnet and the excess liquid discarded. This was repeated with $200 \mu \mathrm{l}$ of 1 x Wash Buffer 2 and subsequently $1 \times$ Wash Buffer 3. After the excess liquid was discarded, the beads were eluted into 20μ of water.

2.2.2.8.4 Amplifying captured multiplex DNA using LM-PCR

A volume of $15 \mu \mathrm{l}$ of prepared mastermix (containing KAPA HiFi HotStart ReadyMix and post-LM-PCR Oligos 1+2) was aliquoted into two reaction tubes per capture. The bead-bound captured DNA was vortexed briefly and $10 \mu \mathrm{l}$ were added to each reaction tube and subjected to PCR as follows: $95^{\circ} \mathrm{C}$ for 3 minutes then 14 cycles of $98^{\circ} \mathrm{C}$ for 20 seconds, $65^{\circ} \mathrm{C}$ for 15 seconds, $72^{\circ} \mathrm{C}$ for 30 seconds. This was followed by a final incubation at $72^{\circ} \mathrm{C}$ for 2 minutes, before the reaction was held at $4^{\circ} \mathrm{C}$.

The two $25 \mu \mathrm{l}$ PCR reactions were then pooled to make a total of $50 \mu \mathrm{l}$. To this 0.9 X AMPure XP beads was added and mixed thoroughly before incubation at room temperature for 5 minutes, then placed on a magnetic rack until the beads had separated from the solution. The excess liquid was discarded and the beads washed twice with $200 \mu \mathrm{l} 80 \%$ ethanol prior to air drying for 5 minutes and finally eluting in $15 \mu \mathrm{l}$ of 10 mM Tris pH 8.0. Final libraries were quality checked and quantified using the 2200 Tapestation (Agilent) and Qubit 3.0 fluorometer (Invitrogen) prior to sequencing

2.2.2.8.5 Double target enrichment

Sixteen of the prepared libraries were selected for double enrichment due to low HEV genome coverage ($<70 \%$) of the consensus sequence identified during sequence analysis. In this case target enrichment proceeded as described except for the following amendments: in the first enrichment the SeqCap EZ HEV probe pool was used at a 1:2 dilution in nuclease-free water and the PCR was cycled for four cycles. The resulting $50 \mu \mathrm{l}$ of PCR reaction were subjected to a second enrichment using the SeqCap EZ HEV probe pool at a 1:2 dilution and the PCR was cycled for 14 cycles.

2.2.2.8.6 Illumina whole genome sequencing

Deep sequencing was carried out on samples in two separate batches using the NextSeq 550 with a NextSeq 500/550 Mid output v2 kit (Illumina) following the manufacturers protocol for paired-end sequencing (loading a final concentration of 1.6 pM with the addition of $1 \% \mathrm{phiX}$).

2.2.3 Bioinformatics analysis of Illumina sequences

2.2.3.1 Reference mapping

FASTQ files generated from short-read Illumina sequencing underwent quality control screening (Trim Galore version 0.4.0, Cutadapt version 1.16, Phred score cut-off 30 using ASCII+33 quality encoding). Trimmed files were subsequently used to generate SAM files by reference mapping against the proposed HEV reference sequences using Tanoti in-house assembler and consensus sequences produced (http://bioinformatics.cvr.ac.uk/tanoti.php) [145]. In-house 'Sameer’ reports were generated providing analysis of reference mapping details, HEV genome coverage, sequence depth across the genome and the full nucleotide sequence. Samples with sequence data covering 70% or more of the HEV genome were accepted for further analysis.

2.2.3.2 Data analysis

Sequences were aligned using the MAFFT sequence alignment program (https://mafft.cbrc.jp/alignment/software/). Aligned consensus sequences were viewed in Bioedit (Version 7.2.5) for amino acid switches over time. HEV GLUE offline (Version 0.1.152, Copyright (C) 2018 The University of Glasgow) was used to analyse SAM files for amino acid polymorphisms at specific loci identified by Bioedit analysis [253]. Amino acid variations were only called when the depth of reads at the loci exceeded 10 and frequencies only called when they exceeded
5% of the viral population. Phylogenetic trees were constructed in MEGA 7.0 (Version 7.0.26).

The full linux commands used for whole genome sequence analysis are available in Appendix A1.8.

2.2.3.3 Analysis of published sequences

To determine the frequency of specific HEV mutations amongst circulating viruses, as determined by the frequency in published HEV sequences available in GenBank, HEV GLUE offline was used. Sequences available covering the region of interest for the HEV subtype of interest were downloaded, aligned and analysed to determine the consensus amino acid at the locus of interest and the frequency in the downloaded sequences.

2.2.3.4 Diversity analysis

The diversity of the HEV quasispecies was investigated at the amino acid level by means of sorted BAM files in DiversiTools (http://josephhughes.github.io/DiversiTools/). Using in-frame sequence alignment of coding regions of the HEV genome, the depth of reads and the frequency of amino acid variations were calculated.

2.2.3.5 Statistical analyses

Continuous data were compared using the Wilcoxon two-sample signed-rank test, while categorical data were compared using the Fisher's exact test or Chi-squared. Paired data were compared using the Wilcoxon matched pairs test. Confidence intervals (Cls) for measures of prevalence were calculated using the Wilson method. Pearson's correlation determined correlation coefficients between continuous variables. Multivariable logistic regression models were built in a stepwise fashion to ensure the best fit. Missing data are summarized in the relevant sections. All statistical analyses were performed in STATA 13.1.

2.3 Health economic analyses

2.3.1 Development and modification of Markov model

A Markov model for HEV screening of blood donors was available to us. This had been previously utilised by the Advisory Committee on the Safety of Blood, Tissues and Organs (SaBTO, UK) HEV working party (Siobhain McKeigue, John Cairns; Pers. Comm.) and was extensively updated and modified for this analysis to suit solid organ transplant patients and follow the NICE reference case. The model was developed in Microsoft Excel 2010 (Microsoft, Redmond, WA, USA), using the inbuilt Visual Basic for Applications for the uncertainty analyses.

The model follows five hypothetical cohorts. The baseline cohort is the group of individuals to which no screening is offered and HEV diagnosis, and thus treatment, relies on clinically prompted testing. We then compared in separate cohorts annual HEV screening for all patients by PCR (strategy A) or HEV-Ag (strategy B) with a selective screening programme using an abnormal alanine aminotransferase (ALT) value as an indicator for HEV testing by PCR (strategy C) or HEV-Ag (strategy D).

The Markov model allows the modelling of transitions of a patient through different health states over time. The model was populated with parameters for costs, outcomes and the probability of each outcome occurring to simulate the impact of screening compared with not screening recipients of solid organ transplants. Outcomes were measured in quality-adjusted life years (QALYs). Patients enter the model and transition from one state to the next at yearly intervals with a half-
cycle transition point; at the end of each yearly cycle the accumulated QALYs and costs are totalled. A schematic overview of the model is shown in Figure 2.1.

Figure 2.1 Markov Model for HEV Infection in SOT recipients

Markov model showing transitions between the main health states during the natural history of HEV infection in solid organ transplant recipients.
${ }^{\text {a }}$ Screening (strategies A-D) was modelled to identify patients in the persistent HEV infection health state. The transition from persistent HEV to uninfected was determined by the success of treatment (reduction of immunosuppression and up to two courses of ribavirin therapy).
A separate structural scenario analysis explored a transition from compensated cirrhosis to uninfected (dotted line), assuming the same parameters as for the transition from persistent HEV to uninfected.

Abbreviations: HEV, hepatitis E virus.

In the model, all SOT patients start as uninfected and exposed at an annual constant rate to HEV. Subsequently, infected patients may develop a persistent HEV infection; in this state they may be diagnosed and treated and return to the uninfected state. However, a proportion will develop neurological complications, or liver cirrhosis at which point there is a risk of decompensation and requirement for liver (re-)transplantation. Patients with compensated cirrhosis were also allowed to be diagnosed and treated and return to uninfected in a structural scenario analysis.

The results of the model are reported as an incremental cost-effective ratio (ICER), where the difference between the mean costs of the screening programme $\left(C_{1}\right)$ and no screening $\left(\mathrm{C}_{0}\right)$ are divided by the difference in the mean effects of the screening programme $\left(E_{1}\right)$ and no screening $\left(E_{0}\right)$:

$$
\text { ICER }=\frac{\left(C_{1}-C_{0}\right)}{\left(E_{1}-E_{0}\right)}
$$

Results are presented in a fully incremental fashion by comparing strategies to the next-best strategy after removing (extendedly) dominated strategies.

2.3.2 Model assumptions

The model considered a hypothetical cohort of 1,000 SOT recipients. The basecase analysis was initiated with recipients aged 48 years, which is the weighted mean age of transplant recipients in the UK in 2016/17 [254]. The model used cycle lengths of one year until all living recipients reached the expected end-of-life based on a composite mortality rate incorporating a background rate and a
transplant-specific rate, or to a maximum age of 100; whichever came first (see Table 2.6). Half-cycle corrections were applied [255]. The risk of HEV acquisition was considered as a constant annual dietary risk. All patients were considered equally susceptible to HEV infection and once cleared of HEV infection were considered equally susceptible again [256]. In contrast to established models for hepatitis C virus (HCV), a health state of hepatocellular carcinoma (HCC) was not included in the model [254, 257]. Discounting was applied at 3.5% to both QALYs and costs as recommended by NICE [258].

2.3.3 HEV screening algorithms and modelling the impact of screening

The different testing strategies considered are detailed in Table 2.3; the baseline scenario represents the current UK situation whereby patients are only tested for HEV infection when the diagnosis is suspected clinically. The two main HEV screening assays compared were HEV RNA detection by PCR (strategies A and C) and HEV-Ag detection by ELISA with confirmation by PCR (strategies B and D). We considered an annual convenience screening strategy whereby SOT patients are tested each year following transplantation during one of their regular healthcare visits.

The parameters that differed in each scenario were the costs of screening and the probability of HEV being diagnosed owing to the different sensitivity and specificity of the screening options, informed by results reported in Chapter 3. The probability of being diagnosed informed the numbers of patients proceeding to treatment, incurring treatment costs and the different utility values of each health state. For
example, the proportion of patients diagnosed in the absence of routine screening was considered as 10% in the base-case analysis. Thus only 10% proceed to treatment and incur treatment costs and the lower utility state associated with treatment-related adverse events.

Table 2.3 Screening strategies for HEV infection in SOT recipients

Strategy	Patients to be tested for HEV infection	Initial screening assay	Confirmatory assay
baseline	Only when HEV suspected by clinician	PCR	none
A	All UK SOT patients	PCR	none
	HEV-Ag ELISA	PCR	
C	PCR	none	
D	UK SOT patients with abnormal ALT ${ }^{\mathrm{b}}$	HEV-Ag ELISA	PCR

The four screening strategies (and confirmatory testing) for HEV infection in SOT recipients are detailed that were compared in the cost-effective analysis.
${ }^{\text {a }}$ Represents the current scenario in the UK of no screening.
${ }^{\mathrm{b}}$ Abnormal ALT considered as >41 IU/L.
Abbreviations: Ag, hepatitis E virus antigen; ALT; alanine aminotransferase; ELISA, enzyme linked immunosorbent assay; HEV, hepatitis E virus; PCR, polymerase chain reaction; SOT, solid organ transplant; UK, United Kingdom.

2.3.4 Input parameters of model

The input parameters of the model consisted of the annual transition probabilities, healthcare costs, and the health-related impact on patients' quality of life as measured with utility scores. We assumed conventional gamma distributions for costs, beta distributions for utilities and transition probabilities, and a truncated normal distribution for the observed range of years of age at transplantation [254]. The full set of model parameters are presented in Table 2.4. Unit healthcare costs informing the final healthcare states are detailed in Table 2.5. Where costs, probabilities or quality-of-life scores were not available for direct input into the model, they were calculated from available figures and are detailed in Table 2.6.
Table 2.4 Input parameters for cost-effectiveness model

Variable	Base Case Value	Lower Limit used in PSA ${ }^{\text {a }}$	Upper Limit used in PSA ${ }^{\text {a }}$	Distribution of data for PSA	Reference
Healthcare costs (annual):					
Cost of HEV PCR test ${ }^{\text {b }}$	£56.28	£28.14	£84.42	Gamma	expert opinion
Cost of HEV-Ag test ${ }^{\text {b }}$	£11.49	£5.75	£17.24	Gamma	expert opinion
Treatment/monitoring persistent HEV infection ${ }^{\text {c }}$	£3 696	£2 838	£6183	Gamma	calculated [221, 259, 260]
Compensated Cirrhosis	£1412	£1 130	£1 694	Gamma	[261]
Decompensated Cirrhosis	£11317	£9 053	£13580	Gamma	[261]
Neurological Complications ${ }^{\text {d }}$	£23 516	£2 363	£73 066	Gamma	[262]
Liver Transplant Y1	£65 203	£52 162	£78 244	Gamma	[263]
Liver Transplant Y2	£13262	£10 609	£15914	Gamma	[263]
Liver Transplant Y3+	£5 526	£4421	£6 631	Gamma	[263]
Utilities (HRQoL):					
SOT recipient in uninfected \& infected state ${ }^{\text {e }}$	0.763	0.721	0.837	Beta	calculated [257, 264]
SOT recipient in persistent HEV state ${ }^{f}$	0.736	0.704	0.791	Beta	calculated [257, 261, 264]
Compensated cirrhosis	0.550	0.440	0.660	Beta	[261]
Decompensated cirrhosis	0.450	0.360	0.540	Beta	[261]
Neurological complications ${ }^{9}$	0.588	0.471	0.706	Beta	calculated [265]
Liver Transplant Y1/Y2/Y3+ ${ }^{\text {h }}$	0.763	0.721	0.837	Beta	calculated [257, 264]

Variable	Base Case Value	Lower Limit used in PSA ${ }^{\text {a }}$	Upper Limit used in PSA ${ }^{\text {a }}$	Distribution of data for PSA	Reference
Annual transition probabilities:					
Annual risk of HEV acquisition	0.23\%	0.04\%	1.06\%	Beta	[22, 27, 102, 266]
Persistent infection from infected	65.90\%	57.80\%	78.80\%	Beta	[207]
Neurological complication from persistent $\mathrm{HEV}^{\mathrm{i}}$	1.13\%	0.90\%	1.35\%	Beta	[164]
Compensated cirrhosis from persistent $\mathrm{HEV}^{\mathrm{j}}$	5.82\%	4.65\%	6.98\%	Beta	[207]
SVR from persistent HEV (overall) ${ }^{\text {f }}$	88.70\%	75.30\%	98.60\%	Beta	composite [223]
SVR with reduction of immunosuppression	32.14\%	25.71\%	38.57\%	Beta	[207]
SVR with up to 2 courses RBV	85.00\%	68.00\%	100.00\%	Beta	[223]
SVR from neurological complication	75.00\%	60.00\%	90.00\%	Beta	[164]
Decompensation from compensated cirrhosis	10.00\%	4.00\%	12.00\%	Beta	[207, 261, 267]
Death from compensated cirrhosis ${ }^{\mathrm{k}}$	5.50\% ${ }^{\text {k }}$	4.40\%	6.60\%	Beta	[267]
Death from decompensated cirrhosis ${ }^{\mathrm{k}}$	30.50\% ${ }^{\text {k }}$	24.40\%	36.60\%	Beta	[267]
Liver transplant from decompensated cirrhosis	20.00\%	5.00\%	50.00\%	Beta	[207]
Death from liver (re)transplant ${ }^{\text {k }}$	3.96\% ${ }^{\text {k }}$	3.17\%	4.75\%	Beta	[254]
Death from solid organ transplant ${ }^{\text {k, }}$,	2.64\% ${ }^{\text {k }}$	2.11\%	3.17\%	Beta	calculated [254]
Age-related background mortality ${ }^{\text {k }}$	Variable	fixed	fixed	fixed	[268]
Diagnostic strategy performance:					
Probability of HEV infected SOT recipient with ALT > ULY	92.9\%	68.5\%	98.7\%	Beta	Ch. 4
Sensitivity of HEV PCR [specificity] (Y)	99.7\% [100\%]	79.2\% [fixed]	100\% [fixed]	Beta	[250, 251]
Sensitivity of HEV-Ag detection [specificity] (Z)	94.7\% [97.9\%]	75.8\% [96.0]	100\% [99.0]	Beta	Ch. 4
Sensitivity of ALT then HEV PCR ${ }^{\text {m }}$	Xxy	73.5\%	100\%	Beta	assumption
Sensitivity of ALT then HEV-Ag ${ }^{\text {m }}$	Xxz	70.3\%	100\%	Beta	assumption
Probability of HEV diagnosis in absence of screening	10\%	8.0\%	50.0\%	Beta	Ch. 4
Probability of SOT recipient with ALT >ULN in year 1/yea	33.6\%/10.5\%	29.7\%/9.2\%	37.7\%/12.0\%	Beta	reworked from Ch. 4

Variable	Base Case Value	Lower Limit used in PSA ${ }^{\text {a }}$	Upper Limit used in PSA ${ }^{\text {a }}$	Distribution of data for PSA	Reference
Other Parameters:					
Initial age ${ }^{\text {f }}$	48	16	81	truncated normal ${ }^{\text {n }}$	calculated [25
Utilities discounting rate	3.5\%	fixed	fixed	fixed	[258]
Cost discounting rate	3.5\%	fixed	fixed	fixed	[258]
Cohort size	1000	fixed	fixed	fixed	convention
Legend for Table 2.4:					
${ }^{a}$ Where specific figures we ${ }^{\mathrm{b}}$ Representative of referen the selective screening stra ${ }^{\text {c }}$ Composite score (see Tab ${ }^{d}$ Conversion to UK-specific ${ }^{e}$ Mean HRQoL of different ${ }^{f}$ Composite score (see Tab ${ }^{9}$ Calculated as 20% reduct ${ }^{\mathrm{h}}$ Assumed same as initial und '6\% of cases developed a ${ }^{\mathrm{j}}$ Eight cases of 56 develop Abbreviations: HEV-Ag, h deterministic sensitivity ana reaction; PHE: Public Health	extremes, + (Steve Har uded confirm ice index an by prevalen diagnosed p over 5.33 y up of 29.5 ALT, alan us; HRQoL istic sensitiv	20\% of base ur, VRD, PH tory testing for purchasing p of the transp sistent HEV in (0.0113) [onths [207]. aminotrans ealth-related analysis; SD	ase value wa Pers. Comm the HEV-Ag wer parity con ant category ection [265]. 4]. rase; Ch.; uality of life; standard dev	sed as for the Total annual say (see Table rsion [269, 270] UK. apter; CI, confi not available; ion; SOT, solid	ing costs vari ce interval; polymerase trans plant;

Table 2.5 Healthcare costs to treat persistent HEV Infection

Investigation/Intervention	No. in typical treatment pathway ${ }^{\text {a }}$	\% receiving investigation/ intervention	Unit cost	Reference
Diagnostic work-up/initial management:				
Initial diagnostic clinic appointment	1	100	£ 219.26	[260]
Clinic appointments	2	100	£ $167.47^{\text {b }}$	[260]
Phlebotomy	7	100	£ 3.00	[260]
HEV PCR in blood and stool	6	100	$£ 56.28$	Expert Opinion ${ }^{\text {c }}$
Other blood tests at diagnosis ${ }^{\text {d }}$	1	100	$£ 108.00$	[260]
Other monitoring blood tests	2	100	$£ 28.00$	[260]
Imaging: Liver USS	1	100	$£ 51.78$	[260]
Imaging: Fibroscan	1	100	£ 113.18	[260]
Attendance for imaging	1	100	$£ 18.71$	[260]
Liver biopsy \& histopathology as day case	1	10 e	£ 247.84	[260]
Drug cost saving ${ }^{\text {f }}$	1	100	-£ 450.49	[259]
Total cost for average patient			£ 715.67 (X)	
1st course of ribavirin:				
3 month course of ribavirin 800mg/day	1	100	£ $729.73{ }^{9}$	[259]
Clinic appointments ${ }^{\text {h }}$	7	100	£ $167.47^{\text {b }}$	[260]
Phlebotomy	7	100	£ 3.00	[260]
HEV PCR in blood and stool	14	100	$£ 56.28$	Expert Opinion ${ }^{\text {c }}$
Other blood tests	7	100	$£ 28.00$	[260]
Extra clinic appointments for side effects	2	$10^{\text {d }}$	£ $167.47^{\text {b }}$	[260]
EPO treatment of 3 m for side effects	1	$10^{\text {d }}$	£ 1,194.66	[259]
RBC transfusion for side effects	4	$10^{\text {d }}$	$£ 496.00$	[260]
Total cost for average patient			£ 3268.39 (Y)	
2nd course of ribavirin:				
6 m course of ribavirin $800 \mathrm{mg} / \mathrm{d}$	1	100	$£ 1,502.11^{\text {g }}$	[259]
Clinic appointments ${ }^{\text {i }}$	10	100	£ $167.47^{\text {b }}$	[260]
Phlebotomy	10	100	£ 3.00	[260]
HEV PCR in blood and stool	20	100	$£ 56.28$	Expert Opinion ${ }^{\text {c }}$
Other blood tests	10	100	$£ 28.00$	[260]
Extra clinic appointments for side effects	2	10	£ $167.47^{\text {b }}$	[260]
EPO treatment of 6 m for side effects	1	10	£ 2,389.32	[259]
RBC transfusion for side effects	4	10	£ 496.00	[260]
Total cost for average patient			£ 5097.60 (Z)	
Weighted cost ${ }^{\text {j }}$ for average patient			£ 3695.68	

Legend for Table 2.5:
Unit costs to calculate healthcare costs of treatment for persistent HEV infection
${ }^{\text {a }}$ Typical pathway informed by British and European Guidelines [220, 221].
${ }^{\text {b }}$ Weighted cost of 50% clinics seen in consultant led ($£ 219.26$), 50% seen in non-consultant led clinics ($£ 115.69$).
${ }^{c}$ Representative of reference laboratory testing price (Steve Harbour, VRD, PHE, Pers. Comm.)
${ }^{\text {d }}$ Includes Full Blood Count, Urea and Electrolytes, Liver Function Tests, International normalised ratio, Hepatitis B \& C serology, PCR testing for EBV and CMV and therapeutic drug monitoring for tacrolimus or ciclosporin levels.
${ }^{e}$ Expert opinion reflecting clinical experience of transplant hepatologist managing HEV in a wide range of transplant groups (Ahmed Elsharkawy, Chairman of British Viral Hepatitis Group, Pers. Comm.)
${ }^{\text {f }}$ Reduction of immunosuppression leading to savings in drug costs; assumed reduction of tacrolimus of $2 \mathrm{mg} /$ day for 3 months.
${ }^{9}$ Average of two common brands (Copegus and Rebetol).
${ }^{\mathrm{h}}$ Outpatient appointment at baseline, week 1, 4, 8, 12 and 12 and 24 weeks post EOT.
' Outpatient appointment baseline, week 1, 4, 8, 12, 16, 20, 24 and 12 and 24 weeks post EOT.
${ }^{j}$ (probability of being diagnosed $x \mathrm{X}$) + (probability of being treated with RBV $\left.\times \mathrm{Y}\right)+$ (probability of requiring 2nd course RBV x Z)
Abbreviations: BNF, british national formulary; BTS, british transplant society; CMV, cytomegalovirus; d, day; EBV, Epstein barr virus; ELISA, enzyme-linked immunosorbent assay; EOT, end of treatment; EPO, erythropoietin; m, months; mg, milligrams; Pers. Comm., personal communication; RBC, red blood cells; USS, ultrasound scan.
Table 2.6 Calculations for Markov Model parameters

Parameter name	Base-case value	Calculation	References
Annual transition probabilities:			
Probability of SVR from persistent HEV state	88.70\%	pSVR with reduction of immunosuppression (0.321) + ((1-pSVR with reduction of immunosuppression (0.321)) \times pSVR with up to 2 courses RBV (0.85)) - pNeurological complication (0.0113)	$\begin{gathered} {[164,207,} \\ 271] \end{gathered}$
Mortality rate from solid organ transplantation	2.6\%	(Average annual mortality rate for kidney SOT recipient ${ }^{\text {b }}(0.0197)$) \times proportion in UK transplant population (0.726)) +	[254]
		(Average annual mortality rate for liver SOT recipient ${ }^{\mathrm{b}}(0.0396) \times$ proportion in UK transplant population (0.197)) +	
		(Average annual mortality rate for cardiothoracic SOT recipient ${ }^{\mathrm{b}}(0.0558) \mathrm{x}$ proportion in UK transplant population (0.077))	
Mortality rate from liver transplantation	3.96\%	(Average annual mortality rate for DCD liver recipient ${ }^{\mathrm{b}}(0.036)$) x proportion in UK transplant population (0.777) +	[254]
		(Average annual mortality rate for DBD liver recipient ${ }^{\mathrm{b}}(0.052)$) x proportion in UK transplant population (0.223)	
Healthcare costs:			
Annual screening costs for HEV-Ag (strategy B) ${ }^{\text {a }}$	Variable (X)	No. of uninfected patients x cost of HEV-Ag (£11.49) + (cost of HEV PCR (£56.28) x (1 - specificity of HEV-Ag (0.979)) + no. of infected patients x cost of HEV-Ag (£11.49) + cost of HEV PCR (£56.28)	Ch. 4

Parameter name	Base-case value	Calculation	References
Annual screening cost (per patient) for selective screening by HEV PCR (strategy C)	$\begin{aligned} & £ 19.14 \text { year 1/ } \\ & £ 5.63 \text { year 2+ } \end{aligned}$	assay costs (HEV PCR (£56.28) x $\%$ patients with abnormal ALT (0.34 in first year post transplant, 0.10 in year 2 onwards).	Ch. 4
Annual screening cost (per patient) for selective screening by HEV-Ag (strategy D)	Variable	$\text { assay costs (HEV-Ag (X)) } x$ $\%$ patients with abnormal ALT (0.34 in first year post transplant, 0.10 in year 2 onwards).	Ch. 4
Utilities (HRQoL): HRQoL of SOT recipient in uninfected and infected state	0.763	(HRQoL of kidney SOT recipient (0.760) x proportion in UK transplant population (0.726)) + (HRQoL of liver SOT recipient (0.780) x proportion in UK transplant population (0.197)) + (HRQoL of cardiothoracic SOT recipient (0.750) x proportion in UK transplant population (0.077))	[254, 257]
HRQoL of SOT recipient in persistent HEV state	0.736	HRQoL of SOT recipient (0.763) $\times \mathrm{pSVR}$ from reducing immunosuppression (0.321)) + $(($ HRQoL of patient on treatment $(0.650) \times 0.25+(H R Q o L$ of SOT recipient $(0.763) \times 0.75) \times$ pRequiring 3 months of RBV (0.529)) + ((HRQoL of patient on treatment (0.650) $\times 0.75$) + (HRQoL of SOT recipient (0.763) $\times 0.25$) x pRequiring 9 months RBV (0.150)	$\begin{gathered} {[207,223,} \\ 261] \end{gathered}$

Parameter name	Base-case value	Calculation	References
Other Parameters:			
Initial age at transplantation	48yrs	(Average age of deceased donor kidney recipient (50)) x proportion in UK transplant population (0.495) +	
		(Average age of living donor kidney recipient (45)) x proportion in UK transplant population $(0.231))+$	
		(Average age of deceased donor liver recipient (47) \times proportion in UK transplant population (0.197)) +	
		(Average age of deceased donor cardiothoracic SOT recipient (43) x proportion in UK transplant population (0.077))	

2.3.5 Uncertainty analyses

A wide range of exploratory uncertainty analyses assessed the sensitivity of the results to the assumptions and parameters. Given that we evaluated multiple options in this analysis and in light of the national policy objective of the NHS of maximising health outcomes with limited resources, we calculated the net health benefit (NHB) for each of the options in the uncertainty analyses as follows [272274]:

NHB = QALYs - costs / willingness-to-pay per QALY threshold This conversion of the outcome in terms of net QALYs gained simplifies the (visual) interpretation of results by aiming to find the option that maximises the NHB. We used the pre-determined willingness-to-pay value of $£ 20,000$ per QALY, which is recommended for the reference case by NICE [258].

Deterministic sensitivity analysis (DSA) was used on all parameters, by changing them in isolation to 80% and 120% of the base-case value, to identify the potential importance of specific parameters on the NHB. Scenario analysis was then undertaken on parameters of specific interest and including those identified in the DSA as being influential. These parameters were varied in isolation between ranges of two extreme but plausible values to explore the impact on the NHB. We also explored the impact of setting all parameter values simultaneously to the worst level.

Probabilistic sensitivity analysis (PSA) was used to explore the combined impact of parameter uncertainty. The model was run in 5,000 Monte Carlo simulations
where each parameter value was chosen randomly from a population distribution limited by the pre-determined upper and lower extremes (see Table 2.4) [275]. Based on the PSA, cost-effectiveness acceptability curves (CEAC) were generated to determine the probability of each option being cost-effective at a given willingness-to-pay threshold [276], ranging from £0-50,000/QALY gained. For each simulation the screening options were ranked and the probability that an option is cost-effective was calculated as the proportion of times it generated the highest mean NHB at a given willingness-to-pay threshold. The full ranking of the cumulative probability of being cost-effective was plotted in rankograms at a threshold of $£ 20,000 /$ QALY [277]. Given that the intervention with the highest probability of being cost-effective does not need to be the one with the highest mean NHB, a cost-effectiveness acceptability frontier (CEAF) was plotted to facilitate decision making on the optimal screening option [276].

3 HEV-Ag detection as a screening modality

3.1 Introduction

Systemic viral infections are often associated with circulating non-virion associated viral antigens in plasma, such as p24 antigen in HIV infection, p22 antigen in HCV infection and hepatitis B surface antigen (HBsAg) subviral particles in HBV infection [278, 279]. The detection of circulating antigenaemia typically is less sensitive than the detection of nucleic acid by PCR, particularly in acute infections, however it is commonly more cost-effective than genome-based assays [217, 280, 281]. In some circumstances the detection of viral antigens can provide enhanced diagnostic information. For example the loss of core antigen can predict viral clearance during therapy for HCV infection and HBsAg titres can be used to guide the cessation of interferon therapy for HBV infection by predicting when a virological response is unlikely [282, 283].

In hepatitis E virus infection circulating antigen (HEV-Ag), transcribed from ORF2, can be detected in both acute and persistent infections [217, 284]. This antigen forms the nucleocapsid protein but relatively little is known about the biology of antigen production and dissemination in acute and persistent HEV infections. HEV-Ag has been detected weeks after HEV RNA clearance in a subset of patients treated with ribavirin for persistent G3 infection, and in the urine posttreatment for G4 infection [131, 217]. However, the clinical relevance of ongoing antigen detection is not known.

A commercial assay for the detection of the viral ORF2 antigen using a solidphase enzyme linked immunoassay (HEV-Ag ELISA, Fortress Diagnostics,

Antrim, Northern Ireland, UK) has increased the opportunity to utilise this as a screening assay and to study the dissemination of antigen by detection in other bodily fluids, such as urine, faeces and CSF. However, no studies have specifically assessed the performance of this assay in screening immunocompromised patients. Nor is there is a test protocol for confirming the specificity of a reactive HEV-Ag result, which is crucial particularly in the absence of detectable HEV RNA [285]. The necessity for a neutralisation confirmatory step in antigen detection has been demonstrated for HBsAg where misdiagnoses have historically occurred [285]. The aims of this chapter are:

1. to develop a protocol for confirming the specificity of plasma, stool and urine samples reactive for HEV-Ag.
2. to determine the performance of the commercial HEV-Ag assay as a screening assay for active HEV infection in immunocompromised patients.

3.2 Results

3.2.1 Selection of reagents and validation of HEV-Ag neutralisation

HEV-Ag from the antigen pool derived from five viraemic patients was detectable in the ELISA up to a dilution of $3.5 \log _{10}(\mathrm{~S} / \mathrm{CO} 1.81$, Figure 3.1). The dilutions of $2.5 \log _{10}$ and $3 \log _{10}$ which gave $S / C O$ values of 13.08 and 5.94 , respectively were chosen for further work to ensure the antigen was sufficiently dilute to prevent saturation of the putative neutralising reagent.

Figure 3.1 HEV-Ag assay reactivity in pooled samples

HEV-Ag assay reactivity in a dilution series of pooled samples from five patients with persistent HEV infection. HEV-Ag is detectable up to a dilution of $3.5 \log _{1_{0}}$ in normal human plasma. The line marked with an asterix (*) represents the S/CO ratio range at which it is desirable to perform neutralisation.
Abbreviations: NHP, normal human plasma; S/CO, sample over cut-off of optical density values.

3.2.2 Demonstration of neutralising activity in various incubation conditions

In order to identify potent convalescent samples to make a putative neutralising reagent, ten plasma samples from convalescent donors were screened for neutralising activity by pre-incubation of each sample with the two dilutions of the antigen pool at a $1: 1$ ratio $(30 \mu \mathrm{l}$ of each). Incubation was allowed to proceed for either one hour at room temperature or overnight at $4^{\circ} \mathrm{C}$ in a round-bottomed microtitre plate prior to $50 \mu \mathrm{l}$ of the incubation mixture being assayed for $\mathrm{HEV}-\mathrm{Ag}$ under normal conditions.

All ten donor samples demonstrated significant neutralising activity when incubated undiluted with the diluted antigen pool at $2.5 \log _{10}$ and $3 \log _{10}$ dilutions. There was no demonstrable difference between the two incubation conditions (Figure 3.2). Six of the ten samples were able to neutralise the antigen pool to below the assay cut-off when used at a pre-dilution of $1 \log _{10}$ in NHP. No significant neutralising activity was seen in any samples at dilutions of $2 \log _{10}$ and $3 \log _{10}$ (Figure 3.3). The four samples demonstrating highest neutralising activity at a $1 \log _{10}$ dilution were selected to make an equivolumetric pool of putative neutralising reagent.

Figure 3.2 Trial of HEV-Ag neutralisation in blood donors

Initial trial of HEV-Ag neutralisation using blood donor samples in convalescence from acute HEV infection. HEV-Ag assay reactivity of diluted HEV-Ag pool is shown following incubation with NHP (control) or one of the convalescent donor samples A-J (test) in two separate incubation conditions. All donor samples neutralised the dilute HEV-Ag pool when incubated in a 1:1 ratio in either of the two incubation conditions.
Abbreviations: NHP, normal human plasma; S/CO, sample over cut-off of optical density values.

Figure 3.3 Neutralisation of HEV-Ag pool by convalescent donor plasma

HEV-Ag assay reactivity of diluted HEV-Ag pool $\left(2.5 \log _{10}\right)$ following incubation for one hour at room temperature with NHP (control) or one of the convalescent donor samples AJ (test) diluted in NHP $\left(3 \log _{10}, 2 \log _{10}\right.$ or $\left.1 \log _{10}\right)$.
Abbreviations: NHP, normal human plasma; S/CO, sample over cut-off of optical density values.

3.2.3 Dilution effect reduced by using low volume neutralising reagent

In an attempt to reduce the dilution effect of adding a non-neutralising NHP reagent (non-neutralising control) to the antigen pool when used in a 1:1 volumetric ratio, the ratio of neutralising reagent to antigen pool was altered. We elected to use a ratio of 10:1 ($50 \mu \mathrm{l}$ antigen sample: $5 \mu \mathrm{l}$ neutralising reagent) having previously shown that the individual convalescent donor samples all demonstrated potent neutralisation at a $1 \log _{10}$ dilution in a $1: 1$ ratio. Using a $10: 1$ ratio reduced the dilution effect and this is observed even below the assay manufacturer's cut-off (Figure 3.4). This optimised assay using the undiluted neutralising reagent in a 10:1 ratio was used for further neutralisation experiments.

Figure 3.4 Optimisation of antigen and antibody concentrations for neutralisation

Neutralisation of dilutions of HEV-Ag pool by neutralising reagent in varying ratios. HEVAg assay reactivity of diluted HEV-Ag pool (1:3000, 1:6000 or 1:10000) following incubation for one hour at room temperature with NHP (control) or the neutralising reagent in a $1: 1$ ratio (reagent used at $1 \log _{10}$) or in a 10:1 ratio (reagent used undiluted). The dilution effect (arrows marked with asterix *) is the change of S/CO ratio before (\uparrow) and $\operatorname{after}(\mathbf{\Delta})$ the addition of NHP.
Abbreviations: Ag, hepatitis E virus antigen

3.2.4 Neutralisation of tissue culture antigen, virus-like particles and the HEV-Ag ELISA kit positive control

The neutralising reagent demonstrated neutralising activity against antigens presented as virions from HEV tissue culture (day 45 post-inoculation of Hep G2/C3a cell line using G3 faecal sample), virus-like particles (VLPs) and the HEVAg ELISA positive control (Table 3.1).

To determine suitability as a control for neutralisation the stability of reactivity of purified genotype 3 VLPs was assessed. The VLPs were diluted in HRP conjugate stabiliser buffer (Clin-Tech, Guildford, UK) and dilutions were stored at $37^{\circ} \mathrm{C}, 4^{\circ} \mathrm{C}$ or at room temperature and tested at baseline, day 10 and day 21 for HEV-Ag. Reactivity in the HEV-Ag assay was consistent over 21 days in the three conditions tested (Figure 3.5).

Table 3.1 Neutralisation of HEV-Ag from variety of sources

Sample type	Dilution $\left(\log _{10}\right)$	Sample only (ODa)	Control	Test	$\%$ Neutralisation
			Sample + NHP (OD)	Sample + neutralising reagent (OD)	
HEV-Ag pool	1	3.590	3.630	3.440	5.24
	1.5	3.651	3.595	0.356	90.28
	2	3.232	3.189	0.007	100.00
	2.5	1.708	1.514	0.001	100.41
	3	0.645	0.606	0.002	100.86
	3.5	0.179	0.185	0.001	103.45
	4	0.054	0.052	0.000	115.92
G3 VLP	4.5	2.107	1.344	0.037	98.49
	5	0.749	0.637	0.028	98.23
G1 VLP	4	1.817	1.559	0.073	97.73
	4.5	0.658	0.589	0.030	96.37
HEV culture supernatant	2	3.299	3.007	0.022	99.83
	2.5	1.401	1.013	0.025	99.20
	3	0.527	0.443	0.020	99.30
HEV-Ag ELISA positive kit control	0.5	3.580	3.770	1.720	54.75
	1	3.520	3.450	0.600	83.24
	1.5	1.770	2.000	0.230	89.67
	2	0.670	0.740	0.090	91.04
	2.5	0.250	0.260	0.040	94.02

HEV-Ag assay reactivity (raw OD450/630 values) of HEV-Ag pool, VLPs, HEV culture supernatant and the HEV-Ag ELISA positive kit control following incubation with either NHP (control) or the neutralising reagent (used undiluted in a 10:1 ratio). The percentage of neutralisation was calculated as a percentage of the reduction in binding (Methods 2.2.2.7).
${ }^{\text {a }}$ Cut-off for reactivity varied between plates, but ranged from OD450/630 0.210-0.236.
Abbreviations: ELISA, enzyme-linked immunosorbent assay; HEV-Ag, Hepatitis E virus antigen; OD, optical density; VLP, virus-like particle.

Figure 3.5 Stability of HEV-Ag ELISA reactivity of G3 VLPs

HEV-Ag assay reactivity of G3 VLPs diluted in HRP conjugate stabiliser buffer in three different storage conditions $\left(37^{\circ} \mathrm{C}\right.$, room temperature or $\left.4^{\circ} \mathrm{C}\right)$ over 21 days.
Abbreviations: G3, genotype 3; OD, optical density; RT, room temperature; S/CO, sample over cut-off ratio; VLP; virus-like particle.

3.2.5 Neutralisation of HEV-Ag in analytes other than plasma

Stool samples from three patients with persistent HEV infection and urine from one patient with persistent HEV infection were tested and found reactive in the HEV-Ag assay. All three stools were HEV RNA positive (HEV RNA quantification ranging $1.64 \times 10^{6} \mathrm{IU} / \mathrm{ml}$ to $\left.3.8 \times 10 \mathrm{IU} / \mathrm{ml}\right)$. The urine sample was collected from a male patient with persistent HEV infection during ribavirin therapy whilst the patient remained HEV viraemic; HEV RNA was not detected in the urine sample. HEV-Ag was detected in all three stool samples and the urine sample. Reactivity was neutralised by at least 90% in all four samples confirming the specificity of the reactivity (Table 3.2).

Table 3.2 Neutralisation of HEV-Ag in non-plasma analytes

Sample type	Dilution $\left(\log _{10}\right)$	Sample only (OD ${ }^{\text {a }}$)	Control Sample + NHP (OD)	Test Sample + neutralising reagent (OD)	\% Neutralisation
Urine ${ }^{\text {b }}$	undiluted	0.274	0.227	0.028	99.00
1	1	1.210	1.070	0.050	98.06
Stool c 2	1	0.620	0.560	0.060	95.97
3	undiluted	1.603	1.014	0.072	96.12

Neutralisation of HEV-Ag detected in urine and stool of patients with persistent HEV infection. Data presented are raw $\mathrm{OD}_{450 / 630}$ values following incubation with either NHP (control) or the neutralising reagent (used undiluted in a 10:1 ratio). The percentage of neutralisation was calculated as a percentage of the reduction in binding (Methods 2.2.2.7).
${ }^{\text {a }}$ Cut-off varied between plates, but ranged from $\mathrm{OD}_{450 / 630}$ 0.21-0.236.
${ }^{\mathrm{b}}$ Urine from a male patient with persistent HEV infection during ribavirin therapy whilst the patient remained HEV viraemic; the urine sample was HEV RNA-negative.
${ }^{\text {c }}$ Stool samples from three patients with persistent HEV infection. All three stools were HEV RNA positive (HEV RNA quantification ranging $1.64 \times 10^{6} \mathrm{IU} / \mathrm{ml}$ to $3.8 \times 10 \mathrm{IU} / \mathrm{ml}$).
Abbreviations: OD, optical density; NHP, normal human plasma.

3.2.6 HEV-Ag detection and neutralisation for screening immunocompromised patients for HEV infection

To determine the performance of the HEV-Ag assay as a screening assay 439 plasma samples from transplant recipients and 1591 plasma samples from patients with underlying haematological malignancy and 176 anonymised blood donors were tested. The samples included 21 samples identified as viraemic by HEV PCR.

3.2.7 Sensitivity of HEV-Ag detection

Nineteen of the 21 samples ($90.5 \%, 95 \%$ CI 71.1-97.4\%) from viraemic patients were reactive in the HEV-Ag assay (S/CO range, 6.51-19.08). A significant correlation was seen between $\log _{10}$ HEV RNA level (IU/mL) and HEV-Ag S/CO ratio (Figure 3.7) (Pearson's correlation $0.8184, \mathrm{p}<0.001$). The two patients ($\mathrm{R} \&$ U) whose samples tested negative in the HEV-Ag assay (Figure 3.7) harboured low viral loads of $9.60 \times 10^{1} \mathrm{IU} / \mathrm{ml}$ and $3.52 \times 10^{2} \mathrm{IU} / \mathrm{ml}$, respectively. Follow-up testing in both patients revealed a rising viral load with a reactive HEV-Ag result. In patient R, an allogeneic stem cell transplant recipient, follow-up testing at 10 weeks demonstrated a viral load of $3.00 \times 10^{5} \mathrm{IU} / \mathrm{mL}$ and a reactive HEV-Ag result (S/CO, 19.38). In patient U, with underlying multiple myeloma, follow-up testing three weeks later showed a viral load of $3.90 \times 10^{5} \mathrm{IU} / \mathrm{ml}$ and detectable HEV-Ag by ELISA (S/CO 17.31). When analysis was restricted to samples from patients
with established HEV infection (viral load stable for period of >4 weeks) sensitivity was 100\% (18/18, 95\% CI 82.4-100\%).

3.2.8 Specificity of HEV-Ag reactivity

The samples with very high S/CO ratios were diluted prior to neutralisation. Thus, prediluted to be off the plateau, all 19 HEV RNA positive/HEV-Ag reactive samples were neutralised by greater than 95\% (Table 3.3).

In addition to samples from viraemic patients being reactive in the HEV-Ag ELISA, eighteen samples from aviraemic immunocompromised patients (0.9\%) were repeat reactive by HEV-Ag ELISA. The S/CO ratios of all the RNApositive/antigen reactive samples were significantly higher than the RNAnegative/antigen reactive samples (median, 17.90; IQR, 17.00-18.26 vs median, 2.98; IQR, 1.79-8.34; $\mathrm{P}=<0.0001$) (Figure 3.7). In contrast, none of the 176 plasmas from anonymized blood donors were reactive. Of the 18 samples which were RNA negative and repeat reactive by HEV-Ag ELISA, only 1 could be neutralised (sample 6, Table 3.4), confirming 17 to be non-specific, false-positive results. Further testing revealed sample 6 to be reactive for anti-HEV lgM (S/CO 8.61) and lgG (S/CO 16.44), suggesting a recently cleared HEV viraemia with ongoing antigenaemia. Thus, the overall specificity amongst the immunocompromised cohort was 99.15\% (95\% CI, 98.65-99.51) and 100\% in immunocompetent blood donors (Table 3.5).

Figure 3.6 Correlation between HEV viral load and reactivity by HEV-Ag

ELISA in HEV viraemic patients

Pearson's correlation between HEV viral load and HEV-Ag ELISA S/CO was 0.8184 (p <0.001). Samples R and U represent those non-reactive in the HEV-Ag ELISA.
Abbreviations: Log (10), logarithm to base 10; IU, international units; ml, millilitres; OD, optical density; S/CO, sample over cut-off ratio

Table 3.3 Neutralisation of HEV RNA-positive/HEV-Ag reactive samples

Sample	Dilution $\left(\right.$ log $\left._{10}\right)$	Sample only $\left(\right.$ OD $^{\text {a }}$	Control Sample + NHP (OD)	Test Sample + neutralising reagent (OD)	Neutralisation
A	undiluted	1.943	1.576	0.015	103.08
B	2.5	3.540	3.548	0.103	98.81
C	2.5	3.520	3.703	0.084	99.38
D	2.5	0.900	1.038	0.022	104.05
E	2.5	2.610	2.238	0.030	101.45
F	2.5	3.382	3.238	0.047	100.46
G	2.5	2.260	1.733	0.044	101.05
H	2.5	3.740	3.826	0.190	96.59
I	2.5	3.616	3.663	0.100	98.93
J	2.5	0.807	1.287	0.022	103.23
K	2.5	1.010	1.048	0.047	101.48
L	1	0.755	0.764	0.015	106.63
M	2.5	3.496	3.667	0.073	99.68
N	2.5	0.400	0.352	0.021	113.97
O	1	0.380	0.350	0.060	100.55
P	2.5	3.650	3.722	0.104	98.84
Q	2.5	3.700	3.764	0.234	95.34
	2.5	0.440	0.701	0.030	104.94
	2.5	3.552	3.525	0.059	98.33

Samples with very high OD values were diluted in NHP to prevent saturation of the neutralising reagent. Data presented are raw $\mathrm{OD}_{450 / 630}$ values following incubation with either NHP (control) or the neutralising reagent (used undiluted in a 10:1 ratio). The percentage of neutralisation was calculated as a percentage of the reduction in binding (Methods 2.2.2.7).
${ }^{\text {a }}$ Cut-off for reactivity varied between plates, but ranged from $\mathrm{OD}_{450 / 630}$ 0.210-0.227.
Abbreviations: OD, optical density; NHP, normal human plasma.
Figure 3.7 HEV-Ag ELISA reactivity of viraemic and aviraemic patients

Table 3.4 Neutralisation of samples HEV RNA-negative but HEV-Ag reactive

Screening Results						Neutralisation results			
No.	Initial result/ repeat result (OD $)$	Mean (OD)	Sample only (OD)	Control Sample + NHP (OD)	Test Sample + neutralising reagent (OD)	\%			
						0.402			

Data presented are $\mathrm{OD}_{450 / 630}$ values following incubation with either NHP (control) or the neutralising reagent (used undiluted in a 10:1 ratio). Neutralisation was calculated as a percentage of reduction in binding (Methods 2.2.2.7).
Abbreviations: NHP, normal human plasma; OD, optical density.

Table 3.5 Specificity of HEV-Ag assay

	Anonymised Blood donors	Transplant recipients	Haemato- oncology patients	p value
HEV-Ag repeat reactive samples	0	9	8	
HEV-Ag non- reactive samples	176	411^{a}	1582^{b}	
	100% Specificity	(one-sided 97.5\% CI $97.93-100.0)$	$(95 \% \mathrm{Cl} 95.97-99.02)$	$(95 \% \mathrm{Cl} 99.01-99.78)$

Assay specificity was determined by confirmatory testing of HEV-Ag reactive samples by HEV RNA and by antigen neutralisation. Specificity was higher in blood donors than the immunocompromised patients $(p=0.029)$.
${ }^{a}$ Includes three samples reactive on initial testing ($\mathrm{S} / \mathrm{CO}>1.0$) but not on repeat testing.
${ }^{\mathrm{b}}$ Includes 13 samples reactive on initial testing $(\mathrm{S} / \mathrm{CO}>1.0)$ but not on repeat testing.

3.2.9 HEV-Ag detection throughout the course of HEV infection

Five patients with active HEV infection who were untreated and eight patients with persistent HEV infection who had been treated were selected who had stored follow-up samples available for testing.

Amongst the five untreated patients with detectable HEV viraemia, four of the five patients (80%) had detectable HEV antigen in plasma in the baseline sample. A plasma sample taken two weeks later in the patient with undetectable HEV-Ag in the baseline sample (Patient Y, Figure 3.8) was reactive for HEV-Ag. Of these five patients, three cleared HEV viraemia spontaneously during follow-up. In one case (Patient I, Figure 3.8) HEV-Ag became undetectable in plasma prior to HEV RNA clearance. In the remaining two patients (Patients D and G, Figure 3.8) plasma HEV-Ag was detectable beyond HEV RNA clearance; over three weeks in the case of patient G .

Amongst the eight patients with persistent HEV infection who received ribavirin therapy, in five patients HEV-Ag was detectable in plasma for a prolonged period after HEV RNA became undetectable in plasma (Patients A, F, K, R and S, Figure 3.9). HEV-Ag persisted for between 8.0 weeks up to 32.0 weeks in plasma beyond HEV RNA detection. Two patients experienced virological rebound (Patient A and E, Figure 3.9). In patient A, HEV-Ag was detectable in all follow up samples over 19.4 weeks despite undetectable HEV RNA prior to the subsequent rebound of detectable HEV RNA. In patient E, HEV RNA was detectable at very low levels $\left(4.2 \times 10^{1} \mathrm{IU} / \mathrm{ml}\right)$ in plasma prior to the detection of HEV-Ag.

Where stool samples were available for HEV testing amongst the antiviral treated patients the relationship between HEV RNA detection and HEV-Ag detection in stool was less clear. There was not a strong relationship between HEV RNA quantitation and HEV-Ag OD values (Pearson's correlation, 0.4467). The OD values of the HEV-Ag ELISA fell over time as HEV RNA was cleared from stool. In only two stool samples from two separate patients was HEV-Ag detected in the absence of detectable HEV RNA (open circles, patient A and R, Figure 3.10). In four stool samples HEV-Ag was not detected in the presence of detectable HEV RNA; in these samples the quantitation of HEV RNA ranged from 4.00×10^{1} $\mathrm{IU} / \mathrm{ml}$ to $1.36 \times 10^{4} \mathrm{IU} / \mathrm{ml}$. In no patients was HEV-Ag detectable in stool beyond HEV-Ag detection in plasma.

Figure 3.8 Plasma HEV-Ag in untreated patients

Correlation of plasma HEV RNA detection and HEV-Ag in untreated patients. Five patients (Patients D, G, I, Y and Z) with active HEV infection who received no treatment during follow-up were tested for HEV-Ag in baseline plasma samples and subsequent follow-up samples. Data shown are the HEV-Ag ELISA results during follow-up. Follow-up varied between 11.0 weeks (patient Z) and 22.3 weeks (patient G). Open circles represent samples without detectable HEV RNA and filled-in circles represent samples harbouring detectable HEV RNA. The dashed line represents the manufacturer's cut off threshold for defining a reactive sample. See supplementary figure A2.1 for the HEV-Ag reactivity plotted alongside the HEV RNA viral load quantitation.

Abbreviations: ELISA, enzyme-linked immunosorbent assay; HEV Ag, Hepatitis E virus antigen; S/CO, sample over cut-off ratio.

Figure 3.9 Plasma HEV-Ag in antiviral treated patients

Legend for Figure 3.9:
Correlation of plasma HEV RNA detection and HEV-Ag in antiviral-treated patients. Eight patients who had persistent HEV infection (Patients A, E, F, K, L, Q, R and S) and were treated with Ribavirin were tested for HEV-Ag at baseline and throughout follow-up. Data shown are the HEV-Ag ELISA results during follow-up which varied between 19.0 weeks (patient F) and 108.1 weeks (patient A). Open circles represent samples without detectable HEV RNA and filled circles represent samples harbouring detectable HEV RNA. The dashed line represents the manufacturer's cut-off threshold for defining a reactive sample. See supplementary figure A2.2 for the HEV-Ag reactivity plotted alongside the HEV RNA viral load quantitation.

Abbreviations: ELISA, enzyme-linked immunosorbent assay; HEV Ag, Hepatitis E virus antigen; S/CO, sample over cut-off ratio.

Figure 3.10 Stool HEV-Ag in antiviral-treated patients

Correlation of HEV RNA and HEV-Ag detection in stool samples of antiviral-treated patients. Six patients treated with ribavirin for persistent HEV infection (Patients A, E, K, Q, R and S) were tested for HEV-Ag in stool samples and compared with HEV RNA quantified results in stool. Open circles represent stool samples without detectable HEV RNA and filled circles represent samples harbouring detectable HEV RNA. The dashed line represents the manufacturer's cut-off threshold for defining a reactive sample.
Abbreviations: ELISA, enzyme-linked immunosorbent assay; HEV Ag, Hepatitis E virus antigen; S/CO, sample over cut-off ratio.

3.3 Discussion

Diagnosis of HEV infection in immunocompetent patients is typically made by the demonstration of reactive anti-HEV IgM and IgG antibodies in sera, however in immunocompromised patients HEV RNA testing is recommended because of delayed or non-existent serological responses in these cohorts [216]. The availability of a commercial assay to detect the HEV ORF2 protein (HEV-Ag ELISA, Wantai diagnostics) opens up a number of possibilities, including screening vulnerable populations for persistent infections, as a diagnostic assay for active HEV infections in resource-limited settings and in the study of the dynamics of HEV-Ag detection throughout the course of a persistent infection. The HEV-Ag is translated from ORF2 to form the capsid protein which contains important immunogenic epitopes. It has been detected in the plasma and urine of HEV infected patients and in multiple extrahepatic sites in animals including the kidney, gut and central nervous system [134, 286, 287].

The first aim of this chapter was to develop a protocol for confirming the specificity of plasma, stool and urine samples reactive for HEV-Ag. We initially demonstrated that plasma from ten blood donors in convalescence from HEV infection was able to neutralise antigen incubated at either for an hour at room temperature or at $4^{\circ} \mathrm{C}$. The four plasma samples with the highest antigen neutralising activity were then pooled to generate a putative neutralising reagent. This pooled plasma was able to neutralise HEV antigens derived from a variety of sources, including clinical specimens, HEV tissue culture supernatant, VLPs and the HEV-Ag ELISA positive kit control. Interestingly, the plasma was equally potent at neutralising G1 VLPs when compared with G3 VLPs, despite all the
donors being in convalescent from G3 HEV infections, therefore this reagent could be used for suspected G1 infections also. For the purposes of antigen neutralisation, either tissue culture supernatant or VLPs could be used as control material, however the use of VLPs would be optimal because they are relatively easy to generate in abundance, well characterised and do not pose the laboratory infection risk that clinical specimens or tissue culture supernatant appear to have. The stability testing data also show that G3 VLPs remain consistently reactive in the HEV-Ag assay in three diverse storage conditions over at least a period of 21 days.

A notable practical caveat is that any samples with high S/CO ratios should be diluted to ensure the neutralising reagent is not saturated by excess antigen. It was notable that attempts to neutralise HEV-Ag reactivity on undiluted samples which were on the plateau were unsuccessful. For example, HEV-Ag pool at a 1 $\log _{10}$ dilution (S/CO 17.10) could only be neutralised by 5%. This has been demonstrated in other settings where high titre HBsAg samples could only be neutralised following dilution [288]. In the current study the addition of $5 \mu \mathrm{l}$ of undiluted neutralising reagent was consistently able to neutralise HEV-Ag when the absorbance value was off the plateau of the standard curve ($\mathrm{S} / \mathrm{CO}<15.0$), but unable to fully neutralise pooled HEV-Ag with absorbance values on the plateau ($\mathrm{S} / \mathrm{CO}>17.0$). Therefore it is necessary to dilute any sample with a very high S/CO result prior to any attempt at neutralisation so that there is no risk of ascribing a genuinely reactive sample as non-neutralisable [288].

This novel antigen neutralisation step is also effective on both urine and stool samples. Such non-plasma analytes are inherently susceptible to causing non-
specific reactivity in ELISA assays. In using confirmation by antigen neutralisation it is possible to confidently differentiate a true signal from a non-specific signal even in the absence of detectable HEV RNA.

The second aim of this chapter was to determine the performance of the commercial HEV-Ag assay as a screening assay for active HEV infection in immunocompromised patients. In studies of immunocompetent patients the sensitivity of HEV-Ag detection varied between 60% in acute G 1 infections and 88\% in acute G3 infections in separate studies [280, 289]. In acute G3 infections in immunocompromised patients the detection of HEV-Ag was found to be higher at 94% [280]. We found the assay had a sensitivity of 90.5% for viraemia at the single random time-point of screening which included patients with persistent infection and acute HEV infection. Similar to Behrendt et al, we found that patients with acute HEV infection were less likely to have detectable HEV-Ag than those with established infection. All the patients in our study were infected with G3 HEV, but a similar sensitivity has been reported for G4 HEV infections [290].

The reason for the reduced sensitivity of HEV-Ag detection compared with HEV RNA detection in acute infections is not clear. The kinetics of HEV-Ag in early human HEV infections is not fully understood, nor is the relationship between ORF2 antigen and HEV RNA. We did find a correlation between the HEV RNA plasma viral load and the HEV-Ag S/CO result (Pearson's correlation, 0.8184 (p <0.001), however the recent description of multiple forms of ORF2 antigen which are released from infected cells via different secretory pathways suggest a more complex association [141, 291]. Secreted forms of ORF2 antigen which are not associated with infectious virions are suspected to be the major circulating
antigens in patient sera and the predominant antigen detected by the Wantai commercial assay [291, 292]. Therefore, the most likely explanation is that samples taken from patients with acute infection are within a window period prior to the presence of high levels of secreted ORF2, however it is notable that in humanized mice inoculated intrasplenically with HEV (G1 or G3 HEV), HEV-Ag was detectable in plasma of some mice prior to the detection of plasma HEV RNA which is in contrast to our findings [293]. Nevertheless, antigen kinetics may differ in this humanised murine model because only the human hepatic tissue is susceptible to HEV infection and the route of inoculation is different [294].

We found the HEV-Ag assay to be highly specific amongst immunocompromised patients (99.15\%), a finding confirmed in another UK-based study in liver transplant recipients [295]. In using the antigen neutralisation assay we were also able to identify one patient who had ongoing antigenaemia in the absence of detectable HEV RNA at the point of screening, indicating a clearing HEV infection. The clinical significance of antigenaemia in the absence of RNA is not known, but has been described in ribavirin-treated patients previously, however to our knowledge this patient was not known to be HEV-infected and had not received ribavirin [217].

Finally, we explored HEV-Ag kinetics in a subset of patients identified with HEV infection. One previously published study found that HEV-Ag may be detectable for more than 100 days in plasma after HEV RNA clearance in ribavirin-treated immunocompromised patients [217]. We found that plasma antigenaemia persisted despite undetectable HEV RNA in five of eight ribavirin-treated patients and two of three untreated patients. We found that HEV-Ag was detectable
despite cleared HEV RNA in plasma for a longer duration in ribavirin-treated patients than patients who spontaneously clear HEV infection and was detectable for over 200 days after HEV RNA clearance in one patient. The half-life of HEVAg in plasma is unknown, but disappears within seven days after injection into nonhumanized mice, suggesting that the HEV-Ag we are detecting may be due to ongoing secretion of ORF2 antigen in the absence of HEV RNA replication [292, 293]. The differences between ribavirin-treated patients and untreated patients suggest it may be due to the differential effects of ribavirin on the replication of HEV RNA compared with the translation and secretion of ORF2 antigen [292].

The detection of HEV RNA in stool samples has become critical in guiding antiviral treatment duration in patients with persistent HEV infection, however little is known about the rate of HEV-Ag decline in the stool of treated patients or its clinical significance [225]. We detected HEV-Ag in only two of sixteen samples which harboured no detectable HEV RNA. In particular, we found no evidence of prolonged HEV-Ag detection in stool samples in contrast to plasma. We also found a relatively poor correlation between HEV RNA quantitation and HEV-Ag OD values (Pearson's correlation, 0.4467), which could be due to the stochastic nature of stool testing when very low levels of virions are present. However, there appears to be a fundamental difference between HEV-Ag kinetics in plasma when compared with stool. Sayed et al observed that in stool samples from experimentally infected human-liver chimeric mice viral RNA was higher than ORF2 antigen, whereas in plasma ORF2 antigen levels were markedly higher than viral RNA levels [293]. If ORF2 antigen in stool is mostly virion associated
and in plasma mostly not associated with virions then this would explain our findings. Our findings suggest that testing for HEV-Ag in stool is unlikely to provide any enhanced diagnostic information, however prolonged antigenaemia in plasma may indicate ongoing secretion of ORF2 from infected cells and could help guide duration of antiviral therapy and should be studied prospectively. There are a number of limitations of this study. The relative rarity of HEV infection amongst all immunocompromised patients limited the ability to determine accurately the sensitivity of HEV-Ag detection for the diagnosis of HEV infection in this group. The small numbers of patients followed up to assess HEV-Ag kinetics, the sporadic sampling determined by clinical follow-up and the availability of samples for testing allowed us to comment on some interesting observations, but was insufficient to draw firm conclusions. Furthermore, within the scope of this chapter we did not characterise the nature of the HEV-Ag we were detecting in plasma and stool to determine whether it was virion-associated.

3.4 Conclusions

- HEV-Ag is a both highly sensitive and specific for the detection of persistent HEV infections in immunocompromised cohorts, however in early infection sensitivity is reduced.
- HEV-Ag neutralisation can be a useful confirmatory assay in confirming the specificity of HEV-Ag ELISA reactivity and can be used on a number of analytes including plasma, urine and stool.
- HEV-Ag remains detectable in a proportion of ribavirin-treated patients beyond HEV clearance in plasma, but this is not observed in stool. This may indicate ongoing viral replication and warrants further investigation.

4 HEV infection in immunocompromised cohorts

4.1 Introduction

Persistent G3 HEV infections are typically asymptomatic or pauci-symptomatic with only a mild elevation in transaminases and are considered to be underrecognised in many patient cohorts [168]. Determinants and factors leading to persistent HEV infection are not well characterised or understood in immunocompromised patients, exemplified by cases in patients with undefined immune defects [172, 296]. Hence, it is difficult to identify cohorts highly susceptible to persistent HEV infection.

Certain immunocompromised patient cohorts outside of solid organ and stem cell transplantation may be particularly susceptible. Persistent and fatal courses of HEV infection have occurred in patients with haematological malignancies outside the context of allogeneic-HSCT [170, 297-299]. In one study five of 14 (36\%) patients with haematological malignancies acquiring acute HEV infection developed a persistent infection [199]. However, risk of persistent HEV in patients with haematological malignancies is unknown, with no systematic studies in patients who have not been treated with allogeneic-HSCT [185, 191]. Haematological malignancies are heterogeneous and are treated with increasingly diverse immunosuppressive medications, some of which have profound and long-lasting immunosuppressive effects. In addition, the excess blood transfusion requirements in this patient group leads to increased exposure to HEV from donors [22].

A second group theoretically susceptible to persistent HEV infection are patients with antibody deficiency, characterised by low immunoglobulins or the functional failure of immunoglobulins. This may be caused by a primary immunodeficiency syndrome or secondary causes including haematological malignancy and medications [300]. Typically, this manifests as recurrent infections with encapsulated bacteria but also with a range of viral, fungal or protozoan pathogens. For example, prolonged rhinovirus infections, severe hepatitis C virus and enterovirus infections are described in patients with primary antibody deficiency, whilst norovirus can lead to severe prolonged enteropathy in common variable immune deficiency (CVID) [301-304]. Only two studies have attempted to address the risk of persistent HEV infection in this cohort. A study of 73 patients with CVID in Germany in 2012 and more recently, a study of 27 patients with primary antibody deficiency and abnormal liver enzymes in the UK, found no evidence of persistent HEV infection [300, 305]. Prevalence studies of HEV infection in immunocompromised patients are biased towards solid organ transplant recipients, with other immunocompromised cohorts being underrepresented. Current studies show marked differences geographically and by patient group, likely as result of different exposure risks through diet or substances of human origin and varying host susceptibility. The prevalence of persistent HEV infection in cohorts of SOT recipients varies between 0.7% and 1.5% in Western Europe, but as high as 3.2% in one small study of lung transplant recipients [185, 191-193, 306]. A Dutch study in HSCT recipients found HEV viraemia in 2.4\% of patients [194].

The prevalence of persistent HEV infections in immunocompromised cohorts in the UK is unknown. However, the risk of HEV acquisition in Western Europe has risen in recent years [15]. Given the aforementioned uncertainty of the immunological dysfunction required to tolerate persisting HEV replication and the increase in HEV exposure within the UK, prevalence studies are required to inform testing strategies. Within this context, the aims of the following chapter are:

1. to determine the point prevalence of HEV viraemia in three distinct immunocompromised cohorts in the UK:
a. SOT and HSCT patients
b. Haemato-oncology patients
c. Antibody-deficient patients
2. to identify predictive factors of HEV viraemia.

4.2 Results

4.2.1 HEV infection in transplant recipients

4.2.1.1 Characteristics of transplant patients

All patients lived in England or Wales, 96\% lived within 100 miles of central Birmingham. A minimum dataset of 2822 patients were included in the statistical analysis and consisted of 2419 SOT patients (1181 kidney, 869 liver, 229 heart, 110 lung, 21 kidney/liver, 6 heart/lung, 2 heart/kidney and 1 lung/liver), 144 allograft HSCT patients and 259 patients with no available transplant history. The majority of SOT patients were greater than six months from the transplant date at the time of screening for HEV RNA, whilst the majority of the HSCT patients were within six months of the transplant date (Figure 4.1). Seven hundred and thirteen patients were prescribed ciclosporin, 2066 tacrolimus, 42 sirolimus and one everolimus.

At the time of HEV screening the mean serum alanine aminotransferase (ALT) value was 61 IU/L amongst all screened patients ($n=2765$). Higher ALT values were observed in patients who had undergone transplantation within one month prior (Figure 4.2).

Figure 4.1 Timing of HEV screen in relation to transplant

${ }^{a}$ Includes liver/kidney dual transplant ($\mathrm{n}=21$) and lung/liver dual transplant ($\mathrm{n}=1$).
${ }^{\mathrm{b}}$ Includes heart/kidney ($\mathrm{n}=2$)
Abbreviations: allo-HSCT, allogeneic haematopoietic stem cell transplant; m, months.

Figure 4.2 Proportion of patients with abnormal ALT in relation to transplant

${ }^{\text {a }}$ Includes liver/kidney ($\mathrm{n}=21$) and lung/liver ($\mathrm{n}=1$).
${ }^{\mathrm{b}}$ Includes heart/kidney ($\mathrm{n}=2$).
Abbreviations: Allo-HSCT, allogeneic haematopoietic stem cell transplant; m, months.

4.2.1.2 Viraemic transplant patients

Nineteen minipools containing HEV RNA were resolved to identify 19 viraemic patients, giving an overall RNA prevalence of one in 149 ($0.67 \%, 95 \% \mathrm{Cl}$ of 0.43$1.05 \%$). Individual viraemia levels ranged from $352 \mathrm{IU} / \mathrm{ml}$ to $9.09 \times 10^{6} \mathrm{IU} / \mathrm{ml}$. Phylogenetic analysis demonstrated all samples to harbour HEV G3 viruses of which six (31.6\%) were clade 1 (subtypes e,f,g) and 13 (68.4%) were clade 2 (subtypes a, b, c, h, i, j). Three of the viraemic patients (15.8\%) were allogeneic HSCT recipients with a median duration of time since transplant of 11.3 months [interquartile range 2.3-23.0]. Sixteen (84.2\%) were SOT recipients (6 kidney, 9 liver, 1 heart) with a median duration of time since transplant of 88.4 months [interquartile range 19.3-122.6] (Table 4.1).

Full clinical details were available on 16 of the viraemic patients. The diagnosis of hepatitis E infection was only considered clinically in one. Four had rises in ALT which were thought not to be clinically significant. The working diagnoses in the remainder were graft versus host disease ($n=2$), graft rejection ($n=2$), autoimmune hepatitis ($n=2$), statin induced liver injury ($n=1$), EBV associated hepatitis ($n=1$), alcohol excess ($n=1$), recurrent primary biliary cirrhosis ($n=1$) and recurrent primary sclerosing cholangitis ($n=1$).

A follow up sample taken at a median of nine weeks after the initial diagnosis of HEV infection (range 1.6-22.1 weeks) as part of the routine clinical care of the viraemic patient was available for 15 individuals, all but one of whom remained viraemic. The follow up sample for the patient who cleared HEV viraemia was taken 22.1 weeks after the initial sample (patient 6, Table 4.1). Two further
patients who were viraemic at initial follow up cleared their virus within three months of the initial screening test (patients 7 and 9 , Table 4.1).

At the time of writing during the follow up period 12 patients had evidence of established persistent infection; viraemia >12 weeks ($\mathrm{n}=11$) or an unchanged viral load over a period of at least eight weeks ($n=1$). Four patients had insufficient follow up to comment.
Table 4.1 Characteristics of HEV viraemic transplant patients

Pt No.	Transplant	Time since transplant (yrs)		Age (yrs)	Sex		Immune suppression	Bilirubin umol/L	ALT IU/L	Serology

Abbreviations: Allo-HSCT, allogeneic haematopoeitic stem cell transplant; M, male; MMF, mycophenolate mofetil; F, female; ND, not detected;
NEG, negative; POS, positive; S/CO, sample over cut-off ratio of optical density values; yrs, years.

4.2.1.3 Predictive factors for HEV viraemia in transplant patients

The characteristics of HEV viraemic patients were compared with uninfected aviraemic patients. At the single time point of random screening the HEV viraemic patients had statistically significantly higher ALT ($p<0.0001$), bilirubin ($p=0.01$), tacrolimus levels $(p=0.002)$ and ciclosporin levels $(p=0.02)$, with the caveat of relatively small numbers (Table 4.2).

The median ALT was 156 IU/L [IQR 57-298] in HEV viraemic patients compared to a median ALT of 19 IU/L [IQR 13-30] in HEV RNA aviraemic patients (Figure 4.3). A sub analysis of only liver transplant patients found a similar difference with a median ALT of 127 IU/L [IQR 57-298] in HEV viraemic patients compared to a median ALT of 24 IU/L [IQR 15-62] in HEV RNA-negative patients ($p=0.005$) (Table 4.3). Comparison of transplant types did not identify any particular SOT category as being a risk factor for being HEV viraemic, however when SOT patients were compared with HSCT patients there was borderline evidence ($p=0.09$) that HSCT patients were more likely to be viraemic. Gender, drug administered (ciclosporin or tacrolimus), age and log(time since transplant) were not statistically significant univariate risk factors for HEV viraemia in this study.

Table 4.2 HEV viraemic and HEV RNA-negative transplant patients

	HEV viraemic patients ($\mathrm{n}=19$)	HEV RNA-negative patients ($\mathrm{n}=2803$)	p-value
Gender			
Male	11 (58\%)	1662 (59\%)	>0.99
Female	8 (42\%)	1141(41\%)	
Age [years]			
Median [IQR]	55 (36-61)	54 (42-63)	0.6
Number included	19	2803	
Transplant type			
SOT	16 (84\%)	2403 (94\%)	
Kidney	6	1175	
Liver ${ }^{\text {a }}$	9	882	0.09
Heart/Lung ${ }^{\text {b }}$	1	346	
HSCT	3 (16\%)	141 (6\%)	
Allo-HSCT	3	141	
Not reported	0	259	
Log (Time since transplant [yrs])			
Median [IQR]	3.8 (2.7-4.7)	3.8 (2.4-4.8)	0.9
Number included	18	2586	
Drug administered			
Tacrolimus	14 (74\%)	2052 (73\%)	
Ciclosporin	4 (21\%)	709 (25\%)	0.3
Other	1 (5\%)	42 (2\%)	
Tacrolimus level [$\mu \mathrm{g} / \mathrm{L}$]			
Median [IQR]	8.4 (7-8.9)	5.8 (4.4-7.7)	0.002
Number included	14	2052	
Ciclosporin level [$\mu \mathrm{g} / \mathrm{L}$]			
Median [IQR]	166.5 (118.5-434.5)	73 (43-119)	0.02
Number included	4	709	
ALT [IU/L]			
Median [IQR]	156 (57-298)	19 (13-30)	<0.0001
Log(ALT) Median [IQR]	5.0 (4.0-5.7)	2.9 (2.6-3.4)	<0.0001
Number included	17	2746	
Bilirubin [$\mu \mathrm{mol} / \mathrm{L}$]			
Median [IQR]	11 (9-24)	8 (6-13)	0.01
Log(Bilirubin) Median [IQR]	2.4 (2.2-3.2)	2.1 (1.8-2.6)	0.01
Number included	17	2803	

Selected demographic, clinical and biochemical parameters of HEV viraemic patients and HEV RNA-negative patients. Categorical values were compared using Fisher's exact test and continuous variables are compared using Wilcoxon two sample test.
${ }^{\text {a }}$ Includes kidney/liver ($n=21$) and lung/liver dual transplants ($n=1$).
${ }^{\mathrm{b}}$ Includes heart/kidney dual transplants $(\mathrm{n}=2)$.
Abbreviations: IQR, interquartile range; HSCT, haematopoietic stem cell transplant.

Figure 4.3 Comparison of ALT values of HEV viraemic and aviraemic transplant patients

Distribution of ALT values at the time of screening for HEV amongst viraemic and aviraemic transplant patients. Median ALT values were significantly higher in the HEV viraemic patients (ALT $156 \mathrm{IU} / \mathrm{L}$) compared to the aviraemic patients (ALT $19 \mathrm{IU} / \mathrm{L}$) ($\mathrm{p}<0.0001$). Represented here are $\log _{\mathrm{e}}$ transformed values. The hatched line represents the laboratory upper limit of normal for ALT (41 IU/L). The boxes are defined by the first and third quartiles and the band represents the median value. Outlier values are represented by black circles. Abbreviations: ALT, alanine aminotransferase; IU; international units; L, litre; log, logarithmic.

Table 4.3 Comparison of ALT values of HEV viraemic and aviraemic

 patients by transplant group| | HEV viraemic patients
 Median ALT, IU/L
 (IQR) | HEV RNA-negative patients
 Median ALT, IU/L
 (IQR) |
| :---: | :---: | :---: |
| Renal | $214(124.5-343.5)$ | $16(12-22)$ |
| Liver $^{\text {a }}$ | $\mathrm{n}=4^{\mathrm{c}}$ | $\mathrm{n}=1120^{\mathrm{d}}$ |
| | $127(57-298)$ | $24(15-62)$ |
| Heart/Lung | $\mathrm{n}=9$ | $\mathrm{n}=882$ |
| | $53(-)$ | $18(14-26)$ |
| Allo-HSCT | $\mathrm{n}=1$ | $\mathrm{n}=346$ |
| | $161(17-392)$ | $29(18-50)$ |
| | $\mathrm{n}=3$ | $\mathrm{n}=141$ |

Comparison of ALT values at the random time-point of screening for HEV viraemic patients and aviraemic patients by transplant group.
${ }^{\text {a }}$ Includes kidney/liver ($\mathrm{n}=21$) and lung/liver dual transplants ($\mathrm{n}=1$)
${ }^{\mathrm{b}}$ Includes heart/kidney dual transplants ($\mathrm{n}=2$).
${ }^{\text {c }}$ Data missing for 2 patients.
${ }^{\text {d }}$ Data missing for 55 patients.
Abbreviations: Allo, allogeneic; ALT, alanine aminotransferase; HSCT, haematopoietic stem cell transplant; IU; international units; L, litre; log, logarithmic.

4.2.1.4 Predictive value of a raised serum ALT value for HEV viraemia

Of the HEV viraemic patients with an available ALT result ($n=17$), fifteen (88.2\%) had an abnormal ALT value at the time of screening (>41 IU/L) compared with only 452 (16\%) of the HEV RNA-negative patients. The positive predictive value (PPV) of an abnormal ALT result (>41 IU/L) as a surrogate for HEV infection in this cohort was 3.2% and did not rise significantly by raising the ALT threshold (PPV 3.7\%/sensitivity 70.6\% for ALT >57 IU/L, PPV 5.2\%/sensitivity 47.1\% for ALT >156 IU/L, PPV 3.8\%/sensitivity 23.5\% for ALT >298 IU/L). No correlation was observed between ALT value and plasma HEV viral load (correlation coefficient $0.11, \mathrm{p}=0.7$).

Both of the two patients with a normal ALT (patients 1 and 18, Table 4.1) at the time point of screening subsequently developed an abnormal ALT result during follow-up with a rising viral load (352 rising to $3.0 \times 10^{5} \mathrm{IU} / \mathrm{ml}, 8.57 \times 10^{2}$ rising to $7.6 \times 10^{4} \mathrm{IU} / \mathrm{ml}$, respectively,) suggesting that the screening test was during early infection.

4.2.1.5 HEV markers in viraemic patients

Most patients, $15 / 19$ (78.9\%), were seropositive for $\lg M$ and $\lg G$ anti-HEV, two (10.5\%) were seropositive for lgM anti-HEV only and two (10.5\%) were seronegative (patients 1 and 19, Table 4.1). Of the two patients who were seronegative at the time of screening, one was an allogeneic HSCT recipient (HEV RNA $1.10 \times 10^{6} \mathrm{IU} / \mathrm{ml}$) and one was a liver transplant recipient (HEV RNA $8.57 \times 10^{2} \mathrm{IU} / \mathrm{ml}$). Both patients subsequently seroconverted for IgM and IgG
antibody but had remained seronegative for at least four months and two months respectively from the time of first testing.

4.2.2 HEV infection in patients with haematological malignancies

4.2.2.1 Characteristics of haemato-oncology patients

The characteristics of the 1591 patients tested for HEV RNA are detailed in Table 4.4. Most patients had underlying lymphoma (34.9\%) or a plasma cell dyscrasia (32.7\%), but the cohort also included 260 patients (16.3\%) with chronic leukaemia and 130 patients (8.2%) with acute leukaemia. The majority were within five years of diagnosis of the haematological disorder (67.1\%) and either in complete or partial remission (65.2\%). Four hundred and eighty patients (30.2\%) were lymphopenic ($<1.2 \times 10^{9} / \mathrm{L}$); seventy five (4.7%) were neutropenic ($<1.0 \times 10^{9} / \mathrm{L}$). One fifth (330/1591, 20.7\%) of the cohort had received a prior autograft; 286 patients with a plasma cell disorder, 40 with underlying lymphoma and 4 had been historically treated with an autograft for acute leukaemia.

Most patients had been treated with at least one course of treatment (78.2\%); over half of the patients (55.9\%) tested had received a small molecule immunomodulator or monoclonal antibody for their haematological disorder.

Over a third had received immunosuppressive chemotherapy in the preceding six months (39.6\%) (Table 4.5 and further details in Appendix A3.1); 129 of the total cohort had received rituximab therapy in this period.

Of the patients tested, haematology and biochemistry blood results were available for 99.9% of them, 93.2% of which were within 14 days of the HEV RNA
test. Overall, 205 patients (12.9\%) had an abnormal ALT value (>35 IU/L for women, >50 IU/L for men) and 58 (3.6\%) had an abnormal bilirubin ($>20 \mu \mathrm{~mol} / \mathrm{L}$) at the time of screening for HEV infection.

Table 4.4 Haemato-oncology patients screened for HEV

	Characteristic	No. (\%)
Sex	Male	886 (55.7)
	Female	705 (44.3)
	Age, yrs, Median [IQR]	65.8 [54.9-73.8]
Underlying Haematological Disorder	Lymphoma	556 (34.9)
	Plasma Cell Disorder ${ }^{\text {a }}$	521 (32.7)
	Chronic leukaemia	260 (16.3)
	Acute leukaemia	128 (8.0)
	Myelodysplastic syndrome	77 (4.8)
	MPN	36 (2.3)
	Aplastic Anaemia	13 (0.8)
Time since diagnosis, yrs	<1	363 (22.8)
	1-5	$704 \text { (44.2) }$
	>5	524 (32.9)
Disease status	Complete or partial remission	1037 (65.2)
	No remission	446 (28.0)
	Progressive disease	108 (6.8)
Treatment of underlying disease	No treatment	347 (21.8)
	1-2 lines	908 (57.1)
	>2 lines	336 (21.1)
	Prior Autograft	330 (20.7)
	Prior small molecule inhibitors or monoclonal antibodies	889 (55.9)
	Immunosuppressive therapy in prior $6 \mathrm{mb}^{6}$	628 (39.5)
	Rituximab in prior 6m	129 (8.1)
Transfusions in 5 yrs prior ${ }^{\text {c }}$	Nil	1150 (72.3)
	1-10	292 (18.4)
	11-20	46 (2.9)
	21-50	70 (4.4)
	>50+	33 (2.10)
Blood results, Median [IQR]	ALT (IU/L)	22 [16-31]
	Bilirubin ($\mu \mathrm{mol} / \mathrm{L}$)	$7[5-10]$
	Total WCC ($\times 10^{\circ} / \mathrm{L}$)	$6.1[4.4-8.3]$
	Neutrophils ($\times 10^{\circ} / \mathrm{L}$)	3.4 [2.3-4.6]
	Lymphocytes ($\times 10^{9} / \mathrm{L}$)	$1.6[1.1-2.4]$
	Platelets ($\times 10^{\circ / \mathrm{L}}$)	198 [149-245]

Clinical characteristics of patients witn a haematological malignancy tested for HEV RNA. ${ }^{\text {a }}$ Includes Multiple Myeloma and monoclonal gammopathy of uncertain significance.
${ }^{\mathrm{b}}$ Transfusions only recorded if within the centre in the five-year period prior to enrolment excluding time between 10/4/17 and enrolment (HEV screened products given after that 10/4/17 at the centre).
${ }^{\text {c }}$ For treatments given in the preceeding six months see Table 4.5.
Abbreviations: IQR, interquartile range; m, months; MPN, Myeloproliferative neoplasm; yrs, years.

Table 4.5 Immunosuppression of haemato-oncology patients prior to HEV testing

Treatment	No.
Plasma Cell Disorders, $\mathrm{n}=271$	
Hiah intensity chemotherapy ${ }^{\text {a }}$	45
Standard intensity chemotherapy ${ }^{\text {b }}$	138
Other combination chemotherapy	1
Single agents $+/$ - corticosteroid	84
CAR-T therapy	1
Radiotherapy	2
Acute Leukaemia, $\mathbf{n}=\mathbf{7 5}$	
High intensity chemotherapy ${ }^{\text {c }}$	53
Low intensity chemotherapy ${ }^{\text {d }}$	22
Chronic Leukaemia, $\mathbf{n = 6 7}$	
Low intensity chemotherapy ${ }^{\text {e }}$	25
Single agents - targeted small molecule inhibitors	41
Sinale agents - monoclonal antibodies	1
Lymphoma, $\mathbf{n = 1 7 1}$	
Hiah intensitv chemotherapv ${ }^{\dagger}$	34
Moderate intensity chemotherapy ${ }^{9}$	99
Low intensitv chemotherapy	26
Single agents - targeted small molecule inhibitors	4
Single agents - monoclonal antibodies	7
Radiotherapy	1
MDS, $\mathbf{n}=15$	
Low intensity chemotherapy	13
Sinqle aqents - monoclonal antibodies ${ }^{\text {h }}$	2
MPN, $\mathbf{n = 2 7}$	
Low intensity chemotherapy PLUS targeted small molecule inhibitor	3
Low intensity chemotherapy	4
Verv low intensitv chemotherapy	6
Single agents - targeted small molecule inhibitors	14
Aplastic Anaemia, $\mathbf{n = 2}$	
Single agent immunosuppression	2
Total	628

Legend for Table 4.5:
latrogenic immunosuppression of haemato-oncology patients in the six months prior to HEV RNA testing. A total of 628 patients received iatrogenic immunosuppression in the six months prior to HEV screening. Where patients were in clinical trials, if the trial drug administered was known this was recorded, in blinded randomised trials only the known backbone drugs were recorded. The commonest regimes in each category are given below; a full version of this table with all chemotherapy regimes in each category is available in Appendix A3.1.
${ }^{\text {a e e.g. autograft and DTPACE. }}$
${ }^{\text {b }}$ e.g. combination chemo PLUS -imid drug/proteasome inhibitor PLUS corticosteroid.
${ }^{c}$ e.g DA-based regimes, FLA(G)-IDA and MidAC.
${ }^{\text {d e e.g. Iow dose ARA-C and azacitidine.. }}$
${ }^{e}$ e.g. Rituximab+idelalisib, FLAIR clinical trial.
${ }^{\text {f e.g. R-CHOP+HD MTX, R-CODOX-M+R-IVAC, ABVD+BEACOPP }}$
${ }^{g}$ e.g. ABVD, R-CHOP, R-Bendamustine.
${ }^{\mathrm{h}}$ Alemtuzumab in both cases.
Abbreviations: ABVD, Doxorubicin, Bleomycin, Vinblastine, Dacarbazine; ARA-C, Cytarabine; BEACOPP, Bleomycin Etoposide Doxorubicin Cyclophosphamide Vincristine Procarbazine Prednisolone; DA, daunorubicin, cytarabine; DTPACE, dexamethasone, thalidomide, cisplatin, doxorubicin; FLA(G)-IDA, Fludarabine cytarabine, Idarubicin; HD MTX, High Dose Methotrexate; MiDAC, mitoxantrone, cytarabine; R-CODOXM/R-IVAC, Vincristine, Doxorubicin, Cyclophosphamide, Cytarabine, methotrexate, Ifosfamide, Etoposide; R-CHOP, Rituximab, Cyclophosphamide, Doxorubicin, Vincristine, Prednisolone

4.2.2.2 Transfusion exposure to HEV infection in haemato-oncology patients

A total of 441 patients (27.7\%) had been transfused with at least one blood component within the hospital trust in the five years prior to enrolment (Figure 4.4). Of those with a history of transfusions the mean number of transfusions was 15.5 (range 1-346); the majority of transfusions were either packed red cells (53.5\%) or platelets (43.4\%). As previously stated all transfusions included in the analysis were transfused before April 2017 and were therefore unscreened for HEV.

Figure 4.4 Patients receiving HEV unscreened transfusions prior to HEV testing

Proportion of patients receiving HEV unscreened transfusions in the five years prior to HEV RNA testing by diagnosis.
${ }^{\text {a }}$ Transfusions only recorded if within five years preceeding HEV testing and before the introduction of the universal screening of blood donations for HEV (10 th April 2017). Patients with acute leukaemia with no transfusions were either transfused after the introduction of universal screening or were in long-term remission and transfusions may have occurred prior to the 5-year cut-off.

Abbreviations: MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm; no., number.

4.2.2.3 Viraemic haemato-oncology patients

Of the 1591 patients tested for HEV RNA, two viraemic patients were identified giving a prevalence of $0.13 \%(95 \% \mathrm{Cl}, 0.02-0.45 \%)$. Both patients harboured a genotype 3c virus.

Both viraemic patients had underlying progressive Multiple Myeloma, diagnosed over 8 years and 16 years previously, and had received immunosuppressive treatment (Bortezomib + Dexamethasone + Panabinostat or Lenalidomide + Cyclophosphamide + Dexamethasone) within five weeks of HEV testing. Neither patient had extensive transfusion histories in the five previous years; patient 1 had received three packed red cells between 23-128 weeks prior to HEV screening and patient 2 had received no transfusions prior to HEV screening. Both patients died during follow-up of their underlying haematological disorder and did not receive any treatment for HEV infection.

At the time of screening both patients had unremarkable results for ALT, white cell count, neutrophils and platelets; however patient 2 was lymphopenic (0.39 x $10 / \mathrm{L}$). The two patients had different virological profiles; the HEV infection in patient 1 was detected during established infection when the plasma viral load was quantified at $7.9 \times 10^{4} \mathrm{IU} / \mathrm{ml}$ with detectable plasma anti-HEV lgM (S/CO 1.69) and IgG (S/CO 20.32). In contrast, patient 2 was in the early phase of HEV infection when the plasma viral load was below the limit of quantitation $(<1.0 \mathrm{E}+2$ $\mathrm{IU} / \mathrm{ml}$) and there was no detectable plasma anti-HEV IgM (S/CO 0.03) or lgG (S/CO 0.06). It is notable that during follow-up over 13 weeks, patient 2 seroconverted for anti-HEV IgM and IgG. However, the ALT value remained within the normal range and patient 1 only had two of eight ALT readings outside
the normal range during follow-up, despite high level viraemia. The full diagnostic markers are displayed in Figure 4.5.
Figure 4.5 Diagnostic markers in HEV viraemic haemato-oncology patients

Diagnostic markers in the two HEV viraemic patients identified by screening in the haemato-oncology cohort. The left Y-axis shows ALT levels, while the secondary y axis represents values for the anti-HEV lgM, anti-HEV lgG and HEV-Ag ELISA assays. Abbreviations: ALT, alanine aminotransferase; ELISA, enzyme-linked immunosorbent assay; S/CO, sample over cut-off of optical density values; HEV Ag, hepatitis E virus
antigen; ULN, upper limit of normal; CO, cut-off; BLQ, below the limit of quantitation; IU, international units; VL, viral load.

4.2.2.4 Anti-HEV IgG seroprevalence in haemato-oncology patients

The odds of a patient being seroreactive for anti-HEV increased with age and the numbers of red cells/platelet transfusions in the univariable analysis. The odds reduced with increasing numbers of lines of treatment and was influenced by underlying disease and disease status. Treatment with rituximab in the prior six months did not influence anti-HEV IgG status (OR 1.09, 95\% CI 0.68-1.74, $\mathrm{p}=0.727$) (Table 4.6). A recent transfusion in the preceding 28 days was statistically significant in the univariable analysis, but had no effect on the odds of a patient being seroreactive in the multivariable model. In the final adjusted multivariable analysis increasing age and underlying haematological disease were the strongest factors associated with a patient being seropositive, such that patients with plasma cell disorders were least likely to be seroreactive, whilst patients with acute leukaemia had the highest odds. For every ten years increase in age the odds of a patient being seroreactive increased by 37\% (OR 1.37, 95\% CI 1.24-1.52) and for every ten transfusion episodes the likelihood of a patient being seroreactive increased by 11% (OR 1.11, 95\% CI 1.02-1.20).

Table 4.6 Factors affecting likelihood of anti-HEV IgG seroreactivity

Factor	$\begin{gathered} \text { HEV lgG positive }{ }^{\text {a }} \\ \text { /total (\%) } \\ \text { n=1591 } \end{gathered}$	Univariable analysis		Multivariable analysis ${ }^{\text {b }}$	
		$\begin{gathered} \text { OR } \\ (95 \% \mathrm{CI}) \end{gathered}$	P value ${ }^{\text {c }}$	$\begin{gathered} \text { OR } \\ (95 \% \mathrm{Cl}) \end{gathered}$	P value ${ }^{\text {c }}$
Sex $\begin{array}{lr}\text { F } \\ & M\end{array}$	$110 / 705(15.6)$ $156 / 886(17.6)$	$1.16(0.89-1.51)$	0.287	$1.08(0.82-1.43)$	0.572
Age, yrs <40 $40-59$ $60-79$ >80 Effect per 10 years	$17 / 165(10.3)$ $46 / 413(11.1)$ $149 / 836(17.8)$ $54 / 177(30.5)$	1.37 (1.24-1.51)	<0.001	1.37 (1.24-1.52)	<0.001
Diagnosis Plasma Cell Disorder Acute leukaemia Chronic leukaemia Lymphoma MDS MPN Aplastic Anaemia	$\begin{array}{r} 53 / 521(10.2) \\ 34 / 128(26.6) \\ 54 / 260(20.8) \\ 86 / 556(15.5) \\ 23 / 77(29.9) \\ 15 / 36(41.7) \\ 1 / 13(7.7) \end{array}$	$\begin{gathered} 3.19(1.97-5.18) \\ 2.31(1.53-3.50) \\ 1.62(1.12-2.33) \\ 3.76(2.14-6.62) \\ 6.31(3.07-12.97) \\ 0.74(0.09-5.77) \\ \hline \end{gathered}$	<0.001	$\begin{aligned} & 2.28(1.25-4.16) \\ & 1.75(1.12-2.75) \\ & 1.45(0.97-2.18) \\ & 2.41(1.28-4.54) \\ & 4.13(1.94-8.78) \\ & 0.25(0.01-4.36) \\ & \hline \end{aligned}$	<0.001
	$\begin{array}{r} 96 / 446(21.5) \\ 115 / 678(17.0) \\ 42 / 359(11.7) \\ 13 / 108(12.0) \\ \hline \end{array}$	$\begin{aligned} & 0.74(0.55-1.01) \\ & 0.48(0.33-0.72) \\ & 0.50(0.27-0.93) \\ & \hline \end{aligned}$	0.001	-	-
Lines of treatment	$\begin{array}{r} 70 / 347(20.2) \\ 117 / 614(19.1) \\ 50 / 294(17.0) \\ 29 / 336(8.6) \\ \hline \end{array}$	$\begin{aligned} & 0.93(0.67-1.30) \\ & 0.81(0.54-1.21) \\ & 0.37(0.24-0.60) \end{aligned}$	<0.001	$\begin{aligned} & 1.17(0.80-1.72) \\ & 1.11(0.71-1.74) \\ & 0.56(0.33-0.95) \\ & \hline \end{aligned}$	0.017
Transfusions ${ }^{\text {d }}$ $\begin{array}{r} 1-10 \\ 11-20 \\ 21-50 \\ >50 \end{array}$	187/1150 (16.3) 41/292 (14.0) 10/46 (21.7) 13/70 (18.6) 15/33 (45.5)	,	0.002		
Effect per 10 transfusions	-	1.11 (1.03-1.19)		1.11 (1.02-1.20)	0.015
RTX within last 6 m	$\begin{array}{r} 23 / 129(17.8) \\ 243 / 1462(16.6) \\ \hline \end{array}$	$\begin{gathered} 1.09(0.68-1.74) \\ - \end{gathered}$	0.727	-	-
Transfusion < 28d ${ }^{\text {e }}$	$\begin{array}{r} 24 / 86(27.9) \\ 242 / 1505(16.1) \\ \hline \end{array}$	$\begin{gathered} 2.02(1.24-3.30) \\ - \\ \hline \end{gathered}$	0.005	-	-

Clinical factors were assessed for the correlation with anti-HEV IgG seroreactivity.
${ }^{a}$ Any sample with a $\mathrm{S} / \mathrm{CO}>1.1$.
${ }^{\mathrm{b}}$ Univariable analysis p values were calculated using Fisher's exact test, multivariate analysis p values were calculated using logistic regression.
${ }^{c}$ The final multivariable model included age (linear), gender, underlying haematological disease, numbers of transfusions (linear) and numbers of lines of treatment.
${ }^{d}$ Transfusion data only considered when given in 5 years prior and prior to introduction of universal screening.
${ }^{e}$ All transfusions considered including those given after introduction of universal screening. Abbreviations: Cl , confidence interval; D , days; M , months; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm; RTX, rituximab.

4.2.3 HEV infection in patients with antibody deficiency

4.2.3.1 Characteristics of antibody-deficient patients

The characteristics of the 245 patients tested for HEV RNA are presented in Table 4.7. The majority of patients (80.8\%) had an underlying primary immunodeficiency syndrome and most (75.1\%) were receiving intravenous immunoglobulin. Fifty-seven patients received additional immunosuppressive medication (Table 4.8). Ninety patients had CD4+ T-cell counts below the normal range (<0.5 x 109/L), whilst 108 patients had CD19+ B-cell counts below the normal range (<0.10 x 10¹/L). Twenty three of 43 patients with significant CD4+ T-cell deficiency ($<0.35 \times 10^{9} / \mathrm{L}$) had T-cell proliferation results available, of which 74\% displayed significantly impaired proliferation to phytohaemagglutinin, 68\% to CD3 and 44% to CD3/CD28 stimulation. Thirty-nine patients (16\%) had an abnormal ALT value at the time of testing for HEV infection.
Table 4.7 Characteristics of antibody-deficient patients tested for HEV

Cha	acteristic	No. (\%)	Characteristic	No. (\%)
Sex			latrogenic immunosuppression	
	ale	91 (37.1)	Nil	188 (76.7)
	male	154 (62.9)	Mono or combination therapy	57 (23.3)
Age	yrs, Median [IQR]	56 [41-68]	Lymphocyte count, x 109/L, Median [IQR]	1.39 [1.01-1.89] ${ }^{\text {c }}$
Underlying Diagnosis			No. (\%) < normal range (1.0)	58 (24.3) ${ }^{\text {c }}$
CVID		138 (56.3)	CLL patients only ($\mathrm{n}=6$), Median [IQR]	3.20 [1.55-13.73]
		15 (6.1)	Absolute CD3 count ${ }^{\text {d }}$, $\times 10^{9} / \mathrm{L}$, Median [IQR]	1.08 [0.74-1.49]
	yper IgM syndrome	3 (1.2)	No. (\%) < normal range (0.7)	54 (22.0)
	ood's syndrome	1 (0.4)	Absolute CD4 count ${ }^{\text {d }}$, $\times 10^{9} / \mathrm{L}$, Median [IQR]	0.67 [0.41-0.83]
	ther primary antibody deficiency ${ }^{\text {a }}$	41 (16.7)	No. (\%) <0.5	90 (36.7)
	econdary antibody deficiency ${ }^{\text {b }}$	47 (19.2)	No. (\%) <0.35	43 (17.6)
Immunoglobulin Product/manufacturer			Absolute CD8 count ${ }^{\text {d }}$, $\times 10^{9} / \mathrm{L}$, Median [IQR]	0.35 [0.21-0.62]
	Flebogamma DIF 5\%/Grifols	39 (15.9)	No. (\%) < normal range (0.2)	56 (22.9)
	Gammagard 10\%/Shire	1 (0.4)	Absolute CD19 count, $\times 10^{9} / \mathrm{L}$, Median [IQR]	0.11 [0.03-0.23] ${ }^{\text {d }}$
	Gammaplex 10\%/BPL	20 (8.2)	No. (\%) < normal range (0.10)	108 (45.2) ${ }^{\text {d }}$
	Gamunex 10\%/Grifols	13 (5.3)	CLL patients only ($\mathrm{n}=6$), Median [IQR]	0.71 [0.42-11.95]
	Intratect 10\%/Biotest	11 (4.5)	Absolute CD16+CD56 ${ }^{\text {d }}$, $\times 10^{9} / \mathrm{L}$, Median [IQR]	0.13 [0.07-0.21]
	Intratect 5\%/Biotest	6 (2.5)	No. (\%) < normal range (0.09)	78 (31.8)
	Kiovig 10\%/Baxalta	26 (10.6)	ALT ${ }^{\text {d }}$, IU/L, Median [IQR]	24 [19-33]
	Octagam 10\%/Octapharma	15 (6.1)	No. (\%) > normal range ${ }^{\text {e }}$	39 (16.0)
	Privigen 10\%/CSL Behring	53 (21.6)	Bilirubind, umol/L, Median [IQR]	6 [5-9]
sc	Gammanorm 16.5\%/Octapharma	10 (4.1)	No. (\%) > normal range (21)	5 (2.0)
	Hizentra 20\%/CSL Behring	24 (9.8)		
	Subcuvia 16\%/Baxalta	13 (5.3)		
	Subgam 16\%/BPL	14 (5.7)		

Legend for Table 4.7:
${ }^{\text {a }}$ Includes isolated IgG hypogammaglobulinaemia, IgG subclass deficiency and specific antibody deficiency.
${ }^{\text {b }}$ Lymphoma $+/$ - rituximab ($n=15$), chronic lymphocytic leukaemia ($n=6$), multiple myeloma or monoclonal gammopathy of uncertain significance
($n=7$), allograft HSCT ($n=3$), rheumatoid or vasculitis $+/$ - rituximab ($n=10$), medication induced ($n=6$).
${ }^{\text {c }}$ Excludes CLL patients ($\mathrm{n}=6$) and missing data for 2 patients (2 further patients missing CD19+ counts).
${ }^{\mathrm{d}}$ Missing data for 2 patients.
Abbreviations: ALT, alanine aminotransferase; CLL, chronic lymphocytic leukaemia; CVID, common variable immune deficiency; IQR,
interquartile range; XLA, X-linked agammaglobulinaemia.

Table 4.8 latrogenic immunosuppression in antibody deficient patients

Drug	No.
nil	188
Single agent, $\mathbf{n = 3 9 :}$	
Low dose CS only	23
High dose CS onlys	2
Azathioprine	1
Chlorambucil	1
Dapsone	1
Hydroxychloroquine	3
Lenalidomide	1
Ibrutinib	2
Imatinib	1
MMF	1
Rituximab	1
Sulfasalazine	2
Combination therapy, n=18:	1
Infliximab + mesalazine	1
Hydroxychloroquine + dapsone	2
Abatacept + CS	1
Abatacept + Hydroxychloroquine + CS	1
Hydroxychloroquine + CS	2
Lenalidomide + CS	1
MMF + CS	7
MMF + Hydroxychloroquine + CS	1
MMF + Tacrolimus + CS	1
Rituximab + CS	10
History of rituximab use	

latrogenic immunosuppression in antibody deficient patients at time of HEV RNA testing.
${ }^{\text {a }}$ Equivalent to $>20 \mathrm{mg}$ prednisolone.
Abbreviations: CS, corticosteroids; MMF, Mycophenolate mofetil.

4.2.3.2 HEV markers in antibody-deficiency patients

HEV RNA was not detected in any plasma sample from the 245 patients, confirming that none were viraemic. Anti-HEV IgG was detected ($\mathrm{S} / \mathrm{CO}>1.1$) in the plasma from 38.8% of patients. However, the anti-HEV reactivity even in those samples considered negative by the ELISA manufacturers criteria had a significantly different distribution than the reactivity of samples from HEV knownsusceptible blood donors (Figure 4.6).

Figure 4.6 Anti-HEV IgG reactivity in antibody-deficient patients compared with HEV-uninfected blood donors

Frequency density plot of anti-HEV IgG reactivity in antibody-deficient patients on immunoglobulin replacement therapy compared with HEV-uninfected blood donors. The lines represent fitted distributions which were a single normal distribution for blood donors and a mix of two normal distributions for the antibody deficient patients. Blood donor samples were archived plasma samples prior to the development of HEV infection to represent true anti-HEV IgG negative samples. There was a significant difference between the median S/CO values in HEV-uninfected blood donors (median, 0.06) and the antibodydeficient patients (median, 0.68) ($\mathrm{p}<0.001$). Data were transformed to a log-scale for analysis; the axis labels were back-transformed for presentation. The hatched vertical line represents the manufacturer's cut-off (S/CO 1.1) for positive results.

Abbreviations: ELISA, enzyme linked immunosorbent assay; S/CO, sample over cut-off of optical density.

4.2.3.3 Factors associated with seropositivity for anti-HEV IgG

Comparison of serological reactivity of patients' plasma revealed the type of immunoglobulin product administered was the only statistically significant factor predicting anti-HEV IgG seropositivity (p<0.001) (Table 4.9). Specifically, the receipt of Kiovig 10\%, Intratect 10\% and Intratect 5\% was significantly related to the detection of plasma anti-HEV $\operatorname{lgG}(\mathrm{S} / \mathrm{CO}>1.1)$. Patients given Kiovig 10\% and those given Intratect 5% were 24 times ($95 \% \mathrm{Cl} 4.8-122.7$) and 136 times ($95 \% \mathrm{Cl} 2.5-7501$) more likely to have detectable plasma anti-HEV IgG when compared to patients who received Flebogamma DIF 5\% (Table 4.10). No relationship was seen between the time since immunoglobulin infusion (in days) and the level of anti-HEV IgG detected in the patient's plasma (Pearson's correlation -0.1763, data not shown), even when products were analysed individually. However, the variability of timings was not wide; most patients (77.4\%) had received their last dose of immunoglobulin within 20-30 days of testing. Age, sex, underlying diagnosis, receipt of iatrogenic immunosuppression, route of immunoglobulin administration and patients' lymphocyte subset results demonstrated no relationship with anti-HEV IgG seropositivity.

All ten immunoglobulin products tested (8 IVIG and 2 SCIG) contained detectable anti-HEV lgG (range 0.12-7.40 $\mathrm{WHO} \mathrm{IU} / \mathrm{ml}$) (Table 4.11). There was some evidence of batch-to-batch variation in antibody titre, nevertheless all batches of Kiovig, Gamunex and Privigen were reactive for anti-HEV. The likelihood of a patient being seropositive for anti-HEV IgG strongly correlated with the level of anti-HEV lgG in the product ($p<0.001$, Figure 4.8). No demographic details of donors were available from the product manufacturers.

Table 4.9 Seropositive and seronegative antibody-deficient patients

		Seronegative $(n=150)$	Seropositive $(\mathrm{n}=95)$	p value
Age, y, median [IQR]		55.7 [41.2-66.7]	56.1 [41.4-68.8]	0.415
Sex, no (\%)	F	96 (64)	58 (61.1)	
	M	54 (36)	37 (38.9)	0.685
Diagnosis, no (\%)	CVID	88 (58.7)	50 (52.6)	0.520
	XLA	6 (4)	9 (9.5)	
	Hyper IgM syndrome	1 (0.7)	2 (2.1)	
	Good's syndrome	$0(0)$	1 (1.1)	
Other primary antibody deficiency ${ }^{\text {a }}$		29 (19.3)	12 (12.6)	
Lymphoma +/-RTX		9 (6)	$6(6.3)$	
	CLL	3 (2)	3 (3.2)	
	Myeloma or MGUS	4 (2.7)	3 (3.2)	
Allograft HSCTRheumatoid or vasculitis +/- RTX		2 (1.3)	1 (1.1)	
		5 (3.3)	5 (5.3)	
Medication induced		3 (2)	3 (3.2)	
$\begin{array}{r} \text { latrogenic } \\ \text { immunosuppression, } \\ \text { no }(\%) \\ \hline \end{array}$	nil	117 (78)	71 (74.7)	0.642
	single agent or combination	33 (22)	24 (25.3)	
Product route, no (\%)	IV	118 (78.7)	66 (69.5)	0.129
	SC	32 (21.3)	29 (30.5)	
Time since IVIG infusion ${ }^{\text {b }}, \mathrm{d}$, no (\%)	$\leqslant 7$	$0(0)$	$1(2.2)$	$0.288^{\text {c }}$
	7-14	$1(11.3)$	$2(4.4)$	
	14.28	67 (76.1)	33 (73.3)	
	$28+$	20 (22.7)	$9(20)$	
Product, no (\%)	Flebogamma DIF 5\%	33 (22)	6 (6.3)	$\leqslant 0.001$
	Gammagard 10\%	0 (0)	1 (1.1)	
	Gammanorm 16.5\%	3 (2)	7 (7.4)	
	Gammaplex 10\%	19 (12.7)	1 (1.1)	
	Gamunex 10\%	$10(6.7)$	$3(3.2)$	
	Hizentra 20\%	$11(7.3)$	$13 \text { (13.7) }$	
	Intratect 10\%	$0(0)$	$11 \text { (11.6) }$	
	Intratect 5\%	$1(0.7)$	$5(5.3)$	
	Kiovig 10\%	7 (4.7)	19 (20)	
	Octagam 10\%	9 (7.5)	6 (6.3)	
	Privigen 10\%	39 (32.5)	14 (14.6)	
	Subcuvia 16\%	4 (2.7)	9 (9.5)	
	Subgam 16\%	14 (9.3)	0 (0)	
$\begin{aligned} & \text { IgG in IVIG product } \\ & \mathrm{S} / \mathrm{CO}, \text { no }(\%) \end{aligned}$	high (lgG > 10.0)	51 (41.5)	58 (71.6)	<0.001
	medium ($\operatorname{lgG} 5-10.0$)	$22(17.6)$	16 (19.8)	
	$\text { low }(\operatorname{lgG}<5.0)$	52 (41.6)	7 (8.6)	
Cell count ${ }^{6}, \times 10^{8} / \mathrm{L}$, median [IQR]	Lymphocytes ${ }^{\text {t }}$	1.43 [0.95-1.87]	$\begin{gathered} 1.37[1.03-1.97] \\ 1.075[0.75- \\ 1.54] \end{gathered}$	0.832
	CD3+	1.09 [0.74-1.42]		0.522
	CD4+	0.60 [0.42-0.83]	0.59 [0.40-0.88]	0.888
	CD8+	0.33 [0.20-0.59]	0.37 [0.24-0.64]	0.307
	CD19+ ${ }^{+}$	0.12 [0.04-0.25]	0.10 [0.03-0.21]	0.129
	NK cells	0.12 [0.07-0.19]	0.15 [0.07-0.02]	0.148
	ALT ${ }^{\text {c }}$, IU/L	23 [19-32]	26.5 [19-36]	0.159
	Bilirubin ${ }^{\text {® }}$, umol/L	$6[5-9]$	6 [5-9]	0.461

Legend for Table 4.9:
${ }^{\text {a }}$ Includes isolated IgG hypogammaglobulinaemia, IgG subclass deficiency and specific antibody deficiency.
${ }^{\mathrm{b}}$ Data included for patients where the infusion time was known ($\mathrm{n}=133$)
${ }^{\text {c }}$ No statistical significance was seen with other time brackets (e.g. $<28 / 28+$ d or $<21 / 21$ 28d/28d+)
${ }^{\text {d }}$ Not calculated for 39 patients on products Hizentra, Gammagard and Subgam as products not available for testing.
${ }^{\mathrm{e}}$ Data missing for 2 patients.
${ }^{f}$ Excludes CLL patients ($\mathrm{n}=6$) and missing data for 2 patients (2 further data points missing for CD19+ counts).

Continuous data were compared using the Wilcoxon two-sample signed-rank test whilst categorical data was compared using the Fisher's exact or chi squared test.
Abbreviations: RTX, rituximab therapy; CLL, chronic lymphocytic leukaemia; MGUS, monoclonal gammopathy of uncertain significance; HSCT, haematopoietic stem cell transplant.

Table 4.10 Correlation between immunoglobulin product type and patient

seropositivity			
IVIG Product	Odds Ratio $^{\text {a }}$	P value $^{\text {a }}$	95% Cla $^{\text {a }}$
Flebogamma DIF 5\%	1.00		
Gammaplex 10\%	0.52	0.588	$0.05-5.58$
Gamunex 10\%	1.59	0.644	$0.22-11.24$
Intratect 10\%	incalculable		-
Intratect 5\%	135.92	0.016	$2.46-7500.68$
Kiovig 10\%	24.21	<0.001	$4.78-122.69$
Octagam 10\%	4.49	0.076	$0.85-23.59$
Privigen 10\%	1.71	0.504	$0.36-8.13$

Multivariable model examining the relationship between product type administered and a patient testing anti-HEV IgG reactive.
Data only considered if time since infusion was available ($n=133$). No data were available for Gammagard 10\%, Gammanorm 16.5\%, Hizentra 20\%, Subcuvia 16\% or Subgam 16\%. ${ }^{\text {a }}$ Model adjusted for time since infusion (days).
${ }^{\mathrm{b}}$ All patients on Intratect 10\% tested anti-HEV IgG positive therefore an odds ratio could not be calculated.

Abbreviations: CI , confidence interval; IVIG, intravenous immunoglobulin.

Table 4.11 Anti-HEV IgG reactivity in immunoglobulin products

	Product	Mean WHO IU/ml batch 1	Mean WHO IU/ml batch 2	Mean WHO IU/ml batch 3
IV	Flebogamma DIF 5\%	0.20	-	-
	Gammaplex 10\%	0.12	-	-
	Gamunex 10\%	0.47	1.09	0.58
	Intratect 10\%	3.65	-	-
	Intratect 5\%	2.64	-	-
	Kiovig 10\%	2.79	7.40	3.95
	Octagam 10\%	1.28	-	-
	Privigen 10\%	1.72	0.58	0.83
SC	Gammanorm 16.5\%	1.25	-	-
	Subcuvia 16\%	1.99	-	-

Ten immunoglobulin products, including three different batches for three products (Gamunex 10%, Kiovig 10\% and Privigen 10\%), were tested in duplicate for anti-HEV IgG. A mean was calculated and then each product ascribed a unitage of WHO IU/ml.

Abbreviations: IV, intravenous; SC, subcutaneous; WHO; world health organisation; IU, international units.

Figure 4.7 Correlation of patient seropositivity and anti-HEV IgG concentration in the immunoglobulin product

Correlation of the percentage of patients on each product testing anti-HEV IgG reactive and the IgG level ($\mathrm{WHO} \mathrm{IU} / \mathrm{ml}$) detected in the product. Ten immunoglobulin products were tested in duplicate for anti-HEV IgG. The ascribed level of WHO IU/ml was plotted against the proportion of patients on each product testing anti-HEV IgG reactive ($\mathrm{S} / \mathrm{CO}>1.1$) and showed a good correlation (Pearson's correlation 0.900, $p=0.0004$). The lowest result for any product was still reactive for anti-HEV IgG by manufacturer's criteria (mean S/CO of 2.44 for Gammaplex 10% equivalent to $0.12 \mathrm{WHO} \mathrm{IU} / \mathrm{ml}$).

Abbreviations: IV, intravenous. SC, subcutaneous. IU, international units.

4.2.3.4 HEV ORF2 antigen neutralising activity of patient plasma samples and immunoglobulin products

All ten immunoglobulin products were also able to neutralise HEV-Ag expressed in tissue culture and prevent reactivity in the HEV-Ag assay. Neutralising activity was detectable at a high level in half of the products tested even at a dilution of 1:20 (Figure 4.9). The extent of neutralisation correlated with the anti-HEV IgG S/CO value (Figure 4.10). In all nine patients, tested before and after infusion, the levels of anti-HEV lgG detected were higher in post-infusion samples (preinfusion median S/CO 0.90; post-infusion median $\mathrm{S} / \mathrm{CO} 1.96, \mathrm{p}=0.008$) and correlated with higher neutralising activity in eight of the nine patients $(p=0.015)$ (Table 4.12).

Figure 4.8 HEV-Ag neutralising activity of immunoglobulin products

HEV-Ag neutralising activity of immunoglobulin products at differing dilutions. Ten different immunoglobulin products were titrated in normal human plasma up to 1:320 and tested for the presence of antibodies capable of neutralising HEV-Ag derived from cell culture. The percentage of neutralisation was calculated as a percentage of the reduction in binding (Methods 2.2.2.7).

Abbreviations: HEV-Ag, hepatitis E virus antigen. SC, subcutaneous.

Figure 4.9 Correlation of Anti-HEV IgG level and HEV-Ag neutralisation

Abbreviations: HEV-Ag, hepatitis e virus antigen; SC, subcutaneous; S/CO, sample over cut-off value of optical densities.

Table 4.12 Pre and Post IVIG anti-HEV IgG levels and neutralisation

Pt no.	IVIG Product infused	Pnti-HEV IgG S/CO	\% Neutralisation	anti-HEV IgG S/CO	\% Neutralisation
	Privigen 10\%	1.27	82.29	2.35	90.97
2	Intratect 10\%	11.62	99.13	14.15	99.65
3	Privigen 10\%	6.10	98.44	7.60	97.57
4	Kiovig 10\%	0.36	36.98	3.02	97.92
5	Flebogamma DIF 5\%	0.41	57.64	1.77	90.46
6	Privigen 10\%	0.90	73.63	1.39	87.38
7	Gammaplex 10\%	0.28	42.78	0.81	74.19
8	Gamunex 10\%	0.76	47.27	1.96	95.23
9	Privigen 10\%	1.05	74.76	1.75	81.49

Nine patients were tested for anti-HEV lgG and the presence of HEV-Ag neutralising antibodies prior to IVIG infusion and immediately post infusion. Anti-HEV IgG rose in all nine patients (median OD change 0.2 IQR [0.1-0.3], $\mathrm{p}=0.008$) and neutralising activity rose post-infusion in 8/9 patients (median change in \% of neutralisation 13.7 IQR [6.7-32.8], $p=0.015$) (Wilcoxon signed-rank test).

Abbreviations: HEV-Ag, hepatitis E virus antigen; IVIG, intravenous immunoglobulin.

4.2.3.5 HEV antigen neutralising capacity in sera post-IVIG in comparison to sera from patients recovered from acute and persistent HEV infection

Five plasma samples from acute HEV cases and five from persistent HEV cases recently recovered after ribavirin therapy were tested for anti-HEV IgG in a halflog dilution series alongside the WHO antibody reference. A dilution of each sample containing equivalent levels of anti-HEV lgG (between 2 and 5 WHO $\mathrm{IU} / \mathrm{ml}$) was then tested for presence of HEV-Ag neutralising antibody. The neutralising capability was significantly higher in plasma samples from healthy patients recovered recently from acute HEV infection (median 81.5\%, range 75.793.2\%) compared with plasma from patients recovered from persistent HEV infection (median 31.1\%, range 25.4-45.8\%) ($p=0.009$) (Figure 4.10). A direct comparison of neutralising activity at the equivalent level of anti-HEV IgG in plasma from patients post-IVIG was not possible due to much lower anti-HEV in the latter (median S/CO 1.96, equivalent to $\sim 0.2 \mathrm{WHO} \mathrm{IU} / \mathrm{ml}$). However, neutralising activity was broadly similar between post-IVIG patient samples (median 91.0\%, range $74.2-99.7 \%$) and plasma from acute cases (median 81.5\%, range 75.7-93.2\%) despite much lower anti-HEV IgG detected.

Figure 4.10 Comparison of HEV-Ag neutralisation by plasma from acute clinical cases of HEV, recovered persistent cases of HEV and patients post-IVIG

The neutralising activity of plasma samples diluted to have an equivalent level of anti-HEV lgG (between 2 and $5 \mathrm{WHO} \mathrm{IU} / \mathrm{ml}$) from (A) patients recently recovered from persistent HEV infection (median 31.1\%, range 25.4-45.8\%) was significantly lower than plasma samples from (B) patients in recovery from acute HEV infection (median 81.5\%, range $75.7-93.2 \%$) ($p=0.009$). Plasma samples from (C) post-IVIG patients were tested undiluted as they had lower anti-HEV IgG (median $0.22 \mathrm{WHO} \mathrm{IU} / \mathrm{ml}$, range $0.05-15.9$) and therefore could not be diluted to comparable level of anti-HEV IgG, but still exhibited high neutralising activity similar to acute HEV cases (median 91.0\%, range 74.2-99.7\%).

4.3 Discussion

4.3.1 HEV infection in transplant recipients

The current study is the largest prevalence study of HEV viraemia in a transplant cohort and the first in the UK. There was a low but significant HEV RNA prevalence of one in 149 (0.67\%), similar to studies in other European countries [185, 192, 193, 306, 307]. Studies from the UK published since the current study have found a prevalence of 0.20\% amongst 490 liver transplant recipients tested in 2017 and 0.46% amongst 870 transplant recipients (kidney, liver and HSCT) sampled between 2013 and 2015 [295, 308].

During the time period of sampling the prevalence of HEV viraemia amongst blood donors in England was 1:1875 (0.05\%) and in effect reflects the incidence rate for HEV infection in the English population (national screening of donors FebSep 2016, England. NHSBT/PHE Epidemiology Unit, pers. comm. Dec 2016). The 12 -fold higher prevalence rate in the transplant patients represents a cumulative prevalence of infection as a consequence of the failure to clear infection during iatrogenic immunosuppression.

The current study represents a single transplant centre experience in Birmingham where 96% of tested patients resided within a 100 -mile radius. HEV exposure has been shown to vary geographically in some regions, such as southern France, considered to reflect regional dietary variation [40]. In England this heterogeneity is not evident; ongoing seroprevalence studies in English blood donors do not show marked variation by region (Steve Dicks, pers. comm.,

NHSBT, March 2017), therefore these data are likely to be representative of other transplant cohorts across the UK.

Higher tacrolimus and ciclosporin levels were found in the infected patients which would suggest that lower levels are associated with spontaneous clearance of viraemia. However, no association was found between different SOT categories even though they have different levels of immune suppression. The data suggested the possibility that HSCT patients, having a higher exposure to blood products, are more at risk of HEV infection (3/149, 2\%). A larger population size may have reached statistical significance, but the patient selection criteria of those undergoing TDM will have biased the study to more heavily immunosuppressed HSCT patients by recruiting those closer to transplantation or with concomitant GvHD. However, any increased risk for this group is likely to diminish in the UK following the introduction of universal HEV screening of blood donations.

Crucially, 18 of the 19 HEV infections were previously undiagnosed, clearly showing that the burden of HEV infection in immunosuppressed patients is underappreciated and relying on clinical suspicion to consider the diagnosis is insufficient. In four patients the derangement of liver enzymes was not considered significant for further evaluation and in at least 11 cases, alternative diagnoses were suggested, including many in which diagnoses where increasing immunosuppression would be a potential intervention. Such treatment would have the potential to amplify viral replication and exacerbate HEV disease.

The use of serology to diagnose chronic HEV infection in immunocompromised patients has been reported to be insufficient due to a delayed serological
response [216, 309]. In the current study 17/19 (89.5\%) of viraemic patients had a detectable serological response (plasma lgM and lgG reactive or IgM reactive only) at the time of screening. This was higher than expected but due to the lack of stored samples for retrospective testing it is not possible to comment on whether these serological responses were significantly delayed in individual patients.

Plasma ALT levels were significantly higher in viraemic patients, however two HEV viraemic patients were identified who had normal ALT results. Both patients were likely to be in the early phase of infection as both returned elevated ALT levels when re-tested 29-30 weeks later with rising HEV RNA levels. If HEV screening was only performed on patients with an abnormal ALT it would have reduced the numbers of patients screened by over six-fold; from 2822 to 467 but at the expense of a reduced sensitivity (88.2\%) through failing to identify two infections. Raising the ALT threshold any higher than the upper limit of normal only reduced sensitivity and did not increase the PPV of the patient being HEV viraemic.

The strengths of this study were the unbiased nature of testing, the size of the population and the range of different transplant populations screened. A major limitation was the single timepoint of testing at varying lengths of time posttransplant which rendered it difficult to ascribe specific infection risks, such as risk from blood components around transplant or accumulated dietary risk over time. The lack of stored samples prevented the determination of the duration of infection prior to screening which would have informed the data on ALT levels.

4.3.2 HEV infection in patients with haematological malignancies

An increasing number of reports describe persistent HEV infections in the context of haematological malignancy yet there are no systematic prevalence studies outside the HSCT setting. Haemato-oncology patients are of particular interest due to their immunosuppressed state with high transfusion requirements. In the current study, predominantly of patients with lymphoma and plasma cell dyscrasias, there was a very low prevalence of HEV viraemia (0.13\%, 95\% CI 0.015-0.45\%), only slightly higher than found in healthy blood donors (0.04\%) [22].

The rarity of active HEV infection in patients undergoing non-transplant chemo/immunotherapies is reassuring and does not suggest the need for routine screening of all patients. In comparison, prevalence rates of HEV viraemia as high as 2.4% are reported in allogeneic-HSCT recipients [194]. Patients with haematological malignancy outside allogeneic stem cell transplantation are a heterogeneous group of patients with immunosuppression that varies considerably throughout a therapeutic schedule. In the absence of T-cell subsets and immunoglobulin levels we characterised immunosuppression using surrogates of recent treatment history and absolute neutrophil and lymphocyte counts. A significant number (232 patients) had received moderate to highly intensive chemotherapy in the preceeding six months and nearly a third of patients were lymphopenic. However, many patients were on relatively novel agents and the degree of immunosuppression induced by these agents is not known. Of note is that bendamustine has recently been proposed as a risk for
persistent HEV; in our cohort only 23 patients had received bendamustine in the preceeding 6 months before testing [299].

Both HEV viraemic patients identified were under active treatment for multiple myeloma (2/521, 0.38%) and both developed persistent HEV infection which may suggest an increased risk of developing persistent HEV in multiple myeloma patients compared to other malignancies. This is in contrast to findings from a retrospective multicentre cohort study of 50 patients with HEV virus infection and haematological malignancy which found most patients had underlying nonhodgkin's lymphoma; only 6% in that cohort had underling multiple myeloma [310]. However, we also observed a low anti-HEV IgG seroprevalence in patients with plasma cell dyscrasias and patients with increasing numbers of lines of treatment, even after correcting for other factors in multivariable analysis. This could be due to lower prior HEV exposure, but plausibly the loss of anti-HEV IgG related to underlying disease and treatment; either would likely render this group more susceptible to primary HEV infections or even reinfection [311].

In the three month follow-up period both viraemic patients had normal ALT values at most time points. This makes it difficult to diagnose HEV infections clinically in such patients. The absence of raised liver enzymes is particularly intriguing; most cases of persistent infection described have modestly raised liver enzymes, which may be due to ascertainment bias. The significance of HEV viraemia in the absence of raised liver enzymes is unknown, particularly with regard to the risk of chronic liver disease and merits further study.

All patients were tested for anti-HEV IgG to characterise HEV exposure. The most influential factors in the multivariable analysis influencing \lg seroreactivity were
increasing age and the underlying haematological diagnosis. A linear relationship was observed between the numbers of transfusions received and the likelihood of being IgG seroreactive, which remained even after controlling for a recent transfusion, suggesting transfusional HEV acquisition. However, the lack of current active infections indicates that HEV clearance is the norm. Neither the source nor the timing of HEV infection in patients seroreactive for anti-HEV IgG could be ascertained.

There are several limitations to this current cross-sectional study. The study reflected a typical patient balance in a large tertiary haemato-oncology unit, thereby providing a clinically relevant insight into HEV risk in this cohort, however due to the relative rarity of certain conditions, such as MDS ($\mathrm{n}=77$, it was not possible to test large numbers with specific diseases. Logistical challenges prevented the collection of patients' transfusion history at other hospitals outside the tertiary centre, therefore there could have been an underestimation of the transfusion burden in those who receive care (including transfusions) at their local hospital. Finally, dietary acquisition was not subject to systematic assessment and a formal look-back was not undertaken on the two HEV infected patients to ascertain the source of infection.

4.3.3 HEV infection in patients with antibody deficiency

In the current study no cases of persistent HEV infection were identified in a cohort of 245 patients with primary or secondary antibody deficiency, despite evidence of significant immunocompromise. Many patients had low CD19+ B-cell counts ($\left.45 \%<0.10 \times 10^{9} / \mathrm{L}\right)$, CD4+ T-cell counts ($37 \%<0.5 \times 10^{9} / \mathrm{L}$) and nearly a
quarter were also taking immunosuppressive medication. This is a significant finding in the current context of a high risk of HEV acquisition from dietary sources in the UK and the longstanding immune dysfunction in patients with antibody deficiency which renders them susceptible to a number of persistent and severe viral infections [15, 102, 301-304, 312, 313]. The results are consistent with studies in similar cohorts, neither of which displayed any evidence of persistent HEV infection amongst 73 CVID patients in Germany or 27 primary antibody deficient patients with deranged liver enzymes in the UK [300, 305]. The current study, which was larger and more heterogeneous, adds to the growing body of evidence that there is an extremely low risk of persistent HEV infection in these groups of patients. However, even larger studies may be required to detect a very small risk of HEV infection given that the prevalence of HEV viraemia in cohorts considered high risk for persistent HEV infection, such as solid organ transplant recipients in Western Europe is low (0.7-1.5\%) [185, 192, 193, 306, 307]. Patients were tested for HEV RNA regardless of liver enzyme values because of the uncertainty of whether an abnormal ALT would be a sufficiently sensitive predictor of active HEV infection; at the time of HEV testing 16% of patients had abnormal ALT values.

The reason for the absence of persistent HEV infection in these patients could be due to a number of factors. Anti-HEV IgG was detectable in a high proportion of patient's plasma in this study (38.8\%). Many plasma samples testing seronegative by the ELISA manufacturers' criteria nevertheless had higher antiHEV IgG optical density values compared with plasma from blood donors known to be susceptible to HEV infection. This suggests the presence of low levels of
anti-HEV IgG in the patient samples but where the ELISA reactivity falls below the manufacturers' defined cut-off. Detectable anti-HEV IgG in plasma of antibody deficient patients could be the result of passive acquisition of antibodies from the immunoglobulin products, residual endogenous antibody production or a combination of the two. The most compelling explanation is passive acquisition of anti-HEV, supported by the correlation of patient plasma reactivity for anti-HEV IgG with both receipt of certain immunoglobulin products and the titre of anti-HEV IgG in those products. Rising titres of anti-HEV IgG observed post-IVIG in patients tested before and after infusion reinforce this assertion.

In this study it has been shown that patients' plasma and immunoglobulin products were able to bind to HEV ORF2 Ag and prevent or reduce reactivity in the HEV-Ag assay, referred to as antigen neutralisation. This antigen neutralising activity also rose in post-IVIG infusion samples in the subset of patients tested concordantly with rises in anti-HEV IgG levels. Recent studies exploring different forms of ORF2 antigen suggest that the antigen neutralisation we are detecting may be directed predominantly against the abundant secreted form of ORF2 which is not virion-associated [141, 291]. Nevertheless, this secreted form of ORF2 is still considered to harbour the major neutralizing epitopes found on the capsid form of ORF2 [141, 314]. The presence of pre-existing antigen neutralising antibodies circulating in their plasma may be sufficient to protect these patients from an enteric challenge of HEV and prevent early infection or the establishment of persistent infection.

It is notable that the source of anti-HEV IgG appears to influence the antigen neutralising capacity. It is well documented that patients with persistent infection
themselves produce anti-HEV antibodies without eliminating the virus, therefore plasma from five acute HEV cases and five recovered persistent HEV cases were tested for the ability of the detectable anti-HEV antibody to neutralise the tissue culture-derived antigen [168]. Antibodies from recovered persistent HEV cases had significantly lower antigen neutralising capacity when compared with acute HEV cases when tested at equivalent levels of anti-HEV IgG (between 2 and 5 WHO IU/ml). Due to lower anti-HEV IgG titres in the plasma from patients following IVIG infusions (7/9 samples had <1 WHO IU/ml) it was not possible to perform a direct comparison at an equivalent WHO unitage; despite this, the antigen neutralising activity was similar in post-IVIG samples compared to plasma from recovered acute cases. This higher antigen neutralising activity relative to the detected anti-HEV IgG titre may explain why these patients either do not develop initial HEV infection or do not develop persistence despite comparatively low concentrations of anti-HEV detected by ELISA.

The current study is unable to prove that passively transferred HEV antibodies are protective for these patients, since correlates of protection against HEV infection are undefined, even in vaccine studies [315]. However, as proof-ofconcept, late stage convalescent plasma has been used successfully to prevent cynomolgus monkeys from developing hepatitis after an HEV challenge, therefore IVIG may prove useful for prevention of HEV infection [241]. Indeed IVIG has shown promise as a therapeutic agent in a small number of cases of HEV-associated neuralgic amyotrophy [316]. The recent description of a model for HEV infection using humanized homozygous uPA+/+-SCID mice may enable passive immunoprophylaxis to be studied further [317]. An alternative explanation
for the lack of persistent HEV infections in this study is that enough of the patients had sufficient preserved T-cell activity to clear HEV following infection. Suneetha et al have demonstrated the importance of T-cell responses for control of HEV infection [222]. The initial description of persistent HEV infections in solid organ transplant recipients found significantly lower total lymphocytes, CD2+, CD3+ and CD4+ cell counts in individuals developing persistent infection compared to those who resolved HEV infection [168]. In the current study 77% of patients had normal levels of CD8+ T-cells (>0.2 $\times 10^{9} / \mathrm{L}$) and higher median total lymphocyte count, CD3+ and CD4+ cell counts than found by Kamar et al in persistently infected transplant patients [168]. However, T-cell deficiency and iatrogenic immunosuppression were not uncommon in the current study and even in this subset no viraemic cases were detected.

4.3.4 Summary discussion

The aim of this chapter was to determine the point prevalence of HEV viraemia in three distinct immunocompromised cohorts and identify predictive factors of viraemia to inform testing strategies. There was a significant difference in the prevalence of HEV viraemia in the cohorts tested: 0.67% ($95 \% \mathrm{Cl} 0.43-1.05 \%$) in transplant patients undergoing therapeutic drug monitoring, 0.13% (95\% CI 0.015-0.45\%) in haemato-oncology patients under follow-up and 0\% HEV RNA prevalence (97.5\% one sided CI 0-1.49\%) in antibody-deficient patients treated with replacement immunoglobulin therapy (fisher's exact test, $\mathrm{p}=0.029$). A number of factors including sample sizes, differing HEV risk through diet and transfusion and differing host susceptibility to supporting persistent HEV infection
may account for these differences. For example, the haemato-oncology cohort, due to the nature of patient selection were more heterogeneous in their immunosuppressive status compared with solid organ transplant patients on calcineurin inhibitors.

The low prevalence of active HEV infection made it challenging to identify predictive risk factors for viraemia. Viraemic patients in the transplant cohort had higher plasma levels of immunosuppressive drug (tacrolimus or ciclosporin), ALT and bilirubin compared with aviraemic patients. There were no demographic or clinical parameters that could be identified which increased the risk of being HEV viraemic. Amongst haemato-oncology patients ALT was not raised in either viraemic individual. Both patients had underlying Multiple Myeloma on high dose steroid treatment, however no other unique parameters were evident. It is difficult therefore to recognise HEV infected individuals amongst immunocompromised cohorts; in the transplant cohort in only one of 16 was HEV considered in the differential diagnosis of their abnormal ALT.

These three studies were designed in different ways reflecting practicalities in patient recruitment and data collection at the different centres. This introduces bias and hinders comparisons. For example, T-cell subsets are routinely measured at immunology outpatient visits, therefore, were available for patients with antibody deficiency but are not routinely measured regularly for transplant recipients or haemato-oncology with haematological malignancy. Nevertheless, the data from this study raise the question of whether structured systematic screening of transplant recipients for HEV infection by RNA testing or other virusspecific methods should be considered.

Notwithstanding the provision of HEV-screened blood for all patients in the UK, the predominant risk of HEV acquisition for the majority of patients is dietary so persistent infections will continue to occur [15, 102]. Therefore, further work on elucidating the relative importance of T -cell and B -cell responses for HEV clearance are needed to help stratify HEV risk in these and other immunocompromised cohorts. This will enable more targeted studies of patient groups on specific immunosuppressives or with specific immunological defects.

4.4 Conclusions

- Transplant recipients in the UK are at a low but significant risk of HEV infection. The majority of these infections go unrecognized despite increased awareness among the scientific and medical community.
- Patients with underlying haematological malignancy are also at risk of persistent HEV infection but the risk appears lower than amongst transplant recipients.
- We found no evidence of persistent HEV infection amongst a cohort of patients with primary and secondary antibody deficiency. The HEV-Agneutralizing antibodies detected in both immunoglobulin products and patients' plasma specimens may provide sufficient protection from developing HEV infection.

5 Demography, virology and outcomes of persistent HEV infection across England and Wales

5.1 Introduction

The understanding of the natural history and clinical outcomes of persistent HEV infections is derived from a number of case series, with most patients from hyperendemic areas of Southern France and provides a basis for the clinical monitoring and treatment of persistent HEV infection in SOT recipients [168, 207, 223]. The earliest descriptions of persistent courses of HEV infection were in SOT recipients, but have since been followed by case reports or small case series in other immunocompromised patient groups [168, 170, 194, 297, 299, 318, 319]. There is a significant knowledge gap with respect to the natural history of persistent HEV infection outside the transplant setting. Most studies to date are single-centre studies with a bias towards specific patient cohorts,without a broader perspective on the risk of HEV in all immuncompromised cohorts. The blood borne virus unit (BBVU) within the virus reference department (VRD) at the National Infection Service, Colindale, Public Health England (PHE) has provided HEV RNA testing as a clinical service since 2003. In the same year PHE (formerly the Health Protection Agency) initiated a programme of enhanced surveillance for acute hepatitis E and within the scope of this research work, an enhanced surveillance system for persistent HEV infections across England and Wales has been established (see materials and methods). The first case of persistent HEV infection in the UK was recognised in an HIV infected patient in

2009 and since that time the numbers of recognised cases has steadily risen. The aims of this chapter are:

1. to establish an enhanced surveillance system for persistent HEV infections across England and Wales.
2. to identify patients identified by the national infection service who fulfil the criteria for persistent HEV infection.
3. to describe the demographics, virology, serological responses and clinical outcomes of persistent HEV infections across England and Wales

5.2 Results

5.2.1 Clinical case definitions and terms

For inclusion in this descriptive case series a persistent HEV infection was defined as a detectable plasma HEV RNA for more than 12 weeks. Virological outcomes were categorised as:

- viral clearance in stool: a minimum of one HEV RNA negative stool sample with no subsequent evidence of rebound;
- viral clearance in plasma: a minimum of one HEV RNA negative plasma sample when a stool sample was not available for testing and no subsequent evidence of rebound;
- ongoing viraemia: when the last sample demonstrated ongoing viraemia within the last 12 months;
- lost to follow up viraemic: when last sample demonstrated viraemia but no sample tested for over 12 months;
- death with viraemia: last sample prior to death was positive for HEV RNA with no evidence of recent change in viral load;
- rebound: viral recrudescence after treatment cessation (either no testing done at time of cessation or evidence of ongoing viraemia).

The term rebound is used as a broad term to describe any patient with an increase in viral load (plasma or stool) following cessation of therapy. However, relapse in this study is restricted to patients with HEV-RNA-negative samples (plasma sample and/or stool) at time of treatment cessation who subsequently developed a second period of detectable HEV viraemia. A sustained virological
response (SVR) was defined as an undetectable HEV RNA in plasma and/or stool at 12 weeks (SVR 12) or 24 weeks (SVR 24) following the end of treatment.

5.2.2 Cases of persistent Hepatitis E diagnosed between 2009 and 2017

A total of 113 patients with persistent HEV infection were identified between January 2009 and December 2017. Of these, 19 cases were excluded as they were identified through separate screening studies. Demographic, Clinical, serological and molecular results were available for most patients (Figure 5.1). From 2009 there has been a steady increase in the numbers of diagnosed cases each year with a peak of 25 cases in 2016 (Figure 5.2).

The characteristics of the 94 patients with persistent HEV infection (median duration of demonstrable infection 45.5 weeks [IQR 22.3 - 89.8 weeks]) are summarised in Table 5.1. Male cases predominated (64\%) with a median age of 52 years old. Whilst 66 cases were recipients of transplants (56 SOT and 10 haematopoietic stem cell transplant (HSCT) recipients), 16 patients had an underlying haematological malignancy without HSCT, six had underlying advanced HIV infection, four had auto-immune disease or other immunosuppression and one patient had no identified immunosuppression. The six patients with underlying HIV infection all had CD4 counts below <250 cells/mm3 (range 17-207 cells/mm3) at the point of HEV diagnosis with very low nadir CD4 counts (range 2-66 cells/mm3).

Figure 5.1 Available samples and clinical information from patients with persistent HEV infection

Flow chart of available diagnostic and follow-up samples and clinical information from patients identified through the NIS with persistent HEV infection, 2009-2017.
${ }^{\text {a }}$ No plasma viral load available due to the sample being tested prior to the introduction of a quantitative Taqman PCR $(n=1)$ or to the first sample received being stool $(n=1)$.

Abbreviations: ALT; alanine aminotransferase; BBVU, blood borne virus unit; IQR, interquartile range; NIS, national infection service; wks, weeks.

Figure 5.2 Cases of persistent HEV infection by year and diagnosis

Cases of persistent HEV infection across England \& Wales by year and diagnosis.
Breakdown of the underlying diagnosis of patients with persistent HEV infection by year.
${ }^{\text {a }}$ Includes ANCA-positive vasculitis ($n=2$) and rheumatoid arthritis ($n=1$).
${ }^{\mathrm{b}}$ Includes neurosarcoidosis ($n=1$).
${ }^{\text {c }}$ Includes severe combined immunodeficiency (SCID; JAK3 mutation, $n=1$).
Abbreviations: HSCT, haematopoietic stem cell transplant; HIV, human immunodeficiency virus.

Table 5.1 Characteristics of patients with persistent HEV infection

Characteristic	No. (\%)
Sex	
Male	60 (63.8)
Female	34 (36.2)
Age, y median [IQR]	52.1 [36.7-63.5]
0-20	4 (4.3)
21-40	25 (26.6)
41-60	34 (36.2)
>60	31 (33.0)
Underlying immunocompromise	
SOT:	56 (59.6)
Kidney	35 (37.2)
Liver	13 (13.8)
Pancreas +/- kidney	4 (4.3)
Heart +/- kidney	2 (2.1)
Lung	2 (2.1)
haematological malignancy without HSCT:	16 (17.0)
Lymphoma	12(11.7)
CLL	2 (2.1)
AML	1 (1.1)
T-PLL	1 (1.1)
HSCT:	10 (10.6)
Allograft	9 (9.6)
Autograft	1 (1.1)
HIV	6 (6.4)
auto-immune/other immunosuppressives ${ }^{\text {a }}$	4 (4.3)
primary immunodeficiency ${ }^{\text {b }}$	1 (1.1)
no immunocompromise identified ${ }^{\text {c }}$	1 (1.1)
Duration of infection, wks median [IQR]	45.5 [22.3-89.8]

${ }^{\text {a }}$ Includes rheumatoid arthritis ($\mathrm{n}=1$) and ANCA-vasculitits ($\mathrm{n}=2$) and neurosarcoidosis ($\mathrm{n}=1$).
${ }^{\mathrm{b}}$ Patient with severe combined immunodeficiency (SCID; JAK3 mutation).
${ }^{\text {c }}$ Extensive (immunological) investigations have not identified an underlying immunological disorder/immunodeficiency.

Abbreviations: SOT, solid organ transplant; CLL, chronic lymphocytic leukaemia; AML, acute myeloid leukaemia; T-PLL, T-cell prolymphocytic leukaemia.

5.2.3 Blood markers and liver disease at diagnosis

At the point of diagnosis, the median plasma total lymphocyte count was 1.0 x 10 $/$ L [IQR 0.6-1.5] ($n=27$) (lower limit of normal, $1.0 \times 10 \% / \mathrm{L}$) and the median platelet count was $208 \times 10 \% /$ [IQR 158-246] (n=27) (lower limit of normal, $150 \times$ 109/L). The median ALT at diagnosis was 145 IU/L [IQR 89-278] ($n=52$); and the peak recorded ALT was a median 260 IU/L [IQR 132-526] ($n=51$) (Figure 5.3). Of 53 patients with details of baseline hepatic investigations, 44 underwent assessment by liver biopsy and/or imaging (ultrasound or hepatic transient elastography (Fibroscan ${ }^{\circledR}$)). Eleven patients had advanced liver disease; either histological evidence of cirrhosis on biopsy or ultrasound ($n=9$) or a high hepatic stiffness measured by shear wave velocity elastography score ($n=2$) equivalent to METAVIR F4 (Table 5.2). These patients had been viraemic for a median duration of 64 weeks [IQR 26-80] prior to assessment ($n=9$). Eleven patients had evidence of mild to moderate hepatic inflammation and/or fibrosis and 22 patients had no evidence of significant liver disease.

Figure 5.3 Liver enzyme values in persistent HEV infection

ALT values at the point of diagnosis and the peak ALT value recorded for patients with persistent HEV infection.

The solid horizontal lines represent median values and the dashed horizontal line represents an ALT value of 40 IU/L illustrating a typical laboratory upper limit of normal (ULN).

Abbreviations: ALT, alanine aminotransferase.

Table 5.2 Liver imaging in persistent HEV infection

Investigation	No.
Liver Biopsy +/- USS/elastography n=14 cirrhosis	3
moderate inflammation $+/$ - fibrosis	5
mild inflammation +/- fibrosis	3
no evidence of liver disease/inflammation	3
Elastography +/- USS $\quad \mathrm{n}=13$ F4/cirrhosis	3
F2-F3	3
F0-F1	7
USS only cirrhosis $\quad \mathbf{n = 1 7}$	4
normal scan	13
Post-mortem results cirrhosis	1
nil performed	9
no information	40
Total	94

Baseline liver imaging results for patients diagnosed with persistent HEV infection. Transient elastography performed by Fibroscan ${ }^{\circledR}$. Fibrosis scores reported as F0-F1 if mean kPa score <7; F2-F3 if mean kPa score 7-14 and F4 if mean kPa score >14.
Abbreviations: USS, ultrasound scan; kPa, kilopascal units.

5.2.4 Virology and phylogenetic analysis of persistent HEV cases

Plasma HEV viral load at clinical diagnosis was a median of $1.80 \times 10^{6} \mathrm{IU} / \mathrm{ml}[$ IQR $\left.3.80 \times 10^{5}-5.43 \times 10^{6}\right](n=92)$ with the highest recorded viral load a median of $2.93 \times 10^{6} \mathrm{IU} / \mathrm{ml}\left[\mathrm{IQR} 1.12 \times 10^{6}-9.20 \times 10^{6}\right](\mathrm{n}=93)$. All cases of persistent HEV infection were identified as G3 HEV; 79.8\% were G3 clade 2 (subtypes a b c h i j) and 21.3% G3 clade 1 (subtypes e f g). One sample could not be accurately assigned a subtype within clade 2 (Figure 5.4). This proportion of clade 1 and clade 2 infections has not varied from 2013 onward.

Figure 5.4 Phylogeny of persistent HEV infections across England and
Wales

G3 clade 1 (subtypes efg)
G3 clade 2 (subtypes abchij)

Legend for Figure 5.4:
Phylogenetic tree based on open reading frame 2 nucleotide sequences of persistent HEV cases across England and Wales 2009-2017. Phylogeny based on 1.3kb region and was inferred by using the Maximum Likelihood method based on the General Time Reversible model conducted in MEGA (version 7.0.26). Bootstrapped values shown (1000 replicate). Fifteen samples (C1-C11, C15, C17, C19 and C26) are not included in the tree as sequencing was performed on the shorter Meng fragment (280bp) which gave poor bootstrapping values. For these samples, the percent identity to approved reference sequences was measured and were subtyped as follows: C1_HIV_2009 (3a, 91.4\%), C2_HIV_2010 (unclassifiable), C3_HIV_2010 (3e, 92.5\%), C4_HSCT_2010 (3c, 97.5\%), C5_SOT_2011(3c, 96.1\%), C6_HSCT_2011 (3c, 96.1\%), C7_HAEM_2012 (3c, 96.4\%), C8_SOT_2012 (3f, 88.9\%), C9_SOT_2012 (3c, 96.1\%), C10_HSCT_2012 (3f, 90.1\%), C11_Al_2012 (3c, 95.4\%), C15_SOT_2013 (3c, 96.8\%), C17_HIV_2013 (3c, 96.8\%), C19_HAEM_2014 (3e, 89.3\%) and C26_SOT_2014 (3c, 95.0\%) are reference sequences with accession numbers shown.

Abbreviations: AI, auto-immune disease; HAEM, haematological malignancy (no HSCT); HSCT, haematopoietic stem cell transplant; OTH, other immunocompromised; SOT, solid organ transplant.

5.2.5 Delays in the clinical diagnosis of persistent HEV infection

Retrospective analysis of stored samples in 46 patients demonstrated viraemia for at least a median of 38 weeks before HEV testing was initiated [IQR 17-68 weeks]. This delay in diagnosis has continued to occur in recent years; 2017 (median 41 weeks, $\mathrm{n}=5$), 2016 (median 32 weeks, $\mathrm{n}=12$), 2015 (median 43 weeks, $\mathrm{n}=11$), 2014 (median 26 weeks, $\mathrm{n}=3$), 2013 (median 34 weeks, $\mathrm{n}=6$), 2012 (median 10 weeks, $\mathrm{n}=4$), 2011 (median 33 weeks, $\mathrm{n}=1$), 2010 (median 64 weeks, $n=3$), 2009 (80 weeks, $n=1$).

In 25 patients it was possible to identify precisely the timing of infection; this demonstrated viraemia a median of 33 weeks [IQR 17-73 weeks] prior to diagnosis.

5.2.6 Serological responses at diagnosis

At the point of diagnosis, most patients (74/90, 82.2\%) had a detectable serological response to HEV in the index diagnostic sample. Most commonly both anti-HEV lgM and IgG were detected ($n=55$), less frequently $\operatorname{lgM}(n=16)$ or antiHEV IgG alone ($n=3$) were detected as single markers at clinical diagnosis. For 88 individuals, quantitative serological results for anti-HEV lgM and IgG were generated in the reference laboratory and display a wide range of reactivity (Figure 5.5).

Longitudinal sampling allowed definition of seroconversion for lgG antibody. Thirty-two patients were seronegative for anti-HEV IgG at diagnosis. Sixteen (50\%) were seroreactive for IgM of whom 13 subsequently seroconverted to antiHEV IgG, three only had transient lgM detected and did not seroconvert to anti-

HEV IgG during follow up (range 13-46 weeks). Sixteen patients (50\%) were seronegative for both anti-HEV $\lg M$ and lgG, only three of these patients developed a durable anti-HEV IgG seroconversion. However, two patients developed an IgG transiently for 5 weeks and 16 weeks and one patient had intermittent low level anti-HEV IgG detectable in between intravenous immunoglobulin infusions.

Figure 5.5 Anti-HEV serological responses in persistent HEV infection

Anti-HEV serological responses at the point of diagnosis in 92 patients with persistent HEV infection. The solid horizontal lines represent median S/CO values (6.19 for anti-HEV IgM; 8.98 for anti-HEV lgG). The dashed horizontal line represents the manufacturer's threshold for a positive result (S/CO 1.1).

Abbreviations: ELISA, enzyme-linked immunosorbent assay; S/CO, sample over cut-off ratio of optical density values.

5.2.7 Sustained serological responses throughout and after HEV infection

Of the 81 patients who developed an anti-HEV IgM response at any timepoint, in 67 patients (82.7\%) the IgM reactivity was detected throughout the viraemic period (median of 26.5 weeks [IQR 14-60.8]. Eleven patients lost anti-HEV IgM reactivity during viraemia (transient lgM only $(n=3)$, transient $\lg M$ and $\operatorname{lgG}(n=1)$ and loss of $\lg M$ in the presence of $\lg (\mathrm{n}=7)$). In six of these 11 cases HEV concentrations plateaued or rose when anti-HEV IgM was lost. Following plasma clearance of HEV RNA, detectable anti-HEV IgM persisted. In 19 patients followed up for one year or less following clearance of HEV viraemia all patients retained detectable anti-HEV IgM in their sera. Of six patients followed up for over one year following clearance of viraemia three still had detectable anti-HEV IgM for one year or more (Figure 5.6).

Anti-HEV IgG persisted throughout infection and also after clearance during follow-up in all but two patients who developed anti-HEV IgG. The first of these two a patient with underlying lymphoma, developed anti-HEV during viraemia (peak S/CO 10.5) but IgG seroreactivity subsequently fell over a period of three months which coincided with virological relapse (patient B, Table 5.4). The second patient developed a weak anti-HEV IgG response (S/CO 4.9) which was lost during viraemia; but subsequently seroconverted for anti-HEV IgG during viral clearance.

Figure 5.6 Persistence of anti-HEV IgM after clearance of HEV viraemia in persistent HEV infection

Persistence of anti-HEV IgM reactivity in patients following plasma clearance of HEV, Shown in the figure are six patients followed up for one year or more; in three anti-HEV lgM remained detectable for one year or more. Where samples were available for testing (5/6), HEV-Ag detection did not persist beyond three months in any patient (data not shown). The hatched line represents manufacturer's criteria for a positive result.
Abbreviations: S / CO, sample over cut-off ratio of optical density values.

5.2.8 Treatment and outcomes of patients with persistent HEV infection

Treatment and virological outcomes were available for 88 of the 94 patients (Figure 5.7). Fifteen patients died during the period of HEV infection; eight died of liver failure or a complication relating to liver decompensation in which HEV was considered contributory, three died of unrelated causes and in four the cause of death was unknown.

HEV was actively managed in 75 patients either via a reduction of immunosuppression alone ($n=8$), ribavirin with or without a reduction in immunosuppressive medication ($\mathrm{n}=65$) or PEG-Interferon with or without ribavirin ($\mathrm{n}=2$). Amongst eight patients who received a reduction of immunosuppression alone, viral clearance was achieved in six. Of the 65 ribavirin-treated patients, 48 (73.8\%) had demonstrated viral clearance at the end of therapy either in plasma ($\mathrm{n}=21$) or plasma and stool $(\mathrm{n}=27)$. The two patients treated with PEG-Interferon achieved viral clearance in plasma and stool. However, only 15 of the 67 patients treated with an antiviral had sufficient follow-up sampling to prove a sustained virological response at three months $(n=3)$ or at six months $(n=12)$ following cessation of treatment. Virological recurrence (rebound ($n=5$) or relapse ($n=11$)) was detected during follow-up in 16 patients treated with an antiviral (23.9\%).

Figure 5.7 Treatment and outcomes in persistent HEV infection

${ }^{\text {a }}$ Of the 15 patients who died whilst viraemic; eight died of liver failure or complication related to decompensation to which HEV was considered contributory, three died of unrelated causes and in four the cause of death unknown.
${ }^{\mathrm{b}}$ SVR was observed for 13 patients (12-week SVR $\mathrm{n}=3$, 24-week SVR $\mathrm{n}=10$).
${ }^{c}$ Viral rebound describes any patient with a quantitative increase in viral load (plasma or stool) post-cessation of therapy, however viral relapse is restricted to patients with HEVRNA negative samples (plasma sample and/or stool) at time of treatment cessation who subsequently developed a second period of detectable HEV viraemia.
${ }^{\text {d }}$ Both patients undergoing prolonged antiviral treatment (>12m); includes one patient who has had PEG-IFN added to ribavirin.
${ }^{e}$ Both patients achieved a 24 -week SVR.
Abbreviations: RBV, ribavirin; PEG-IFN, pegylated interferon alfa-2b; SVR, sustained virological response.

5.2.9 Outcomes in anti-HEV IgG seronegative patients

Sixteen patients, in whom the index diagnostic sample was either anti-HEV IgM reactive alone $(n=3)$ or non-reactive for both anti-HEV IgM and $\operatorname{lgG}(n=13)$, did not seroconvert for anti-HEV IgG during a median duration of follow-up during active HEV infection of 45.0 weeks [IQR 34.3-83.8]). Twelve patients had an underlying haematological malignancy (lymphoma ($n=10$), acute myeloid leukaemia ($n=1$) or recent auto-HSCT $(n=1)$) and four were recipients of a SOT (renal ($n=3$) or liver ($n=1$)) (Table 5.3).

Twelve patients were treated with ribavirin alone ($n=7$) or ribavirin and concomitant reduction of immunosuppression ($n=5$) of whom only four cleared HEV infection in plasma and stool $(n=3)$ or plasma alone $(n=1)$. Five patients suffered a virological rebound ($n=1$) or relapse $(n=4)$ on discontinuation of ribavirin, three have died (including one of the patients who relapsed) and in one patient antiviral treatment has not been completed. Of the four patients not treated with ribavirin, one had reduction of immunosuppression but was subsequently lost to follow up during persistent viraemia, two patients died during persistent viraemia and one patient had at the time of writing ongoing untreated persistent viraemia. In three of the five deaths HEV was considered contributory.

Table 5.3 Outcomes of patients who did not seroconvert to anti-HEV IgG

	SOT		Haematological malignancy		
	Kidney $\mathrm{n}=3$	$\begin{gathered} \text { Liver } \\ \mathrm{n}=1 \end{gathered}$	$\begin{gathered} \text { Auto-HSCT } \\ n=1 \end{gathered}$	$\begin{gathered} \text { Lymphoma } \\ \mathrm{n}=10 \end{gathered}$	$\begin{gathered} \text { AML } \\ \mathrm{n}=1 \end{gathered}$
Serological follow-up (mean, weeks)	79	82	17	61	46
Any detectable serological response during follow-up	$2^{\text {a }}$	0	0	$4^{\text {b }}$	1
Treatment					
Reduction IS alone (1)	1	-	-	-	-
Reduction IS and ribavirin	2	1	-	2	-
Ribavirin alone (7)	-	-		6	1
$\mathrm{Nil}(3)$	-	-	1	2	-
Virological Outcome					
Viral clearance	-	-	-	4	-
Rebound	1	-	-	-	-
Relapse	1	-	-	3	-
Ongoing treatment/infection	-	1	-	3	-
Lost to follow-up	1	-	-	-	-
Other Outcomes					
Death	-	-	$1{ }^{\text {c }}$	$3^{\text {c }}$	$1{ }^{\text {c }}$

Follow-up and outcomes of 16 patients who did not develop an anti-HEV IgG response.
${ }^{\text {a }}$ One patient had a transient low level reactive anti-HEV lgM detected at diagnosis and one patient, who was lost to follow-up, had a transient IgG detectable for five weeks.
${ }^{\text {b }}$ One patient diagnosed with secondary hypogammaglobulinaemia had intermittent low level anti-HEV IgG detected (S/CO consistently <3.0) in between monthly IVIG infusions, another patient had a transient anti-HEV IgG detectable for 16 weeks which became undetectable during virological rebound, two patients had transient lgM detectable at diagnosis.
${ }^{c}$ Of these five patients who died with HEV viraemia, in three HEV was considered contributory to death.
Abbreviations: AML, acute myeloid leukaemia; CLL, chronic lymphocytic leukaemia; HEV, hepatitis E virus; HSCT, haematopoetic stem cell transplant; IS, immunosuppression; RBV, ribavirin; SOT, solid organ transplant.

5.2.10 Virological recurrence after treatment

Viral recurrence was documented in 16 patients following ribavirin cessation. In five patients, low level detectable HEV RNA was present in stool and/or plasma on treatment, therefore viral rebound may have been predicted. The remaining eleven were considered true virological relapses, since there was no detectable HEV RNA in plasma $(n=5)$ or plasma and stool $(n=6)$ at the time of treatment cessation following ribavirin therapy (median 3.00 months [IQR 3.00-3.75 months]) (Table 5.4). Three of these eleven patients (27\%) were anti-HEV IgG seronegative at treatment cessation. Starting daily doses of ribavirin in these 11 patients ranged from 480-1200mg. However, seven (64\%) underwent a dose reduction of ribavirin due to side effects.

Seven of the relapse patients were confirmed by phylogenetic analysis as a relapse as opposed to re-infection. Of the other four patients, the viral load postrelapse was insufficient for phylogenetic analysis and in one patient the sample was sent to another diagnostic laboratory. Nevertheless, the timing of recurrent HEV viraemia was highly suggestive of relapse. Nine patients experienced relapse within six months of antiviral cessation; one patient (Patient G, Table 5.4) was only tested at 32 weeks following cessation and had a high HEV viral load at the time. In a further patient (Patient K, Table 5.4) the HEV relapse was identified approximately 24 months later; HEV re-infection cannot be excluded in this patient since post-relapse samples were unavailable for phylogenetic analysis. Of the 11 patients who suffered virological relapse, eight were re-treated with ribavirin of whom two are still undergoing prolonged (>38 weeks) ribavirin treatment. Of the six patients who have completed re-treatment with ribavirin
therapy (median length 5.38 months [IQR 4.56-6.00]) only one has achieved a 24-week SVR, three suffered a second relapse and in two patients no significant change in viral load was observed after 14 and 24 weeks of ribavirin before treatment was discontinued.
Table 5.4 Patients with virological relapse

Pt	Age, years; Gender	Underlying condition	IS at diagnosis	ALT at diagnosis; peak ALT; at time of relapse (IULL)	Reduction of IS?	RBV 1st course duration weeks (\mathbf{w}) (daily dose; duration weeks)	eGFR	clearance in stool?	anti-HEV IgG at plasma (S / CO) ciearance $(\mathrm{S} / \mathrm{CO})$	$\begin{gathered} \text { time } \\ \text { relapse } \\ \text { identified } \end{gathered}$
A	63; M	nila	nil	173; 183; 33	-	$\begin{aligned} & 11 \mathrm{w} \\ & \text { (1000mg, 11w) } \end{aligned}$	60-89	$Y \times 2$	POS (19.18)	<18w
B	44; F	Lymphoma	Corticosteroids ${ }^{\text {b }}$	$\begin{gathered} 2192 ; 2447 ; \\ 28 \end{gathered}$	-	$\begin{gathered} >8 w^{c} \\ (600 \mathrm{mg} 8 \mathrm{ww}) \end{gathered}$	60-89	NT	POS (3.10)	<8w
C	84; F	Lymphoma	Chemotherapy ${ }^{\text {d }}$	222; 260; 27	Y	$\left.{ }_{(600 \mathrm{mg}}^{16 \mathrm{w}, ~ 400 \mathrm{mg}} 9 \mathrm{mw}\right)$	$\begin{gathered} \text { 60-89, } \\ \text { dropped to } \\ 45-60 \end{gathered}$	NT	POS (18.84)	<8w
D	76; M	Lymphoma	nil in 4 years priore	299; 304; 17	N	$\begin{gathered} 12 \mathrm{w} \\ (800 \mathrm{mg} 4 \mathrm{w}, 40 \mathrm{mg} 8 \mathrm{w}) \end{gathered}$	60-89	$Y \times 2$	POS (20.01)	<8w
E	59; M	Lymphoma	$\begin{gathered} \text { nil in } 7 \text { pronth } \\ \text { prort } \end{gathered}$	67; 113; 19	N	$\begin{gathered} 13 \mathrm{w} \\ \text { (1000 mg 4w; } 400 \mathrm{mg} 9 \mathrm{w}) \end{gathered}$	60-89	$Y \times 2$	NEG (0.05)	<4w
F	21; F	Lymphomas	nil in 2 years prior	205; 574; 21	-		>90	$Y \times 2$	POS $^{\text {(}}$ (1.90)	<8w
G	50; M	Neurosarcoidosis	Methotrexate	109; 308; 70	N	$\begin{gathered} 14 \mathrm{w} \\ \text { (1200mg; 14w) } \end{gathered}$	60-89	NT	POS (2.80)	<32w
H	66; M	Heart/kidney SOT	Tacrolimus, MMF prednisolone	172; 250; 38	N	$\begin{gathered} 12 \mathrm{w} \\ (600 \mathrm{mg} .2 \mathrm{w} \\ 10 \mathrm{w}) \end{gathered}$	60-89	$Y \times 2$	POS (9.86)	<16w
1	13; M	Liver SOT	Tacrolimus, prednisolone	112; 146; 62	Y	$\stackrel{12 \mathrm{w}}{(480 \mathrm{mg}, 4 \mathrm{w}, 400 \mathrm{mg}} \mathrm{8w})$	>90	Y×1	NEG (0.07)	<12w
J	51; F	Kidney SOT	Sirolimus	299; 557; 137	Y	$\begin{aligned} & 17 \mathrm{w} \\ & \text { (800 mg } 8 \mathrm{w}, 400 \mathrm{mg} 9 \mathrm{w}) \end{aligned}$	>90	NT	NEG (0.08)	<16w
K	32; F	SCID	nil	140; 197; 152	-	$\begin{gathered} 12 \mathrm{w} \\ \text { (1200mg 12w) } \end{gathered}$	>90	NT	POS (9.14)	$100 \mathrm{w}^{*}$

Legend for Table 5.4:
Patients who had evidence of virological relapse of HEV infection after apparently successful treatment.
${ }^{\text {a }}$ Extensive (immunological) investigations have not identified an underlying immunological disorder/immunodeficiency.
${ }^{\mathrm{b}}$ Prior chlorambucil, rituximab, cyclophosphamide, vincristine, prednisolone (R-CVP) and splenectomy. Nil chemotherapy in year prior to diagnosis of HEV infection.
${ }^{\text {c }}$ Exact timings of treatment cessation not known.
${ }^{d}$ Patient undergoing chemotherapy containing rituximab, cyclophosphamide, vincristine, prednisolone (R-CVP).
e Patient received prior chlorambucil, rituximab, cyclophosphamide, vincristine, prednisolone (R-CVP) and rituximab, cyclophosphamide, doxorubicin, vincristine, prednisolone (R-CHOP).
${ }^{f}$ Prior rituximab and bendamustine.
${ }^{g}$ Patient diagnosed with secondary hypogammaglobulinaemia.
${ }^{\mathrm{h}}$ Patient received prior rituximab and autologous stem cell transplant.
${ }^{j}$ AST (aspartate aminotransferase) value recorded rather than ALT.
' Patient has intermittent low level anti-HEV IgG detected (S/CO consistently <3.0) in between monthly IVIG infusions.
${ }^{k}$ Patient not followed-up and was re-referred with abnormal liver function tests two years after the last HEV RNA test. Sample was unavailable for sequencing.

Abbreviations: ALT, alanine aminotransferase; eGFR, estimated glomerular filtration rate; F, female; IS, immunosuppression; M, male; MMF, mycophenolate mofetil; N, no; NEG, negative; NT, not tested as no sample sent; POS, positive; Pt, patient; RBV, ribavirin; S/CO, sample over
cut-off ratio of optical density values; SCID, severe combined immunodeficiency; SOT, solid organ transplant; Y , yes.

5.3 Discussion

In this chapter, 94 patients are described who were diagnosed with persistent HEV infection through the Blood Borne Virus Unit at VRD, PHE Colindale between 2009 and 2017. An enhanced surveillance system was established to enable clinical data collection leading to the first report of a national series of cases of persistent HEV infections. Patients were excluded if they were diagnosed through separate defined screening studies outwith the routine diagnostic pathway within the NHS. These patients are expected to represent the majority of clinically recognised cases across England and Wales, whose samples were referred to VRD, due to the centralised testing for quantitative HEV RNA at PHE laboratories during this period. The lower incidence of cases diagnosed in 2017 at VRD may be the result of reduced referrals to the reference laboratory, but a true reduction in clinical cases in line with reducing numbers of acute HEV infections in England and Wales cannot be excluded [21]. The described patients however may only represent a small proportion of the true prevalence of persistent HEV infection owing to under-diagnosis as a result of the subclinical nature of this infection, as well as low awareness amongst clinicians.

Immunodeficiency is considered a prerequisite for the development of persistent HEV infection [172-174]. However, these results demonstrate that predisposition to persistent HEV infection is not limited to transplant recipients; just over one quarter (28%) of the patients were outside the context of stem cell or solid organ transplantation. Of specific interest in this patient series is the first recognition of
persistent HEV infection in a patient with a primary immunodeficiency syndrome and a patient with no apparent immunodeficiency; both will be reported in detail separately. Therefore, whilst transplant recipients appear to represent a uniquely high-risk cohort, it is important for specialists caring for immunosuppressed patients outwith transplantation, and even patients ostensibly not immunosuppressed, to be aware of the possibility of persistent HEV infection in patients with chronic hepatitis.

Hepatic disease was relatively common amongst the patients studied; 25% of those assessed at baseline had evidence of advanced liver disease (cirrhosis or F4 on hepatic elastography). These patients had been viraemic for many months prior to assessment (median 64 weeks). Whilst other aetiologies of liver disease in these patients could not be excluded and therefore causality for HEV cannot be inferred, earlier studies have demonstrated rapid progression to cirrhosis in SOT patients infected with HEV [207]. Therefore, prompt diagnosis is expected to prevent the development of advanced liver disease; amongst these patients significant delays in diagnosis were seen, with evidence of prolonged viraemia (median 38 weeks) prior to HEV testing. This is likely to be an underestimate because in 21 of 46 patients the earliest stored sample available for testing was viraemic and so the onset and duration of the infection could not be precisely timed.

Ribavirin remains the antiviral drug of choice to treat persistent HEV infection [223, 233, 234, 236]. Amongst these patients, 16 of the 67 antiviral-treated patients (23.9\%) experienced virological rebound; this is lower than the 38% reported in a small controlled observational study of 24 SOT patients following
three months of ribavirin [225]. The current series of patients contained more diverse levels of underlying immunosuppression, with differing durations of ribavirin therapy (range 1.3-31.3 months) often tailored to stool testing. Importantly, many patients were not assessed for a SVR after attaining an end-of-treatment response and as a result late relapses may have been missed. Whilst virological rebound could have been predicted in five patients due to detectable HEV RNA in samples at the time of cessation, five patients relapsed despite yielding two sequential stool samples undetectable for HEV RNA. The recommendation to demonstrate virological clearance of HEV in stool has been incorporated into recently published guidelines in the UK and is increasingly being adopted by physicians caring for patients with persistent HEV infection [221, 225]. It is notable that in five patients viral relapse occurred despite apparent stool clearance, therefore whilst stool clearance should be a pre-requisite for cessation of therapy, it does not obviate the requirement for extended close follow-up monitoring both for a SVR and for late recrudescence of virus.

The use of serology is widely accepted to be inadequate for the diagnosis of HEV infection in immunocompromised patients [216]. These data confirm this, as sixteen patients did not seroconvert to anti-HEV IgG during prolonged HEV infection, this was seen mostly in patients with underlying haematological malignancy ($n=12$). The absence of anti-HEV IgG seroconversion was associated with a poor outcome. Only four of the twelve seronegative antiviral-treated patients (33.3\%) achieved viral clearance and at least three of the five deaths amongst seronegative patients were considered to be HEV-associated. Whilst there are several confounders which are not accounted for in the seronegative
patients (in particular ribavirin dosing), a patient's serostatus could be a consideration when tailoring the duration and dosing of ribavirin therapy.

The serological data demonstrate that anti-HEV IgM can remain detectable in patient plasma for months and even up to several years following HEV RNA plasma clearance. This may lead to considerable diagnostic confusion if a patient were tested de novo at this time point. The mechanism leading to persistent antibody is unknown, but one may speculate could be the result of persistence in sanctuary sites including possibly cerebrospinal fluid or the urogenital tract [131, 320-324]. Animal models have suggested important extrahepatic sites of replication which may be reservoirs from which viral rebound and continuing antigen challenge may originate [243, 287]. Although whether a similar situation arises in the human host with HEV, particularly immunocompromised patients on ribavirin, is currently unknown.

The data presented in this chapter have limitations which are inherent in such an observational dataset. These include data missing from patients lost to follow-up, the differential timing of samples that are associated with routine clinical practice and some sample volumes being insufficient for further analysis. Patients were identified with persistent HEV infection only when samples were referred to the reference laboratory, which limits the case numbers. Clinical data collection was then reliant upon the completion of a questionnaire or paper form by the primary clinician or local infection specialist and supplemented with direct discussion for further details. Many cases were collected retrospectively which led to significant data gaps. In particular, it was not possible to demonstrate histological evidence of HEV-attributable liver disease; this is crucial to understand the pathogenesis
and natural history of hepatic fibrosis caused by HEV infection. A prospective study would overcome many of these limitations.

5.4 Conclusions

- A wide range of immunocompromised patients are susceptible to persistent HEV infection.
- Established liver disease was common, but causality by HEV could not be established. Eight patients (8.51\%) died of liver disease to which HEV was considered to have had an important contribution.
- Serology is inadequate for the diagnosis of persistent HEV infection but it may be a helpful prognostic indicator for treatment response and this requires further study.
- The absence of detectable HEV RNA in a stool sample at the time of stopping therapy does not obviate the need for close follow-up to detect viral rebound as it may be an insufficient tool for indicating the safe discontinuation of ribavirin in some patients.

6 Cost-effectiveness analysis of screening for persistent HEV infection in SOT recipients

6.1 Introduction

A major/surprising finding from the prevalence study of HEV viraemia in transplant recipients in chapter 4 was the significant under-diagnosis of HEV infection amongst solid organ transplant patients in England. This could result in the development of progressive liver disease, cirrhosis and poor clinical outcomes [207]. A screening programme in the post-transplant period could identify patients with active HEV infection and enable early treatment prior to the development of end-stage liver disease. Treatment may include the modulation of immunosuppression, leading to clearance of HEV infection in 30\% of patients, or antiviral therapy with ribavirin, which has shown high efficacy in observational studies [223]. Unselected HEV screening of organ transplant recipients is not undertaken in the UK, but has been introduced in regions in France and other countries [325]. British guidelines currently recommend testing patients with liver transaminases above the upper limit of normal for HEV infection, but in clinical practice testing for HEV infection is usually only performed when the clinician suspects HEV infection in the patient [221].

The optimal structure of a screening programme and the choice of diagnostic tests are not defined. Moreover, screening would utilise resources which may be better spent elsewhere. Therefore, this cost-effectiveness analysis will provide guidance on decisions to optimise desirable outcomes given resource limitations. In the UK an increasing number of regional clinical NHS laboratories are
incorporating HEV PCR to their laboratory repertoire of tests, so it is timely to consider the implications of a structured screening programme. The release of a commercial assay for the detection of HEV antigen (HEV-Ag ELISA, Fortress Diagnostics, Antrim, Northern Ireland, UK) in recent years also provides a less costly alternative to PCR testing.

The aim of this chapter is:

1. to determine the cost-effectiveness of four possible screening strategies for HEV infection in solid organ transplant recipients in the UK.

6.2 Results

6.2.1 Base-case results

All four screening options resulted in improved health outcomes compared to no screening (Figure 6.1). Over the lifetime of 1,000 SOT recipients HEV screening would be expected to prevent 7.0 cases of cirrhosis and 3.5 deaths related to HEV-induced cirrhosis (Table 6.1). Compared with the baseline strategy of no screening, the highest number of QALYs gained was seen in the screening arm testing all patients annually by PCR (strategy A), whereas the lowest numbers of QALYs gained amongst the screening options was testing those patients with an abnormal ALT by HEV-Ag (strategy D). The gain in QALYs was mainly driven by the reduction in the numbers of cases of cirrhosis and the lower utility values associated with this state.

In terms of costs, of the four screening strategies considered, restricted screening of those patients presenting an abnormal ALT value using HEV-Ag detection (strategy D) would be expected to be cost saving to the NHS compared to no screening, whereas testing all patients annually by PCR (strategy A) is likely to be the most costly option and was the only strategy that exceeded the threshold of $£ 20,000$ per QALY, as suggested by NICE [258].

Figure 6.1 Cost-effectiveness plane of base-case

Plotted values represent the average QALYs gained for each patient over their lifetime against the excess cost incurred for each patient for each of the screening options in comparison to not screening i.e. non-incrementally. Note that incrementally, only "Annual PCR testing of all patients" is below the conventional cost-effectiveness threshold used in England.

Abbreviations: ALT, alanine aminotransferase value; HEV-Ag, hepatitis E virus antigen; ICER, incremental cost-effectiveness ratio; PCR, polymerase chain reaction; QALY, quality-adjusted life year; ULN, upper limit of normal range.
Table 6.1 Projected preventable complications in base-case
Base-case results demonstrating the numbers of expected complications (cirrhosis, liver transplantation and neurological complication) in a cohort of 1,000 patients followed over the lifetime of the patient.
Abbreviations: ALT, alanine aminotransferase; HEV-Ag, hepatitis E virus antigen; PCR, polymerase chain reaction; ULN, upper limit of normal range.

6.2.2 Incremental cost-effectiveness analysis

Incrementally, testing those patients with an abnormal ALT for HEV-Ag (strategy D) was the most cost-effective option and strongly dominated the no screening strategy (i.e., it was both less costly and resulted in higher health gains). All other screening options had marginal health gains at increased costs with discounted ICERs above £300,000/QALY (Table 6.2).

Alternatively, when considering only strategies testing for HEV by PCR (i.e., strategy A, strategy C, and no screening), testing patients with a raised ALT (strategy A) was cost-effective (£660/QALY) while testing all patients (strategy C) was cost-ineffective with an ICER of $£ 1784$ 000/QALY (Table 6.3).
Table 6.2 Incremental cost-effectiveness for all HEV screening strategies

Strategy	Annual screen assay	Total lifetime cost per patient	Total LY per patient	Total QALYs per patient	Incremental lifetime costs per patient	Incremental LY gained per patient	Incremental QALYs gained per patient	ICER (£) per life year	ICER (£) per QALY
costs and benefits discounted (at 3.5\%):									
-	No screening	$£ 201$	14.06355	10.72660	-	-	-	dominated	dominated
D	HEV-Ag [if ALT > ULN]] $£ 140$	14.08040	10.74354	- £ 61	0.016851	0.016939	cost-saving	cost-saving
C	PCR [if ALT > ULN]	£ 212	14.08064	10.74377	$£ 72$	0.000235	0.000233	£ 308000	£ 311000
B	HEV-Ag [ALL]] $£ 289$	14.08079	10.74393	£ 77	0.000154	0.000152	$£ 499000$	$£ 505000$
A	PCR [ALL]] $£ 879$	14.08102	10.74415	$£ 590$	0.000224	0.000222	$£ 2630000$	£ 2660000
costs and benefits undiscounted (0.0\%):									
-	No screening	£ 417	21.31170	16.25228	-	-	-	dominated	dominated
D	HEV-Ag [if ALT > ULN]] $£ 242$	21.35427	16.29312	-£ 175	0.042578	0.040832	cost-saving	cost-saving
C	PCR [if ALT > ULN]] $£ 348$	21.35484	16.29365	£ 106	0.000562	0.000530	£ 189000	$£ 201000$
B	HEV-Ag [ALL]	£ 476	21.35520	16.29399	£ 128	0.000367	0.000345	£ 348000	£ 370000
A	PCR [ALL]	1 1400	21.35574	16.29449	£ 924	0.000534	0.000503	£1729000	£1836000

Incremental cost-effectiveness results for all HEV screening strategies (A-D) in the base-case analysis. Not fixing the no-screening option as
baseline reference would not change results as 'no screening' is absolutely dominated by strategy D i.e. keeping it in the first row.
Abbreviations: ALT, alanine aminotransferase; HEV-Ag, hepatitis E virus antigen; ICER, incremental cost-effectiveness ratio; LY, life years;
QALY, quality adjusted life year; ULN, upper limit of normal.
Table 6.3 Incremental cost-effectiveness for HEV screening using PCR only

Strategy	Annual screen assay	Total lifetime cost per patient	Total LY per patient	Total QALYs per patient	Incremental lifetime costs per patient	Incremental LY gained per patient	Incremental QALYs gained per patient	ICER (£) per life year	ICER (£) per QALY
costs and benefits discounted (at 3.5\%):									
-	No screening	£ 201	14.06355	10.72660	-	-	-	-	-
C	PCR [if ALT > ULN]	$£ 212$	14.08064	10.74377	$£ 11$	0.017086	0.017172	$£ 663$	$£ 660$
A	PCR [ALL]	$£ 879$	14.08102	10.74415	£666	0.000378	0.000374	£1765000	£1784000
costs and benefits undiscounted (0.0%):									
-	No screening	$£ 417$	21.31170	16.25228	-	-	-	dominated	dominated
C	PCR [if ALT > ULN]	£ 348	21.35484	16.29365	- £ 69	0.043140	0.041361	cost-saving	cost-saving
A	PCR [ALL]	£ 1400	21.35574	16.29449	£ 1051	0.000901	0.000848	£1167000	$£ 1239000$
Incremental cost-effectiveness results for HEV screening strategies when using only PCR-based testing.									
Abbreviations: ALT, alanine aminotransferase; ICER, increm QALY, quality adjusted life year; ULN, upper limit of normal.									

6.2.3 Deterministic sensitivity analysis (DSA)

In the DSA, of the 47 parameters tested by changing them individually to 80% and 120% of the base-case value, only three parameters changed the net benefit by more than 5\%; in increasing order these were the mortality rate of a SOT patient, age at transplantation, and the HRQoL of SOT patients (Figure 6.2). The ranking of the optimal strategy was unchanged by changing the parameters in the DSA and also robust against setting all parameter values simultaneously to the worst level (data not shown).
Figure 6.2 Summary results of deterministic sensitivity analysis

$\begin{array}{ccccc}-25.0 \% & -15.0 \% & -5.0 \% & 5.0 \% & 15.0 \% \\ & & 25.0 \%\end{array}$ $\%$ change from base-case valu
쳌

- Base-case value $+20 \%$
239
Legend for figure 6.2:
Of 47 parameters tested, the top five parameters are shown which affected the net health benefit outcome the most when varied to 80% or
120% of the base-case value in the following cohorts: testing all by PCR (A), testing all by HEV-Ag (B), testing those with an abnormal ALT by PCR (C) or HEV-Ag (D), or no screening (E).
Abbreviations: HEV-Ag, hepatitis E virus antigen; HRQoL, health-related quality-of-life score; PCR, polymerase chain reaction; SOT, solid organ transplant.

6.2.4 Scenario analyses

Of the 15 performed scenario analyses, of specific interest are the annual attack rate of HEV, the probability of a SOT recipient developing persistent HEV infection, the annual rate of developing cirrhosis in persistent HEV infection, the probability of diagnosing HEV in the absence of screening, and the costs of testing (using PCR or HEV-Ag ELISA).

If the annual attack rate of HEV fell to as low as 0.06%, approximately a quarter of the base-case value, then only restricted testing by PCR (strategy C) or HEVAg (strategy D) generated a higher net benefit for each patient than not screening. However, HEV screening by any method no longer generated a higher net QALY gain when the annual attack rate falls to 0.01%. All screening options generated a higher net benefit than no screening if the annual attack rate rises above 0.4% (Figure 6.3).

If the probability of an HEV infected SOT recipient developing a persistent infection is actually 30% or lower then only restricted testing by PCR (strategy C) or HEV-Ag (strategy D) generated a higher net benefit for each patient than not screening. If it is actually lower still, at 10%, then only restricted testing by HEVAg generated a higher net benefit than not screening (Figure 6.4). If the annual rate of developing cirrhosis amongst HEV-infected transplant recipients is lower than in the base-case, a restricted screening programme of those with an abnormal ALT (strategies C and D) will give the highest net benefit until it is as low as 2% (Figure 6.5). Higher rates than used in the base-case did not change the base-case results.

If the probability of diagnosing HEV infections in the absence of a screening programme was increased from the base-case value of 10% to 50% or 75%, restricted testing of patients with an abnormal ALT by either PCR (strategy C) or HEV-Ag (strategy D) still generated a higher net benefit than no screening, respectively (Figure 6.6).

Finally, if the cost of PCR testing fell to $£ 15$ or below, screening patients with an abnormal ALT (strategy C) would be expected to provide the highest net benefit per patient (Figure 6.7).

A further nine scenario analyses are presented in Appendix 3.2-3.10 exploring varying the age at transplantation, the mortality rate of a SOT patient, the HRQoL score for a SOT patient, the discounting rate of costs and utilities, the specificity of HEV-Ag testing, the healthcare costs of treating and monitoring a case of persistent HEV infection, the mortality rate of a patient with compensated cirrhosis, the mortality rate of a patient with decompensated cirrhosis and the probability an HEV-infected patient has an abnormal ALT results.

These findings were found to be robust when similar quantitative results were generated from a separate structural scenario analysis which changed the structure of the model to allow patients with compensated cirrhosis to be diagnosed, treated and returned to an uninfected state (Table 6.4).

Figure 6.3 Altering the annual dietary risk of HEV

Comparison of the net health benefit per patient for each screening option at the threshold of $£ 20,000 /$ QALY when altering the annual attack rate of HEV infection. The vertical line represents the base-case value.
Abbreviations: ALT, alanine aminotransferase; HEV-Ag, hepatitis E virus antigen; PCR, polymerase chain reaction; ULN, upper limit of normal.

Figure 6.4 Altering the probability of developing persistent HEV infection

Comparison of the NHB per patient for each screening option at the threshold of $£ 20,000 /$ QALY when varying the probability of developing persistent infection in a SOT recipient. The vertical line represents the base-case value.

Abbreviations: ALT, alanine aminotransferase; HEV-Ag, hepatitis E virus antigen; NHB, net health benefit; PCR, polymerase chain reaction; SOT, solid organ transplant; ULN, upper limit of normal.

Figure 6.5 Altering the annual probability of developing cirrhosis

Comparison of the net health benefit per patient for each screening option at the threshold of $£ 20,000 /$ QALY when altering the annual probability of an HEV-infected SOT patient developing cirrhosis. The vertical line represents the base-case value.

Abbreviations: ALT, alanine aminotransferase; HEV-Ag, hepatitis E virus antigen; PCR, polymerase chain reaction; SOT, solid organ transplant; ULN, upper limit of normal.

Figure 6.6 Altering the probability of being diagnosed in the absence of HEV screening

Comparison of the net health benefit per patient for each screening option at the threshold of $£ 20,000 /$ QALY when altering the probability a patient is diagnosed with HEV without systematic screening. The vertical line represents the base-case value.

Abbreviations: ALT, alanine aminotransferase; HEV-Ag, hepatitis E virus antigen; PCR, polymerase chain reaction; ULN, upper limit of normal.

Figure 6.7 Altering the costs of HEV testing

10.75 10.74
10.73
10.72
10.71
10.70
10.69
10.68
10.67
10.66
10.65

Comparison of the NHB per patient for each screening option at the threshold of $£ 20,000 /$ QALY when varying the assay costs of (a) HEV
PCR testing or (b) HEV-Ag testing. The vertical lines represent the base-case values.
Abbreviations: Ag, hepatitis e virus antigen; ALT, alanine aminotransferase; HEV, hepatitis E virus; NHB, net health benefit; PCR, polymerase
chain reaction; ULN, upper limit of normal.
Table 6.4: Incremental cost-effectiveness of HEV screening using alternative model
$\left.\begin{array}{crccccccccc}\hline \text { Strategy } & \begin{array}{c}\text { Annual screen } \\ \text { assay }\end{array} & \begin{array}{c}\text { Total } \\ \text { lifetime } \\ \text { cost per } \\ \text { patient }\end{array} & \begin{array}{c}\text { Total LY } \\ \text { per } \\ \text { patient }\end{array} & \begin{array}{c}\text { Total } \\ \text { QALYs } \\ \text { per } \\ \text { patient }\end{array} & \begin{array}{c}\text { Increment } \\ \text { al lifetime } \\ \text { costs per } \\ \text { patient }\end{array} & \begin{array}{c}\text { Incremental } \\ \text { LY gained } \\ \text { per patient }\end{array} & \begin{array}{c}\text { Incremental } \\ \text { QALY }\end{array} & \begin{array}{c}\text { ICER (£) } \\ \text { per life } \\ \text { patient }\end{array} & \begin{array}{c}\text { ICER (£) } \\ \text { per QALY }\end{array} \\ \text { year }\end{array}\right]$ An alternative model was built shown in which differed in that patients with persistent HEV infection in the compensated cirrhosis state could be screened, diagnosed and treated with identical diagnostic and treatment efficacy as compared with patients with persistent HEV infection without cirrhosis (Figure 2.1). The incremental cost-effectiveness analysis of the base-case results are presented above, with slightly lower
costs and slightly higher QALY gains, leading to similar qualitative conclusions as the main analysis (Table 6.2).

6.2.5 Probabilistic sensitivity analysis

The probabilistic sensitivity analysis, incorporating the uncertainty around the parameters inputs, demonstrated similar results to the base-case results (see Appendix 3.1
for graphical representation of ICER values are for each of the 5000 simulations for each screening strategy).

At a willingness-to-pay of $£ 0 /$ QALY, i.e. if the NHS was unwilling to pay anything extra for any QALYs gained, adopting a systematic screening programme (using any strategy) had a probability of being cost-effective of 47.2% compared with no screening; which increased to 70.8% at $£ 10,000 /$ QALY, 77.9% at $£ 20,000 /$ QALY and up to 81.5% at $£ 30,000 /$ QALY (Figure 6.8 and 6.9).

The cumulative rank probability unambiguously preferred screening patients with an abnormal ALT for HEV-Ag at £20,000/QALY (Figure 6.10), and it offered the highest mean NHB up to $£ 50,000 /$ QALY among the five alternatives analysed (cost effectiveness acceptability frontier - Figure 6.11).
Figure 6.8 Cost-effectiveness acceptability curve for HEV screening by any strategy
Cost-effectiveness acceptability curve comparing screening by any strategy (A-D) with no screening at willingness-to-pay threshold per
QALY ranging from $£ 0$ to $£ 50,000$.
Abbreviations: Ag, hepatitis E virus antigen; ALT, alanine aminotransferase; HEV , hepatitis E virus; PCR , polymerase chain reaction;
QALY, quality-adjusted life year; ULN, upper limit of normal.
250
Figure 6.9 Cost-effectiveness acceptability curve for all HEV screening strategies considered (A-D)
Cost-effectiveness acceptability curve comparing all available screening options (A-D) and no screening at willingness-to-pay threshold
per QALY ranging from $£ 0$ to $£ 50,000$.
Abbreviations: Ag, hepatitis E virus antigen; ALT, alanine aminotransferase; HEV, hepatitis E virus; PCR, polymerase chain reaction;
QALY, quality-adjusted life year; ULN, upper limit of normal.
Figure 6.10 Cumulative rank probability of HEV screening being cost-effective

Figure 6.11 Cost-effectiveness acceptability frontier

Cost-effectiveness acceptability frontier showing the probability of cost-effectiveness of only the optimal option at each willingness-to-
 D) is optimal at all thresholds tested.
Abbreviations: Ag, hepatitis E virus antigen; ALT, alanine aminotransferase; HEV, hepatitis E virus; PCR, polymerase chain reaction; QALY, quality-adjusted life year; ULN, upper limit of normal.

6.3 Discussion

This chapter aimed to determine the cost-effectiveness of four possible screening strategies for HEV infection amongst solid organ transplant recipients in the UK. Analysis was restricted to SOT patients as they are a clearly defined group, with regular healthcare contact and known to be high risk for persistent HEV infection. To our knowledge, this is the first health-economic evaluation for screening of HEV in transplant recipients. Previous cost-effectiveness analyses for HEV focussed on screening of blood donations to protect vulnerable transfusion recipients in the Netherlands [103], and on a different intervention for different HEV genotypes, such as targeted immunisation of pregnant women or the elderly population in China [326, 327].

This model predicts that HEV screening would benefit the UK transplant population by preventing seven cases of cirrhosis and more than three deaths related to HEVinduced cirrhosis over the lifetime of every 1,000 SOT patients. However, the QALY gains per patient as compared to no screening were modest, and only testing those patients who have an abnormal ALT can be considered cost-effective (and, in fact, testing by HEV-Ag detection is cost-saving over the current practice of no screening). HEV screening of SOT patients by any of the methods considered had more than a 70% probability of being cost-effective above a willingness-to-pay threshold of $£ 10,000 /$ QALY. Annual testing by HEV-Ag detection in those patients who have an abnormal ALT is predicted to lead to the highest net benefit across the entire range of £0-£50,000/QALY.

Impact on policy

Despite universal screening of blood and tissue donors in the UK, the dominant residual dietary risk of HEV infection remains [102]. If systematic screening for HEV were implemented in SOT recipients, it would be predicted to identify early infections and provide the opportunity for treatment before substantial liver disease can evolve. In the case of HEV, the timing of screening is critical since cirrhosis can develop over a relatively short time in SOT recipients [207].

HEV-Ag detection is predicted to be the most cost-effective option; however, local decisions on the choice of screening assay may be influenced by practical considerations, including laboratory workflows which may be more suited to implementing an additional PCR to their testing repertoire rather than a manual platebased ELISA. If PCR testing is available locally, then testing patients with an abnormal ALT is still expected to be cost-effective (Table 6.3).

A critical assumption of the model is that screening identifies more HEV infections than without screening. Results from Chapter 4 showed that only 10% of HEV infections were clinically diagnosed in transplant recipients. However, this was a single-centre study and in areas of higher awareness of HEV this assumption may be incorrect. However, the scenario analysis demonstrated that even if up to 50% of persistent HEV infections are clinically diagnosed in the absence of screening, selective testing of those with an abnormal ALT is still providing a higher net benefit than no screening at £20,000/QALY.

The results of this analysis can be regarded as conservative with regards to the assay costs, in particular for PCR, as reference laboratory costs were used as a proxy for the costs of PCR testing. However, with regional laboratories introducing commercial

HEV PCR assays lower costs may be negotiated. Furthermore, only testing of individual patient samples for HEV was considered, yet the high sensitivity of nucleic acid detection allows HEV PCR testing to be undertaken on pooled samples. This is commonly done in the blood transfusion service to reduce costs significantly, but is not conventional practice in NHS laboratories. The number of samples contributing to each pool can be optimised by consideration of the expected prevalence of infection to restrict the numbers of pools which will require individual resolution. In this model HEV-Ag reactive results were confirmed by PCR testing. However, in Chapter 3 the development of a neutralisation assay proved that the specificity of a reactive HEV-Ag ELISA could be confirmed by less costly methods than PCR, but this is not commercially available currently.

Lastly, the impact of a HEV vaccine becoming licensed for the UK market is unknown. So far, two vaccine candidates have reached advanced phases of clinical research, and one has been marketed in China [328]. However, it is unclear when a vaccine will become more widely available internationally, and whether it will demonstrate efficacy in preventing persistent HEV infection in transplant patients.

Strengths and limitations

This is the first cost-effectiveness analysis of screening for HEV in SOT patients and so this led to a level of uncertainty regarding the accuracy of parameter inputs, many of which were derived from small case series. As a result, extensive uncertainty analyses were performed which showed the qualitative conclusions to be robust, and many scenarios were explored which could be of future relevance in other contexts or countries.

The risk of HEV acquisition varies markedly over time and depends upon animal husbandry practices, importation patterns of pork meat, individual dietary habits and country-specific policies on screening blood, tissue and organ donors for HEV. The risk of dietary acquisition of HEV was based on blood donors in England in the basecase, which may not reflect the risk in SOT recipients adequately due to generic dietary advice given to this cohort [22, 102]. If annual attack rates dropped significantly to as low as 0.04%, as previously recorded in Scotland [27], the only strategy that generated a higher net health benefit than no screening at $£ 20,000 /$ QALY was screening patients with a raised ALT by HEV-Ag detection. Therefore, if screening were implemented it would be important to periodically monitor population HEV incidence to re-evaluate cost-effectiveness as the dietary risk of HEV changes.

An annual screen was considered as a pragmatic compromise given the potential ongoing dietary acquisition of HEV and clinical follow-up schedules of SOT recipients. More frequent screening may also be cost-effective for the NHS, but the limited granularity regarding the natural history of liver disease during HEV infection in transplant cohorts prevented assessment of more frequent testing schedules.

The model did not include intermediate stages of liver fibrosis prior to the development of cirrhosis due to limited data to inform this. Therefore, clinically relevant fibrosis, which may occur prior to diagnosis, was not explicitly accounted for. In contrast to modelling for HCV, the impact of HEV screening on secondary human cases was not considered since direct human-to-human transmission rarely occurs with G3 HEV. The model also assumed that SOT patients were at risk of HEV re-infection after clearance of a primary infection [256]. Whilst re-infections are known to occur, this assumption may not be true for patients who have partial immune reconstitution following the modulation of iatrogenic immunosuppression or if they alter their dietary habits.

The main problem faced in building the model was finding and deriving accurate figures for transition probabilities, healthcare costs and utilities to input into the model structure. There are few studies which cast light on the long-term consequences of HEV infection; available studies include small numbers of patients leading to imprecision in estimating complication rates. For example, the probability of developing persistent HEV infection, the annual probability of developing cirrhosis and the risk of decompensation and the requirement for liver transplantation were derived from relatively small cases series of less than 100 patients reported by Kamar et al [207, 329]. This is reflective of HEV having been underestimated in developed countries [330]. This meant certain parameters were derived from studies outside the context of organ transplantation and from other viral hepatitides, such as HCV, including health-related quality-of-life scores for patients undergoing treatment. However, findings were robust to changes of these parameters explored in sensitivity analysis. Similarly, all neurological complications were costed as for Guillain-Barré syndrome to simplify the analysis and, given that such neurological outcomes in transplant recipients are rare, yet in reality neurological complications of persistent HEV infection are more heterogeneous and may also include neuralgic amyotrophy or encephalitis [331]. Of note is that in contrast to established models for hepatitis C virus (HCV), a health state of hepatocellular carcinoma (HCC) was not included in the model given that an association between HCC and HEV infection has not been established, with only one published case of HCC complicating HEV-related cirrhosis [215, 332]. Lastly, in line with a few previous studies on HEV this model did not include a utility decrement for the health state of asymptomatic infection due to the absence of such information in HEV. These problems of data availability highlight the need for further research in HEV infections.

This analysis was conducted from the perspective of the UK NHS. Therefore, resources were valued using national NHS list prices and reference costs and expressed in pound sterling (GBP, £) [258-260]. Up-to-date UK-specific costs were used when available with 2017 as the base year; in other circumstances an inflation index up to 2017 was applied [333]. Due to this bias and because HEV attack rates vary markedly geographically the primary findings of the main analysis are not necessarily directly applicable in other geographic locales.

6.4 Conclusions

- Implementing a screening programme for HEV infection in SOT recipients has a very high probability of being cost-effective in the UK.
- Limiting testing to those SOT recipients who present an abnormal ALT would be optimal from the NHS perspective.

7 Evolution of HEV quasispecies during persistent infection

7.1 Introduction

HEV is a single-stranded positive-sense RNA virus which shows considerable diversity within genotypes, particularly within G3 and G4. The HEV G3 was initially classified into 10 subtypes a-j, now divided into three major clades known as clade 1 (subtypes efg), clade 2 (subtypes abchij) and a third clade (subtype ra) [287, 334-336]. The infecting subtype of G3 HEV may impact upon clinical outcome; in blood donors, clade 1 infections have been found to lead to more symptoms with higher viral loads than clade 2 infections [41]. HEV infections consist of a mixture of heterogeneous viruses known as quasispecies and the diversity found within a quasispecies may also be important in determining outcomes [337]. An increased heterogeneity in the M domain of ORF2 correlated with a higher risk of developing persistent infection in one study of solid organ transplant recipients [338].

In persistent HEV infection, ribavirin is commonly administered to patients to achieve viral clearance [223]. Ribavirin is a synthetic broad-spectrum antiviral, however the mechanism of action against HEV replication is not well characterised. In norovirus models, ribavirin increases quasispecies diversity in vitro and in a recent study in persistent HEV infection was found to increase viral heterogeneity in all open reading frames in a reversible manner [339]. Ribavirin-mediated increase in diversity seen in RNA viruses appears to be due to non-specific incorporation of the drug into the viral genome, leading to so-called error catastrophe and lethal mutagenesis [340]. Nevertheless, specific mutations are reported in the RNA-dependent RNA-polymerase
region associated with failure of ribavirin treatment, but which do not behave as drug resistance mutations in isolation. For instances, the G1634R mutation has been found in a number of non-responders and in vitro increases the replicative capacity of HEV, but is insufficient in isolation to lead to ribavirin resistance [245, 341]. Cases of nonresponse are rare and limited to case reports presently but lead to challenging treatment decisions [245, 247, 341, 342]. This chapter aims:

1. to investigate the evolution of mutations during persistent HEV infections under antiviral drug treatment.
2. to investigate the evolution of mutations during persistent HEV infections in untreated patients.
3. to characterise quasispecies diversity during persistent HEV infections in treated and untreated patients.

7.2 Results

7.2.1 Patient Characteristics

Eighteen patients with HEV G3 viraemia and defined virological outcomes were selected (summarised in Table 7.1). The median age of the cohort was 56 years (range 21-84 years) and 11 patients were male. One patient cleared HEV spontaneously (Patient A), two patients remain untreated (Patient B and C), two patients achieved a sustained virological response (SVR) following standard first-line treatment (Patient D and E) and 11 patients suffered virological rebound/relapse or breakthrough (Patient F-P). One patient developed apparent ribavirin resistance following relapse (Patient Q) and a second had a very poor response to a primary course of ribavirin (Patient R). Examples of two patients harbouring HEV phenotypically resistant to ribavirin therapy are shown in Figure 7.1; the virological profiles for all other patients, including the timing of all samples sent for HEV Illumina sequencing, can be viewed in Appendix A5.1.

7.2.2 Quality of sequencing data

Of 68 samples from 18 individuals, Illumina sequencing with HEV reference genome mapping successfully generated consensus sequence data covering over 70% of the genome for 47 samples. For 40 samples, coverage exceeded 90%. There was a strong correlation observed between the log HEV viral load in the primary sample and the percentage coverage achieved by consensus data (Pearson's correlation 0.8043 ($p<0.001$), Figure 7.2).

Of the 21 samples with consensus data covering less than 70% of the HEV genome, 16 of the prepared libraries were selected for repeat and underwent double enrichment. In only three cases was the HEV genome coverage higher following double enrichment compared to single enrichment, but none exceeded 70% coverage (Figure 7.3). Where viral loads were low in relapse samples, reference mapping was attempted using the consensus HEV sequence from an earlier sample derived from the same patient, however this did not yield higher genome coverage (data not shown).

Of the samples achieving more than 70% HEV genome coverage, six plasma samples were taken while on ribavirin therapy and eight samples were taken following an unsuccessful course of ribavirin therapy. The quality reports, genome coverage and full consensus sequence data for each sample can be found in Appendix A5.4.
Table 7.1 Characteristics of patients analysed by Illumina WGS
\(\left.$$
\begin{array}{ccccccccc}\hline \text { Pt } & \begin{array}{c}\text { Underlying } \\
\text { disease }\end{array} & \text { Sex } & \begin{array}{c}\text { Age, } \\
\mathbf{y}\end{array} & \begin{array}{c}\mathbf{1}^{\text {st line }} \\
\text { treatment }\end{array} & \text { Virological outcome } & \begin{array}{c}\text { Samples } \\
\text { sequenced } \\
\text { total/ }\end{array}
$$

pre-treatment/

on or post

treatment\end{array}\right)\)| Time-span
 of
 sequenced
 samples, \mathbf{m} |
| :---: |

Legend for Table 7.1:
${ }^{\text {a }}$ With HEV genome coverage $>70 \%$.
${ }^{\mathrm{b}}$ Patient undergoing regular monitoring without treatment.
${ }^{c}$ Patient had response to a second course of ribavirin.
Abbreviations: CLL, chronic lymphocytic leukaemia; HIV, human immunodeficiency virus; HSCT, haematopoietic stem cell transplant; m, months; NA, not applicable; PEG-IFN, pegylated interferon; Pt, patient; RBV, ribavirin; SOT, solid organ transplant; SVR, sustained virological response;

[^0]Figure 7.1 Virological profiles of patients demonstrating ribavirin resistance

Virological profiles from serum samples of two patients infected with HEV with apparent phenotypic resistance to ribavirin are presented.
Open circles represent samples successfully sequenced and open triangles represent samples unsuccessfully sequenced.

Abbreviations: IFN, pegylated interferon; RBV, ribavirin; VL, viral load.

Figure 7.2 Correlation of viral load and genome coverage

Correlation of viral load in primary sample and percentage of genome covered by Illumina whole genome sequencing.earson's correlation 0.8043 ($p<0.001$).
Abbreviations: IU, international units; ml, millilitres.

Figure 7.3 Single and double probe target enrichment of HEV samples

Genome coverage by Illumina sequencing of samples following single and double probe target enrichment of HEV samples with viral loads lower than 5 log IU/ml.
Abbreviations: IU, international units.

7.1.1 HEV Polymerase region (RdRp) analysis

7.1.1.1 HEV Polymerase mutations detected in baseline samples

We looked for specific mutations in HEV RNA polymerase region of ORF1 that have been described in association with ribavirin treatment failure (Y1320H, K1383N, D1384G, K1398R, V1479I, Y1587F and G1634R/K) and found these mutations in the baseline consensus sequences of five patients (Table 7.2) [245-247]. These were detected in the baseline samples of patient E (V1479I), patient I (V1479I, G1634K), patient M (V1479I, G1634R), patient $P(V 1479 I)$ and patient $R(V 1479 I)$. Only one of these five patients achieved a sustained virological response; this patient was treated with pegylated interferon without ribavirin (Patient E, Table 7.1/Table 7.2).

7.1.1.2 Evolution of RdRp mutations after ribavirin treatment

In two patients several of the putative RdRp mutations associated with ribavirin treatment failure developed after initiating ribavirin treatment (Table 7.2). Patient Q had a strong primary response to ribavirin treatment, but relapsed and developed multiple mutations associated with treatment failure which appear to become fixed as the dominant amino acid in the viral quasispecies during re-treatment (V1305I, K1383N, D1384G, V1479I and G1634R) (Figure 7.4). In contrast other mutations developed in the RdRp region leading to amino acid changes (V1210M, L1227F, N1372S, V1479I, V1499I, F1543L, K1544R, W1614R, T1636M, A1666T) which were subsequently lost and did not appear to be fixed (Figure 7.5). Patient I developed the K1383N mutation in both samples following relapse but was not re-treated during the
follow-up of the study. Two other mutations developed in the initial relapse sample (R1318K and A1598V) but were subsequently lost (Figure 7.6).

7.2.2.1 Evolution of RdRp mutations in absence of ribavirin treatment

In three patients, mutations developed in the RdRp region of HEV in the absence of ribavirin therapy (Table 7.2). Patient C developed two mutations (V1285A and V1305I) which were subsequently lost. Patient E developed five mutations (V1305I, T1317A, V1365I, S1372N and S1454C) which appeared over a period of ten years of infection. Finally, patient F developed two mutations (P1453S and V1479I), one of which has been associated with ribavirin failure, prior to ribavirin initiation.
Table 7.2 Amino acid polymorphisms in RdRp of patient samples

Pt	Virological outcome	Virus genotype	Baseline RdRp mutations ${ }^{\text {a }}$	RdRp mutations after initiation of RBV ${ }^{\text {a }}$	Other AA switches after initiation of RBV ${ }^{\text {a }}$	AA switches in absence of RBV ${ }^{\text {a }}$
A	spontaneous clearance	3 C	-	-	-	-
B	ongoing viraemia	3c	-	-	-	-
C	ongoing viraemia	3 c	-	-	-	V1285A V1305I
D	3/12 SVR	3 C	-	-	-	-
E	6/12 SVR	3 unassigned	V1479 ${ }^{\text {I }}$	-	-	V1305I T1317A V1365I S1372N S1454C
F	rebound	3 C	-	-	N1372S	P1453S V14791
G	rebound	3 C	-	-	-	-
H	rebound	3 C	-	D1384N*	11533 V	-
1	relapse	3 e	V14791 G1634K	K1383N D1384H*	R1318K A1598V	-
J	relapse	3 c	-	-	-	-
K	relapse	3c	-	-	Q1690H	-
L	relapse	3 C	-	-	E1329G I1533V	-
M	relapse	3 unassigned	V14791 G1634R	-	-	-
N	relapse	3 C	-	-	-	-
0	relapse	3 C	-	-	-	-
P	rebound	3 C	V14791 Y1320F*	-	-	-
Q	relapse	3c	-	K1383N D1384G V14791 G1634K/R	V1210M L1227F V1305I N1372S V1499A F1543L K1544R W1614R T1636M A1666T 	-
R	poor primary response	3c	V1479		-	

[^1]*Amino acid switch at loci where mutations associated with treatment failure are described but specific amino acid switch not reported previously. Abbreviations: AA, amino acid; m, months; NA, not applicable; Pt, patient; RdRp, RNA-dependent RNA-polymerase; RBV, ribavirin; SVR, sustained virological response.
Figure 7.4 Evolution of fixed RdRp mutations associated with treatment failure in patient Q

\boldsymbol{m}

Evolution of apparently fixed RdRp mutations associated with RBV treatment failure in patient Q

(A) Virological profile of patient Q where open circles represent samples successfully sequenced and open triangles represent samples not
 Q. Courses of ribavirin are noted as 1,2 and 3 . Loci are labelled above each histogram with the dominant amino acid in the baseline sample Analysed using HEV GLUE offline (Version 0.1.152, Copyright (C) 2018 The University of Glasgow). Quality control acceptance criteria: minimum q score of 30 and frequency percentage of amino acid at 5%. Loci only analysed with a depth of 10 or above were recorded. Abbreviations: RBV,

[^2]273
-
\therefore
3

Figure 7.5 Evolution of transient RdRp polymorphisms in patient Q

气占

Evolution of apparently transient RdRp polymorphisms in relation to ribavirin treatment in patient Q. Courses of ribavirin are noted as 1, 2 and 3 . Loci are labelled above each histogram with the dominant amino acid in the baseline sample.
Figure 7.6 Evolution of all RdRp mutations in patient I

Evolution of all RdRp polymorphisms before and following ribavirin treatment in patient I. Open circles represent samples successfully sequenced
and open triangles represent samples not sequenced successfully.
Abbreviations: RBV, ribavirin; RdRp, RNA-dependent RNA-polymerase.
275

7.2.2.2 Presence of RdRp mutations occurring in conserved regions

None of the mutations occurring in the absence of ribavirin therapy occurred in the recognised conserved motifs (I-VIII) of viral polymerases [343]. In contrast multiple mutations detected after the initiation of ribavirin therapy occurred in these conserved motifs; K1383N in motif I (patient I and Q), D1384N/H/G in motif I (patient H, I and Q), I1533V in motif V (patient H and L), F 1543 L in motif VI (patient Q) and K1544R (patient Q). No mutations were seen in the magnesium binding sequence (GDD) (motif VI) required for RdRp activity [344].
Figure 7.7 Location of RdRp mutations with or without drug pressure in conserved motifs

B
Location of amino acid switches occurring in the RdRp gene in 18 patients in the absence of ribavirin treatment (A) and with ribavirin treatment (B). Motifs I-VIII are shown which represent proposed conserved motifs found in the RdRp of positive-strand RNA viruses [343]. Mutations occurring within conserved motifs are highlighted in dashed rectangles.
Abbreviations: Pt, patient; RdRp, RNA-dependent RNA-polymerase.

7.2.2.3 Determination of frequency of RdRp mutations in published Genbank sequences

The proportion of published G3 HEV sequences in GenBank bearing the eight previously reported RdRp mutations, mutations occurring in conserved RdRp motifs and the V1305I mutation identified in the current study were investigated (Table 7.2). The V1479I was commonly found in certain subtypes; amongst 100% of subtypes $3 e$, $3 f$ and 3 g and 12.5% of 3 c sequences. The G 1634 R was found in 94% of 3 e sequences, 31% of 3 f sequences and the G1634K in 100% of 3 ra sequences. The other mutations were rarely found in previously published sequences.
Table 7.3 Frequency of HEV RdRp mutations in published sequences

HEV subgenotype and ancestor-constraining reference sequence											
		3 a	3b	3c	3 e	3 f	3 g	3h	3 i	3j	3 ra
Mutation Group	Polymerase mutation	AF082843	AP003430	FJ705359	AB248521	AB369687	AF455784	JQ013794	FJ998008	AY115488	FJ906895
	Y1320H	0/35	0/73	0/6	0/16	1/26	0/1	0/1	$0 / 2$	$0 / 1$	0/16
	K1383N	0/35	$0 / 73$	0/6	0/16	1/26	0/1	$0 / 1$	$0 / 2$	$0 / 1$	0/16
	D1384G	0/34	$0 / 73$	0/6	$0 / 16$	0/26	$0 / 1$	$0 / 1$	$0 / 2$	$0 / 1$	0/16
	K1398R	0/35	$0 / 73$	0/7	0/16	0/26	$0 / 1$	$0 / 1$	$0 / 2$	$0 / 1$	0/16
A	V1479I	1/110	1/76	11/88	63/63	97/97	4/4	$0 / 3$	$2 / 5$	$0 / 1$	16/16
	Y1587F	0/28	0/58	$0 / 7$	0/17	0/26	$0 / 1$	$0 / 1$	$0 / 3$	$0 / 1$	0/16
	G1634R	0/27	0/58	$0 / 7$	16/17	8/26	$0 / 1$	$0 / 1$	$0 / 3$	1/1	0/16
	G1634K	$0 / 27$	0/58	$0 / 7$	1/17	0/26	$0 / 1$	0/1	$0 / 3$	$0 / 1$	16/16
B	V1305I	0/26	0/57	0/6	0/16	0/26	0/1	0/1	0/2	0/1	0/16
	D1384H	0/34	$0 / 73$	0/6	0/16	0/26	0/1	0/1	$0 / 2$	$0 / 1$	0/16
	D1384N	0/34	$0 / 73$	0/6	0/16	0/26	0/1	$0 / 1$	$0 / 2$	$0 / 1$	0/16
C	11533 V	1/37	$0 / 74$	$0 / 7$	0/17	0/26	0/1	$0 / 1$	$0 / 3$	$0 / 1$	1/16
	F1543L	7/37	11/74	$0 / 7$	17/17	25/26	0/1	$0 / 1$	$0 / 3$	$0 / 1$	1/16
	K1544R	34/37	73/74	$0 / 7$	15/17	26/26	$0 / 1$	$0 / 1$	3/3	1/1	5/16

Frequency of HEV RdRp mutations in published sequences in GenBank. Mutations were selected on the basis that (A) they had been published in association with ribavirin failure or (B) there was apparent fixing during ribavirin failure in this study (V1305I) or (C) they occurred in conserved motifs. HEV GLUE off-line was used to interrogate GenBank published sequences as of August 2018. Any sequences containing the amino acid of interest was included.
Abbreviations: GT, genotype; RdRp, RNA-dependent RNA polymerase

7.2.3 HEV ORF2 analysis

Mutations also occurred in the ORF2 region both in the absence of ribavirin therapy and in the presence or after ribavirin therapy (Table 7.3). Most mutations occurred in the first 110 amino acids of ORF2 outside the shell, middle or protruding domain (Figure 7.8). There was a striking absence of mutations in the shell domain. Multiple mutations were detected occurring in the protruding domain where neutralisation epitopes are situated; patient B (N562D, T585A and T586A), patient E (F500L and I528T/V), patient F (C532Y), patient I (E448D and A467T), patient N (Y532H), patient Q (V600D) and patient R (F475L). These occurred irrespective of ribavirin treatment. Strikingly, a lot more mutations were observed in the ORF2 region of HEV viruses infecting patient Q, including the only mutations detected in the middle domain, illustrating a higher mutation frequency with this virus in a patient with extensive ribavirin treatment (Table 7.3).

Table 7.4 Amino acid polymorphisms in ORF2 of patient samples

Pt	Virological outcome	Virus genotype	ORF2 mutations after initiation of RBV ${ }^{\text {a }}$		ORF2 mutations in absence of RBV	
A	spontaneous clearance	3c	-		-	
B	ongoing viraemia	3 c			$\begin{aligned} & \text { N562D } \\ & \text { T585A } \end{aligned}$	T586A
C	ongoing viraemia	3 c			F626S	
D	3/12 SVR	3 c			-	
E	6/12 SVR	$\begin{gathered} 3 \\ \text { unassigned } \end{gathered}$			$\begin{aligned} & \text { C2R } \\ & \text { F10L } \\ & \text { L11F } \\ & \text { L13F } \\ & \text { S23G } \\ & \text { S36G } \\ & \text { S39G } \end{aligned}$	$\begin{aligned} & \text { T64A } \\ & \text { S70A } \\ & \text { S102L } \\ & \text { T105A } \\ & \text { F500L } \\ & 1528 \mathrm{~T} / \end{aligned}$
F	rebound	3c	$\begin{aligned} & \text { G36S } \\ & \text { P70A } \end{aligned}$	S102L	$\begin{aligned} & \text { G23S } \\ & \text { C532Y } \end{aligned}$	
G	rebound	3 c	-		-	
H	rebound	3c	L623F		-	
1	relapse	3 e	$\begin{aligned} & \text { G38S } \\ & \text { P95H } \end{aligned}$	$\begin{aligned} & \text { E448D } \\ & \text { A467T } \end{aligned}$	-	
J	relapse	3c.	-		-	
K	relapse	3c.	F623Y		-	
L	relapse	3c	$\begin{aligned} & \text { N562D } \\ & \text { V5951 } \end{aligned}$	$\begin{aligned} & \text { T6141 } \\ & \text { F660V } \end{aligned}$	-	
M	relapse	$\begin{gathered} 3 \\ \text { unassigned } \\ \hline \end{gathered}$	-		-	
N	relapse	3c	$\begin{aligned} & \text { P25S } \\ & \text { Y523H } \end{aligned}$		-	
0	relapse	3 c	-			
P	rebound	3 c	-		T1131	
Q	relapse ${ }^{\text {c }}$	3c	R2C F11L L13F G23S G36S A64T S70A P94S	$\begin{aligned} & \text { V97A } \\ & \text { S102L } \\ & \text { V105A } \\ & \text { T358M } \\ & \text { A426T } \\ & \text { V600D } \\ & \text { M652V } \\ & \text { F660S } \end{aligned}$		
R	poor primary response	3 c			$\begin{aligned} & \text { C2R } \\ & \text { L11F } \\ & \text { S23G } \end{aligned}$	S36G A70S F475L

Amino acid changes in the HEV ORF2 region during HEV infection.
${ }^{\text {a }}$ Reported only if polymorphism was dominant amino-acid and depth was >10 at site.
Abbreviations: ORF2, open reading frame 2; Pt, patient; RBV, ribavirin; SVR, sustained virological response.
Figure 7.8 Site of ORF2 mutations in relation to defined domains and T-cell epitopes

Location of amino acid switches occurring in the ORF2 of HEV (A) in the absence of ribavirin treatment and (B) with ribavirin treatment. Marked regions include the (S) shell domain, (M) middle domain and the (P) protruding domain [344]. Regions (1)(2) and (3) represent immunodominant
T-cell epitopes [345]. The dotted line represents a putative neutralisation region [346].

7.1.2 Quasispecies diversity analysis

Seven patients (B, C, I, K, N, Q and R) were selected, who had three or more samples achieving over 70% HEV genome coverage, to assess diversity over time in three regions, namely RdRp, ORF2 and ORF3.

Initially samples were assessed for depth of coverage in these three regions and only loci with a depth of 100 or more were included in the analysis. This revealed uneven read depth in a number of samples within the regions of interest. For example, between $4-40 \%$ of the HEV RdRp region in the four samples from patient B were excluded due to depth of less than 100. The variation in depth led to artefacts in the diversity of the quasispecies, potentially leading to misleading results, therefore this analysis was not pursued further.

7.3 Discussion

The current study aimed to investigate the evolution of mutations during persistent HEV infections under antiviral drug pressure and in the absence of drug pressure, and to characterise quasispecies diversity during persistent HEV infections in treated and untreated patients. Ribavirin is the recommended antiviral for the treatment of persistent HEV infections, based on observational data of efficacy [223]. However, its mode of action is not fully understood and may have multiple antiviral effects, including depletion of intracellular GTP by inhibiting host inosine-5'-monophosphate dehydrogenase, the disruption of 7-methyl guanosine mRNA capping by inhibition of eukaryote initiation factor 4E or the modulation of the T-helper cell 1 response to HEV [229, 347, 348]. The metabolite ribavirin triphosphate may also have a direct antiviral effect by inhibiting the RNA polymerase, or as a mutagen leading to lethal mutagenesis [349].

Several case reports of ribavirin monotherapy treatment failures describe the emergence of a number of mutations in the HEV RdRp region [246, 247, 341]. Among the 18 patients in this study, multiple mutations in the $R d R p$ were observed both with and without ribavirin treatment. No mutations were observed in any of the eight conserved motifs in the absence of ribavirin therapy [343]. However, several mutations occurred in these conserved motifs (K1383N, D1384N/H/G, I1533V, F1543L and K1544R) during or following ribavirin treatment, suggesting they may have functional importance under ribavirin pressure. Many were transiently detected; in the case of patient Q these transient mutations appeared to differ during discrete ribavirin treatment courses. This favours the randomness theory of ribavirin mutagenesis in which the mutation survives if doesn't affect replication fitness and has some
advantage over wild-type in presence of RBV, but then disappears after treatment is withdrawn. In contrast, we also observed that some mutations such as the K1383N (patient I and Q), D1384G (Patient Q) and I1533V (Patient L) appear to become fixed under ribavirin treatment. Both the K1383N and D1384G are recognised mutations associated with treatment failure; the I1533V is not. However, following relapse, patient L responded well to a second course of ribavirin [247, 341].

In the case of patient I the K1383N mutation was detected during relapse and did not revert to wild-type even without ribavirin selective pressure for six months. This was unexpected since ribavirin-induced mutagenesis is considered reversible when the treatment is stopped [246]. Even more surprising is this particular highly conserved lysine residue in motif I (F1 motif), important for GTP binding of the RdRp, results in abrogated viral fitness in a G3 replicon model in vitro [247]. In patient I, the K1383N occurred on a backbone of a potential compensatory residue (G1634K); partial restoration of viral fitness is described with G1634R in the same replicon system [247]. Nevertheless, the HEV viral load set-point post-relapse was established at 15 -fold lower when compared with pre-treatment samples without the K1383N mutation, which may be due to the fitness cost of this residue change.

Two patients (patient Q and R) harboured HEV phenotypically resistant to ribavirin treatment, both of whom harboured G3c subtypes viruses. Patient R was infected with a virus containing the V14791 mutation which persisted in all subsequent samples. This mutation was described in one patient with treatment failure in conjunction with other mutations, however it is also found as a common variant (12.5\%) in published subtype 3 c sequences and 100% of clade 1 sequences (subtypes efg) [246]. Due to low viral loads, sufficient HEV reads could not be recovered from the sample during ribavirin therapy to assess for further RdRp mutations. The second patient (Patient Q)
demonstrated a number of mutations in the infecting dominant quasispecies (V1305I, K1383N, D1384G and G1634R) which apparently became fixed during relapse and the multiple ribavirin treatment courses (Figure 7.4). Only the D1384G could be detected as a minor variant in the baseline sample. Of these, only the V1305I has not been described in patients with treatment failure. The implications of this are unclear; it is not found in any published sequences to date and is found upstream of the conserved motifs in the RdRp (Table 7.2).

Indeed, the significance of many of the published putative resistance mutations remain unclear; both the D1384G and G1634R are described as evolving in patients with apparent phenotypic resistance, but how they contribute and in particular how the mutations interact is not known. No crystal structure is available for the HEV RdRp, so predicting the importance of specific residues changes is not easy. The G1634R leads to enhanced HEV replication in vitro but no specific resistance to ribavirin was observed [245]. The presence of the mutation was higher in solid organ transplant patients not achieving a SVR, but only marginally, and had no impact on the retreatment success with a second course of ribavirin [245].

Due to time constraints analysis of the RdRp became the main focus of this study. However, analysis of the ORF2 mutations was also undertaken and revealed most non-synonymous mutations occurred in the first 110 amino acids of ORF2. This region upstream of the shell domain is the region of overlap with ORF3 and includes a newly identified signal sequence important in determining the fate of ORF2 as a secreted protein or in forming the nucleocapsid protein for intact virions [141, 350]. If time allowed analysis would have been extended to ORF3 and other regions of ORF1. Of note, analysis of the hypervariable region was excluded because of the challenges
with genome reconstruction with Illumina short read sequences and concerns of data bias with reference mapping.

It was not possible to achieve the second aim of this chapter of characterising quasipecies diversity during persistent HEV due to read depth variation. The inconsistent depth in coverage led to large areas of sequence being discarded, ultimately leading to a very truncated dataset, therefore this aim was not taken further. Previous studies highlight the potential importance of viral heterogeneity on the probability of developing persistent HEV infection in solid organ transplants and the progression of chronic liver disease to fibrosis, however HEV quasispecies evolution during persistent viraemia has only been studied by one research group [246, 338]. In that study, viral population heterogeneity did not vary over time significantly in untreated patients, but heterogeneity increased in all ORFs with ribavirin therapy [246]. We were interested in investigating this in our cohort, and a possible future analysis approach would be using newer bioinformatics software such as PhyloScanner, a powerful tool to quantify within-host viral diversity and assess longitudinal viral evolution [351]. It is also an efficient and accurate tool to identify and remove probable contaminating sequences, crucial in such studies.

Our study included a unique set of patients in which an ambitious aim was set. However, there were several challenges which limited the ability to achieve the aims effectively. This was an observational study constrained by small numbers, where sample availability and timing were restricted by clinical sampling and sample volumes. The Illumina whole genome sequencing methodology was unable to recover good quality sequences for many samples of interest; HEV genome coverage over 70% was achieved in 47/68 samples from 18 patients (69\%). However, those with low genome coverage correlated with lower viral loads, particularly lower than 1×10^{5}
$\mathrm{IU} / \mathrm{ml}$. The same technique achieves near complete genome coverage in samples of $2.0 \times 10^{3} \mathrm{IU} / \mathrm{ml}$ for HCV , therefore the methodology requires further optimisation for HEV [352]. Lower viral loads are typically seen during drug pressure or in relapse samples, therefore an optimised methodology would facilitate similar studies investigating drug treatment failures in the future. Budget and time constraints prevented further experimentation investigating reasons leading to the low recovery of samples below $1 \times 10^{5} \mathrm{IU} / \mathrm{ml}$. The correlation of genome coverage with viral load suggests a critical factor may be related to the ratio of viral RNA to host nucleic acids. In optimising probe enrichment techniques for Illumina sequencing of HCV samples the depletion of host DNA by DNase treatment of the RNA extract and modification of the library preparation method to accommodate low nucleic acid input has significantly increased genome coverage [353].

A second issue to consider is the integrity of the input samples. The patient samples were clinical specimens which were not taken exclusively for this study, so were handled extensively prior to extraction for Illumina sequencing. If sequences were over-fragmented either due to initial poor integrity or during the fragmentation process itself this would lead to poor hybridization to the capture probes and low reads of HEV sequences. The continual updating of capture probe design is likely to improve enrichment efficiency; HEV is highly divergent with relatively few published whole genome sequences therefore designing the probe set should be an iterative process whereby the probe design algorithm is updated with all available sequences. However, in the current study no specific areas of the HEV genome were consistently underrepresented in HEV sequence data, nor was there consistently poor sequencing from HEV strains derived from the same patient, suggesting this was not a major factor in the outcomes of sequencing in the current study. Finally, as bioinformatics tools
improve and more comparisons are performed it is clear that the choice of bioinformatics is crucial to reproducible and reliable outputs. Bioinformatic programmes were selected on the basis that they were designed specifically for viral analysis, but if time allowed analysis with other reference mapping tools may have yielded improved sequence data. Alternatively, de novo assembly tools for viral genomes may have yielded better results, particularly with the inherent high diversity of HEV which may even be higher after ribavirin therapy, due to the risk of reference mapping excluding the assembly of divergent reads.

The most clinically pertinent reason for this study was to investigate viral reasons for treatment failure. The main focus was on the RdRp region due to earlier studies identifying this as an important region for viral adaptation to ribavirin presence. This specific question may be answered by a simpler study using next generation sequencing on amplicons of the RdRp region which could supplement and corroborate the findings in this study. This would be particularly focused on patients Q and R who represent rare phenotypic resistance to ribavirin. However, this approach is liable be influenced by other confounding factors; the use of gene-specific primers may miss amplifying diverse variants and thus under-represent diversity and PCR amplification may introduce errors during RT-PCR.

In summary, in this study clinical phenotypic resistance to ribavirin was associated with the emergence of mutations seen in other published studies, some of which appear to be common variants, such as the V1479I and G1634R/K. Other mutations appear only to be detected in the context of antiviral failure (K1383N and D1384G). The K1383N is appears to be important because of the impact on GTP binding; it is also implicated in antiviral resistance of other viruses such as Chikungunya to favipiravir [354]. The V1305I mutation identified in this study may represent a novel
mutation of clinical importance and merits further study. The understanding of how these mutations interact and contribute to treatment failures requires larger studies and in vitro phenotypic experiments.

7.4 Conclusions

- Whole genome sequencing for HEV infection is a powerful tool with which to investigate intra-host evolution of viral quasispecies. However, further optimisation of the sequencing methodology is required to recover high genome coverage and adequate depth, particularly in samples with viral loads of less than $1 \times 10^{5} \mathrm{IU} / \mathrm{ml}$, common under drug pressure or in relapse samples.
- In this chapter we observed that mutations in the conserved motifs of the RNAdependent RNA polymerase region were only detected under ribavirin drug pressure. Clinical phenotypic resistance to ribavirin was associated with the emergence of common variants, such as the V1479I and G1634R/K in the RdRp region, while other mutations were detected which have only been described in the context of antiviral failure (K1383N and D1384G).

8 General discussion

HEV comprise a group of related viruses within the family Hepeviridae with a variable propensity to cause human infections. Until very recently, all strains of HEV isolated from human cases belonged to the species orthohepevirus A, in particular Genotypes $1-4$ and 7 [4]. However, the capacity of cross-species infection is not fully understood [355, 356]. Highly divergent strains most closely related to rat HEV strains within orthohepevirus C (HEV-C) have recently been described to cause both acute and persistent human infections in Hong Kong [5, 7]. A further case was acquired whilst working in Gabon and the Democratic Republic of Congo [6]. HEV-C has been detected in wild rats in the UK and elsewhere in Europe but not in humans, however serological studies in Germany suggest human exposure occurs [357-361]. These cases would not have been diagnosed through routine laboratory diagnostics and emphasise our incomplete understanding of HEV infections in humans. Currently, it is believed that the majority of human HEV infections acquired in the UK arise from G3 infections via the consumption of insufficiently cooked pork and more rarely game meat, shellfish, through substances of human origin and occupational exposure [22, 73, 102, 362-366]. Ingestion of specific pork products including bacon, cured pork meats and pigs' liver have been associated with an increased risk of HEV infection in UK blood donors [68]. Other transmission routes including sexual transmission are plausible but appear to be very rare [124, 126, 129, 367]. However, other reservoirs of G3 HEV and even other types of HEV may exist in the UK [358, 368, 369]. Such infections can lead to persistent infections in immunocompromised patients who may develop significant liver disease. The experience of HEV diagnostic testing at the national reference laboratory (BBVU, VRD, PHE), serving England and Wales since

2003 and the testing of blood donors by NHSBT since 2015, has provided unique insights into the epidemiology of acute HEV infections in the UK [99, 102, 366, 370]. Following the first recognition of persistent HEV infection in an immunocompromised patient in the UK in 2009, further cases have arisen, but the prevalence and outcomes of persistent HEV infections in the UK has not been explored [371].

This thesis examined persistent HEV infection in immunocompromised cohorts in the UK. In doing so, the primary aims of this work were to define appropriate strategies for the diagnosis of persistent HEV infection, identify high-risk cohorts for persistent HEV infection, evaluate the cost-effectiveness of screening for HEV amongst SOT recipients, to describe clinical and virological outcomes of patients diagnosed with persistent HEV infection across England and Wales and, finally, to characterise viral quasi-species evolution of HEV in both treated and untreated patients.

Within the first objective the detection of HEV-Ag was assessed as an alternative diagnostic assay to PCR in immunocompromised patients. Both Gupta et al and Majumdar et al demonstrated HEV-Ag detection to be a useful adjunct to anti-HEV serology in early acute HEV infection in G1-endemic areas, and could be a practical diagnostic assay in outbreaks as it can be reformatted as a point-of-care test [289, 372, 373]. This has also been confirmed for acute G3 infections in Europe [280, 374]. However, a study in asymptomatic blood donors found HEV-Ag screening to be inferior to RNA for detecting current HEV infections [375]. In contrast to Vollmer et al, our data we showed that HEV-Ag performed well with both high specificity and sensitivity compared with PCR for HEV RNA as a screening assay for persistent HEV infections in immunosuppressed cohorts [375]. All the cases in our study were G3 HEV, however Zhang et al confirmed high specificity and sensitivity of the same assay for G4 HEV infections including in immunocompromised subjects [290]. The larger size of our
screened cohort meant we could confidently demonstrate the high specificity of the HEV-Ag assay. Further smaller studies have subsequently corroborated our findings [295].

The difference in sensitivity we found compared with data in blood donors is likely a reflection of the higher levels of HEV-Ag production in persistent infections and the wider diagnostic window presented by persistent HEV infections in immunosuppressed patients. In fact a number of studies have exploited this in trying to use HEV-Ag levels to predict clinical outcomes in both G1 infections and G3 infections [217, 376]. Behrendt et al initially described how the optical density reading of the HEV-Ag ELISA OD could infer the likelihood of the infection being acute or chronic [217]. In a separate cohort of immunocompromised patients, Marion et al also showed how the acute phase HEV-Ag titre could predict the development of a chronic infection [134].

Nevertheless, it is not only the HEV-Ag levels that are of interest, but also the HEVAg dynamics which may vary among immunocompetent and immunocompromised hosts. The study by Behrendt et al also reported on the persistence of detectable HEVAg beyond HEV RNA detection in the plasma of patients with persistent HEV infections treated with ribavirin [377]. The phenomenon of HEV-Ag persistence in the absence of RNA has been observed for a short duration in acute G1 infections, yet this was not replicated in Macaque challenge models using G1 and G4 HEV in work by Zhang et al [284, 372]. We found that amongst most cases of active infection HEV-Ag detection in plasma persisted beyond RNA detection, however this was very prolonged in a subset of patients treated with Ribavirin, thus confirming the findings of Behrendt et al [217]. A particular strength of our work was the development of an HEV-Ag neutralisation assay which allowed us to confirm the specificity of reactive HEV-Ag

ELISA results in both plasma and urine but most importantly stool, an analyte susceptible to generating non-specific reactivity. This allowed us to study HEV RNA and HEV-Ag kinetics in stool with more certainty. We observed for the first time that this dissociation between RNA detection and HEV-Ag detection seen in the plasma of treated patients was not seen frequently in the stool compartment. Specifically in our study HEV-Ag detection in stool never persisted beyond the plasma compartment. Our findings are supported by the more recent description of a secreted form of ORF2 antigen released in large quantities by infected hepatocytes into the plasma compartment but not the stool [141, 291]. This non-virion associated antigen is likely to be the predominant form detected by the HEV-Ag assay.

The second objective was to identify high-risk cohorts for persistent HEV infection. This was achieved by point prevalence studies of HEV viraemia in three distinct cohorts; transplant recipients, haemato-oncology patients and antibody-deficient patients. We confirmed SOT recipients to be a high-risk cohort with 0.7% of patients viraemic, broadly similar to other European studies, which range from 0.2% up to 4.4% of viraemic patients in a range of organ types [185-193, 202, 203, 378, 379]. The only other UK studies performed at a similar time found rates of viraemia of 0.2-0.5\% among SOT patients [295, 308]. In contrast to Reekie et al, our study recruited all transplant recipients under follow-up undergoing therapeutic drug monitoring which therefore included patients with longstanding transplants [308]. This allowed us to capture the cumulative risk of persistent HEV infection following a patients' transplant rather than just the incidence in the peri-transplant period. The strength of our study was its large size; it remains the largest study performed to date of HEV prevalence in transplant patients in the UK and thus may reflect a more accurate prevalence rate.

Recipients of HSCT were also found to be a high-risk cohort for HEV viraemia with 2.1% of patients infected in our study. This is broadly similar to rates of viraemia found in the Netherlands (2.4-3.8\%), but slightly higher than found in China (1.1\%), Denmark (0.6\%) and the only other UK study of HSCT recipients (0.4\%) [194, 308, 380, 381]. A systematic review recently analysed these studies, concluding an overall prevalence of 1.5% of HEV viraemia among HSCT patients [382]. However, it must be noted that study size, differing study design and patient selection bias differed may account for some of the reported differences in risk. For example, studies by Abravanel et al in France and Koenecke et al in Germany were likely too small to identify any HEV risk [383, 384]. Whereas Reekie et al followed both recipients of allogeneic and autologous stem cell cells, our cohort only included allogeneic stem cell recipients undergoing TDM and hence were more highly immunosuppressed [308]. Furthermore, Tang et al studied only haploidentical HSCT recipients who also typically receive more immunosuppression and tested only those patients with unexplained abnormalities in liver enzyme blood tests [380].

When compared to transplant patients, we found haemato-oncology patients not undergoing HSCT to be lower risk of being HEV viraemic (0.13\%). This is the first and only specific study assessing HEV infections in haemato-oncology patients not undergoing HSCT. Two HEV viraemic patients were identified, both of whom had underlying multiple myeloma and neither had abnormal liver enzymes at testing. The use of rituximab has previously been postulated to be a risk for persistent HEV infections
[297, 299, 319, 385]. In contrast to the retrospective European cohort study by von Felden et al, we found no association between a non-Hodgkin lymphoma diagnosis, treatment with both rituximab and bendamustine and the risk of persistent HEV
infection [310]. A particular strength of our study was the detailed analysis of diagnoses, treatment history including transfusion history, however with only two viraemic patients it limited our ability to define risk factors for HEV viraemia. The normal liver enzymes presented by both viraemic patients in our study is notable since these patients would have not been identified by studies relying on clinical diagnosis or by screening of patients with abnormal liver enzymes. In fact, lower peak ALT values have been associated with increased likelihood of persistent infection [207, 310].

We showed that anti-HEV IgG seropositivity increased with age and was influenced by the underlying haematological diagnosis. We confirmed that this cohort were being exposed to HEV infection from blood products with IgG seropositivity rising in a linear fashion associated with higher numbers of transfused blood products. Whilst substances of human origin are now widely accepted as routes of HEV transmission, this association was not replicated in a Danish study of 4023 immunocompromised patients by Harritshøj et al [378]. The correlation seen in our study was relatively small, however, compared with other risks such as increasing age which most likely reflects dietary risk. Therefore, studies in other countries with different rates of viraemia among blood donors or in patients with lower transfusional exposure may not identify such correlation.

The third cohort we investigated were antibody-deficient patients being treated with immunoglobulin therapy. We found no evidence of persistent HEV infection amongst a cohort of patients with primary and secondary antibody deficiency. Our study supports the findings of two similar studies, neither of which displayed any evidence of persistent HEV infection amongst 73 CVID patients in Germany or 27 primary antibody deficient patients with deranged liver enzymes in the UK [300, 305]. The particular strength of our study was its larger size and detailed characterisation of both
patients and immunoglobulin replacement therapy. We demonstrated that anti-HEV IgG was frequently detected in the plasma of antibody-deficient patients. Furthermore, their plasma following IVIG administration had higher antigen neutralising activity relative to the detected anti-HEV IgG titre when compared with the plasma of recovered persistent HEV cases and recovered acute recovered HEV cases. This suggests a plausible mechanism of protection from initial HEV infection, however this remains speculative since correlates of protection against HEV infection are not well defined, even amongst vaccinated individuals. Thus, the first hypothesis that persistent HEV infection is an emerging and under-recognised disease in the UK was proven in SOT recipients. The smaller sized cohorts of haemato-oncology patients and antibody deficient patients limited the ability to define accurately the true risk in such patients.

Factors associated with HEV infection among SOT recipients included higher plasma levels of immunosuppressive drug (tacrolimus or ciclosporin) and raised ALT or bilirubin. No other patient parameters were identified to help predict which patients may be infected with HEV.

The finding of many unrecognised HEV infections among SOT recipients and lack of predictive factors for infection prompted the exploration of four possible screening strategies in the post-transplant setting. We undertook a cost-effectiveness study by adapting a Markov model using data generated from the screening studies, including diagnostic assay performance. At a willingness-to-pay threshold of $£ 20000$ per QALY, annual screening of SOT recipients by any of the methods considered had a high probability (>75\%) of being cost-effective. Only two published studies have undertaken cost-effectiveness analyses in the context of HEV [103, 327]. Zhao et al considered the cost-effectiveness of HEV vaccination in pregnant women [327]. In contrast to de

Vos et al, who considered the cost-effectiveness of HEV RNA screening of blood donations, we also considered HEV-Ag screening as an alternative to RNA testing [103]. Screening patients with an abnormal ALT annually by detecting HEV-Ag is predicted to be cost-saving to the NHS. Such data are critical in the UK with a restricted health budget and a nationalised health service with the underlying objective of maximising health outcomes with finite resources. This part of the body of work was restricted in scope due to limited data from which to inform the model. Nevertheless, it was the first such study to explore screening of transplant recipients, which represents a more practical solution to capture both dietary-acquired and transfusionacquired HEV. The strength of this study was our extensive uncertainty analyses to test the model with many different input parameters exploring situations of future relevance. Thus, proving the second hypothesis that screening for HEV infections in high-risk cohorts would be cost-effective, at least in SOT recipients in the context of current HEV infection rates.

The fourth objective; to describe the demographic, virological and clinical outcomes amongst patients with persistent HEV infection across England and Wales was achieved by establishing an enhanced surveillance system. This allowed the first national description of a series of 94 patients with persistent HEV infection and generated some interesting observations leading to important practical considerations for clinical practice. We confirmed that recipients of solid organ and stem cell transplants are a high-risk cohort, consistent with our previous HEV prevalence studies, representing 70.2% of all patients. Yet if our prevalence data is extrapolated to the estimated UK transplant population of some 48,000 patients with functioning transplants then we would expect over 300 to be viraemic at any point in time, indicating a significant discrepancy with expected infections and diagnosed clinical
cases [386]. A particular strength of our work was its national perspective; by identifying cases through a centralised diagnostic system it allowed us to describe the clinical outcomes of cases presenting to multiple hospital specialists, in contrast to previous cohort studies which have focussed on cases at either a single specialist centre or multiple centres via clinicians with a special interest in HEV [168, 201, 207, 310, 387]. We describe that nearly a third were non-transplant patients; the biggest contingent were patients with lymphoma, similar to the findings of a retrospective cohort study by Felden et al [310]. This is notable since we did not see any evidence of an increased risk of persistent HEV infection among the 556 lymphoma patients tested in our prevalence study, however this may have simply been too small a cohort to detect a risk.

By assessing serological responses at diagnosis and throughout the viraemic period, we observed that 17% of these patients did not develop a detectable serological response despite prolonged viraemia. Pischke et al previously described delayed or absent seroconversion in immunocompromised patients and anti-HEV IgG seroreversion has been noted in organ transplant recipients [188, 388]. However, we also saw a correlation between the absence of anti-HEV IgG seroconversion and poor outcomes. Our study is the first to report this; only 33.3% of the seronegative antiviraltreated patients achieved viral clearance and at least three of the five deaths amongst seronegative patients were considered to be HEV-associated. Whilst many confounders exist, this observation merits further study.

We observed a lower proportion of virological failure (24\%) compared with Abravanels early controlled observational data among SOT recipients receiving three months of ribavirin (38\%) [225]. Our cohort was more heterogenous both with respect to the underlying immunosuppression and the treatment schedules. A recent systematic
review of 395 ribavirin-treated patients including non-SOT patients and varying treatment schedules found more similar relapse rates (18\%) to our cohort [219].

Crucially, relapse occurred in five patients despite demonstration of stool clearance of HEV in at least two stool samples after a median of 12 weeks of ribavirin (range 1148 weeks). Abravanel et al initially described the high positive predictive value of detecting HEV RNA in stool after three months of ribavirin treatment with virological relapse [225]. Very recently Marion et al have proven that intestinal cells can not only support HEV replication in vitro, but furthermore ribavirin may have lower efficacy against the excretion of stool-derived HEV, suggesting a possible mechanism for prolonged stool detection in treated patients [244]. However, our study demonstrates that clearance of HEV RNA from stool is, in itself, an insufficient surrogate for absolute clearance of HEV infection. The data may simply indicate that HEV RNA detection is a poor surrogate for ongoing infection of intestinal cells, however there may be other important sites of extrahepatic replication which may lead to relapse. HEV infection and replication is supported by human neuronal cells, intestinal cells, endothelial cells, endometrial stromal cells and the human placenta as well as being detected in urine [134, 162, 244, 389-392]. In immunocompromised patients HEV has been detected in a number of other tissues including the reproductive tract and bone marrow [133, 393]. Specifically, HEV has been detected in the ejaculate in small numbers of patients more than nine months after viraemia ceased suggesting the testis could be a sanctuary site from which HEV could relapse following treatment [393]. Thus, the third hypothesis that an enhanced monitoring study of persistent HEV infections would help identify vital clinical monitoring parameters was proven.

The unique set of samples and follow-up data from both treated and untreated HEV infected patients facilitated the investigation of viral sequence changes during
persistent infection. Using Illumina whole genome sequencing, mutations were observed in the conserved motifs of the RNA-dependent RNA polymerase region under ribavirin drug pressure, but not in untreated patients. Clinical phenotypic resistance to ribavirin was associated with the emergence of common variants such as the V1479I and G1634R/K in the RdRp region, whilst other mutations were detected which have only been described in the context of antiviral failure (K1383N and D1384G). The role of such single nucleotide variants (SNV) and mutations remains unclear. We observed K1383N only in the context of G1634K/R, consistent with the hypothesis of Debing et al that the increased viral replication seen with G1634K/R and other SNVs may overcome the fitness loss and increased in vitro sensitivity to ribavirin associated with K1383N [247]. The K1383N is of particular interest as it is highly conserved among RNA viruses and may play a role of the fidelity of the RdRp [394]. However, we also report patients with a poor primary response to ribavirin and patients who relapsed despite none of these recognised mutations in the RdRp region so other mechanisms likely exist.

A strength of our study was the frequent longitudinal sampling from patients with different outcomes. However, this strength was not realised since a significant number of samples did not generate high quality sequence data, seen particularly with viral loads of less than $1 \times 10^{5} \mathrm{IU} / \mathrm{ml}$. This is similar to Davis et al who used the same technique and were able to generate whole genome data for samples with as low as $1.25 \times 10^{4} \mathrm{IU} / \mathrm{ml}$, but not any lower [395]. Low viral loads were observed in early relapse samples or under ribavirin drug pressure which were often samples of particular interest. This severely limited the analysis in this body of work and thus the investigations of intra-host evolution of viral quasi-species were not pursued further. Given more time and resources the probe capture technique for HEV would have been
optimised and de novo assembly bioinformatics software tested to achieve greater genome coverage and depth.

In conclusion, this thesis supports the notion that persistent HEV is under-recognised in SOT recipients in the UK. It is projected that annual screening for HEV infection would be cost-effective in the NHS, given current infection rates. Screening by HEVAg detection or RNA by PCR for persistent infection would both be acceptable, however the role of serology remains unclear in immunocompromised patients. Evidence of stool clearance during antiviral therapy does not obviate the need for close follow-up as relapses occur. Important future research questions include further characterising factors associated with persistent HEV infection, identifying more precisely predictive factors of virological relapse in order to guide antiviral therapy, understanding mechanisms of ribavirin failure and the ongoing surveillance of clinical outcomes of persistent HEV infection. The development of efficient cell culture models coupled with in silico modelling will enhance the development of new antivirals effective against HEV which are needed for the subset of patients failing ribavirin [232, 239, 240, 396-400].

Bibliography

1. Purdy MA, Harrison TJ, Jameel S, et al. ICTV Virus Taxonomy Profile: Hepeviridae. J Gen Virol 2017; 98(11): 2645-6.
2. Smith DB, Simmonds P, Jameel S, et al. Consensus proposals for classification of the family Hepeviridae. Journal of General Virology 2014; 95: 2223-32.
3. Meng XJ. Zoonotic and foodborne transmission of hepatitis E virus. Semin Liver Dis 2013; 33(1): 41-9.
4. Lee GH, Tan BH, Teo EC, et al. Chronic Infection With Camelid Hepatitis E Virus in a Liver-transplant Recipient Who Regularly Consumes Camel Meat and Milk. Gastroenterology 2015; 150(2): 355-7 e3.
5. Sridhar S, Yip CC, Wu S, et al. Transmission of rat hepatitis E virus infection to humans in Hong Kong: a clinical and epidemiological analysis. Hepatology 2020.
6. Andonov A, Robbins M, Borlang J, et al. Rat Hepatitis E Virus Linked to Severe Acute Hepatitis in an Immunocompetent Patient. J Infect Dis 2019; 220(6): 9515.
7. Sridhar S, Yip CCY, Wu S, et al. Rat Hepatitis E Virus as Cause of Persistent Hepatitis after Liver Transplant. Emerg Infect Dis 2018; 24(12): 2241-50.
8. Balayan MS. Epidemiology of hepatitis E virus infection. J Viral Hepat 1997; 4(3): 155-65.
9. Reyes GR, Purdy MA, Kim JP, et al. Isolation of a cDNA from the virus responsible for enterically transmitted non-A, non-B hepatitis. Science 1990; 247(4948): 1335-9.
10. Khuroo MS. Discovery of hepatitis E : the epidemic non-A, non-B hepatitis 30 years down the memory lane. Virus Res 2011; 161(1): 3-14.
11. Teo CG. Fatal outbreaks of jaundice in pregnancy and the epidemic history of hepatitis E. Epidemiol Infect 2012; 140(5): 767-87.
12. Thomas DL, Yarbough PO, Vlahov D, et al. Seroreactivity to hepatitis E virus in areas where the disease is not endemic. J Clin Microbiol 1997; 35(5): 1244-7.
13. Meng XJ, Purcell RH, Halbur PG, et al. A novel virus in swine is closely related to the human hepatitis E virus. Proc Natl Acad Sci U S A 1997; 94(18): 9860-5.
14. WHO. World Health Organisation Fact Sheet http://www.who.int/news-room/fact-sheets/detail/hepatitis-e 3rd July 2017. Accessed 5th August 2018.
15. Adlhoch C, Avellon A, Baylis SA, et al. Hepatitis E virus: Assessment of the epidemiological situation in humans in Europe, 2014/15. J Clin Virol 2016; 82: 9-16.
16. Yapa CM, Furlong C, Rosewell A, et al. First reported outbreak of locally acquired hepatitis E virus infection in Australia. Med J Aust 2016; 204(7): 274.
17. Guillois Y, Abravanel F, Miura T, et al. High Proportion of Asymptomatic Infections in an Outbreak of Hepatitis E Associated With a Spit-Roasted Piglet, France, 2013. Clin Infect Dis 2016; 62(3): 351-7.
18. Ijaz S, Said B, Boxall E, Smit E, Morgan D, Tedder RS. Indigenous hepatitis E in England and wales from 2003 to 2012: evidence of an emerging novel phylotype of viruses. J Infect Dis 2014; 209(8): 1212-8.
19. Ijaz S, Vyse AJ, Morgan D, Pebody RG, Tedder RS, Brown D. Indigenous hepatitis E virus infection in England: more common than it seems. J Clin Virol 2009; 44(4): 272-6.
20. Ijaz S, Arnold E, Banks M, et al. Non-travel-associated hepatitis E in England and Wales: demographic, clinical, and molecular epidemiological characteristics. J Infect Dis 2005; 192(7): 1166-72.
21. Public Health England (PHE). Acute HEV enhanced surveillance data. https://www.gov.uk/government/publications/hepatitis-e-symptoms-transmission-prevention-treatment/hepatitis-e-symptoms-transmission-treatment-and-prevention Updated 14 May 2020 [Accessed 8 November 2021].
22. Hewitt PE, Ijaz S, Brailsford SR, et al. Hepatitis E virus in blood components: a prevalence and transmission study in southeast England. Lancet 2014; 384(9956): 1766-73.
23. Grierson S, Heaney J, Cheney T, et al. Prevalence of hepatitis E virus infection in pigs at the time of slaughter, United Kingdom, 2013. Emerging Infectious Diseases 2015; 21(8): 1396-401.
24. Dalton HR, Fellows HJ, Gane EJ, et al. Hepatitis E in new zealand. J Gastroenterol Hepatol 2007; 22(8): 1236-40.
25. Shrestha AC, Seed CR, Flower RLP, et al. Hepatitis E virus and implications for blood supply safety, Australia. Emerging Infectious Diseases 2014; 20(11): 1940-2.
26. Fearon M, Scalia V, O'Brien SF, et al. Seroprevalence of babesia and hepatitis E in Canadian blood donors. Transfusion 2014; 54: 27A.
27. Cleland A, Smith L, Crossan C, et al. Hepatitis E virus in Scottish blood donors. Vox Sang 2013; 105(4): 283-9.
28. Izopet J, Labrique AB, Basnyat B, et al. Hepatitis E virus seroprevalence in three hyperendemic areas: Nepal, Bangladesh and southwest France. Journal of Clinical Virology 2015; 70: 39-42.
29. Gallian P, Lhomme S, Piquet Y, et al. Hepatitis E virus infections in blood donors, France. Emerg Infect Dis 2014; 20(11): 1914-7.
30. Bangueses F, Abin-Carriquiry JA, Cancela F, Curbelo J, Mirazo S. Serological and molecular prevalence of hepatitis E virus among blood donors from Uruguay. J Med Virol 2021; 93(6): 4010-4.
31. Stramer SL, Moritz ED, Foster GA, et al. Hepatitis E virus: seroprevalence and frequency of viral RNA detection among US blood donors. Transfusion 2016; 56(2): 481-8.
32. Di Lello FA, Blejer J, Alter A, et al. Seroprevalence of hepatitis E virus in Argentinean blood donors. Eur J Gastroenterol Hepatol 2021; 33(10): 1322-6.
33. Tengan FM, Figueiredo GM, Nunes AKS, et al. Seroprevalence of hepatitis E in adults in Brazil: a systematic review and meta-analysis. Infect Dis Poverty 2019; 8(1): 3.
34. Slot E, Hogema BM, Riezebos-Brilman A, Kok TM, Molier M, Zaaijer HL. Silent hepatitis E virus infection in Dutch blood donors, 2011 to 2012. Euro Surveill 2013; 18(31).
35. Mansuy JM, Bendall R, Legrand-Abravanel F, et al. Hepatitis E virus antibodies in blood donors, France. Emerg Infect Dis 2011; 17(12): 2309-12.
36. Capai L, Hozé N, Chiaroni J, et al. Seroprevalence of hepatitis E virus among blood donors on Corsica, France, 2017. Euro Surveill 2020; 25(5).
37. Hartl J, Otto B, Madden RG, et al. Hepatitis E Seroprevalence in Europe: A Meta-Analysis. Viruses 2016; 8(8).
38. Wilhelm B, Waddell L, Greig J, Young I. Systematic review and meta-analysis of the seroprevalence of hepatitis E virus in the general population across nonendemic countries. PLoS One 2019; 14(6): e0216826.
39. Bendall R, Ellis V, ljaz S, Ali R, Dalton H. A comparison of two commercially available anti-HEV IgG kits and a re-evaluation of anti-HEV IgG seroprevalence data in developed countries. J Med Virol 2010; 82(5): 799-805.
40. Mansuy JM, Saune K, Rech H, et al. Seroprevalence in blood donors reveals widespread, multi-source exposure to hepatitis E virus, southern France, october 2011. Eurosurveillance 2015; 20(19).
41. Tedder RS, Tettmar KI, Brailsford SR, et al. Virology, serology, and demography of hepatitis E viremic blood donors in South East England. Transfusion 2016; 56(6 Pt 2): 1529-36.
42. Fischer C, Hofmann M, Danzer M, Hofer K, Kaar J, Gabriel C. Seroprevalence and Incidence of hepatitis E in blood donors in Upper Austria. PLoS One 2015; 10(3): e0119576.
43. Holm DK, Moessner BK, Engle RE, et al. Declining prevalence of hepatitis E antibodies among Danish blood donors. Transfusion 2015; 55(7): 1662-7.
44. Beale MA, Tettmar K, Szypulska R, Tedder RS, Ijaz S. Is there evidence of recent hepatitis E virus infection in English and North Welsh blood donors? Vox Sang 2011; 100(3): 340-2.
45. Wenzel JJ, Preiss J, Schemmerer M, Huber B, Jilg W. Test performance characteristics of Anti-HEV IgG assays strongly influence hepatitis E seroprevalence estimates. J Infect Dis 2013; 207(3): 497-500.
46. O'Riordan J, Boland F, Williams P, et al. Hepatitis E virus infection in the Irish blood donor population. Transfusion 2016; 56(11): 2868-76.
47. Spada E, Pupella S, Pisani G, et al. A nationwide retrospective study on prevalence of hepatitis E virus infection in Italian blood donors. Blood Transfus 2018: 1-9.
48. Hogema BM, Molier M, Slot E, Zaaijer HL. Past and present of hepatitis E in the Netherlands. Transfusion 2014; 54(12): 3092-6.
49. Thom K, Gilhooly P, McGowan K, et al. Hepatitis E virus (HEV) in Scotland: evidence of recent increase in viral circulation in humans. Euro Surveill 2018; 23(12).
50. Sauleda S, Ong E, Bes M, et al. Seroprevalence of hepatitis E virus (HEV) and detection of HEV RNA with a transcription-mediated amplification assay in blood donors from Catalonia (Spain). Transfusion 2015; 55(5): 972-9.
51. Niederhauser C, Widmer N, Hotz M, et al. Current hepatitis E virus seroprevalence in Swiss blood donors and apparent decline from 1997 to 2016. Euro Surveill 2018; 23(35).
52. Maponga TG, Lopes T, Cable R, Pistorius C, Preiser W, Andersson MI. Prevalence and risks of hepatitis E virus infection in blood donors from the Western Cape, South Africa. Vox Sang 2020; 115(8): 695-702.
53. Hewitt J, Harte D, Sutherland M, et al. Prevalence of hepatitis E virus antibodies and infection in New Zealand blood donors. N Z Med J 2018; 131(1469): 3843.
54. Xu C, Wang RY, Schechterly CA, et al. An assessment of hepatitis E virus (HEV) in US blood donors and recipients: no detectable HEV RNA in 1939 donors tested and no evidence for HEV transmission to 362 prospectively followed recipients. Transfusion 2013; 53(10 Pt 2): 2505-11.
55. Tsoi WC, Zhu X, To AP, Holmberg J. Hepatitis E virus infection in Hong Kong blood donors. Vox Sang 2020; 115(1): 11-7.
56. Meng XJ, Halbur PG, Shapiro MS, et al. Genetic and experimental evidence for cross-species infection by swine hepatitis E virus. J Virol 1998; 72(12): 971421.
57. Tei S, Kitajima N, Takahashi K, Mishiro S. Zoonotic transmission of hepatitis E virus from deer to human beings. Lancet 2003; 362(9381): 371-3.
58. Cossaboom CM, Cordoba L, Dryman BA, Meng XJ. Hepatitis E virus in rabbits, Virginia, USA. Emerg Infect Dis 2011; 17(11): 2047-9.
59. Nidaira M, Takahashi K, Ogura G, et al. Detection and phylogenetic analysis of hepatitis E viruses from mongooses in Okinawa, Japan. J Vet Med Sci 2012; 74(12): 1665-8.
60. Wang YC, Zhang HY, Xia NS, et al. Prevalence, isolation, and partial sequence analysis of hepatitis E virus from domestic animals in China. J Med Virol 2002; 67(4): 516-21.
61. Zhang W, Shen Q, Mou J, et al. Hepatitis E virus infection among domestic animals in eastern China. Zoonoses Public Health 2008; 55(6): 291-8.
62. Liang H, Chen J, Xie J, et al. Hepatitis E virus serosurvey among pet dogs and cats in several developed cities in China. PLoS ONE 2014; 9(6).
63. Spahr C, Knauf-Witzens T, Vahlenkamp T, Ulrich RG, Johne R. Hepatitis E virus and related viruses in wild, domestic and zoo animals: A review. Zoonoses Public Health 2018; 65(1): 11-29.
64. Veronesi R, Morach M, Hübschke E, Bachofen C, Stephan R, NüeschInderbinen M. Seroprevalence of hepatitis E virus in dogs in Switzerland. Zoonoses Public Health 2021; 68(1): 8-11.
65. Li Y, Qu C, Spee B, et al. Hepatitis E virus seroprevalence in pets in the Netherlands and the permissiveness of canine liver cells to the infection. Ir Vet J 2020; 73: 6.
66. Said B, Ijaz S, Chand MA, Kafatos G, Tedder R, Morgan D. Hepatitis E virus in England and Wales: Indigenous infection is associated with the consumption of processed pork products. Epidemiology and Infection 2014; 142(7): 1467-75.
67. Colson P, Borentain P, Queyriaux B, et al. Pig liver sausage as a source of hepatitis E virus transmission to humans. J Infect Dis 2010; 202(6): 825-34.
68. Smith I, Said B, Vaughan A, et al. Case-Control Study of Risk Factors for Acquired Hepatitis E Virus Infections in Blood Donors, United Kingdom, 20182019. Emerg Infect Dis 2021; 27(6): 1654-61.
69. Boxman ILA, Jansen CCC, Hagele G, et al. Porcine blood used as ingredient in meat productions may serve as a vehicle for hepatitis E virus transmission. Int J Food Microbiol 2017; 257: 225-31.
70. Bouwknegt M, Frankena K, Rutjes SA, et al. Estimation of hepatitis E virus transmission among pigs due to contact-exposure. Vet Res 2008; 39(5): 40.
71. Yoo D, Willson P, Pei Y, et al. Prevalence of hepatitis E virus antibodies in Canadian swine herds and identification of a novel variant of swine hepatitis E virus. Clin Diagn Lab Immunol 2001; 8(6): 1213-9.
72. Crossan C, Grierson S, Thomson J, et al. Prevalence of hepatitis E virus in slaughter-age pigs in Scotland. Epidemiol Infect 2015; 143(10): 2237-40.
73. Berto A, Martelli F, Grierson S, Banks M. Hepatitis E virus in pork food chain, United Kingdom, 2009-2010. Emerg Infect Dis 2012; 18(8): 1358-60.
74. Di Bartolo I, Diez-Valcarce M, Vasickova P, et al. Hepatitis E virus in pork production chain in Czech Republic, Italy, and Spain, 2010. Emerg Infect Dis 2012; 18(8): 1282-9.
75. Moor D, Liniger M, Baumgartner A, Felleisen R. Screening of Ready-to-Eat Meat Products for Hepatitis E Virus in Switzerland. Food Environ Virol 2018; 10(3): 263-71.
76. Boxman ILA, Jansen CCC, Zwartkruis-Nahuis AJT, Hägele G, Sosef NP, Dirks RAM. Detection and quantification of hepatitis E virus RNA in ready to eat raw pork sausages in the Netherlands. Int J Food Microbiol 2020; 333: 108791.
77. Bigoraj E, Kozyra I, Kwit E, Rzeżutka A. Detection of hepatitis E virus (rabbit genotype) in farmed rabbits entering the food chain. Int J Food Microbiol 2020; 319: 108507.
78. Lhomme S, Dubois M, Abravanel F, et al. Risk of zoonotic transmission of HEV from rabbits. J Clin Virol 2013; 58(2): 357-62.
79. Abravanel F, Lhomme S, El Costa H, et al. Rabbit Hepatitis E Virus Infections in Humans, France. Emerg Infect Dis 2017; 23(7): 1191-3.
80. Zhao C, Ma Z, Harrison TJ, et al. A novel genotype of hepatitis E virus prevalent among farmed rabbits in China. J Med Virol 2009; 81(8): 1371-9.
81. O'Hara Z, Crossan C, Craft J, Scobie L. First Report of the Presence of Hepatitis E Virus in Scottish-Harvested Shellfish Purchased at Retail Level. Food Environ Virol 2018; 10(2): 217-21.
82. Crossan C, Baker PJ, Craft J, Takeuchi Y, Dalton HR, Scobie L. Hepatitis E virus genotype 3 in shellfish, United Kingdom. Emerg Infect Dis 2012; 18(12): 2085-7.
83. Said B, Ijaz S, Kafatos G, et al. Hepatitis E outbreak on cruise ship. Emerg Infect Dis 2009; 15(11): 1738-44.
84. Khuroo MS, Kamili S, Yattoo GN. Hepatitis E virus infection may be transmitted through blood transfusions in an endemic area. J Gastroenterol Hepatol 2004; 19(7): 778-84.
85. Colson P, Coze C, Gallian P, Henry M, De Micco P, Tamalet C. Transfusionassociated hepatitis E, France. Emerg Infect Dis 2007; 13(4): 648-9.
86. Huzly D, Umhau M, Bettinger D, et al. Transfusion-transmitted hepatitis E in Germany, 2013. Euro Surveill 2014; 19(21).
87. Boxall E, Herborn A, Kochethu G, et al. Transfusion-transmitted hepatitis E in a 'nonhyperendemic' country. Transfus Med 2006; 16(2): 79-83.
88. Hogema BM, Molier M, Sjerps M, et al. Incidence and duration of hepatitis E virus infection in Dutch blood donors. Transfusion 2016; 56(3): 722-8.
89. Hauser L, Roque-Afonso AM, Beyloune A, et al. Hepatitis E transmission by transfusion of Intercept blood system-treated plasma. Blood 2014; 123(5): 7967.
90. Mallet V, Sberro-Soussan R, Roque-Afonso AM, et al. Transmission of Hepatitis E Virus With Plasma Exchange in Kidney Transplant Recipients: A Retrospective Cohort Study. Transplantation 2018; 102(8): 1351-7.
91. Schlosser B, Stein A, Neuhaus R, et al. Liver transplant from a donor with occult HEV infection induced chronic hepatitis and cirrhosis in the recipient. J Hepatol 2012; 56(2): 500-2.
92. Pourbaix A, Ouali N, Soussan P, et al. Evidence of hepatitis E virus transmission by renal graft. Transpl Infect Dis 2017 Feb;19(1) doi: 101111/tid12624 Epub 2017 Jan 102017.
93. Rivero-Juarez A, Aguado R, Lopez-Lopez P, et al. Prevalence of hepatitis E virus infection in liver donors in Spain. Clin Microbiol Infect 2018.
94. Sridhar S, Cheng VCC, Wong SC, et al. Donor-Derived Genotype 4 Hepatitis E Virus Infection, Hong Kong, China, 2018. Emerg Infect Dis 2019; 25(3): 42533.
95. O'Donghaile D, O'Flaherty N, Field S. Early hepatitis E infection in an unrelated hematopoietic progenitor stem cell donor. Bone Marrow Transplant 2017; 52(10): 1471-2.
96. Koenecke C, Pischke S, Beutel G, et al. Hepatitis E virus infection in a hematopoietic stem cell donor. Bone Marrow Transplant 2014; 49(1): 159-60.
97. Domanovic D, Tedder R, Blumel J, et al. Hepatitis E and blood donation safety in selected European countries: a shift to screening? Euro Surveill 2017; 22(16).
98. Boland F, Martinez A, Pomeroy L, O'Flaherty N. Blood Donor Screening for Hepatitis E Virus in the European Union. Transfus Med Hemother 2019; 46(2): 95-103.
99. Harvala H, Hewitt PE, Reynolds C, et al. Hepatitis E virus in blood donors in England, 2016 to 2017: from selective to universal screening. Euro Surveill 2019; 24(10).
100. Cordes AK, Goudeva L, Lütgehetmann M, et al. Risk of transfusion-transmitted hepatitis E virus infection from pool-tested platelets and plasma. J Hepatol 2021.
101. Harritshoj LH, Holm DK, Saekmose SG, et al. Low transfusion transmission of hepatitis E among 25,637 single-donation, nucleic acid-tested blood donors. Transfusion 2016; 56(9): 2225-32.
102. Tedder RS, Ijaz S, Kitchen A, et al. Hepatitis E risks: pigs or blood-that is the question. Transfusion 2017; 57(2): 267-72.
103. de Vos AS, Janssen MP, Zaaijer HL, Hogema BM. Cost-effectiveness of the screening of blood donations for hepatitis E virus in the Netherlands. Transfusion 2017; 57(2): 258-66.
104. Dreier J, Knabbe C, Vollmer T. Transfusion-Transmitted Hepatitis E: NAT Screening of Blood Donations and Infectious Dose. Front Med (Lausanne) 2018; 5 : 5.
105. Vollmer T, Diekmann J, Johne R, Eberhardt M, Knabbe C, Dreier J. Novel approach for detection of hepatitis E virus infection in German blood donors. J Clin Microbiol 2012; 50(8): 2708-13.
106. Baylis SA, Gartner T, Nick S, Ovemyr J, Blumel J. Occurrence of hepatitis E virus RNA in plasma donations from Sweden, Germany and the United States. Vox Sang 2012; 103(1): 89-90.
107. Grabarczyk P, Sulkowska E, Gdowska J, et al. Molecular and serological infection marker screening in blood donors indicates high endemicity of hepatitis E virus in Poland. Transfusion 2018; 58(5): 1245-53.
108. Roth NJ, Schäfer W, Alexander R, et al. Low hepatitis E virus RNA prevalence in a large-scale survey of United States source plasma donors. Transfusion 2017; 57(12): 2958-64.
109. Fearon MA, O'Brien SF, Delage G, et al. Hepatitis E in Canadian blood donors. Transfusion 2017; 57(6): 1420-5.
110. Nouhin J, Prak S, Madec Y, et al. Hepatitis E virus antibody prevalence, RNA frequency, and genotype among blood donors in Cambodia (Southeast Asia). Transfusion 2016; 56(10): 2597-601.
111. Wen GP, Chen CR, Song XY, et al. Long-term HEV carriers without antibody seroconversion among eligible immunocompetent blood donors. Emerg Microbes Infect 2018; 7(1): 125.
112. Intharasongkroh D, Thongmee T, Sa-Nguanmoo P, et al. Hepatitis E virus infection in Thai blood donors. Transfusion 2019; 59(3): 1035-43.
113. Mishra KK, Patel K, Trivedi A, Patel P, Ghosh K, Bharadva S. Risk of hepatitisE virus infections among blood donors in a regional blood transfusion centre in western India. Transfus Med 2021; 31(3): 193-9.
114. Minagi T, Okamoto H, Ikegawa M, et al. Hepatitis E virus in donor plasma collected in Japan. Vox Sang 2016; 111(3): 242-6.
115. Hoad VC, Seed CR, Fryk JJ, et al. Hepatitis E virus RNA in Australian blood donors: prevalence and risk assessment. Vox Sang 2017; 112(7): 614-21.
116. Shrestha AC, Flower RL, Seed CR, et al. Hepatitis E virus RNA in Australian blood donations. Transfusion 2016; 56(12): 3086-93.
117. Meldal BH, Sarkodie F, Owusu-Ofori S, Allain JP. Hepatitis E virus infection in Ghanaian blood donors - the importance of immunoassay selection and confirmation. Vox Sang 2013; 104(1): 30-6.
118. Chaussade H, Rigaud E, Allix A, et al. Hepatitis E virus seroprevalence and risk factors for individuals in working contact with animals. J Clin Virol 2013; 58(3): 504-8.
119. Pourpongporn P, Samransurp K, Rojanasang P, Wiwattanakul S, Srisurapanon S. The prevalence of anti-hepatitis E in occupational risk groups. J Med Assoc Thai 2009; 92 Suppl 3: S38-42.
120. Mesquita JR, Santos-Ferreira N, Ferreira AS, et al. Increased risk of hepatitis E virus infection in workers occupationally exposed to sheep. Transbound Emerg Dis 2020.
121. Hoan NX, Huy PX, Sy BT, et al. High Hepatitis E virus (HEV) Positivity Among Domestic Pigs and Risk of HEV Infection of Individuals Occupationally Exposed to Pigs and Pork Meat in Hanoi, Vietnam. Open Forum Infect Dis 2019; 6(9): ofz306.
122. Mrzljak A, Balen I, Barbic L, llic M, Vilibic-Cavlek T. Hepatitis E virus in professionally exposed: A reason for concern? World J Hepatol 2021; 13(7): 723-30.
123. Teshale EH, Grytdal SP, Howard C, et al. Evidence of person-to-person transmission of hepatitis E virus during a large outbreak in Northern Uganda. Clin Infect Dis 2010; 50(7): 1006-10.
124. Mansuy JM, Huynh A, Abravanel F, Recher C, Peron JM, Izopet J. Molecular evidence of patient-to-patient transmission of hepatitis E virus in a hematology ward. Clin Infect Dis 2009; 48(3): 373-4.
125. Montella F, Rezza G, Di Sora F, Pezzotti P, Recchia O. Association between hepatitis E virus and HIV infection in homosexual men. Lancet 1994; 344(8934): 1433.
126. Payne BA, Medhi M, Ijaz S, et al. Hepatitis E virus seroprevalence among men who have sex with men, United Kingdom. Emerg Infect Dis 2013; 19(2): 333-5.
127. Keane F, Gompels M, Bendall R, et al. Hepatitis E virus coinfection in patients with HIV infection. HIV Med 2012; 13(1): 83-8.
128. Heil J, Hoebe C, Loo I, Cals JWL, van Liere G, Dukers-Muijrers N. Hepatitis E prevalence in a sexual high-risk population compared to the general population. PLoS One 2018; 13(1): e0191798.
129. Migueres M, Ducours M, Dimeglio C, et al. No evidence of sexual transmission of HEV among individuals using HIV pre-exposure prophylaxis. J Viral Hepat 2020; 27(12): 1495-501.
130. Krain LJ, Atwell JE, Nelson KE, Labrique AB. Review article: Fetal and neonatal health consequences of vertically transmitted hepatitis E virus infection. American Journal of Tropical Medicine and Hygiene 2014; 90(2): 365-70.
131. Geng Y, Zhao C, Huang W, et al. Detection and assessment of infectivity of hepatitis E virus in urine. J Hepatol 2016; 64(1): 37-43.
132. Rivero-Juarez A, Frias M, Rodriguez-Cano D, Cuenca-Lopez F, Rivero A. Isolation of Hepatitis E Virus From Breast Milk During Acute Infection. Clin Infect Dis 2016; 62(11): 1464.
133. Wang L, Yan L, Jiang J, Zhang Y, He Q, Zhuang H. Presence and persistence of hepatitis E virus RNA and proteins in human bone marrow. Emerg Microbes Infect 2020; 9(1): 994-7.
134. Marion O, Capelli N, Lhomme S, et al. Hepatitis E virus genotype 3 and capsid protein in the blood and urine of immunocompromised patients. J Infect 2019; 78(3): 232-40.
135. Dalton HR, Keane FE, Bendall R, Mathew J, Ijaz S. Treatment of chronic hepatitis E in a patient with HIV infection. Ann Intern Med 2011; 155(7): 47980.
136. Perrin HB, Cintas P, Abravanel F, et al. Neurologic Disorders in Immunocompetent Patients with Autochthonous Acute Hepatitis E. Emerg Infect Dis 2015; 21(11).
137. Feng Z, Lemon SM. Peek-a-boo: membrane hijacking and the pathogenesis of viral hepatitis. Trends Microbiol 2014; 22(2): 59-64.
138. Cao D, Meng XJ. Molecular biology and replication of hepatitis E virus. Emerg Microbes Infect 2012; 1(8): e17.
139. Zhu FC, Zhang J, Zhang XF, et al. Efficacy and safety of a recombinant hepatitis E vaccine in healthy adults: a large-scale, randomised, double-blind placebocontrolled, phase 3 trial. Lancet 2010; 376(9744): 895-902.
140. Schofield DJ, Glamann J, Emerson SU, Purcell RH. Identification by phage display and characterization of two neutralizing chimpanzee monoclonal antibodies to the hepatitis E virus capsid protein. J Virol 2000; 74(12): 5548-55.
141. Yin X, Ying D, Lhomme S, et al. Origin, antigenicity, and function of a secreted form of ORF2 in hepatitis E virus infection. Proc Natl Acad Sci U S A 2018.
142. Tyagi S, Korkaya H, Zafrullah M, Jameel S, Lal SK. The phosphorylated form of the ORF3 protein of hepatitis E virus interacts with its non-glycosylated form of the major capsid protein, ORF2. J Biol Chem 2002; 277(25): 22759-67.
143. Nair VP, Anang S, Subramani C, et al. Endoplasmic Reticulum Stress Induced Synthesis of a Novel Viral Factor Mediates Efficient Replication of Genotype-1 Hepatitis E Virus. PLoS Pathog 2016; 12(4): e1005521.
144. van Tong H, Hoan NX, Wang B, Wedemeyer H, Bock CT, Velavan TP. Hepatitis E Virus Mutations: Functional and Clinical Relevance. EBioMedicine 2016; 11: 31-42.
145. Smith DB, Simmonds P, Izopet J, et al. Proposed reference sequences for hepatitis E virus subtypes. J Gen Virol 2016; 97(3): 537-42.
146. Wang B, Harms D, Papp CP, et al. Comprehensive Molecular Approach for Characterization of Hepatitis E Virus Genotype 3 Variants. J Clin Microbiol 2018; 56(5).
147. Smith DB, Izopet J, Nicot F, et al. Update: proposed reference sequences for subtypes of hepatitis E virus (species. J Gen Virol 2020; 101(7): 692-8.
148. Nicot F, Dimeglio C, Migueres M, et al. Classification of the Zoonotic Hepatitis E Virus Genotype 3 Into Distinct Subgenotypes. Front Microbiol 2020; 11: 634430.
149. Smith DB, Vanek J, Ramalingam S, Johannessen I, Templeton K, Simmonds P. Evolution of the hepatitis E virus hypervariable region. J Gen Virol 2012; 93(Pt 11): 2408-18.
150. Shukla P, Nguyen HT, Faulk K, et al. Adaptation of a genotype 3 hepatitis E virus to efficient growth in cell culture depends on an inserted human gene segment acquired by recombination. J Virol 2012; 86(10): 5697-707.
151. Nguyen HT, Torian U, Faulk K, et al. A naturally occurring human/hepatitis E recombinant virus predominates in serum but not in faeces of a chronic hepatitis E patient and has a growth advantage in cell culture. J Gen Virol 2012; 93(Pt 3): 526-30.
152. Inoue J, Takahashi M, Mizuo H, et al. Nucleotide substitutions of hepatitis E virus genomes associated with fulminant hepatitis and disease severity. Tohoku J Exp Med 2009; 218(4): 279-84.
153. Pujhari SK, Kumar S, Ratho RK, Chawla YK, Chakraborti A. Phylogenetic analysis and subtyping of acute and fulminant strains of hepatitis E virus isolates of North India with reference to disease severity. Arch Virol 2010; 155(9): 1483-6.
154. Mishra N, Walimbe AM, Arankalle VA. Hepatitis E virus from India exhibits significant amino acid mutations in fulminant hepatic failure patients. Virus Genes 2013; 46(1): 47-53.
155. Smith DB, Simmonds P. Hepatitis E virus and fulminant hepatitis-a virus or host-specific pathology? Liver International 2015; 35(4): 1334-40.
156. Kamar N, Bendall R, Legrand-Abravanel F, et al. Hepatitis E. The Lancet 2012; 379(9835): 2477-88.
157. Rein DB, Stevens GA, Theaker J, Wittenborn JS, Wiersma ST. The global burden of hepatitis E virus genotypes 1 and 2 in 2005. Hepatology 2012; 55(4): 988-97.
158. Sultana R, Humayun S. Fetomaternal outcome in acute hepatitis e. J Coll Physicians Surg Pak 2014; 24(2): 127-30.
159. Tabatabai J, Wenzel JJ, Soboletzki M, Flux C, Navid MH, Schnitzler P. First case report of an acute hepatitis E subgenotype 3c infection during pregnancy in Germany. J Clin Virol 2014; 61(1): 170-2.
160. Blasco-Perrin H, Madden RG, Stanley A, et al. Hepatitis e virus in patients with decompensated chronic liver disease: A prospective UK/French study. Alimentary Pharmacology and Therapeutics 2015; 42(5): 574-81.
161. Kumar Acharya S, Kumar Sharma P, Singh R, et al. Hepatitis E virus (HEV) infection in patients with cirrhosis is associated with rapid decompensation and death. J Hepatol 2007; 46(3): 387-94.
162. Pischke S, Hartl J, Pas SD, Lohse AW, Jacobs BC, Van der Eijk AA. Hepatitis E virus: Infection beyond the liver? J Hepatol 2017; 66(5): 1082-95.
163. Rawla P, Raj JP, Kannemkuzhiyil AJ, Aluru JS, Thandra KC, Gajendran M. A Systematic Review of the Extra-Hepatic Manifestations of Hepatitis E Virus Infection. Med Sci (Basel) 2020; 8(1).
164. Kamar N, Bendall RP, Peron JM, et al. Hepatitis E virus and neurologic disorders. Emerg Infect Dis 2011; 17(2): 173-9.
165. Van Eijk JJJ, Madden RG, Van Der Eijk AA, et al. Neuralgic amyotrophy and hepatitis E virus infection. Neurology 2014; 82(6): 498-503.
166. Bazerbachi F, Haffar S, Garg SK, Lake JR. Extra-hepatic manifestations associated with hepatitis E virus infection: a comprehensive review of the literature. Gastroenterol Rep (Oxf) 2016; 4(1): 1-15.
167. Haffar S, Bazerbachi F, Garg S, Lake JR, Freeman ML. Frequency and prognosis of acute pancreatitis associated with acute hepatitis E: A systematic review. Pancreatology 2015; 15(4): 321-6.
168. Kamar N, Selves J, Mansuy JM, et al. Hepatitis E virus and chronic hepatitis in organ-transplant recipients. N Engl J Med 2008; 358(8): 811-7.
169. van der Eijk AA, Pas SD, Cornelissen JJ, de Man RA. Hepatitis E virus infection in hematopoietic stem cell transplant recipients. Curr Opin Infect Dis 2014; 27(4): 309-15.
170. Gauss A, Wenzel JJ, Flechtenmacher C, et al. Chronic hepatitis E virus infection in a patient with leukemia and elevated transaminases: a case report. J Med Case Rep 2012; 6: 334.
171. Debes JD, Pisano MB, Lotto M, Re V. Hepatitis E virus infection in the HIVpositive patient. J Clin Virol 2016; 80: 102-6.
172. Grewal P, Kamili S, Motamed D. Chronic hepatitis E in an immunocompetent patient: A case report. Hepatology 2014; 59(1): 347-8.
173. Kamar N, Izopet J. Does chronic hepatitis E virus infection exist in immunocompetent patients? Hepatology 2014; 60(1): 427-.
174. Grewal P. Reply to "does chronic hepatitis E virus infection exist in immunocompetent patients?". Hepatology 2015; 61(6): 2117.
175. Barrague H, Condat B, Petitdidier N, et al. Chronic hepatitis E virus infection in a cirrhotic patient: A case report. Medicine (Baltimore) 2017; 96(39): e7915.
176. Colson P, Schleinitz N, Vely F, et al. Chronic hepatitis E in absence of severe immune deficiency. Clin Res Hepatol Gastroenterol 2019.
177. Geng Y, Zhang H, Huang W, et al. Persistent hepatitis e virus genotype 4 infection in a child with acute lymphoblastic leukemia. Hepat Mon 2014; 14(1): e15618.
178. Sridhar S, Chan JFW, Yap DYH, et al. Genotype 4 hepatitis E virus is a cause of chronic hepatitis in renal transplant recipients in Hong Kong. J Viral Hepat 2017.
179. Singh A, Seth R, Gupta A, et al. Chronic hepatitis E - an emerging disease in an immunocompromised host. Gastroenterol Rep (Oxf) 2018; 6(2): 152-5.
180. Robins AEM, Bowden DJ, Gelson WTH. Chronic genotype 1 hepatitis E infection from immunosuppression for ileo-colonic Crohn's disease. Oxford Medical Case Reports 2018; 2018(9): omy059-omy.
181. Naik A, Gupta N, Goel D, Ippagunta SK, Sharma RK, Aggarwal R. Lack of evidence of hepatitis E virus infection among renal transplant recipients in a disease-endemic area. J Viral Hepat 2013; 20(4): e138-40.
182. Rathi S, Duseja A, Thakur V, et al. Chronic Hepatitis E With Genotype 1Masquerading as Allograft Rejection After LiverTransplantation. J Clin Exp Hepatol 2021; 11(3): 400-3.
183. Ankcorn M, Haywood B, Tedder R, Ijaz S. Response to: 'Chronic genotype 1 hepatitis E infection from immunosuppression for ileo-colonic Crohn's disease'. Oxf Med Case Reports 2019; 2019(2): omy125.
184. Kamar N, Rostaing L, Legrand-Abravanel F, Izopet J. How should hepatitis E virus infection be defined in organ-transplant recipients? Am J Transplant 2013; 13(7): 1935-6.
185. Pischke S, Stiefel P, Franz B, et al. Chronic hepatitis e in heart transplant recipients. Am J Transplant 2012; 12(11): 3128-33.
186. Choi M, Hofmann J, Kohler A, et al. Prevalence and Clinical Correlates of Chronic Hepatitis E Infection in German Renal Transplant Recipients With Elevated Liver Enzymes. Transplant Direct 2018; 4(2): e341.
187. Legrand-Abravanel F, Kamar N, Sandres-Saune K, et al. Hepatitis E virus infection without reactivation in solid-organ transplant recipients, France. Emerg Infect Dis 2011; 17(1): 30-7.
188. Pischke S, Suneetha PV, Baechlein C, et al. Hepatitis E virus infection as a cause of graft hepatitis in liver transplant recipients. Liver Transpl 2010; 16(1): 74-82.
189. Sinakos E, Gioula G, Liava C, et al. Prevalence of hepatitis E in liver transplant recipients in Greece. Epidemiol Infect 2018: 1-3.
190. Cordts SE, Schneble L, Schnitzler P, et al. Prevalence, morbidity, and therapy of hepatitis E virus infection in pediatric renal allograft recipients. Pediatr Nephrol 2018; 33(7): 1215-25.
191. Pischke S, Greer M, Hardtke S, et al. Course and treatment of chronic hepatitis E virus infection in lung transplant recipients. Transpl Infect Dis 2014; 16(2): 333-9.
192. Pas SD, de Man RA, Mulders C, et al. Hepatitis E virus infection among solid organ transplant recipients, the Netherlands. Emerg Infect Dis 2012; 18(5): 86972.
193. Buffaz C, Scholtes C, Dron AG, et al. Hepatitis e in liver transplant recipients in the Rhone-Alpes region in France. European Journal of Clinical Microbiology and Infectious Diseases 2014; 33(6): 1037-43.
194. Versluis J, Pas SD, Agteresch HJ, et al. Hepatitis E virus: an underestimated opportunistic pathogen in recipients of allogeneic hematopoietic stem cell transplantation. Blood 2013; 122(6): 1079-86.
195. Ghaffari H, Tavakoli A, Javanmard D, Mollaei H, Mortazavi HS, Monavari SH. No molecular evidence of Hepatitis E infection among patients with HIV in Iran. Med J Islam Repub Iran 2017; 31: 135.
196. Zhou S, Ren L, Xia X, et al. Hepatitis E virus infection in HIV-infected patients: A large cohort study in Yunnan province, China. J Med Virol 2018; 90(6): 11217.
197. Kuniholm MH, Ong E, Hogema BM, et al. Acute and Chronic Hepatitis E Virus Infection in Human Immunodeficiency Virus-Infected U.S. Women. Hepatology 2016; 63(3): 712-20.
198. Feldt T, Sarfo FS, Zoufaly A, et al. Hepatitis E virus infections in HIV-infected patients in Ghana and Cameroon. J Clin Virol 2013; 58(1): 18-23.
199. Tavitian S, Peron JM, Huguet F, et al. Ribavirin for chronic hepatitis prevention among patients with hematologic malignancies. Emerging Infectious Diseases 2015; 21(8): 1466-9.
200. Bauer H, Luxembourger C, Gottenberg JE, et al. Outcome of hepatitis E virus infection in patients with inflammatory arthritides treated with immunosuppressants: a French retrospective multicenter study. Medicine (Baltimore) 2015; 94(14): e675.
201. Pischke S, Peron JM, von Wulffen M, et al. Chronic Hepatitis E in Rheumatology and Internal Medicine Patients: A Retrospective Multicenter European Cohort Study. Viruses 2019; 11(2).
202. Halac U, Beland K, Lapierre P, et al. Chronic hepatitis E infection in children with liver transplantation. Gut 2012; 61(4): 597-603.
203. de Oliveira J, Freitas NR, Teles SA, et al. Prevalence of hepatitis E virus RNA and antibodies in a cohort of kidney transplant recipients in Central Brazil. Int J Infect Dis 2018; 69: 41-3.
204. Pischke S, Ho H, Urbanek F, et al. Hepatitis E in HIV-positive patients in a lowendemic country. J Viral Hepat 2010; 17(8): 598-9.
205. Rivero-Juarez A, Martinez-Duenas L, Martinez-Peinado A, et al. Absence of occult Hepatitis E virus infection among HIV immunosuppressed patients. Journal of Infection 2015; 70(6): 680-3.
206. Kamar N, Lhomme S, Abravanel F, et al. Treatment of HEV Infection in Patients with a Solid-Organ Transplant and Chronic Hepatitis. Viruses 2016; 8(8).
207. Kamar N, Garrouste C, Haagsma EB, et al. Factors associated with chronic hepatitis in patients with hepatitis E virus infection who have received solid organ transplants. Gastroenterology 2011; 140(5): 1481-9.
208. Zhou X, Wang Y, Metselaar HJ, Janssen HLA, Peppelenbosch MP, Pan Q. Rapamycin and everolimus facilitate hepatitis e virus replication: Revealing a basal defense mechanism of PI3K-PKB-mTOR pathway. Journal of Hepatology 2014; 61(4): 746-54.
209. Wang Y, Van Der Laan LJW, Man R, et al. Calcineurin inhibitors promote but mycophenolic acid ihibits hepatitis e virus infection in cell culture. Transplant International 2013; 26: 227.
210. Kamar N, Lhomme S, Abravanel F, et al. An early viral response predicts the virological response to ribavirin in hepatitis e virus organ transplant patients. Transplantation 2015; 99(10): 2124-31.
211. Bettinger D, Schorb E, Huzly D, et al. Chronic hepatitis E virus infection following allogeneic hematopoietic stem cell transplantation: an important differential diagnosis for graft versus host disease. Ann Hematol 2015; 94(2): 359-60.
212. Dalton HR, Fellows HJ, Stableforth W, et al. The role of hepatitis E virus testing in drug-induced liver injury. Aliment Pharmacol Ther 2007; 26(10): 1429-35.
213. Davern TJ, Chalasani N, Fontana RJ, et al. Acute hepatitis E infection accounts for some cases of suspected drug-induced liver injury. Gastroenterology 2011; 141(5): 1665-72 e1-9.
214. Beer A, Holzmann H, Pischke S, et al. Chronic Hepatitis E is associated with cholangitis. Liver Int 2019; 39(10): 1876-83.
215. Borentain P, Colson P, Bolon E, Gauchez P, Coso D, Gerolami R. Hepatocellular carcinoma complicating hepatitis E virus-related cirrhosis. Hepatology 2018; 67(1): 446-8.
216. Pas SD, Streefkerk RH, Pronk M, et al. Diagnostic performance of selected commercial HEV IgM and IgG ELISAs for immunocompromised and immunocompetent patients. J Clin Virol 2013; 58(4): 629-34.
217. Behrendt P, Bremer B, Todt D, et al. Hepatitis E Virus (HEV) ORF2 Antigen Levels Differentiate Between Acute and Chronic HEV Infection. J Infect Dis 2016; 214(3): 361-8.
218. Kamar N, Abravanel F, Selves J, et al. Influence of immunosuppressive therapy on the natural history of genotype 3 hepatitis-E virus infection after organ transplantation. Transplantation 2010; 89(3): 353-60.
219. Gorris M, van der Lecq BM, van Erpecum KJ, de Bruijne J. Treatment for chronic hepatitis E virus infection: A systematic review and meta-analysis. J Viral Hepat 2021; 28(3): 454-63.
220. Dalton HR, Kamar N, Baylis SA, Moradpour D, Wedemeyer H, Negro F. EASL Clinical Practice Guidelines on hepatitis E virus infection. Journal of hepatology : the journal of the European Association for the Study of the Liver 2018; 68(6): 1256-71.
221. McPherson S, Elsharkawy AM, Ankcorn M, et al. Summary of the British Transplantation Society UK Guidelines for Hepatitis E and Solid Organ Transplantation. Transplantation 2018; 102(1): 15-20.
222. Suneetha PV, Pischke S, Schlaphoff V, et al. Hepatitis E virus (HEV)-specific T-cell responses are associated with control of HEV infection. Hepatology 2012; 55(3): 695-708.
223. Kamar N, Izopet J, Tripon S, et al. Ribavirin for chronic hepatitis E virus infection in transplant recipients. N Engl J Med 2014; 370(12): 1111-20.
224. Beaucourt S, Vignuzzi M. Ribavirin: a drug active against many viruses with multiple effects on virus replication and propagation. Molecular basis of ribavirin resistance. Curr Opin Virol 2014; 8: 10-5.
225. Abravanel F, Lhomme S, Rostaing L, Kamar N, Izopet J. Protracted fecal shedding of HEV during ribavirin therapy predicts treatment relapse. Clin Infect Dis 2015; 60(1): 96-9.
226. Mulder MB, de Man RA, Kamar N, et al. Determining the therapeutic range for ribavirin in transplant recipients with chronic hepatitis E virus infection. J Viral Hepat 2021; 28(2): 431-5.
227. Andersson MI, Preiser W, Maponga TG, et al. Immune reconstitution hepatitis E: a neglected complication of antiretroviral therapy in Africa? AIDS 2013; 27(3): 487-9.
228. Neukam K, Barreiro P, Macias J, et al. Chronic hepatitis E in HIV patients: rapid progression to cirrhosis and response to oral ribavirin. Clin Infect Dis 2013; 57(3): 465-8.
229. Debing Y, Emerson SU, Wang Y, et al. Ribavirin inhibits in vitro hepatitis E virus replication through depletion of cellular GTP pools and is moderately synergistic with alpha interferon. Antimicrobial Agents and Chemotherapy 2014; 58(1): 267-73.
230. Peters van Ton AM, Gevers TJ, Drenth JP. Antiviral therapy in chronic hepatitis E: a systematic review. J Viral Hepat 2015; 22(12): 965-73.
231. Dao Thi VL, Debing Y, Neyts J, Moradpour D, Gouttenoire J. Sofosbuvir inhibits hepatitis E virus replication in vitro and results in an additive effect when combined with ribavirin. Journal of Hepatology 2015; 62: S289-S90.
232. Cornberg M, Pischke S, Müller T, et al. Sofosbuvir monotherapy fails to achieve HEV RNA elimination in patients with chronic hepatitis E - The HepNet SofE pilot study. J Hepatol 2020; 73(3): 696-9.
233. van der Valk M, Zaaijer HL, Kater AP, Schinkel J. Sofosbuvir shows antiviral activity in a patient with chronic hepatitis E virus infection. J Hepatol 2017; 66(1): 242-3.
234. Donnelly MC, Imlach SN, Abravanel F, et al. Sofosbuvir and Daclatasvir AntiViral Therapy Fails to Clear HEV Viremia and Restore Reactive T Cells in a HEV/HCV Co-Infected Liver Transplant Recipient. Gastroenterology 2017; 152(1): 300-1.
235. Todesco E, Mazzola A, Akhavan S, et al. Chronic hepatitis E in a heart transplant patient: sofosbuvir and ribavirin regimen not fully effective. Antivir Ther 2018.
236. Todesco E, Demeret S, Calin R, et al. Chronic hepatitis E in HIV/HBV coinfected patient: lack of power of sofosbuvir-ribavirin. Aids 2017; 31(9): 13468.
237. van Wezel EM, de Bruijne J, Damman K, et al. Sofosbuvir Add-on to Ribavirin Treatment for Chronic Hepatitis E Virus Infection in Solid Organ Transplant Recipients Does Not Result in Sustained Virological Response. Open Forum Infect Dis 2019; 6(8).
238. Fraga M, Gouttenoire J, Sahli R, et al. Sofosbuvir add-on to ribavirin for chronic hepatitis E in a cirrhotic liver transplant recipient: a case report. BMC Gastroenterol 2019; 19(1): 76.
239. Todt D, Moeller N, Praditya D, et al. The natural compound silvestrol inhibits hepatitis E virus (HEV) replication in vitro and in vivo. Antiviral Res 2018; 157: 151-8.
240. Kaushik N, Anang S, Ganti KP, Surjit M. Zinc: A Potential Antiviral Against Hepatitis E Virus Infection? DNA Cell Biol 2018; 37(7): 593-9.
241. Tsarev SA, Tsareva TS, Emerson SU, et al. Successful passive and active immunization of cynomolgus monkeys against hepatitis E. Proc Natl Acad Sci U S A 1994; 91(21): 10198-202.
242. Ankcorn M, Gallacher J, ljaz S, et al. Convalescent plasma therapy for persistent hepatitis E virus infection. J Hepatol 2019; 71(2): 434-8.
243. Williams TP, Kasorndorkbua C, Halbur PG, et al. Evidence of extrahepatic sites of replication of the hepatitis E virus in a swine model. J Clin Microbiol 2001; 39(9): 3040-6.
244. Marion O, Lhomme S, Nayrac M, et al. Hepatitis E virus replication in human intestinal cells. Gut 2020; 69(5): 901-10.
245. Lhomme S, Kamar N, Nicot F, et al. Mutation in the Hepatitis E Virus Polymerase and Outcome of Ribavirin Therapy. Antimicrob Agents Chemother 2016; 60(3): 1608-14.
246. Todt D, Gisa A, Radonic A, et al. In vivo evidence for ribavirin-induced mutagenesis of the hepatitis E virus genome. Gut 2016; 65(10): 1733-43.
247. Debing Y, Ramiere C, Dallmeier K, et al. Hepatitis E virus mutations associated with ribavirin treatment failure result in altered viral fitness and ribavirin sensitivity. J Hepatol 2016; 65(3): 499-508.
248. Takahashi M, Tanaka T, Azuma M, et al. Prolonged fecal shedding of hepatitis E virus (HEV) during sporadic acute hepatitis E: evaluation of infectivity of HEV in fecal specimens in a cell culture system. J Clin Microbiol 2007; 45(11): 36719.
249. JH K. Permanent human hepatocyte cell line and its use in a liver assist device (LAD). US Patent 5,290,684 1994.
250. Garson JA, Ferns RB, Grant PR, et al. Minor groove binder modification of widely used TaqMan probe for hepatitis E virus reduces risk of false negative real-time PCR results. J Virol Methods 2012; 186(1-2): 157-60.
251. Jothikumar N, Cromeans TL, Robertson BH, Meng XJ, Hill VR. A broadly reactive one-step real-time RT-PCR assay for rapid and sensitive detection of hepatitis E virus. J Virol Methods 2006; 131(1): 65-71.
252. Available at: https://www.westgard.com/. Accessed 24/11/2019.
253. Singer JB, Thomson EC, McLauchlan J, Hughes J, Gifford RJ. GLUE: A flexible software system for virus sequence data. bioRxiv 2018.
254. NHS Blood and Transplant UK. Organ Donation and Transplantation Activity Report 2016/17 https://www.odt.nhs.uk/statistics-and-reports/annual-activityreport/ [Accessed 14th May 2018].
255. Naimark DM, Bott M, Krahn M. The half-cycle correction explained: two alternative pedagogical approaches. Med Decis Making 2008; 28(5): 706-12.
256. Abravanel F, Lhomme S, Chapuy-Regaud S, et al. Hepatitis E virus reinfections in solid-organ-transplant recipients can evolve into chronic infections. J Infect Dis 2014; 209(12): 1900-6.
257. Mendeloff J, Ko K, Roberts MS, Byrne M, Dew MA. Procuring organ donors as a health investment: how much should we be willing to spend? Transplantation 2004; 78(12): 1704-10.
258. National Institute for Health and Care Excellence (NICE). Guide to the methods of technology appraisal 2013. https://www.nice.org.uk/process/pmg9/chapter/foreword Published April 2013 [Accessed 14th May 2018].
259. Joint Formulary Committee. British National Formulary (online) London: BMJ Group and Pharmaceutical Press http://www.medicinescomplete.com [Accessed on 14th May 2018].
260. Department of Health and Social Care. NHS reference costs 2016/2017 https://improvement.nhs.uk/resources/reference-costs/ [Accessed 14th May 2018].
261. Wright M, Grieve R, Roberts J, Main J, Thomas HC, Investigators UKMHCT. Health benefits of antiviral therapy for mild chronic hepatitis C : randomised controlled trial and economic evaluation. Health Technol Assess 2006; 10(21): 1-113, iii.
262. van Leeuwen N, Lingsma HF, Vanrolleghem AM, et al. Hospital Admissions, Transfers and Costs of Guillain-Barre Syndrome. PLoS One 2016; 11(2): e0143837.
263. Human Transplantation (Wales) Bill. Explanatory Memorandum. 25 June 2013. <http://www.assembly.wales/laid\ documents/pri-Id9121-em-r\ \ revised\ explanatory\ memorandum\ human\ transplantation \%20(wales)\%20bill-25062013-247379/pri-Id9121-em-r-e-english.pdf> [Accessed 14th May 2018].
264. Tengs TO, Wallace A. One thousand health-related quality-of-life estimates. Med Care 2000; 38(6): 583-637.
265. Forsberg A, Press R, Holmqvist LW. Residual disability 10 years after falling ill in Guillain-Barre syndrome: a prospective follow-up study. J Neurol Sci 2012; 317(1-2): 74-9.
266. Zaaijer HL. No artifact, hepatitis E is emerging. Hepatology 2015; 62(2): 654.
267. D'Amico G, Pasta L, Morabito A, et al. Competing risks and prognostic stages of cirrhosis: a 25 -year inception cohort study of 494 patients. Aliment Pharmacol Ther 2014; 39(10): 1180-93.
268. Office for National Statistics. National life tables: United Kingdom 20142016.<https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsan dmarriages/lifeexpectancies/bulletins/nationallifetablesunitedkingdom/previou sReleases> Released 27September 2017 [Accesssed 14th May 2018].
269. Organisation for Economic Cooperation and Development (OECD) (2018).Purchasing power parity and exchange rates 2000-2017 https://data.oecd.org/conversion/purchasing-power-parities-ppp.htm [Accessed 14th May 2018].
270. Organisation for Economic Cooperation and Development (OECD) (2018). Consumer price index 2011-2018 https://data.oecd.org/price/inflationcpi.htm [Accessed 14th May 2018].
271. Kamar N, Mallet V, Izopet J. Ribavirin for chronic hepatitis E virus infection. The New England journal of medicine 2014; 370(25): 2447-8.
272. Claxton K. The irrelevance of inference: a decision-making approach to the stochastic evaluation of health care technologies. J Health Econ 1999; 18(3): 341-64.
273. Tambour M, Zethraeus N, Johannesson M. A note on confidence intervals in cost-effectiveness analysis. Int J Technol Assess Health Care 1998; 14(3): 46771.
274. Stinnett AA, Mullahy J. Net health benefits: a new framework for the analysis of uncertainty in cost-effectiveness analysis. Med Decis Making 1998; 18(2 Suppl): S68-80.
275. Drummond M. Methods for the economic evaluation of health care programmes, 2017.
276. Barton GR, Briggs AH, Fenwick EA. Optimal cost-effectiveness decisions: the role of the cost-effectiveness acceptability curve (CEAC), the costeffectiveness acceptability frontier (CEAF), and the expected value of perfection information (EVPI). Value Health 2008; 11(5): 886-97.
277. Epstein D. Beyond the cost-effectiveness acceptability curve: The appropriateness of rank probabilities for presenting the results of economic evaluation in multiple technology appraisal. Health Econ 2019; 28(6): 801-7.
278. McHugh TM, Stites DP, Busch MP, Krowka JF, Stricker RB, Hollander H. Relation of circulating levels of human immunodeficiency virus (HIV) antigen, antibody to p24, and HIV-containing immune complexes in HIV-infected patients. J Infect Dis 1988; 158(5): 1088-91.
279. Rydell GE, Prakash K, Norder H, Lindh M. Hepatitis B surface antigen on subviral particles reduces the neutralizing effect of anti-HBs antibodies on hepatitis B viral particles in vitro. Virology 2017; 509: 67-70.
280. Tremeaux P, Lhomme S, Chapuy-Regaud S, et al. Performance of an antigen assay for diagnosing acute hepatitis E virus genotype 3 infection. J Clin Virol 2016; 79: 1-5.
281. Fiebig EW, Wright DJ, Rawal BD, et al. Dynamics of HIV viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of primary HIV infection. AIDS 2003; 17(13): 1871-9.
282. Moucari R, Marcellin P. Quantification of hepatitis B surface antigen: a new concept for the management of chronic hepatitis B. Liver Int 2011; 31 Suppl 1: 122-8.
283. Tedder RS, Tuke P, Wallis N, Wright M, Nicholson L, Grant PR. Therapyinduced clearance of HCV core antigen from plasma predicts an end of treatment viral response. J Viral Hepat 2013; 20(1): 65-71.
284. Zhang F, Li X, Li Z, et al. Detection of HEV antigen as a novel marker for the diagnosis of hepatitis E. J Med Virol 2006; 78(11): 1441-8.
285. Cameron CH , Briggs M . Confirmation of specificity by neutralisation in immunoradiometric assay for hepatitis B surface antigen. J Virol Methods 1980; 1(2): 113-6.
286. Soomro MH. Detection and localization of rabbit hepatitis e virus and antigen in systemic tissues from experimentally intraperitoneally infected rabbits. PloS one 2014; 9(3): e88607.
287. Izopet J, Dubois M, Bertagnoli S, et al. Hepatitis E virus strains in rabbits and evidence of a closely related strain in humans, France. Emerg Infect Dis 2012; 18(8): 1274-81.
288. Nath N, Armbruster A, Ellis FR. Failure to confirm specificity of samples containing a very high titer of hepatitis B surface antigen (HBsAg). Transfusion 1979; 19(3): 321-3.
289. Gupta E, Pandey P, Pandey S, Sharma MK, Sarin SK. Role of hepatitis E virus antigen in confirming active viral replication in patients with acute viral hepatitis E infection. J Clin Virol 2013; 58(2): 374-7.
290. Zhang H, Rao H, Wang Y, et al. Evaluation of an antigen assay for diagnosing acute and chronic hepatitis E genotype 4 infection. J Gastroenterol Hepatol 2019; 34(2): 458-65.
291. Montpellier C, Wychowski C, Sayed IM, et al. Hepatitis E Virus Lifecycle and Identification of 3 Forms of the ORF2 Capsid Protein. Gastroenterology 2018; 154(1): 211-23 e8.
292. Ankavay M, Montpellier C, Sayed IM, et al. New insights into the ORF2 capsid protein, a key player of the hepatitis E virus lifecycle. Sci Rep 2019; 9(1): 6243.
293. Sayed IM, Verhoye L, Montpellier C, et al. Hepatitis E Virus (HEV) Open Reading Frame 2 Antigen Kinetics in Human-Liver Chimeric Mice and Its Impact on HEV Diagnosis. J Infect Dis 2019; 220(5): 811-9.
294. Sayed IM, Meuleman P. Murine Tissues of Human Liver Chimeric Mice Are Not Susceptible to Hepatitis E Virus Genotypes 1 and 3. J Infect Dis 2017; 216(7): 919-20.
295. Soothill G, Hessey S, Erotocritou M, et al. Diagnostic utility of hepatitis E virus antigen-specific ELISA versus PCR testing in a cohort of post liver transplant patients in a large university hospital. J Clin Virol 2018; 106: 44-8.
296. Honer zu Siederdissen C, Pischke S, Schlue J, et al. Chronic hepatitis E virus infection beyond transplantation or human immunodeficiency virus infection. Hepatology 2014; 60(3): 1112-3.
297. Ollier L, Tieulie N, Sanderson F, et al. Chronic hepatitis after hepatitis E virus infection in a patient with non-Hodgkin lymphoma taking rituximab. Ann Intern Med 2009; 150(6): 430-1.
298. Pfefferle S, Frickmann H, Gabriel M, Schmitz N, Gunther S, Schmidt-Chanasit J. Fatal course of an autochthonous hepatitis E virus infection in a patient with leukemia in Germany. Infection 2012; 40(4): 451-4.
299. Alnuaimi K, Lavole J, Lascoux-Combes C, et al. Chronic hepatitis E in patients with indolent lymphoma after treatment with rituximab and bendamustine. Hepatology 2017.
300. Mohamed OE, Jones J, Osman H, Huissoon AP. Unexplained abnormal liver function in patients with primary antibody deficiency: could it be chronic hepatitis E infection? J Clin Pathol 2017 Aug 9 doi: 101136/jclinpath-20172046272017.
301. Bjoro K, Froland SS, Yun Z, Samdal HH, Haaland T. Hepatitis C infection in patients with primary hypogammaglobulinemia after treatment with contaminated immune globulin. N Engl J Med 1994; 331(24): 1607-11.
302. Brown LK, Clark I, Brown JR, Breuer J, Lowe DM. Norovirus infection in primary immune deficiency. Rev Med Virol 2017 Mar 8 doi: 101002/rmv1926 2017.
303. Kainulainen L, Vuorinen T, Rantakokko-Jalava K, Osterback R, Ruuskanen O. Recurrent and persistent respiratory tract viral infections in patients with primary hypogammaglobulinemia. J Allergy Clin Immunol 2010; 126(1): 120-6.
304. Bearden D, Collett M, Quan PL, Costa-Carvalho BT, Sullivan KE. Enteroviruses in X-Linked Agammaglobulinemia: Update on Epidemiology and Therapy. J Allergy Clin Immunol Pract 2016; 4(6): 1059-65.
305. Pischke S, Horn-Wichmann R, Ernst D, et al. Absence of chronic hepatitis E in a German cohort of common variable immunodeficiency patients. Infect Dis Rep 2012; 4(2): e28.
306. Haagsma EB, Niesters HG, van den Berg AP, et al. Prevalence of hepatitis E virus infection in liver transplant recipients. Liver Transpl 2009; 15(10): 1225-8.
307. Pischke S, Greer M, Hardtke S, et al. Course and treatment of chronic hepatitis E virus infection in lung transplant recipients. Transpl Infect Dis 2014; 16(2): 333-9.
308. Reekie I, Irish D, ljaz S, et al. Hepatitis E infection in stem cell and solid organ transplantpatients: A cross-sectional study: The importance of HEV RNA screening in peri-transplant period. Journal of Clinical Virology 2018; 107: 1-5.
309. Yoo N, Bernstein J, Caldwell C, et al. Hepatitis E virus infection in a liver transplant recipient: delayed diagnosis due to variable performance of serologic assays. Transpl Infect Dis 2013; 15(4): E166-8.
310. von Felden J, Alric L, Pischke S, et al. The burden of hepatitis E among patients with haematological malignancies: A retrospective European cohort study. J Hepatol 2019; 71(3): 465-72.
311. Riches PG, Hobbs JR. Mechanisms in secondary hypogammaglobulinaemia. J Clin Pathol Suppl (R Coll Pathol) 1979; 13: 15-22.
312. Duraisingham SS, Buckland M, Dempster J, Lorenzo L, Grigoriadou S, Longhurst HJ. Primary vs. secondary antibody deficiency: clinical features and infection outcomes of immunoglobulin replacement. PLoS One 2014; 9(6): e100324.
313. Ruffner MA, Sullivan KE, Henrickson SE. Recurrent and Sustained Viral Infections in Primary Immunodeficiencies. Front Immunol 2017; 8: 665.
314. Zhang J, Gu Y, Ge SX, et al. Analysis of hepatitis E virus neutralization sites using monoclonal antibodies directed against a virus capsid protein. Vaccine 2005; 23(22): 2881-92.
315. Zhao Q, Zhang J, Wu T, et al. Antigenic determinants of hepatitis E virus and vaccine-induced immunogenicity and efficacy. J Gastroenterol 2013; 48(2): 159-68.
316. van Eijk JJJ, Dalton HR, Ripellino P, et al. Clinical phenotype and outcome of hepatitis E virus-associated neuralgic amyotrophy. Neurology 2017; 89(9): 90917.
317. Sayed IM, Verhoye L, Cocquerel L, et al. Study of hepatitis E virus infection of genotype 1 and 3 in mice with humanised liver. Gut 2017; 66(5): 920-9.
318. van Dijk WEM, Vergeer M, Arends JE. Persistent Hepatitis E Infection in a Patient with Tuberous Sclerosis Complex Treated with Everolimus: A Case Report. Infect Dis Ther 2017; 6(2): 291-5.
319. Fraticelli P, Bagnarelli P, Tarantino G, et al. Chronic hepatitis E in a patient treated with rituximab and mycophenolate mofetil for Sjogren's syndrome. Rheumatology (Oxford) 2016; 55(12): 2275-7.
320. Kamar N, Izopet J, Cintas P, et al. Hepatitis E virus-induced neurological symptoms in a kidney-transplant patient with chronic hepatitis. Am J Transplant 2010; 10(5): 1321-4.
321. Brainard J, Pond K, Hooper L, Edmunds K, Hunter P. Presence and Persistence of Ebola or Marburg Virus in Patients and Survivors: A Rapid Systematic Review. PLoS Negl Trop Dis 2016; 10(2): e0004475.
322. Deen GF, Broutet N, Xu W, et al. Ebola RNA Persistence in Semen of Ebola Virus Disease Survivors - Final Report. N Engl J Med 2017; 377(15): 1428-37.
323. Garcia-Bujalance S, Gutierrez-Arroyo A, De la Calle F, et al. Persistence and infectivity of Zika virus in semen after returning from endemic areas: Report of 5 cases. J Clin Virol 2017; 96: 110-5.
324. Tan JJL, Balne PK, Leo YS, Tong L, Ng LFP, Agrawal R. Persistence of Zika virus in conjunctival fluid of convalescence patients. Sci Rep 2017; 7(1): 11194.
325. Cheng X, Zhao Y, Zhang X, Jin H, Min J. Health economic evaluation of immunization strategies of hepatitis E vaccine for elderly population. Hum Vaccin Immunother 2017; 13(8): 1873-8.
326. Zhao Y, Zhang X, Zhu F, Jin H, Wang B. A preliminary cost-effectiveness analysis of hepatitis E vaccination among pregnant women in epidemic regions. Hum Vaccin Immunother 2016; 12(8): 2003-9.
327. Zhang J, Zhang XF, Huang SJ, et al. Long-term efficacy of a hepatitis E vaccine. New England Journal of Medicine 2015; 372(10): 914-22.
328. Kamar N, Mansuy JM, Cointault O, et al. Hepatitis E virus-related cirrhosis in kidney- and kidney-pancreas-transplant recipients. Am J Transplant 2008; 8(8): 1744-8.
329. Dalton HR, Saunders M, Woolson KL. Hepatitis E virus in developed countries: one of the most successful zoonotic viral diseases in human history? J Virus Erad 2015; 1(1): 23-9.
330. Dalton HR, Kamar N, van Eijk JJ, et al. Hepatitis E virus and neurological injury. Nat Rev Neurol 2016; 12(2): 77-85.
331. Colson P, Borentain P, Gerolami R. Full-length title: Hepatitis E virus as agent of hepatocellular carcinoma (for the): Hepatitis E virus and hepatocellular carcinoma. Int J Infect Dis 2019.
332. Office for National Statistics. GDP deflator increases calendar years 19552017.
<https://www.ons.gov.uk/economy/grossdomesticproductgdp/bulletins/quarterl ynationalaccounts/quarter1jantomar2016/relateddata> [Accessed 14th May 2018].
333. Lu L, Li C, Hagedorn CH. Phylogenetic analysis of global hepatitis E virus sequences: genetic diversity, subtypes and zoonosis. Rev Med Virol 2006; 16(1): 5-36.
334. Vina-Rodriguez A, Schlosser J, Becher D, Kaden V, Groschup MH, Eiden M. Hepatitis E virus genotype 3 diversity: Phylogenetic analysis and presence of subtype 3b in wild boar in Europe. Viruses 2015; 7(5): 2704-26.
335. Oliveira-Filho EF, Konig M, Thiel HJ. Genetic variability of HEV isolates: inconsistencies of current classification. Vet Microbiol 2013; 165(1-2): 148-54.
336. Grandadam M, Tebbal S, Caron M, et al. Evidence for hepatitis E virus quasispecies. J Gen Virol 2004; 85(Pt 11): 3189-94.
337. Lhomme S, Abravanel F, Dubois M, et al. Hepatitis E virus quasispecies and the outcome of acute hepatitis E in solid-organ transplant patients. J Virol 2012; 86(18): 10006-14.
338. Julian TR, Baugher JD, Rippinger CM, et al. Murine norovirus (MNV-1) exposure in vitro to the purine nucleoside analog Ribavirin increases quasispecies diversity. Virus Res 2016; 211: 165-73.
339. Graci JD, Cameron CE. Quasispecies, error catastrophe, and the antiviral activity of ribavirin. Virology 2002; 298(2): 175-80.
340. Debing Y, Gisa A, Dallmeier K, et al. A mutation in the hepatitis E virus RNA polymerase promotes its replication and associates with ribavirin treatment failure in organ transplant recipients. Gastroenterology 2014; 147(5): 1008-11 e7; quiz e15-6.
341. Debing Y, Gisa A, Suneetha PV, et al. A mutation in the hepatitis e virus polymerase associated with ribavirin treatment failure has a replication advantage in vitro. Journal of Hepatology 2014; 1): S49-S50.
342. Koonin EV. The phylogeny of RNA-dependent RNA polymerases of positivestrand RNA viruses. J Gen Virol 1991; 72 (Pt 9): 2197-206.
343. Nan Y, Zhang YJ. Molecular Biology and Infection of Hepatitis E Virus. Front Microbiol 2016; 7: 1419.
344. Aggarwal R, Shukla R, Jameel S, et al. T-cell epitope mapping of ORF2 and ORF3 proteins of human hepatitis E virus. J Viral Hepat 2007; 14(4): 283-92.
345. Zhou YH, Purcell RH, Emerson SU. An ELISA for putative neutralizing antibodies to hepatitis E virus detects antibodies to genotypes 1, 2, 3, and 4. Vaccine 2004; 22(20): 2578-85.
346. Langhans B, Nischalke HD, Arndt S, et al. Ribavirin exerts differential effects on functions of Cd4+ Th1, Th2, and regulatory T cell clones in hepatitis C. PLoS One 2012; 7(7): e42094.
347. Hultgren C, Milich DR, Weiland O, Sallberg M. The antiviral compound ribavirin modulates the T helper (Th) 1/Th2 subset balance in hepatitis B and C virusspecific immune responses. J Gen Virol 1998; 79 (Pt 10): 2381-91.
348. Crotty S, Maag D, Arnold JJ, et al. The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat Med 2000; 6(12): 1375-9.
349. Tam AW, Smith MM, Guerra ME, et al. Hepatitis E virus (HEV): molecular cloning and sequencing of the full-length viral genome. Virology 1991; 185(1): 120-31.
350. Wymant C, Hall M, Ratmann O, et al. PHYLOSCANNER: Inferring Transmission from Within- and Between-Host Pathogen Genetic Diversity. Mol Biol Evol 2017.
351. Thomson E, Ip CL, Badhan A, et al. Comparison of Next-Generation Sequencing Technologies for Comprehensive Assessment of Full-Length Hepatitis C Viral Genomes. J Clin Microbiol 2016; 54(10): 2470-84.
352. Manso CF, Bibby DF, Mbisa JL. Efficient and unbiased metagenomic recovery of RNA virus genomes from human plasma samples. Sci Rep 2017; 7(1): 4173.
353. Delang L, Segura Guerrero N, Tas A, et al. Mutations in the chikungunya virus non-structural proteins cause resistance to favipiravir (T-705), a broadspectrum antiviral. J Antimicrob Chemother 2014; 69(10): 2770-84.
354. Yugo DM, Meng XJ. Hepatitis E virus: foodborne, waterborne and zoonotic transmission. Int J Environ Res Public Health 2013; 10(10): 4507-33.
355. Primadharsini PP, Nagashima S, Okamoto H. Mechanism of Cross-Species Transmission, Adaptive Evolution and Pathogenesis of Hepatitis E Virus. Viruses 2021; 13(5).
356. Parraud D, Lhomme S, Péron JM, et al. Rat Hepatitis E Virus: Presence in Humans in South-Western France? Front Med (Lausanne) 2021; 8: 726363.
357. Murphy EG, Williams NJ, Jennings D, et al. First detection of Hepatitis E virus (Orthohepevirus C) in wild brown rats (Rattus norvegicus) from Great Britain. Zoonoses Public Health 2019; 66(6): 686-94.
358. Ulrich RG, Bernstein S, Heuser E, et al. Broad geographical distribution of rat hepatitis E virus in wild Norway rats (Rattus norvegicus) from Europe. Journal of Viral Hepatitis 2015; 22: 129.
359. Dremsek P, Wenzel JJ, Johne R, et al. Seroprevalence study in forestry workers from eastern Germany using novel genotype 3- and rat hepatitis E virus-specific immunoglobulin G ELISAs. Med Microbiol Immunol 2012; 201(2): 189-200.
360. Reuter G, Boros Á, Pankovics P. Review of Hepatitis E Virus in Rats: Evident Risk of Species. Viruses 2020; 12(10).
361. McCreary C, Martelli F, Grierson S, Ostanello F, Nevel A, Banks M. Excretion of hepatitis E virus by pigs of different ages and its presence in slurry stores in the United Kingdom. Vet Rec 2008; 163(9): 261-5.
362. Said B, Ijaz S, Kafatos G, et al. Hepatitis E outbreak on cruise ship. Emerg Infect Dis 2009; 15(11): 1738-44.
363. Said B, Usdin M, Warburton F, Ijaz S, Tedder RS, Morgan D. Pork products associated with human infection caused by an emerging phylotype of hepatitis E virus in England and Wales. Epidemiol Infect 2017; 145(12): 2417-23.
364. Galiana C, Fernandez-Barredo S, Garcia A, Gomez MT, Perez-Gracia MT. Occupational exposure to hepatitis E virus (HEV) in swine workers. Am J Trop Med Hyg 2008; 78(6): 1012-5.
365. Oeser C, Vaughan A, Said B, et al. Epidemiology of Hepatitis E in England and Wales: A 10-Year Retrospective Surveillance Study, 2008-2017. J Infect Dis 2019; 220(5): 802-10.
366. Lewis HC, Wichmann O, Duizer E. Transmission routes and risk factors for autochthonous hepatitis E virus infection in Europe: a systematic review. Epidemiol Infect 2010; 138(2): 145-66.
367. Ferri G, Vergara A. Hepatitis E Virus in the Food of Animal Origin: A Review. Foodborne Pathog Dis 2021; 18(6): 368-77.
368. Wang B, Harms D, Yang XL, Bock CT. C: An Expanding Species of Emerging Hepatitis E Virus Variants. Pathogens 2020; 9(3).
369. Oeser C, Said B, Warburton F, Ijaz S, Tedder R, Morgan D. Using data linkage to improve surveillance methods for acute hepatitis E infections in England and Wales 2010-2016. Epidemiol Infect 2017; 145(14): 2886-9.
370. Dalton HR, Bendall RP, Keane FE, Tedder RS, Ijaz S. Persistent carriage of hepatitis E virus in patients with HIV infection. N Engl J Med 2009; 361(10): 1025-7.
371. Majumdar M, Singh MP, Pujhari SK, Bhatia D, Chawla Y, Ratho RK. Hepatitis E virus antigen detection as an early diagnostic marker: report from India. J Med Virol 2013; 85(5): 823-7.
372. Lytton SD, Bulbul MRH, Barua K, et al. Hepatitis E Virus Capsid Antigen (HEV$\mathrm{Ag})$ - A practical diagnostic biomarker in the HEV outbreak scenario. J Clin Virol 2021; 134: 104692.
373. Riveiro-Barciela M, Rando-Segura A, Barreira-Díaz A, et al. Unexpected longlasting anti-HEV IgM positivity: Is HEV antigen a better serological marker for hepatitis E infection diagnosis? J Viral Hepat 2020; 27(7): 747-53.
374. Vollmer T, Knabbe C, Dreier J. Comparison of real-time PCR and antigen assays for detection of hepatitis e virus in blood donors. Journal of Clinical Microbiology 2014; 52(6): 2150-6.
375. El-Mokhtar MA, Karam-Allah Ramadan H, Abdel Hameed MR, et al. Evaluation of hepatitis E antigen kinetics and its diagnostic utility for prediction of the outcomes of hepatitis E virus genotype 1 infection. Virulence 2021; 12(1): 133444.
376. Kamar N, Abravanel F, Behrendt P, et al. Ribavirin for Hepatitis E Virus Infection After Organ Transplantation: A Large European Retrospective Multicenter Study. Clin Infect Dis 2020; 71(5): 1204-11.
377. Harritshøj LH, Hother CE, Sengeløv H, et al. Epidemiology of hepatitis E virus infection in a cohort of 4023 immunocompromised patients. Int J Infect Dis 2020; 91: 188-95.
378. Buescher G, Ozga AK, Lorenz E, et al. Hepatitis E seroprevalence and viremia rate in immunocompromised patients: a systematic review and meta-analysis. Liver Int 2021; 41(3): 449-55.
379. Tang FF, Mo XD, Wang Y, et al. Hepatitis E virus infection after haploidentical haematopoietic stem cell transplantation: incidence and clinical course. Br J Haematol 2019; 184(5): 788-96.
380. Willemse SB, Bezuur DL, Blom P, et al. Hepatitis E virus infection and hepatic GvHD in allogeneic hematopoietic stem cell transplantation recipients. Bone Marrow Transplant 2017; 52(4): 622-4.
381. Cruz S, Campos C, Timóteo M, et al. Hepatitis E virus in hematopoietic stem cell transplant recipients: A systematic review. J Clin Virol 2019; 119: 31-6.
382. Koenecke C, Pischke S, Heim A, et al. Chronic hepatitis E in hematopoietic stem cell transplant patients in a low-endemic country? Transpl Infect Dis 2012; 14(1): 103-6.
383. Abravanel F, Mansuy JM, Huynh A, et al. Low risk of hepatitis E virus reactivation after haematopoietic stem cell transplantation. J Clin Virol 2012; 54(2): 152-5.
384. Schulz M, Biedermann P, Bock CT, et al. Rituximab-Containing Treatment Regimens May Imply a Long-Term Risk for Difficult-To-Treat Chronic Hepatitis E. Int J Environ Res Public Health 2020; 17(1).
385. Organ Donation and Transplantation: Activity Report 2015/16, NHS Blood and Transplant, UK. [accessed $14^{\text {th }}$ May 2018].
386. Protin C, Abravanel F, Alric L, et al. Ribavirin for Chronic Hepatitis E Virus Infection in Ibrutinib-Exposed Patients. Open Forum Infect Dis 2019; 6(9): ofz345.
387. Oshiro Y, Harada H, Hasegawa K, et al. Loss of antibodies to hepatitis E virus in organ transplant patients with hepatitis E. Hepatol Res 2021; 51(5): 538-47.
388. Drave SA, Walter S, Engelmann M, et al. Extrahepatic replication of hepatitis E virus in neuronal and placental cell lines. Journal of Viral Hepatitis 2015; 22: 120-1.
389. Bose PD, Das BC, Hazam RK, Kumar A, Medhi S, Kar P. Evidence of extrahepatic replication of hepatitis E virus in human placenta. J Gen Virol 2014; 95(Pt 6): 1266-71.
390. El-Mokhtar MA, Othman ER, Khashbah MY, et al. Evidence of the Extrahepatic Replication of Hepatitis E Virus in Human Endometrial Stromal Cells. Pathogens 2020; 9(4).
391. Mallet V, Bruneau J, Zuber J, et al. Hepatitis E virus-induced primary cutaneous CD30(+) T cell lymphoproliferative disorder. J Hepatol 2017; 67(6): 1334-9.
392. Horvatits T, Wißmann JE, Johne R, et al. Hepatitis E virus persists in the ejaculate of chronically infected men. J Hepatol 2021; 75(1): 55-63.
393. Surana P, Satchidanandam V, Nair DT. RNA-dependent RNA polymerase of Japanese encephalitis virus binds the initiator nucleotide GTP to form a mechanistically important pre-initiation state. Nucleic Acids Res 2014; 42(4): 2758-73.
394. Davis CA, Haywood B, Vattipally S, et al. Hepatitis E virus: Whole genome sequencing as a new tool for understanding HEV epidemiology and phenotypes. J Clin Virol 2021; 139: 104738.
395. Li Y, Miao Z, Li P, et al. Ivermectin effectively inhibits hepatitis E virus replication, requiring the host nuclear transport protein importin $\alpha 1$. Arch Virol 2021; 166(7): 2005-10.
396. Miao Z, Zhang R, Yu P, Li Y, Pan Q. The macrolide antibiotic azithromycin potently inhibits hepatitis E virus in cell culture models. Int J Antimicrob Agents 2021; 58(3): 106383.
397. Yu W, Ji H, Long F, et al. Inhibition of hepatitis E virus replication by zinc-finger antiviral Protein synergizes with IFN- β. J Viral Hepat 2021; 28(8): 1219-29.
398. Meister TL, Klöhn M, Steinmann E, Todt D. A Cell Culture Model for Producing High Titer Hepatitis E Virus Stocks. J Vis Exp 2020; (160).
399. Tietcheu Galani BR, Ayissi Owona VB, Guemmogne Temdie RJ, et al. In silico and in vitro screening of licensed antimalarial drugs for repurposing as inhibitors of hepatitis E virus. In Silico Pharmacol 2021; 9(1): 35.

Appendices

Appendix 1. Chapter 2 supplementary materials and methods

Appendix 2. Chapter 4 supplementary results

Appendix 3. Chapter 6 supplementary results
Appendix 4. Chapter 7 supplementary results

Appendix 1. Chapter 2 supplementary materials and methods

A1.1 Clinical data collection tool for persistent HEV cases across England and Wales

Public Health

England National Chronic HEV Enhanced Surveillance PHE

Primary underlying diagnosis
If patient has received a transplant, please state type___ Date___
Significant co-morbidities
Duration of preceding immunosuppression at HEV diagnosis___

Immunosuppressive drugs at time of HEV diagnosis

1. Drug	Dose	recent trough level
2. Drug	Dose	recent trough level
3. Drug	Dose	recent trough level
4. Drug	Dose	recent trough level

Immunosuppressive drugs in preceding 3 months (if different from above)

1.	Drug	Dose
2.	Drug	Dose
3.	dates	
4.	Drug	Dose_

Known pre-existing liver disease? Please state \qquad
Alcohol intake \qquad units/wk
Renal function
\square No known renal disease

- CKD Stage 2 (eGFR 60-89)
\square ESRF on dialysis
\square CKD Stage 1 (eGFR 90+)
- CKD Stage 3 (eGFR 30-59)
- CKD Stage 4 (eGFR 15-29)

HEV Infection
Date of HEV diagnosis
Reason for investigation?
\square Clinical hepatitis
\square Asymptomatic transaminitis
\square HEV Screening

- Unexplained neurology - please
state
\square Other-please state \qquad

Reported symptoms by patient:
ㅁ Fever
ㅁ Diarrhoea
ㅁ Abdominal Pain
\square Headaches
ㅁ Nausea
ㅁ Vomiting
\square Joint Pains
ㅁ Loss of appetite
\square Weakness of limbs/tingling
ㅁ Jaundice
\square Other, please

Treatment

Was there a trial of reduction of immunosuppression?
\square Yes - If so, please state dose reduction/duration
\square No - if not, please state reason

What was the indication of failure of this
approach?
Treatment drug
\square Ribavirin dose \qquad start date \qquad stop date \qquad
If exact dates not available, estimated duration \qquad
\square Pegylated Interferon a dose \qquad start date \qquad stop
date
If exact dates not available, estimated duration \qquad
\square Combination therapy

Toxicity \& Other Adverse Outcomes

Was there any toxicity from treatment?
\square Anaemia - please state severity \qquad
\square Other-please state
Did this require additional adjustment of management?
\square Monitoring onlyRibavirin stoppedDose reduction of ribavirin - state dose/duration \qquad EPO/transfusion support - state duration of EPO \qquad and no's of units transfusedOther \qquad
Other adverse outcomes attributed to HEV (e.g. delayed treatment for primary diagnosis)

Outcome
\square Viral clearance
\square Viral relapse - please state date of relapse and re-treatment strategy
\square Viraemic at death
\square Ongoing viraemia

A1.2 Generation and purification of genotype 1 and 3 HEV virus-like particles

Virus-like particles (VLP) were generated using recombinant bacmids encoding amino acids 112-608 of either G1 or G3 HEV ORF2 created with the Bac-to-Bac® baculovirus expression system (Life Technologies), according to the manufacturer's protocol. Sf9 cells were cultured, harvested after five days and then lysed. The harvest, containing supernatant and lysed cells, was clarified, fractionated on Optiprep (Sigma) and fractions containing VLPs identified by SDS-PAGE and electron microscopy (A1.3 and A1.4).

A1.3 Electrophoresis image of denatured HEV VLPs.

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) image of denatured HEV VLPs.Lanes 1-4 represent BSA of 200ng (1), 100ng (2), 20ng (3) and 4ng (4). Lanes 5-8 represent denatured G1 VLPs either neat (5) or at a dilution of 1:2 (6), 1:10 (7) or 1:50 (8). Lanes 9-12 represent denatured G3 VLPs either neat (9) or at a dilution of 1:2 (10), 1:10 (11) or 1:50 (12). The white rectangular box highlights the denatured HEV G3 VLPs at the expected size of 53 kDa . MW= molecular weight ladder (Novex ${ }^{\text {TM }}$ Sharp Pre-stained Protein Standard).

Electron microscopy image of fractionated harvest of HEV G3 VLPs.
The arrow marks an example of an individual VLP. Negatively stained grids were viewed using the JEM-1400 transmission electron microscope (JEOL UK) and images captured using the AMT XR-600 digital camera (Deben UK) (40 $000 \times$ magnification, 2% uranyl acetate staining).
A1.5 Diagnostic testing algorithms for HEV considered in CEA

Proposed testing and confirmatory algorithm for solid organ transplant recipients with HEV RNA detection (PCR) or using an abnormal ALT value as an indicator for testing.
Abbreviations: ALT, alanine aminotransferase; CEA, cost-effectiveness analysis; ULN, upper limit of normal. 346
A1.6 Diagnostic testing algorithms for HEV considered in CEA

Proposed testing and confirmatory algorithm for solid organ transplant recipients with HEV antigen detection or using an abnormal ALT value as
an indicator for testing.
Abbreviations: ALT, alanine aminotransferase; CEA, cost-effectiveness analysis; ULN, upper limit of normal.
A1.7 Diagnostic testing algorithms for HEV considered in CEA.
Proposed testing and confirmatory algorithm for solid organ transplant recipients with HEV antigen detection and confirmatory neutralisation or using an abnormal ALT value as an indicator for testing.
Abbreviations: ALT, alanine aminotransferase; ULN, upper limit of normal

348

A1.8 Linux commands used for whole genome sequence analysis

A1.8.1 HEV pipeline for mapping of short read sequences to reference genomes

\#\#\#\# Uses Sreenu Vattipally's CREATE KMERS and Tanoti programmes
\#\#\#\# Will produce sam alignment files, create consensus sequences and make a fast tree
\#Addition to clean files with trim_galore and to use trimmed files only
Is *R1*fastq>r1
less r1|sed 's/R1/R2/g' >r2
paste r 1 r2|sed 's/.fastq//g'>genolist-\$\$
echo "Trimming..."
while read file
do
fq1=`echo \$file|awk '\{print \$1\}' `;
fq2=`echo \$file|awk '\{print \$2\}' `;
trim_galore -q 30 \$fq1.fastq \$fq2.fastq >> \$fq1.geno
done < genolist-\$\$
echo "HEV mapping pipeline has started..."
echo "Output files are as follows:
Input files (genolist)
Genotyping results (.geno)
Closest reference sequence (.newbest)
Alignment files (.sam)
Reference sequence are downloaded from e-utilities (named by accession number)
Consensus sequence file - allconfile
Consensus sequences file >90\% - Consensus_90.fa)"
Is *R1*trimmed*fq>r1
less r1|sed 's/R1/R2/g' >r2
paste r1 r2|sed 's/.fq//g'>genolist_trim-\$\$
\#Genotyping
\#TROUBLESHOOTING Be careful that your reference file is in the correct format and that it is ok for unix - you can fix this with tr -d 'lr' <infile >outfile if needed
echo "Genotyping..."
while read file
do
fq1=`echo \$file|awk '\{print \$1\}' `;
fq2=`echo \$file|awk '\{print \$2\}' `;

CREATE_KMERS-FQ-T -i /home/HCV2/HEV_PHE/Refs/HEV_ref_seqs.fasta -1 \$fq1.fastq -2
\$fq2.fastq -c $1-p 1-v \gg$ \$fq1.geno
done < genolist_trim-\$\$
echo "Removing dead wood..."
rm -rf *.f5 *.f2 *.stats *.sorted *.newbest
echo "Sorting out the best reference..."
for gen in *.geno; do less \$gen| cut -f5| sed 's/Genome coverage://g'| grep -v "All kmer matches"| grep -v "Reading"| grep -v "Total"| grep -v "Reference"| grep -v "kmer"| grep -v "Time">\$genl.f5; done
for gen in *.geno; do less \$gen| cut -f2| sed 's/Genome coverage://g'| grep -v "All kmer matches"| grep -v "Reading"| grep -v "Total"| grep -v "Reference"| grep -v "kmer"| grep -v "Time">\$gen\.f2; done for gen in *.geno; do paste \$gen\.f2 \$gen\.f5>\$gen\.stats; done
for stats in *.stats; do sort -k2 -n \$stats>\$stats\.sorted; done
for sorted in *.sorted; do tail -1 \$sorted|cut -f1>\$sorted $\$.newbest; done
rename \.genol.stats\.sorted\.newbest \.newbest *newbest
\# Pulls out the best genome for mapping
for br in *.newbest; do less \$br|sed 's/All kmer matches//g'>>bestgenomes-\$\$; done
sort bestgenomes-\$\$| uniq | tr -d 'lr' >uniquegenomes-\$\$
rm -rf a1 b1 uniquegenomes
\# Downloads all genomes for mapping
echo "Downloading reference sequences from ncbi..."
exec < uniquegenomes-\$\$
while read id
do
wget -O \$id
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nuccorel\&id=\$id
\&rettype=fastal\&retmode=t
ext
done
echo "Tanoti pipeline proceeding..."
\#Tanoti prep
echo "Preparing tanoti files"
rm -Rf listpre tanlist foo1 foo2 *bad* constats Consensus_95.fasta allconfile samstats
Is *R1*fq>foo1
less foo1| sed 's/_R1_001_trimmedl.fq//g' > tanlist-\$\$
\#Tanoti batch run
\#\#while read file
\#\#do
\#\#fq1=`echo \$file|awk '\{print \$1\}' `;
\#\#fq2=`echo \$file|awk '\{print \$2\}' ';
\#\#tanoti -i \$fq1.fastq \$fq2.fastq -r \$(less \$fq1.newbest) -p 1 -u 0 -o \$fq1-\$(less
\$fq1.newbest|\#\#dos2unix).sam -m 50
\#\#done < tanlist-\$\$
\#Adjusted for use on rho
dos2unix *newbest
while read file
do
\#ref=\$(awk 'NR==1' \$filel.newbest);
ref=\$(echo \$file"_R1_001_trimmed.newbest");
fq1=\$(echo \$file"_R1_001_trimmed.fq");
fq2=\$(echo \$file"_R2_001_trimmed.fq");
echo "tanoti -i \$fq1 \$fq2 -r \$ref -p 1 -m 50 -o \$fq1-\$(cat \$ref).sam";
tanoti -p 1 -i \$fq1 \$fq2 -r \$ref -o \$fq1-\$(cat \$ref).sam -u 0 -m 50
done < tanlist-\$\$
\#Sam_stats
echo "Running SAM stats..."
for ST in *.sam; do echo \$ST>>samstats-\$\$; SAM_STATS \$ST>>samstats-\$\$; done
\#Sam2consensus
for con in *.sam; do SAM2CONSENSUS -i \$con>>allconfile-\$\$; done
\#Consensus files from genomes of minimum 95\%
echo "Selecting consensus sequences with >90\% coverage..."
ConsensusSorter samstats-\$\$ allconfile-\$\$ 90 >> Consensus_90.fasta
echo "Aligning consensus sequences..."
cat Consensus_90.fasta /home/HCV2/HEV_PHE/Refs/HEV_ref_seqs.fasta
>>Consensus_plus_refs.fasta
mafft Consensus_90.fasta > Consensus_90_aligned.fasta
mafft Consensus_plus_refs.fasta > Consensus_plus_refs_aligned.fasta
echo "Building nj tree for quick look - to check for contamination..."
fasttree -nt Consensus_90_aligned.fasta > consensus_tree_\$\$
fastree -nt Consensus_plus_refs_aligned.fasta > consensus_plus_refs_tree_\$\$
clear
echo "Analysis complete. Output is *.sam, samstats, allconfile (all consensus sequences) and
Consensus_90.fasta (all consensus sequences with coverage of $>90 \%$, an alignment file -
Consensus_90_aligned.fasta and a neighbour joining tree file called consensus_tree_no.)"
figtree consensus_plus_refs_tree_\$\$
\#else
\#echo "Error: Input R1 and R2 file number is not equal"; exit

A1.8.2 HEV GLUE analysis command lines
module hevSamReporter amino-acid -i path/to/myNgsData.sam -r REF_MASTER_M73218-f RdRp -p -P 5
alignment AL_3c amino-acid frequency -c -w "referenceMember=false" -r REF_MASTER_M73218-f RdRp --labelledCodon 16301640

Appendix 2. Chapter 3 supplementary results

A2.1 Plasma HEV-Ag in untreated patients

z

Key:
$\rightarrow-\mathrm{HEV} \mathrm{Ag}$ S/CO
-ELISA manufacturer's cut-off

- - HEV RNA viral load

Correlation of plasma HEV RNA viral load and HEV-Ag reactivity in untreated patients. Five patients (Patients D, G, I, Y and Z) with active HEV infection who received no treatment during follow-up were tested for HEV-Ag in baseline plasma samples and subsequent follow-up samples. Data shown are the HEV-Ag ELISA results during follow-up. Follow-up varied between 11.0 weeks (patient Z) and 22.3 weeks (patient G).

Open circles represent samples negative for HEV-Ag by manufacturer's criteria and filled-in circles represent samples positive for HEV-Ag by manufacturer's criteria. The grey line represents the manufacturer's cut off threshold for defining a reactive sample.
Abbreviations: ELISA, enzyme-linked immunosorbent assay; HEV Ag, Hepatitis E virus antigen; IU, international units; S/CO, sample over cut-off ratio.

Correlation of plasma HEV RNA viral load and HEV-Ag reactivity in antiviral-treated patients. Eight patients who had persistent HEV infection (Patients A, E, F, K, L, Q, R and S) and were treated with Ribavirin were tested for HEV-Ag at baseline and throughout follow-up. Data shown are the HEV-Ag ELISA results during follow-up which varied between 19.0 weeks (patient F) and 108.1 weeks (patient A).
Open circles represent samples negative for HEV-Ag by manufacturer's criteria and filled-in circles represent samples positive for HEV-Ag by manufacturer's criteria. The grey line represents the manufacturer's cut off threshold for defining a reactive sample.
Abbreviations: ELISA, enzyme-linked immunosorbent assay; HEV Ag, Hepatitis E virus antigen; S/CO, sample over cut-off ratio.

Appendix 3. Chapter 4 supplementary results
A3.1 Immunosuppressive medication given to patients with haematological malignancy prior to HEV RNA testing

Treatment	No.	Included regimes
Plasma Cell Disorders, $\mathrm{n}=271$		
High intensity chemotherapy	45	Autograft, DTPACE
Standard intensity chemotherapy	138	Ixasomib+lenalidomide+dexamethasone, bortezomib+cyclophosphamide+dexamethasone,
Other combination chemotherapy	1	Carboplatin-based chemotherapy for non-haematological malignancy
Single agents +/- corticosteroid	84	Cyclophosphamide, lenalidomide, bortezomib, carfilzomib, ixazomib, CC-220
CAR-T therapy	1	-
Radiotherapy	2	-
Acute Leukaemia, $\mathrm{n}=75$		
High intensity chemotherapy	53	DA60+GP/ARA-C, DA60+GO, DA50/ARA-C, FLAG-IDA, FLA, MidAC, Mini-FLAG-Ida+Gilterinib, clinical trials (UKALL14, UKALL 2011, UK11, UK60, AML19, AML17)
Low intensity chemotherapy	22	Low dose ARA-C, azacitidine, arsenic, imatinib, nilotinib, clinical trials (WT1 Trial Leukopheresis, IL3RA: KHK2823)
Chronic Leukaemia, $\mathrm{n}=67$		
Low intensity chemotherapy	25	FC-R, ABVD, R-CVP, Rituximab+idelalisib+/-venetoclax, obinutuzumab+chlorambucil, ADCT 402+CHOP-R, venetoclax+idelalisib, ritxuximab+chlorambucil, clinical trials (FLAIR), single agents (cyclophosphamide, cladrabine, chlorambucil, methotrexate)
Single agents - targeted small molecule inhibitors	41	Idelalisib, ibrutinib, imatinib, nilotinib, dasatinib
Single agents - monoclonal antibodies	1	Rituximab
Lymphoma, n=171		
High intensity chemotherapy	34	IVE+/-GDP, ABVD+escalated BEACOPP, MAXI CHOP-R+/-ARA-C, CHOP-R+HD MTX, CHOP-R+bendamustine, ESHAP+brentuximab+bendamustine, R-CODOX-M+/-R-IVAC

Moderate intensity chemotherapy	99	ABVD, R-CHOP, R-CVP, FC-R, DHAP-R, ESHAP, R-BAC, R-bendamustine, R-GDP, R-GemOX, R-CVP+CHOP-R, ESHAP, MATRix, PMit-R, R-HDTMX, R-GDP
Low intensity chemotherapy	26	Chlorambucil, methotrexate, gemcitabine, hydroxycarbamide, ciclosporin
Single agents - targeted small molecule inhibitors	4	Ibrutinib and clinical trials (TAK-659 TRIAL)
Single agents - monoclonal antibodies	7	Rituximab, brentuximab, denusomab for non-haematological malignancy ($n=1$)
Radiotherapy	1	-
MDS, $\mathrm{n}=15$		
Low intensity chemotherapy	13	Azacitidine, ciclosporin
Single agents - monoclonal antibodies	2	Alemtuzumab
MPN, $\mathrm{n}=27$		
Low intensity chemotherapy PLUS targeted small molecule inhibitors	3	Ruxolitinib PLUS azacitidine or thalidomide
Low intensity chemotherapy	4	Azacitidine
Very low intensity chemotherapy	6	Hydroxycarbamide
Single agents - targeted small molecule inhibitors	14	Ruxolitinib
Aplastic Anaemia, $\mathbf{n = 2}$		
Single agent immunosuppression	2	Prednisolone, ciclosporin
Total	628	

Legend for A3.1:
Modified version of Table 4.8 in main thesis detailing full immunosuppressive medication given to 628 patients with haematological malignancy in the six months prior to HEV RNA testing Where patients were in clinical trials, if the trial drug administered this was recorded, in blinded randomised trials only the known backbone drugs were recorded.
Abbreviations: ABVD, Doxorubicin, Bleomycin, Vinblastine, Dacarbazine; ARA-C, Cytarabine; BEACOPP, Bleomycin Etoposide Doxorubicin Cyclophosphamide Vincristine Procarbazine Prednisolone; CAR-T, chimeric antigen receptor T cell therapy; DA, daunorubicin, cytarabine; DHAPR, Dexamethasone, high dose cytarabine, Cisplatin, Rituximab; DTPACE, dexamethasone, thalidomide, cisplatin, doxorubicin; ESHAP, Etoposide, Methylprednisolone, Cytarabine, Cisplatin; FC-R, Fludarabine, Chlorambucil, Rituximab; FLA(G)-IDA, Fludarabine cytarabine, Idarubicin; HDAC, high dose cytarabine; HD MTX, High Dose Methotrexate; IVE, Ifosfamide, Epirubicin, Etoposide; MATRIx, Methotrexate, Cytarabine, Thiotepa, Rituximab; MiDAC, mitoxantrone, cytarabine; PMitR, Prednisolone, Mitoxantrone, Rituximab; R-CHOP, Rituximab, Cyclophosphamide, Doxorubicin, Vincristine, Prednisolone; R-CVP, Rituximab, Cyclophosphamide, Vincristine, Prednisolone; R-BAC, Rituximab, Bendamustine, Cytarabine; R-CODOXM/R-IVAC, Vincristine, Doxorubicin, Cyclophosphamide, Cytarabine, Methotrexate, Ifosfamide, Etoposide; R-GemOX, Gemcitabine, Oxaliplatin, Rituximab.

Appendix 4. Chapter 6 supplementary results
A4.1 Cost effectiveness planes for HEV screening strategies

CEA planes of 5000 Monte Carlo simulations for HEV screening of (A) all patients by PCR, (B) all patients by HEV-Ag detection (and
PCR confirmation), (C) patient with an abnormal ALT by PCR and (D) patients with an abnormal ALT by HEV-Ag detection (and PCR confirmation),
Abbreviations: ICER, incremental cost effectiveness ratio; QALY, quality-adjusted life year.

A4.2 Scenario analysis of the mean age at transplantation.

Comparison of the NHB per patient for each screening option at the threshold of $£ 20,000 /$ QALY when varying the mean age of receiving a solid organ transplant. The arrow represents the base-case value.
Abbreviations: ALT, alanine aminotransferase; HEV-Ag, hepatitis E virus antigen; NHB, net health benefit; PCR, polymerase chain reaction; ULN, upper limit of normal; yrs, years.

A4.3 Scenario analysis of the mortality rate of SOT recipient

Comparison of the NHB per patient for each screening option at the threshold of £20,000/QALY when varying the annual mortality rate of SOT. The arrow represents the base-case value.
Abbreviations: ALT, alanine aminotransferase; HEV-Ag, hepatitis E virus antigen; NHB, net health benefit; PCR, polymerase chain reaction; SOT, solid organ transplant; ULN, upper limit of normal.

Comparison of the NHB per patient for each screening option at the threshold of $£ 20,000 /$ QALY when varying the HRQoL of a SOT recipient. The arrow represents the base-case value.

Abbreviations: ALT, alanine aminotransferase; HEV-Ag, hepatitis E virus antigen; HRQoL, health-related quality of life score; NHB, net health benefit; PCR, polymerase chain reaction; SOT, solid organ transplant; ULN, upper limit of normal.

A4.5: Scenario analysis on discounting of costs and utilities

Comparison of the NHB per patient for each screening option at the threshold of $£ 20,000 /$ QALY when varying the discounting rates of costs and utilities. The arrow represents the base-case value.
Abbreviations: ALT, alanine aminotransferase; HEV-Ag, hepatitis E virus antigen; NHB, net health benefit; PCR, polymerase chain reaction; ULN, upper limit of normal.

A4.6: Scenario analysis on the specificity of HEV-Ag testing

Comparison of the NHB per patient for each screening option at the threshold of $£ 20,000 /$ QALY when varying the specificity of the HEV-Ag ELISA. The arrow represents the base-case value.

Abbreviations: ALT, alanine aminotransferase; HEV-Ag, hepatitis E virus antigen; NHB, net health benefit; PCR, polymerase chain reaction; ULN, upper limit of normal.

A4.7: Scenario analysis on healthcare costs of treating/monitoring persistent HEV infection

Comparison of the NHB per patient for each screening option at the threshold of $£ 20,000 /$ QALY when varying the average annual healthcare costs of treating and monitoring persistent HEV infection. The arrow represents the base-case value.

Abbreviations: ALT, alanine aminotransferase; HEV-Ag, hepatitis E virus antigen; NHB, net health benefit; PCR, polymerase chain reaction; ULN, upper limit of normal.

A4.8: Scenario analysis on mortality rate from compensated cirrhosis

Comparison of the NHB per patient for each screening option at the threshold of $£ 20,000 /$ QALY when varying the annual mortality rate from compensated cirrhosis. The arrow represents the base-case value. Abbreviations: ALT, alanine aminotransferase; HEV-Ag, hepatitis E virus antigen; NHB, net health benefit; PCR, polymerase chain reaction; ULN, upper limit of normal.

A4.9 Scenario analysis on mortality rate from decompensated cirrhosis.

Comparison of the NHB per patient for each screening option at the threshold of $£ 20,000$ /QALY when varying the annual mortality rate from decompensated cirrhosis. The arrow represents the base-case value. Abbreviations: ALT, alanine aminotransferase; HEV-Ag, hepatitis E virus antigen; NHB, net health benefit; PCR, polymerase chain reaction; ULN, upper limit of normal.

A4.10: Scenario analysis on the probability an HEV-infected patient has an abnormal ALT

Probability of HEV infected patient having abnormal ALT

Comparison of the NHB per patient for each screening option at the threshold of $£ 20,000 /$ QALY when varying the annual probability an HEV-infected patient has an abnormal ALT. The arrow represents the base-case value.

Abbreviations: ALT, alanine aminotransferase; HEV-Ag, hepatitis E virus antigen; NHB, net health benefit; PCR, polymerase chain reaction; ULN, upper limit of normal.

Appendix 5. Chapter 7 supplementary results

A5.1. Virological profiles of patients undergoing HEV Illumina whole genome sequencing

Presented are the virological profiles in serum samples of eighteen patients with HEV G3 viraemia and defined virological outcomes which were selected for whole genome sequence analysis. Open circles represent samples successfully sequenced and open triangles represent samples not successfully sequenced.

Abbreviations: IFN, pegylated interferon; RBV, ribavirin; VL, viral load.

A5.2 Summary of HEV whole genome sequencing results

Sample	HEV VL $(\mathbf{I U / m l})$	Genome Size (nt)	Genome Coverage (\%)	Reads mapped (\%)	Average depth
A1 ACUTE	$9.60 \mathrm{E}+04$	7251	80.21	4.20	1852
B1 NO RBV	$1.63 \mathrm{E}+05$	7423	97.91	8.24	11499
B2 NO RBV	$1.21 \mathrm{E}+05$	7237	98.74	6.73	12306
B3 NO RBV	$2.03 \mathrm{E}+05$	7237	98.70	3.36	4722
B4 NO RBV	$1.40 \mathrm{E}+05$	7237	83.14	11.80	4469
C1 NO RBV	$1.40 \mathrm{E}+06$	7237	99.79	95.70	143724
C2 NO RBV	$7.52 \mathrm{E}+05$	7237	99.72	81.86	15149
C3 NO RBV	$6.80 \mathrm{E}+05$	7237	99.68	32.44	4441
D1 PRE RBV	$3.20 \mathrm{E}+05$	7110	100.00	50.44	78749
D2 PRE RBV	$1.18 \mathrm{E}+05$	7110	100.00	61.83	59842
E1 PRE IFN	$2.10 \mathrm{E}+06$	7251	94.44	100.00	1527
E2 PRE IFN	$2.19 \mathrm{E}+05$	7423	84.33	100.00	1183
E3 PRE IFN	$6.56 \mathrm{E}+04$	7251	98.14	100.00	4959
F1 PRE RBV	$7.46 \mathrm{E}+04$	7237	89.17	4.96	7046
F2 PRE RBV	$2.20 \mathrm{E}+06$	7237	95.38	100.00	1574
F3 ON RBV2	$3.50 \mathrm{E}+04$	7237	84.45	100.00	7
G1 PRE RBV	$2.93 \mathrm{E}+06$	7237	99.82	94.91	530748
G2 ON RBV	$5.92 \mathrm{E}+04$	7423	98.71	4.08	13123
H1 PRE RBV	$6.72 \mathrm{E}+06$	7237	99.72	70.59	19445
H2 POST RBV1	$1.60 \mathrm{E}+06$	7423	98.96	61.21	74280
I1 PRE RBV	$1.60 \mathrm{E}+06$	7237	99.34	100.00	93316
I2 POST RBV	$7.87 \mathrm{E}+04$	7251	88.88	5.66	5368
I3 POST RBV	$7.70 \mathrm{E}+05$	7251	99.56	100.00	26709
K1 POST RBV	$1.98 \mathrm{E}+06$	7423	98.73	24.75	3697
J2 PR PRE	7237	99.28	71.06	34456	

Sample	HEV VL $(\mathbf{I U / m I})$	Genome Size (nt)	Genome Coverage (\%)	Reads mapped (\%)	Average depth
L1 PRE RBV	$2.53 \mathrm{E}+06$	7216	99.53	81.58	17338
L2 POST RBV1	$5.29 \mathrm{E}+06$	7216	99.54	90.93	28257
L3 ON RBV2	$1.18 \mathrm{E}+06$	7237	99.75	17.16	8677
M1 PRE RBV	$1.30 \mathrm{E}+04$	7251	87.97	1.56	1197
N1 PRE RBV	$1.90 \mathrm{E}+06$	7423	98.73	88.08	42296
N2 PRE RBV	$1.58 \mathrm{E}+06$	7423	98.91	86.57	214254
N3 POST RBV2	$1.43 \mathrm{E}+05$	7237	99.47	37.43	42083
O1 PRE RBV	$2.02 \mathrm{E}+06$	7237	99.85	100.00	34231
P1 PRE RBV	$7.99 \mathrm{E}+06$	7423	98.21	100.00	48844
P2 PRE RBV	$5.84 \mathrm{E}+07$	7260	97.80	100.00	4440
Q1 PRE RBV1	$2.30 \mathrm{E}+06$	7185	99.28	100.00	30313
Q2 ON RBV1	$5.60 \mathrm{E}+04$	7251	98.59	100.00	2923
Q3 POST RBV1	$1.10 \mathrm{E}+04$	7251	96.43	100.00	369
Q4 ON RBV2	$6.18 \mathrm{E}+05$	7237	98.78	100.00	5130
Q5 ON RBV3	$4.30 \mathrm{E}+05$	7237	99.43	85.96	206778
R1 PRE RBV	$2.02 \mathrm{E}+07$	7237	98.63	100.00	5316
R2 PRE RBV	$9.50 \mathrm{E}+06$	7237	99.72	100.00	34488
R3 PRE RBV	$7.20 \mathrm{E}+06$	7237	99.75	69.82	22942
R4 PRE RBV	$8.25 \mathrm{E}+06$	7237	99.14	100.00	26268

Summary of samples processed for HEV whole genome sequencing. The name of the sample refers to the patient (A-R), the numbered sample for that patient (1-5) and the relationship of the sample with respect to therapy (Interferon or Ribavirin).
Abbreviations: IFN, pegylated interferon; IU, international units; nt, nucleotides; RBV, ribavirin; VL, viral load

A5.3. Reference sequences used by HEV GLUE

HEV Subgenotype	GenBank accession reference name
3a	AF082843
3b	AP003430
3 c	FJ705359
3 e	AB248521
$3 f$	AB369687
3 g	AF455784
3 h	JQ013794
3 i	FJ998008
3 j	AY115488
3 ra	FJ906895

Reference subgenotypes used by bioinformatics software HEV GLUE in sequence analysis and the GenBank accession numbers.

A5.4 Summary reports for patient samples undergoing Illumina HEV whole genome sequencing.

A1-ACUTE

File name
Ref name
Ref length
Program used
Total reads
Mapped reads
Read length
Coverage
Average depth

A1-ACUTE.sam

FJ705359.1
7 237nt
Tanoti Assembler 1.0
73832
73832 (100.00\%)
140nt
5 603nt (77.42\%)
1418 reads/site

A1-ACUTE Consensus sequence

| 1 | | NNNNNNNNCG TATGTGGTCG |
| ---: | :---: | :--- | ATGCCATGGA

GGCCCATCAG TTTATTAAGG CTCCTGGCAT TACTACTGCC TCTGCCCTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTAT TGATGCAACC CCGGCAGCTG GTTTTCCGAC CTGAAGTGCT TAATGAACTT GAACAGTACT GTCGGGCCCG GGCGGGTCGT ATCAATGATA ACCCGAATGT TCTGCATCGC TGCTTCCTAC ATTCAGCCCC TACCCGTGGC CCTGCGGCCA ACTGTCGCCG CCGCACCTAN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN CTGCATGACC TCTGGCCGGC CGATGTTGCG GAGGCTATGG CACTACATCT CCCTCCTGAA GTACTACTAC CACCCGGTAC CGACGGTGAT CGTGCCGTTG TGACTTACGA GGGTGACACT NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNTGA CCGGTCGACA GAGGTGTATG TCCGCTCCAT ATTCGGCCCT TGCTCTACGA AATCCNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNC tgttggcgct cttgtcgcta atgagggetg gaatgcttcg GCGTATTTAA CCATTTGCCA TCAGCGTTAT CTCCGTACTC AGGTTGAGCA TGCCCAAAAA TTTATTACAA GACTTTATAG TATCCCTGGC CGCCAGCTCC AGTTCTATGC ACAGTGCCGC CCAAGGGTGC TTGTTTTCGA TGAGGCTGTG CCCTGCCGCT AGTTCTGCTG TTTTATGAAG TGGCTGGGGC AGGAGTGCAC tGGTGACCAT GGTCACGATA ATGAAGCCTA TGAGGGTTCT GATGTCTCTG GGACCTACGC CGTCCATGGC CGCCAACTCG ATGNNNNNNN NNNNCGAGCC TCCCGTTTGA CTGCCACCGT GTGCCGCACT GTGCTTGGGA ACAAGACTTT CCGGACGACG GGCCCCGAGC AGTACGTTCT TTCGTTTGAC GCCTCTCGCC CCTACGAGCT CACCCCTGCT GGTTTGCAGG TCAAGATTTC CCCTCCGGGC GGGGCCCCTA GCGCTGCTCC GGGGGAGGTG AACAGGTTCA CTCAGCGCCA TTCGCTTACA GGCGGTTTGT TCCCTCCCTT TTCCCCCGGG CATCTTTGGG AGTCCGCTAA CCGGACCTGG TCAACATCTG GTTTTTCTAG TGATTTTTCC GCTACCACAG GGTTACCCCA CCCTACACCC CCTGTTAGTG NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN RNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNA tGAgTtCatt atgcgcgacg gccttgccgc gtacacttta CCTGATTATA GGGTTGAGCA TAACCCAAAG AGGCTTGAGG GTACCGCCGC TTACCCACTC CTCGGCTCGG GTATATACCA GGAGCGTAAC CACCGCCCCG GAGATGAGCT CTACCTAACC AAGCCAGCAC AACCGGCCCT CACAATAACT GAAGATACAG NNNNNNNNNN NNNNNNNGGC CGGGCATGTG CCGGTTGTAC TACTGCCGGG GTCCCAGGTT CAGGGAAGTC GCGATCTATA CCCACTCGGG AGCTTCGGAA TAGTTGGCGT CGCCGGGGTT gTGTtaccac gggccgacg g gTtgtgattg atgagccccc TATGCAGCGG GCCTCGTCGN NNNNNNNNNN GAAGTTGGTT GGTGCAATTA CTGTCCACGA GGCCCAGGGT GCCACTTTCA CTAGGGGGCT CATTCAATCC TCCCGAGCCC ATGCCATAGT TATCCTTGAT GCTCCCGGTT TATTACGTGA GGTNGGTATA GCCGGTGGGG AAGTGGGCCA CCACCGCCCC TCTGTGATAC

A1-ACUTE Consensus sequence

3710	CCCGCGGCAG	TCCTGACCAG	AACCTCGCGA	CACTGCAGGC	TTTTCCACCC	TCCTGCCAGA	TCAGTGCTTA
3780	CCATCAGTTA	GCTGAGGAGC	TGGGTCACCG	CCCGGGCCCCC	GTCGCTGCCG	TCCTGCCCCC	CTGCCCNNNN
3850	NNNNNNNNNN						
3920	NNNNNNNNNN						
3990	NNNNNNNNNN						
4060	NNNNNNNNNN						
4130	GTCAGGACGG	CTCTGCCGTA	CTTGAGCTTG	ATCTTTGCAA	TCGCGATGTG	TCGCGTATTA	CATTCTTCCA
4200	GAAAGATTGT	AACAAGTTCA	CCACAGGGGA	GACCATTGCT	CATGGTAAGG	TCGGCCAGGG	CATTTCGGCT
4270	TGGAGCAAGA	CCTTCTGTGC	CCTCTTTGGC	CCGTGGTTTC	GTGCCATTGA	AAAAGAAATA	TTGGCCCTGC
4340	TCCCGCCCAA	TATCTTCTAT	GGCGATGCAT	ATGAAGAGTC	TGTGTTTGCT	GCCGCTGTGT	CTGGGGCAGG
4410	TTCATGCATG	GTATTTGAGA	ATGATTITTTC	AGAGTTTGAC	AGCACTCAAA	ATAACTTCTC	CCTTGGCCTC
4480	GAGTGTGTAG	TCATGGAGGA	GTGCGGCATG	CCCCAGTGGC	TAATCCGGTT	GTACCATTTG	GTTCGGTCGG
4550	CCTGGATCTT	ACAGGCGCCG	AAGGAGTCTC	TTAAGGGATT	TTGGAAGAAG	CATTCTGGTG	AACCTGGCAC
4620	CCTCCTCTGG	AACACTGTTT	GGAATATGGC	GATCATAGCA	CACTGCTATG	AATTCCGTGA	TTTTAGGGTT
4690	GCCGCTTTCA	AGGGTGATGA	TTCCGTGGTT	CTCTGTAGCG	ACTACCGTCA	GGGCCGCAAC	GCAGCGGCCC
4760	TGATTGCAGG	CTGCGGACTC	AAACTGAAGG	TTGATTATCG	CCCTATTGGG	TTGTATGCTG	GTGTGGTGGT
4830	GGCCCCCGGT	TTGGGGACGC	TACCCGATGT	TGTGCGCTTT	GCCGGCCGGC	TGTCTGAGAA	GAACTGGGGC
4900	CCGGGGCCCG	AGCGCGCCGA	GCAGTTGCGC	TTAGCTGTTT	GTGACTTTCT	TCGAGGGTTA	ACGAATGTTG
4970	CGCAGGTATG	TGTCGATGTT	GTATCCCGTG	TTTATGGAGT	TAGCCCTGGG	TTGGTACATA	ACCTTATTGG
5040	CATGCTGCAA	ACCATAGCTG	ATGGCAAAGC	CCATTTTACA	GAGACTGTTA	AACCTGTGCT	TGACCTCACG
5110	AACTCTATCA	TACAGCGGGT	NNNNNGAATA	ACATGTTTTG	TGCATCGCCC	ATGGGGTCAC	CATGCGCCCT
5180	AGGGCTGTTC	TGTTGCTGTT	CCTCGTGCTT	TTGCCTATGC	TGCCCGCGCC	ACCGGCCGGC	CAGCCGTCTG
5250	GCCGCCGTCG	TGGGCGGCGC	AGCGGCGGTG	CCGGCAGTGG	TTTCTGGGGT	GACAGGGTTG	ATTCTCAGCC
5320	CTTCGCCCTC	CCCTATATTC	ATCCAACCAA	CCCCTTTGCC	GCCGATGTCG	TACCACAATC	CGGGGCTGGA
5390	GCTCGCCCTC	GACAGCCACC	CCGCCCCCTC	GGCTCCTCTT	GGCGTGATCA	GTCCCAGCGC	CCCCCCCGCCG
5460	CCCCACGTCG	TCGATCTGCC	CCAGCTGGGG	CTGCGCCGCT	GACTGCTATA	TCACCNNNNN	NNNNNNNNNN
5530	NNNNNNNNNN						
5600	NNNNNNNNNN						
5670	NNNNNNNNNN	NNNNNNNNNN	NNNNNNNNNN	NNNNNNCATC	TAATTATGCC	CAGTATCGGG	TTGTTCGAGC
5740	CACGATCCGT	TATAGGCCAT	TGGTGCCGAA	TGCTGTCGGC	GGCTACGCTA	TTTCCATCTC	TTTTTGGCCT
5810	CAGACTACTA	CCACCCCTAC	GTCTGTTGAC	ATGAATTCTA	TTACCTCCAC	TGATGTTAGG	ATCCTAGTTC
5880	AGCCCGGTAT	CGCTTCCGAA	CTAGTTATTC	CTAGTGAACG	CCTCCACTAC	CGTAATCAAG	GTTGGCGCTC
5950	TGTGGAGACC	TCGGGTGTAG	CTGAGGAGGA	GGCTACTTCT	GGTCTGGTGA	TGCTTTGTAT	CCATGGTTCC
6020	CCTGTTAATT	CCTACACCAA	TACCCCTTAT	ACCGGGGCGC	TTGGGCTCCT	TGATTTCGCT	TTGGAGCTTG
6090	AGTTTAGGAA	CTTGACACCC	GGGAACACCA	ACACCCGTGT	GTCCCGGTAT	ACAAGCACAG	CCCGTCATCG
6160	GTTGCGCCGC	GGTGCTGATG	GCACCGCTGA	ACTTACTACC	ACAGCAGCTA	CACGTTTCAT	GAAGGACCTG
6230	CACTTCACCG	GTACGAATGG	GGTCGGTGAG	GTGGGCCGTG	GTATTGCTCT	TACACTCTTT	AATCTTGCTG
6300	ACACGCTCCT	TGGCGGTTTG	CCGACAGNNN	NNNNNNNNNN	NNNNNNNNNN	NNNNNNNNNN	NNNNNNNNNN
6370	NNNNNNNNNN	NNNNNNNNNN	NNNNNNNNNN	NNNNNNNNNN	NNNNNNNNNG	AGAATGCGCA	GCAGGATAAA
6440	GGTATTGCTA	TTCCGCATGA	CATAGACTTA	GGTGATTCCC	GTGTGGTTAT	TCAAGATTAT	GACAATCAGC
6510	ATGAGCAGGA	TCGGCCCACC	CCTTCGCCCG	CCCCATCTCG	CCCTTTTTCG	GTTCTTCGTG	CTAATGATGT
6580	TTTATGGCTT	TCCCTTACCG	CTGCCGAGTA	TGATCAGACT	ACATATGGGT	CGTCCACCAA	CCCAATGTAT
6650	GTCTCAGATA	CTGTTACATT	TGTCAATGTG	GCTACAGGAG	CCCAGGCTGT	TGCCCGCTCT	CTTGACTGGT
6720	CTAAGGTCAC	CCTAGACGGC	CGCCCCCTCA	CTACNNNNNN	NNNNNNNNNN	NNNNNNNNNN	NNNNNNNNNN
6790	NNNNNNNNNN						
6860	NNNNNNNNNN	NNNNNNNTTT	GATTGAAAAT	GCAGCTGGTC	ATCGTGTTGC	CATCTCCACG	TACACTACCA
6930	GCTTGGGCGC	TGGCCCTGTG	TCTGTTTCTG	CAGTCGGTGT	TTTAGCTCCA	CATTCGGCTC	TTGCAGTCCT
7000	TGAGGACACT	ATTGACTACC	CTGCCCGCGC	CCACACTTTT	GATGACCTCT	GTCCAGAGTG	TCGCACTCTT
7070	GGCTTGCAAG	GGTGTGCCTT	CCAGTCTACT	ATTGCTGAGC	NNNNNNNNNN	NNNNNNNNNN	NNNNNNNNNN
7140	NNNNNNNNNN						
7210	NNNNNNNNNN	NNNNNNNNNN	NNNNNNN				

B1-NO-RBV

File name	B1-NO-RBV.sam
Ref name	FJ705359.1
Ref length	$\mathbf{7} 237$ nt
Program used	Tanoti Assembler 1.0
Total reads	557681
Mapped reads	557681 (100.00\%)
Average read length	$139 n t$
Coverage	$7180 n t$ (99.21\%)
Average depth	10621 reads/site

B1-NO-RBV Consensus sequence

NNNNNNNNNG TATGTGGTCG ATGCCATGGA GGCCCATCAG TTCATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAT TCTGCCCTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTAT CTCGTGTGCA AACTGAGATT CTTATCAATT TGATGCAACC CCGGCAGTTG GTTTTTCGAC CTGAAGTGCT CTGGAATCAT CCTATCCAAC GGGTTATCCA TAATGAACTT GAACAGTACT GTCGGGCCCG GGCTGGTCGT TGTTTAGAGG TTGGGGCCCA CCCAAGATCC ATTAATGACA ACCCAAATGT TCTGCACCGG TGCTTTCTAC GACCAGTTGG GAGAGATGTT CAGCGCTGGT ACTCTGCTCC CACCCGCGGC CCTGCGGCTA ACTGCCGCCG TTCTGCCTTG CGTGGCCTCC CCCCCGTTGA TCGTACCTAC TGCTTTGATG GATTTTCTCG CTGCTCATTT GCCGCAGAAA CTGGGGTTGC CCTTTATTCT TTGCATGACC TCTGGCCGGC CGATGTTGCG GAGGCTATGG CCCGACACGG GATGACACGC CTGTATGCTG CACTACATCT CCCTCCTGAA GTACTACTAC CACCCGGTAC TTACCATACA ACTTCATACC TTCTGATTCA CGACGGTGAT CGTGCTGTTG TGACCTATGA AGGTGATACT AGTGCAGGCT ACAACCATGA TGTCTCCATA CTTCGTGCAT GGATCCGCAC AACTAAGATA GTCGGCGACC ATCCGCTGGT GATAGAGCGT GTGCGGGCCA TTGGCTGTCA TTTTGTGCTG CTGCTTACTG CAGCCCCTGA GCCGTCACCA ATGCCTTATG TCCCATACCC CCGGTCGACA GAGGTGTATG TCCGCTCTAT ATTTGGCCCT GGTGGGTCCC CATCTCTATT CCCATCAGCT TGCTCTACGA AATCTACATT TCATGCTGTC CCGGTTCATA TTTGGGACCG GCTTATGCTT TTTGGCGCTA CCCTGGATGA TCAGGCGTTT TGCTGTTCAC GGCTTATGAC CTACCTCCGC GGGATTAGTT ACAAGGTTAC TGTTGGCGCC CTTGTCGCTA ATGAGGGGTG GAATGCTTCG GAGGACGCTC TCACCGCTGT TATTACTGCA GCGTATTTGA CCATCTGCCA CCAGCGTTAC CTCCGTACTC AAGCTATATC CAAGGGTATG CGCCGACTGG AGGTTGAGCA TGCCCAAAAA TTCATCACAA GACTTTATAG TTGGCTGTTC GAGAAGTCCG GCCGTGACTA TATCCCCGGC CGCCAGCTCC AGTTCTATGC ACAGTGCCGC CGTTGGTTAT CGGCGGGTTT CCACCTTGAC CCAAGGGTGC TTGTTTTTGA TGAGTCTGTG CCCTGCCGTT GTAGGACATT TCTTAAGAAG GCTGTGGGCA AGTTCTGCTG TTTTATGAAG TGGTTGGGAC AGGAGTGCAC CTGCTTTTTG GAACCAGCAG AGGGTCTAGT TGGCGACCAT GGCCACGATA ATGAAGCCTA TGAGGGCTCT GAGGTTGATC AGGCCGAGCC TGCCCATCTC GATGTTTCCG GGACTTATGC CGTCCATGGC CGCCAACTTG AGGCCCTGTA TAGGGCGCTT AACATCCCGC ATGACATCGC TGCCCGAGCC TCCCGTTTGA CTGCCACCGT CGAACTTGTT GCAGGTCCAG ACCGCTTGGA GTGCCGCACT GTGCTTGGGA ATAAGACTTT CCGGACGACG GTGGTTGATG GCGCCCATCT TGAGGCGAAC GGCCCCGAGC AGTACGTTCT CTCGTTTGAC GCCTCTCGCC AGTCTATGGG GGCCGGGCCG CATAGTCTTT CCTACGAGCT CACTCCTGCT GGTTTGCAGA TCAAGATTTC ATCTAATGGC CTGGATTGCA CTGCAACATT CCCCCCGGGC GGGGCCCCTA GCGCTGCTCC GGGGGAGGTA GCAGCCTTTT GCAGTGCCCT TCACAGGTAC AATAGGTTCA CTCAGCGCCA TTCGCTTATA GGTGGCTTGT GGCTGCATCC TGAGGGGTTA TTGGGTATTT TCCCCCCTTT CTCTCCCGGG CACCTTTGGG AGTCTGCTAA CCCTTTTTGT GGGGAGGGAA CCTTGTACAC CCGGACATGG TCAACATCTG GTTTTTCTAG TGACTTTTCT CCCCCTGAGG CAGCCGTCGC AGCGCCGGCT GCTACTCCGG GGTTATGCCA CCCTACACCT CCTGATAGTG CCATTTGGGT GTTACCACCA CCTTCTGAAG AATTTCTGGT TGATACAGCG CCCGCTCCCC CTGCCCCTGA GCCCGCTCAA CCATCTAGCC CCGCCGGGCC GAAGGCTCCC GTGCGTAAGC CGCCAGCGCC ACCATCCCCG CGCACCCGCC GCCTTCTTTA CACCTATCCG GATGGGGCAA AGGTGTATGC GGGGTCACTG TTTGAGTCTG ACTGTGATTG GCTGGTTAAT GCGTCGAATC CCGGCCATCG TCCTGGCGGC GGCCTTTGCC ACGCCTTTTA CCAACGCTAC CCCGAGTCTT TCCACCCAAC TGAGTTCATT ATGCGCGACG GTCTTGCCGC GTACACTTTA ACTCCCCGGC CTATTATTCA TGCAGTGGCC CCTGATTATA GAGTTGAGCA TAACCCAAAG AGGCTTGAGG CGGCATACCG AGAGACTTGC TCTCGCCGCG GTACCGCCGC CTACCCACTC CTCGGCTCGG GTATATACCA AGTCCCCGTC AGCCTCAGCT TTGACGCTTG GGAGCGTAAC CACCGCCCCG GGGATGAGCT TTACCTAACC GACCTCGCCG CTACCTGGTT CGAGGCTAAT AAGCCAACAC AGCCGGCCCT TACAATAACT GAGGATGCAG CCCGCACAGC CAACCTAGCA CTGGAGATCG ATGCCGCTAC GGAGGTCGGC CGGGCCTGTG CCGGCTGTGC AGTTAGTCCT GGGGTTGTGT ACTATCAGTT TACTGCTGGG GTCCCAGGTT CGGGGAAGTC GCGTTCTATA CAGCAGGGGG ATGTTGATGT GGTGGTTGTC CCCACTCGGG AGCTCCGGAA TAGTTGGCGT CGCCGGGGTT TCGCAGCTTT TACACCTCAT ACGGCGGCCC GTGTCACCAC GGGCCGTCGT GTTGTGATTG ATGAGGCCCC ATCCCTCCCA CCGCATTTGT TGCTACTGCA CATGCAGCGG GCCTCGTCGG TCCACCTTCT CGGCGACCCA AACCAGATCC CTGCTATAGA CTTCGAGCAC GCCGGCCTGG TCCCCGCAAT ACGCCCTGAG CTTGCGCCCA CCAGTTGGTG GCATGTCACC CACCGCTGCC CCGCTGACGT GTGCGAGCTT ATACGCGGGG CTTATCCCAA AATCCAAACC ACTAGCCGCG TGTTGCGGTC TTTATTCTGG AACGAGCCTG CCATCGGCCA GAAGTTAGTT TTCACCCAGG CTGCTAAGGC CGCCAACCCC GGTGCGATCA CAGTCCACGA GGCCCAGGGC GCCACTTTTA CGGAAACTAC AATCATAGCC ACAGCTGATG CCAGGGGGCT CATCCAATCT TCCCGAGCAC ATGCCATAGT TGCACTTACC CGCCACACAG AGAAGTGCGT TATTCTTGAC GCCCCCGGCT TGTTACGTGA GGTCGGTATA TCGGATGTGA TTGTCAACAA TTTTTTCCTC GCCGGCGGGG AGGTGGGTCA CCATCGCCCC TCTGTGATAC

B1-NO-RBV Consensus sequence

3710	CTCGCGGTAA TCCTGACCAG	AACCTCGCGA	CACTACAGGC	СTtTCCACCT	TCTTGCCAG	TTA
3780	TCACCAGTTA GCTGAGGAAC	TTGGCCACCG	TCCAGCTCCC	GTCGCTGCTG	TCCTGCCCCC	ttgcccta
3850	CTTGAGCAGG GCTTATTATA	TATGCCACAG	GAGCTTACGG	TGTCTGACAG	TGTGCTGGTC	tttgaactca
3920	CGGACATAGT CNNNNNNNNN	NNNNNNGCCC	CTAGTCAGCG	GAAGGCCATC	CTATCAACGC	tTGTGGGTAG
3990	GTACGGCCGT CGGACGAAGT	TGTATGAAGC	AGCTCAGTCT	GACGTCCGTG	AGTCCCTGGC	Cagatttatc
4060	CCCACCATTG GGCCCGTTCA	gGctactacg	tgTgagttat	ACGAGCTGGT	tGAGGCCATG	gtGgagaiag
4130	GTCAGGATGG CTCTGCCGTG	CTTGAGCTCG	ACCTCTGCAA	TCGTGATGTA	tCGCGTATCA	catttttcca
4200	GAAAGATTGT AATAAGTTCA	CCACAGGGGA	GACCATTGCC	CACGGTAAGG	TCGGCCAGGG	catctcgect
4270	TGGAGTAAGA CCTTTTGTGC	CCTGTTTGGT	CCGTGGTTTC	GTGCTATTGA	AAAAGAAATA	CTAGCCCTGC
4340	TCCCGCCCAA TATCTTCTAT	GGCGATGCAT	ACGAGGAGTC	TGTGTTTGCC	GCCGCTGTGT	CAGGGGCAGG
4410	CTCAAGCATG GTATTTGAGA	ATGATtTTTC	AGAATTTGAT	agcacclaat	ACAACTTCTC	CCTTAGCCTC
4480	GAGTGTGCAG TTATGGAGGA	ATGTGGCATG	CCCCAGTGGC	TAATCCGGTT	GTACCATTTG	GTTCGGTCGG
4550	CCTGGATTCT ACAGGCGCCG	AAGGAGTCTC	TTAAGGGATT	tTGGAAGAAG	CATTCTGGTG	AGCCCGGCAC
4620	CCTCCTCTGG AACACTGTTT	GGAATATGGC	GATCATAGCA	CACTGCTATG	AATTTCGTGA	TTTTAGGGTT
4690	GCCGCTTTCA AGGGAGATGA	CTCCGTGGTC	CTTTGTAGTG	ACTACCGTCA	GAGCCGCAAT	GCAGCGGCCC
4760	TGATTGCAGG TTGCGGGCTC	AAACTGAAGG	tTGAttaccg	CCCCATTGG	TTGTATGCTG	GTGTGGTGGT
4830	GGCCCCCGGC CTGGGGACGC	TACCCGATGT	GGTGCGCTTT	GCCGGCCGGC	TGTCTGAGAA	GAACTGGGGC
4900	CCTGGGCCGG AGCGGGCTGA	GCAGTTGCGC	CTAGCTGTTT	GTGATTTCCT	TCGAGGGTTA	acgattgttg
4970	CGCAGGTATG TGTCGATGTT	GTATCCCGAG	TTTATGGAGT	TAGCCCTGGG	TTGGTACATA	ACCTTATTGG
5040	CATGTTGCAA ACCATAGCTG	ATGGCAAAGC	CCATTTTACA	GAGACTGTCA	AACCTGTGCT	tgacctcacg
5110	AACTCTATCA TACAGCGGGT	GGAATGAATA	ACATGTTCTA	TGCATTGCCC	ATGGGATCAC	CATGCGCCCT
5180	AGGGCTGTTC TGTTGCTGTT	CTTCGTGCTT	CTGCCTATGC	TGCCCGCGCC	ACCGGCCGGC	CAGCCGTCTG
5250	GCCGCCGTCG TGGGCGGCGC	AGCGGCGGTG	CCGGCAGTGG	TTTCTGGGGT	GACAGGGTTG	ATTCTCAGCC
5320	CTTCGCCCTC CCCTATATTC	ATCCAACCAA	CCCCTTTGCC	GCCGATGTCG	CACCGCAATC	CGGGGCTGGA
5390	GCTCGCCCTC GACAGCCACC	CCGCCCCCTC	GGCTCCTCTT	GGCGTGATCA	GTCCCAGCGC	CCCTCCGCTG
5460	TCCCACGTCG TCGATCTGCC	CCAGCTGGGG	CTGCGCCGCT	GACTGCCATA	TCACCTGCTC	CCGATACAGC
5530	CCCTGTCCCT GATGTTGACT	CTCGCGGCNN	NNNNNNNNNN	NNNNNNNNNA	atttatccac	ATCCCCGCTT
5600	ACATCATCTG TTGCTTCGGG	TACTAATCTG	GTTCTTTATG	CTGCTCCGCT	AAACCCTTTG	CTGCCCCTTC
5670	AGGATGGCAC TAATACTCAC	ATCATGGCCA	CTGAGGCATC	taAttatgcc	CAGTATCGGG	tTGTCCGAGC
5740	TACGATTCGT TACAGGCCAT	TGGTGCCAAA	TGCTGTTGGC	GGTTATGCAA	TATCCATCTC	ATTTTGGCCT
5810	CAGACTACTA CTACCCCCAC	GTCTGTTGAT	ATGAACTCTA	ttacttccac	TGATGTTAGG	ATTCTAGTTC
5880	AGCCCGGCAT TGCTTCTGAG	TTGGTtATCC	CTAGTGAGCG	CCTCCATTAT	CGTAACCAGG	GTTGGCGCTC
5950	TGTGGAGACC TCGGGTGTGG	CTGAAGAGGA	GGCTACTTCT	GGTTTGGTAA	TGCTTTGTAT	CCATGGCTCT
6020	CCTGTTAATT CCTACACCAA	taccccctat	ACCGGGGCGC	TTGGACTCCT	tgatttcgcc	tTAGAGCTTG
6090	AGtttaggai ccttacaccc	gGgatcacca	acacccetgt	GTCCCGGTAT	acaagcacag	cccgtcatcg
6160	GCTGCGCCGT GGTGCTGATG	GCACCGCGGA	ACTTACCACC	ACAGCGGCCA	cGCGTtTCAT	GAAGGACTTG
6230	CACTTCACCG GTACGAATGG	GGTCGGTGAG	GTGGGTCGTG	GTATTGCCCT	CACACTCTTT	AATCTTGCTG
6300	ACACGCTTCT CGGTGGTTTG	CCGACAGAAT	taAtttcgic	GGCTGGGGGA	CAGTTATTTT	ACTCCCGCCC
6370	CGTTGTCTCA GCCAATGGCG	AGCCGACCGT	CAAGTTATAT	ACATCTGTAG	AGAATGCGCA	GCAGGATAAA
6440	GGGATCGCTA TCCCACATGA	tatagatcta	GGTGACTCCC	GTGTGGTCAT	CCAAGACTAT	gacaaccagc
6510	ATGAGCAGGA TCGACCCACC	CCCTCGCCTG	CCCCTTCTCG	CCCTTTTTCG	GTTCTTCGCG	CTAATGATGT
6580	TTTATGGCTT TCTCTTACTG	CCGCTGAGTA	TGACCAGACT	ACATATGGGT	CGTCCACCAA	CCCGATGTAT
6650	GTCTCGGATA CTGTCACATT	tGTCAACGTG	gctacag $a g ~$	CCCAGGCTGT	CGCCCGTTCC	CTTGACTGGT
6720	CTAAAGTTAC TCTGGACGGC	CGTCCTCTTA	CTACTATCCA	GCAGTACTCC	AAAACATTTT	ATGTTCTCCC
6790	GCTTCGCGGG AAATTATCTT	TTTGGGAGGC	CGGGACGACC	AAGGCCGGCT	acccctataa	ctataacaca
6860	ACTGCTAGTG ATCAGATtTT	gattgatait	GCGGCTGGTC	ATCGTGTtGC	tatttccacg	tataccacca
6930	GTCTGGGCGC TGGCCCTGTG	TCTGTtTCTG	CAGTTGGTGT	TTTAGCCCCA	CATTCGGCCC	tTGCAGTCCT
7000	TGAAGACACT ATTGACTACC	CTGCCCGTGC	CCACACATTT	GATGATTTCT	GCCCGGAGTG	TCGCGCTCTT
7070	GGTTTGCAGG GGTGTGCCTT	CCAGTCTACT	ATTGCTGAGC	TTCAGCGTCT	taAaAtgaig	GTAGGTAAAA
7140	CCCGGGAGTT TTAATCAATT	TCCTCTGTGC	CCCCTTCATA	GCTTTGCTTT	ATTTTCTCTC	TTCTGCGGTT
7210	CGCGCTCCCT GGAAANNNNN	NNNNNNN				

B2-NO-RBV

File name	B2-NO-RBV.sam
Ref name	FJ705359.1
Ref length	$\mathbf{7 2 3 7 n t}$
Program used	Tanoti Assembler 1.0
Total reads	600859
Mapped reads	$\mathbf{6 0 0} 859(100.00 \%)$
Average read length	$136 n t$
Coverage	$184 n t(99.27 \%)$
Average depth	11260 reads/site

B2-NO-RBV Consensus sequence

NNNNNNNNCG TATGTGGTCG ATGCCATGGA GGCCCATCAG TTCATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAT TCTGCCCTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTAT CTCGTGTGCA AACTGAGATT CTTATCAATT TGATGCAACC CCGGCAGTTG GTTTTTCGAC CTGAAGTGCT CTGGAATCAT CCTATCCAAC GGGTTATCCA TAATGAACTT GAACAGTACT GTCGGGCCCG GGCTGGTCGT TGTTTAGAGG TTGGGGCCCA CCCAAGATCC ATTAATGACA ACCCAAATGT TCTGCACCGG TGCTTTCTAC GACCAGTTGG GAGAGATGTT CAGCGCTGGT ACTCTGCTCC CACCCGCGGC CCTGCGGCTA ACTGCCGCCG TTCTGCCTTG CGTGGCCTCC CCCCCGTTGA TCGTACCTAC TGCTTTGATG GATTCTCCCG CTGCTCATTT GCTGCAGAAA CTGGGGTTGC CCTTTATTCT TTGCATGACC TCTGGCCGGC CGATGTTGCG GAGGCTATGG CCCGACACGG GATGACACGC CTGTATGCTG CACTACATCT CCCTCCTGAA GTACTACTAC CACCCGGTAC TTACCATACA ACTTCATACC TTCTGATTCA CGACGGTGAT CGTGCTGTTG TGACCTATGA AGGTGATACT AGTGCAGGCT ACAACCATGA TGTCTCCATA CTTCGTGCAT GGATCCGCAC AACTAAGATA GTCGGCGACC ATCCGCTGGT GATAGAGCGT GTGCGGGCCA TTGGCTGTCA TTTTGTGCTG CTGCTTACTG CAGCCCCTGA GCCGTCACCA ATGCCTTATG TCCCATACCC CCGGTCGACA GAGGTGTATG TCCGCTCTAT ATTTGGCCCT GGTGGGTCCC CATCTCTATT CCCATCAGCT TGCTCTACGA AATCTACATT TCATGCTGTC CCGGTTCATA TTTGGGACCG GCTTATGCTT TTTGGCGCTA CCCTGGATGA TCAGGCGTTT TGCTGTTCAC GGCTTATGAC CTACCTCCGC GGGATTAGTT ACAAGGTTAC TGTTGGCGCC CTTGTCGCTA ATGAGGGGTG GAATGCTTCG GAGGACGCTC TCACCGCTGT TATTACTGCA GCGTATTTGA CCATCTGCCA CCAGCGTTAC CTCCGTACTC AAGCTATATC CAAGGGTATG CGCCGACTGG AGGTTGAGCA TGCCCAAAAA TTCATCACAA GACTTTATAG TTGGCTGTTC GAGAAGTCCG GCCGTGACTA TATCCCCGGC CGCCAGCTCC AGTTCTATGC ACAGTGCCGC CGTTGGTTAT CGGCGGGTTT CCACCTTGAC CCAAGGGTGC TTGTTTTTGA TGAGTCTGTG CCCTGCCGTT GTAGGACATT TCTTAAGAAG GCTGTGGGCA AGTTCTGCTG TTTTATGAAG TGGTTGGGAC AGGAGTGCAC CTGCTTTTTG GAACCAGCAG AGGGTCTAGT TGGCGACCAT GGCCACGATA ATGAAGCCTA TGAGGGCTCT GAGGTTGATC AGGCCGAGCC TGCCCATCTC GATGTTTCCG GGACTTATGC CGTCCATGGC CGCCAACTTG AGGCCCTGTA TAGGGCGCTT AACATCCCGC ATGACATCGC TGCCCGAGCC TCCCGTTTGA CTGCCACCGT CGAACTTGTT GCAGGTCCAG ACCGCCTGGA GTGCCGCACT GTGCTTGGGA ATAAGACTTT CCGGACGACG GTGGTTGATG GCGCCCATCT TGAGGCGAAC GGCCCCGAGC AGTACGTTCT CTCGTTTGAC GCCTCTCGCC AGTCTATGGG GGCCGGGCCG CATAGTCTTT CCTACGAGCT CACTCCTGCT GGTTTGCAGA TCAAGATTTC ATCTAATGGC CTGGATTGCA CTGCAACATT CCCCCCGGGC GGGGCCCCTA GCGCTGCTCC GGGGGAGGTA GCAGCCTTTT GCAGTGCCCT TTACAGGTAC AATAGGTTCA CTCAGCACCA TTCGCTTATA GGTGGCTTGT GGCTGCATCC TGAGGGGTTA TTGGGTATTT TCCCCCCTTT CTCTCCCGGG CACCTTTGGG AGTCTGCTAA CCCTTTTTGT GGGGAGGGAA CCTTGTACAC CCGGACATGG TCAACATCTG GTTTTTCTAG TGACTTTTCT CCCCCTGAGG CAGCCGTCGC AGCGCCGGCT GCTACTCCGG GGTTATGCCA CCCTACACCT CCTGATAGTG CCATTTGGGT GTTACCACCA CCTTCTGAAG AATTTCTGGT TGATACAGCG CCCGCTCCCC CTGCCCCTGA GCCCGCTCAA CCATCTAGCC CCGCCGGGCC GAAGGCTCCC GTGCGTAAGC CGCCAGCGCC ACCATCCCCG CGCACCCGCC GCCTTCTTTA CACCTATCCG GATGGGGCAA AGGTGTATGC GGGGTCACTG TTTGAGTCTG ACTGTGATTG GCTGGTTAAT GCGTCGAATC CCGGCCATCG TCCTGGCGGC GGCCTTTGCC ACGCCTTTTA CCAACGCTAC CCCGAGTCTT TCCACCCAAC TGAGTTCATT ATGCGCGACG GTCTTGCCGC GTACACTTTA ACTCCCCGGC CTATTATTCA TGCAGTGGCC CCTGATTATA GAGTTGAGCA TAACCCAAAG AGGCTTGAGG CGGCATACCG AGAGACTTGC TCTCGCCGCG GTACCGCCGC CTACCCACTC CTCGGCTCGG GTATATACCA AGTCCCCGTC AGCCTCAGCT TTGACGCTTG GGAGCGTAAC CACCGCCCCG GGGATGAGCT TTACCTAACC GACCTCGCCG CTACCTGGTT CGAGGCTAAT AAGCCAACAC AGCCGGCCCT TACAATAACT GAGGATGCAG CCCGCACAGC CAACCTAGCA CTGGAGATCG ATGCCGCTAC GGAGGTCGGC CGGGCCTGTG CCGGCTGTGC AGTTAGTCCT GGGGTTGTGT ACTATCAGTT TACTGCTGGG GTCCCAGGTT CGGGGAAGTC GCGTTCTATA CAGCAGGGGG ATGTTGATGT GGTGGTTGTC CCCACTCGGG AGCTCCGGAA TAGTTGGCGT CGCCGGGGTT TCGCAGCTTT TACACCTCAT ACGGCGGCCC GTGTCACCAC GGGCCGTCGT GTTGTGATTG ATGAGGCCCC ATCCCTCCCA CCGCATTTGT TGCTACTGCA CATGCAGCGG GCCTCGTCGG TCCACCTTCT CGGCGACCCA AACCAGATCC CTGCTATAGA CTTCGAGCAC GCCGGCCTGG TCCCCGCAAT ACGCCCTGAG CTTGCGCCCA CCAGTTGGTG GCATGTCACC CACCGTTGCC CCGCTGACGT GTGCGAGCTT ATACGCGGGG CTTATCCCAA AATCCAAACC ACTAGCCGCG TGTTGCGGTC TTTATTCTGG AATGAGCCTG CCATCGGCCA GAAGTTAGTT TTCACCCAGG CTGCTAAGGC CGCCAACCCC GGTGCGATCA CAGTCCACGA GGCCCAGGGC GCCACTTTTA CGGAAACTAC AATCATAGCC ACAGCTGATG CCAGGGGGCT CATCCAATCT TCCCGAGCAC ATGCCATAGT TGCACTTACC CGCCACACAG AGAAGTGCGT TATTCTTGAC GCCCCCGGCT TGTTACGTGA GGTCGGTATA TCGGATGTGA TTGTCAACAA TTTTTTCCTC GCCGGCGGGG AGGTGGGTCA CCATCGCCCC TCTGTGATAC

B2-NO-RBV Consensus sequence

3710 3780 3850 3920 3990 4060 4130 4200 4270 4340 4410 4480 4550 4620 4690 4760 4830 4900 4970

CTCGCGGTAA TCCTGACCAG AACCTCGCGA CACTACAGGC CTTTCCACCT TCTTGCCAGA TTAGTGCCTA TCACCAGTTA GCTGAGGAAC TTGGCCACCG CCCAGCTCCC GTCGCCGCTG TCTTGCCCCC TTGCCCTGAA CTTGAGCAAG GCTTATTATA TATGCCGCAG GAGCTTACGG TGTCTGACAG TGTGCTGGTC TTTGAACTCA CGGACATAGT CCACTGCCGT ATGGCTGCCC CTAGCCAGCG GAAGGCCGTC CTATCGACGC TCGTGGGTAG GTACGGCCGT CGGACGAAGC TGTATGAAGC AGCTCACTCT GACGTCCGTG AGTCCCTGGC TAGATTTATC CCCACCATTG GGCCCGTTCA GGCTACTACG TGTGAGTTAT ACGAGCTGGT TGAGGCCATG GTGGAGAAAG GTCAGGATGG CTCTGCCGTG CTTGAGCTCG ACCTCTGCAA TCGTGATGTA TCGCGTATCA CATTTTTCCA GAAAGATTGT AATAAGTTCA CCACAGGGGA GANNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNCTCGGCT TGGAGTAAGA CCTTTTGTGC CCTGTTTGGT CCGTGGTTTC GTGCTATTGA AAAAGAAATA CTAGCCCTGC TCCCGCCTAA TATCTTCTAC GGCGACGCAT ACGAGGAGTC TGTGTTTGCC GCCGCTGTGT CAGGGGCAGG CTCAAGCATG GTATTTGAGA ATGATTTTTC AGAATTTGAT AGCACCCAAA ACAACTTCTC CCTTAGCCTC GAGTGTGCAG TTATGGAGGA ATGTGGCATG CCCCAGTGGC TAATCCGGTT GTACCATTTG GTTCGGTCGG CCTGGATTCT ACAGGCGCCG AAGGAGTCTC TTAAGGGATT TTGGAAGAAG CATTCTGGTG AGCCCGGCAC CCTCCTCTGG AACACTGTTT GGAATATGGC GATCATAGCA GCCGCTTTCA AGGGAGATGA CTCCGTGGTC CTTTGTAGTG TGATTGCAGG TTGCGGGCTC AAACTGAAGG TTGATTATCG GGCCCCTGGC CTAGGGACCC TACCCGATGT GGTGCGCTTT G CCCGGGCCGG AGCGGGCTGA GCAGTTGCGC CTAGCTGTTT CGCAGGTATG TGTTGATGTT GTATCCCGAG TTTATGGAGT CATGTTGCAA ACCATAGCTG ATGGCAAAGC CCATTTTACA AACTCTATCA TACAGCGGGT GGAATGAATA ACATGTTTTG AGGGCTGTTC TGTTGCTGTT CTTCGTGCTT CTGCCTATGC TGC GCCGCCGTCG TGGGCGGCGC AGCGGCGGTG CCGGCAGTGG CTTCGCCCTC CCCTATATTC ATCCAACCAA CCCCTTTGCC GCTCGCCCTC GACAGCCACC CCGCCCCCTC GGCTCCTCTT TCCCACGTCG TCGATCTGCC CCAGCTGGGG CTGCGCCGCT CCCTGTCCCT GATGTTGACT CTCGCGGCGC CATATTGCGG ACATCATCTG TTGCTTCGGG TACTAATCTG GTTCTTTATG AGGATGGCAC TAACACTCAC ATCATGGCCA CTGAGGCATC TACGATTCGT TACAGGCCAT TGGTGCCAAA TGCTGTTGGC CAGACTACTA CTACCCCCAC GTCTGTTGAT ATGAACTCTA AGCCCGGCAT TGCTTCTGAG TTGGTTATCC CTAGTGAGCG TGTGGAGACC TCGGGTGTGG CTGAAGAGGA GGCTACTTCT CCTGTTAATT CCTACACCAA TACCCCCTAT ACCGGGGCGC AGTTTAGGAA CCTTACACCC GGGAACACCA ACACCCGTGT GCTGCGCCGT GGTGCTGATG GCACCGCGGA ACTTACCACC CACTTCACCG GTACGAATGG GGTCGGTGAG GTGGGTCGTG ACACGCTTCT CGGTGGTTTG CCGACAGAAT TAATTTCGTC CGTTGTCTCA GCCAATGGCG AGCCGACTGT CAAGTTATAC GGGATCGCTA TCCCACATGA TATAGATCTG GGTGACTCCC ATGAGCAGGA TCGACCCACC CCCTCGCCTG CCCCTTCTCG TTTATGGCTT TCTCTTACTG CCGCTGAGTA TGACCAGACT GTCTCGGATA CTGTCACATT TGTCAACGTG GCTACAGGAG CTAAAGTTAC TCTGGACGGC CGTCCTCTTA CTACTATCCA GCTTCGCGGG AAATTATCTT TTTGGGAGGC CGGGACGACC ACTGCTAGTG ATCAGATTTT GATTGAAAAT GCGGCTGGTC GTCTGGGCGC TGGCCCTGTG TCTGTCTCTG CAGTTGGTGT TGAAGACACT ATTGACTACC CTGCCCGTGC CCACACTTTC GGTTTACAGG GGTGTGCCTT CCAGTCTACT ATTGCTGAGC CCCGGGAGTT TTAATTAATT TCCTTTGTGC CCCCTTCATA CGCGCTCCCT GGANNNNNNN NNNNNNN

B3-NO-RBV

File name	B3-NO-RBV.sam
Ref name	FJ705359.1
Ref length	$\mathbf{7} 237 \mathrm{nt}$
Program used	Tanoti Assembler 1.0
Total reads	$\mathbf{2 2 2 8 2 3}$
Mapped reads	$\mathbf{2 2 2 8 2 3 (1 0 0 . 0 0 \%)}$
Average read length	$139 n t$
Coverage	$\mathbf{7 1 8 5 n t}(99.28 \%)$
Average depth	$\mathbf{4 2 6 8}$ reads/site

Read quality

B3-NO-RBV Consensus sequence

NNNNNNNNCG TATGTGGTCG ATGCCATGGA GGCCCATCAG TTCATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAT TCTGCCCTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTAT CTCGTGTGCA AACTGAGATT CTTATCAATT TGATGCAACC CCGGCAGTTG GTTTTTCGAC CTGAAGTGCT CTGGAATCAT CCTATCCAAC GGGTTATCCA TAATGAACTT GAACAGTACT GTCGGGCCCG GGCTGGTCGT TGTTTAGAGG TTGGGGCCCA CCCAAGATCC ATTAATGACA ACCCAAATGT TCTGCACCGG TGCTTTCTAC GACCAGTTGG GAGAGATGTT CAGCGCTGGT ACTCTGCTCC CACCCGCGGC CCTGCGGCTA ACTGCCGCCG TTCTGCCTTG CGTGGCCTCC CCCCCGTTGA TCGTACCTAC TGCTTTGATG GATTTTCTCG CTGCTCATTT GCCGCAGAAA CTGGGGTTGC CCTTTATTCT TTGCATGACC TCTGGCCGGC CGATGTTGCG GAGGCTATGG CCCGACACGG GATGACACGC CTGTATGCTG CACTACATCT CCCTCCTGAA GTACTACTAC CACCCGGTAC TTACCATACA ACTTCATACC TTCTGATTCA CGACGGTGAT CGTGCTGTTG TGACCTATGA AGGTGATACT AGTGCAGGCT ACAACCATGA TGTCTCCATA CTTCGTGCAT GGATCCGCAC AACTAAGATA GTCGGCGACC ATCCGCTGGT GATAGAGCGT GTGCGGGCCA TTGGCTGTCA TTTTGTGCTG CTGCTTACTG CAGCCCCTGA GCCGTCACCA ATGCCTTATG TCCCATACCC CCGGTCGACA GAGGTGTATG TCCGCTCTAT ATTTGGCCCT GGTGGGTCCC CATCTCTATT CCCATCAGCT TGCTCTACGA AATCTACATT TCATGCTGTC CCGGTTCATA TTTGGGACCG GCTTATGCTT TTTGGCGCTA CCCTGGATGA TCAGGCGTTT TGCTGTTCAC GGCTTATGAC CTACCTCCGC GGGATTAGTT ACAAGGTTAC TGTTGGCGCC CTTGTCGCTA ATGAGGGGTG GAATGCTTCG GAGGACGCTC TCACCGCTGT TATTACTGCA GCGTATTTGA CCATCTGCCA CCAGCGTTAC CTCCGTACTC AAGCTATATC CAAGGGTATG CGCCGACTGG AGGTTGAGCA TGCCCAAAAA TTCATCACAA GACTTTATAG TTGGCTGTTC GAGAAGTCCG GCCGTGACTA TATCCCCGGC CGCCAGCTCC AGTTCTATGC ACAGTGCCGC CGTTGGTTAT CGGCGGGTTT CCACCTTGAC CCAAGGGTGC TTGTTTTTGA TGAGTCTGTG CCCTGCCGTT GTAGGACATT TCTTAAGAAG GCTGTGGGCA AGTTCTGCTG TTTTATGAAG TGGTTGGGAC AGGAGTGCAC CTGCTtTTTG GAACCAGCAG AGGGTCTAGT TGGCGACCAT GGCCACGATA ATGAAGCCTA TGAGGGCTCT GAGGTTGATC AGGCCGAGCC TGCCCATCTC GATGTTTCCG GGACTTATGC CGTCCATGGC CGCCAACTTG AGGCCCTGTA TAGGGCGCTT AACATCCCGC ATGACATCGC TGCCCGAGCC TCCCGTTTGA CTGCCACCGT CGAACTTGTT GCAGGTCCAG ACCGCTTGGA GTGCCGCACT GTGCTTGGGA ATAAGACTTT CCGGACGACG GTGGTTGATG GCGCCCATCT TGAGGCGAAC GGCCCCGAGC AGTACGTTCT CTCGTTTGAC GCCTCTCGCC AGTCCATGGG GGCCGGGCCG CATAGTCTTT CCTACGAGCT CACTCCTGCT GGTTTGCAGA TCAAGATTTC ATCTAATGGC CTGGATTGCA CTGCAACATT CCCCCCGGGC GGGGCCCCTA GCGCTGCTCC GGGGGAGGTA GCAGCCTTTT GCAGTGCCCT TTACAGGTAC AATAGGTTCA CTCAGCGCCA TTCGCTTATA GGTGGCTTGT GGCTGCATCC TGAGGGGTTA TTGGGTATTT TCCCCCCTTT CTCTCCCGGG CACCTTTGGG AGTCTGCTAA CCCTTTTTGT GGGGAGGGAA CCTTGTACAC CCGGACATGG TCAACATCTG GTTTTTCTAG TGACTTTTCT CCCCCTGAGG CAGCCGTCGC AGCGCCGGCT GCTACTCCGG GGTTATGCCA CCCTACACCT CCAGATAGTG CCATTTGGGC GTTACCACCA CCTTCTGAAG AATTTCTGGT TGATACAGCG CCCGCTCCCC CTGCCCCTGA GCCCGCTCAA CCATCTAGCC CCGCTGGGCC AAAGGCTCCC GTGCGTAAGC CGCCAGCGCC ACCACCCCCG CGCACCCGCC GCCTTCTTTA CACCTATCCG GATGGGGCAA AGGTGTATGC GGGGTCACTG TTTGAGTCTG GCTGTGATTG GCTGGTTAAT GCGTCGAATC CCGGCCATCG TCCTGGCGGC GGCCTTTGCC ACGCCTTTTA CCAACGCTAC CCCGAGTCTT TCTACCCAAC TGAGTTCATT ATGCGCGACG GTCTTGCCGC GTACACTTTA ACTCCCCGGC CTATTATTCA TGCAGTGGCC CCTGATTATA GAGTTGAGCA TAACCCAAAG AGGCTTGAGG CGGCATACCG AGAGACTTGC TCTCGCCGCG GTACCGCCGC CTACCCACTC CTCGGCTCGG GTATATACCA AGTCCCCGTC AGCCTCAGCT TTGACGCTTG GGAGCGTAAC CACCGCCCCG GGGATGAGCT TTACCTAACT GACCTCGCTG CTACCTGGTT CGAGGCTAAT AAGCCAACAC AGCCGGCCCT TACAATAACT GAGGATGCAG CCCGCACAGC CAACCTAGCA CTGGAGATCG ATGCCGCTAC GGAGGTCGGC CGGGCCTGTG CCGGCTGTGC AGTTAGTCCT GGGGTTGTGT ACTATCAGTT TACTGCTGGG GTCCCAGGTT CGGGGAAGTC GCGTTCTATA CAGCAGGGGG ATGTTGATGT GGTGGTTGTC CCCACTCGGG AGCTCCGGAA TAGTTGGCGT CGCCGGGGTT TCGCAGCTTT TACACCTCAT ACGGCGGCCC GTGTCACCAC GGGCCGTCGT GTTGTGATTG ATGAGGCCCC ATCCCTCCCA CCGCATTTGT TGCTACTGCA CATGCAGCGG GCCTCGTCGG TCCACCTTCT CGGCGACCCA AACCAGATCC CTGCTATAGA CTTCGAGCAC GCCGGCCTGG TCCCCGCAAT ACGCCCTGAG CTTGCGCCCA CCAGTTGGTG GCATGTCACC CACCGCTGCC CCGCTGACGT GTGCGAGCTT ATACGTGGGG CTTATCCCAA AATCCAAACC ACTAGCCGCG TGTTGCGGTC TTTATTCTGG AACGAGCCTG CCATCGGCCA GAAGTTAGTT TTCACCCAGG CTGCTAAGGC CGCCAACCCC GGTGCGATCA CAGTCCACGA GGCCCAGGGC GCCACTTTCA CGGAAACTAC AATCATAGCC ACGGCTGATG CTAGGGGGCT CATCCAATCT TCCCGAGCAC ATGCCATAGT tGCACTTACC CGCCACACAG AGAAGTGCGT TATTCTTGAC GCCCCCGGCT TGTTACGTGA GGTCGGTATA TCGGATGTGA TTGTCAACAA TTTTTTCCTC GCCGGCGGGG AGGTGGGTCA CCATCGCCCC TCTGTGATAC

B3-NO-RBV Consensus sequence

3710	CTCGCGGTAA TCCTGACCAG	AACCTCGCGA CACTACAGGC	CTTTCCACCT	TCTTGCCAGA	TTAGTGCCTA
3780	TCACCAGTTA GCTGAGGAAC	TTGGCCACCG CCCAGCTCCC	GTCGCCGCTG	TCTTGCCCCC	TTGCCCTGAA
3850	CTTGAGCAAG GCTTATTATA	TATGCCGCAG GAGCTTACGG	TGTCTGATAG	CGTGCTGGTC	TTTGAACTCA
3920	CGGACATAGT CCACTGCCGG	ATGGCTGCCC CTAGCCAGCG	GAAGGCCGTC	CTATCGACGC	TCGTGGGTAG
3990	GTACGGCCGT CGGACGAAGC	TGTATGAAGC AGCTCACTCT	GACGTCCGTG	AGTCCCTGGC	TAGATTTATC
4060	CCCACCATTG GGCCCGTTCA	GGCTACTACG TGTGAGTTAT	ACGAGCTGGT	TGAGGCCATG	GTGGAGAAAG
4130	GTCAGGATGG CTCTGCCGTG	CTTGAGCTCG ACCTCTGCAA	TCGTGATGTA	TCGCGTATCA	CATtTtTCCA
4200	GAAAGATTGT AATAAGTTCA	CCACAGGGGA GACCATTGCC	CACGGTAAGG	TCGGCCAGGG	CATCTCGGCT
4270	TGGAGTAAGA CCTTTTGTGC	CCTGTTTGGT CCGTGGTTTC	GTGCTATTGA	AAAAGAAATA	CTAGCCCTGC
4340	TCCCGCCTAA TATCTTCTAC	GGCGACGCAT ATGAGGAGTC	TGTGTTTGCC	GCCGCTGTGT	CAGGGGCAGG
4410	CTCAAGCATG GTATTTGAGA	ATGATTTTTC AGAATTTGAT	AGCACCCAAA	ACAACTTCTC	CCTTAGCCTC
4480	GAGTGTGCAG TTATGGAGGA	ATGTGGCATG CCCCAGTGGC	TAATCCGGTT	GTACCATTTG	GTTCGGTCGG
4550	CCTGGATTCT ACAGGCGCCG	AAGGAGTCTC TTAAGGGATT	TTGGAAGAAG	CATTCTGGTG	AGCCCGGCAC
4620	CCTCCTCTGG AACACTGTTT	GGAATATGGC GATCATAGCA	CACTGCTATG	AATTTCGTGA	TTTTAGGGTT
4690	GCCGCTTTCA AGGGAGATGA	CTCCGTGGTC CTTTGTAGTG	ACTACCGTCA	GAGCCGCAAT	GCAGCGGCCC
4760	TGATTGCAGG TTGCGGGCTC	AAACTGAAGG TTGATTATCG	CCCTATTGGG	TTGTATGCTG	GTGTGGTGGT
4830	GGCCCCTGGC CTAGGGACCC	TACCCGATGT GGTGCGCTTT	GCCGGCCGGC	TGTCTGAGAA	GAACTGGGGC
4900	CCCGGGCCGG AGCGGGCTGA	GCAGTTGCGC CTAGCTGTTT	GTGACTTCCT	TCGAGGGTTA	ACGAATGTTG
4970	CGCAGGTATG TGTTGATGTT	GTATCCCGAG TTTATGGAGT	TAGCCCTGGG	TTGGTACATA	ACCTTATTGG
5040	CATGTTGCAA ACCATAGCTG	ATGGCAAAGC CCATTTTACA	GAGACTGTCA	AACCTGTGCT	TGACCTCACG
5110	AACTCTATCA TACAGCGGGT	NNNNNNNNNN NNNNNNNNNN	NNNNNNNNNN	NTGGGATCAC	CATGCGCCCT
5180	AGGGCTGTTC TGTTGCTGTT	CTTCGTGCTT CTGCCTATGC	TGCCCGCGCC	ACCGGCCGGC	CAGCCGTCTG
5250	GCCGCCGTCG TGGGCGGCGC	AGCGGCGGTG CCGGCAGTGG	TTTCTGGGGT	GACAGGGTTG	ATTCTCAGCC
5320	CTTCGCCCTC CCCTATATTC	ATCCAACCAA CCCCTTTGCC	GCCGATGTCG	CACCGCAATC	CGGGGCTGGA
5390	GCTCGCCCTC GACAGCCACC	CCGCCCCCTC GGCTCCTCTT	GGCGTGATCA	GTCCCAGCGC	CCCTCCGCTG
5460	TCCCACGTCG TCGATCTGCC	CCAGCTGGGG CTGCGCCGCT	GACTGCCATA	TCACCTGCTC	CCGATACAGC
5530	CCCTGTCCCT GATGTTGACT	CTCGCGGCGC CATATTGCGG	CGCCAGTATA	ATTTATCCAC	ATCCCCGCTT
5600	ACATCATCTG TTGCTTCGG	TACTAATCTG GTTCTITATG	CTGCTCCGCT	AAACCCTTTG	CTGCCCCTTC
5670	AGGATGGCAC TAACACTCAC	ATCATGGCCA CTGAGGCATC	TAATTATGCC	CAGTATCGGG	TTGTCCGAGC
5740	TACGATTCGT TACAGGCCAT	TGGTGCCAAA TGCTGTTGGC	GGTTATGCAA	TATCCATCTC	ATTTTGGCCT
5810	CAGACTACTA CTACCCCCAC	GTCTGTTGAT ATGAACTCTA	TTACTTCCAC	TGATGTTAGG	ATTCTAGTTC
5880	AGCCCGGCAT TGCTTCTGAG	TTGGTTATCC CTAGTGAGCG	CCTCCATTAT	CGTAACCAGG	GTTGGCGCTC
5950	TGTGGAGACC TCGGGTGTGG	CTGAAGAGGA GGCTACTTCT	GGTTTGGTAA	TGCTTTGTAT	TCATGGCTCT
6020	CCCGTTAATT CCTACACCAA	TACCCCCTAT ACCGGGGCGC	TTGGACTCCT	TGACTTCGCC	TTAGAGCTTG
6090	AGTTTAGGAA CCTTACACCC	GGGAACACCA ACACCCGTGT	GTCCCGGTAT	ACAAGCACAG	CCCGTCATCG
6160	GCTGCGCCGT GGTGCTGATG	GCACCGCGGA ACTTACCACC	ACAGCGGCCA	CGCGTTTCAT	GAAGGACTTG
6230	CACTTCACCG GTACGAATGG	GGTCGGTGAG GTGGGTCGTG	GTATTGCCCT	CACACTCTTT	AATCTTGCTG
6300	ACACGCTTCT CGGTGGTTTG	CCGACAGAAT TAATTTCGTC	GGCTGGGGGA	CAGTTATTTT	ACTCCCGCCC
6370	CGTTGTCTCA GCCAATGGCG	AGCCGACCGT CAAGTTATAT	ACATCTGTAG	AGAATGCGCA	GCAGGATAAA
6440	GGGATTGCTA TCCCACATGA	TATAGATCTG GGTGACTCCC	GTGTGGTCAT	CCAAGACTAT	GATAACCAGC
6510	ATGAGCAGGA TCGACCCACC	CCCTCGCCTG CCCCTTCTCG	CCCTTTTTCG	GTTCTTCGCG	CTAATGATGT
6580	TTTATGGCTT TCTCTTACTG	CCGCTGAGTA TGACCAGACT	ACATATGGGT	CGTCCACCAA	CCCGATGTAT
6650	GTCTCGGATA CTGTCACATT	TGTCAACGTG GCTACAGGAG	CCCAGGCTGT	CGCCCGTTCC	CTTGACTGGT
6720	CTAAAGTTAC TCTGGACGGC	CGTCCTCTTA CTACTATCCA	GCAGTACTCC	AAAACATTTT	ATGTTCTCCC
6790	GCTTCGCGGG AAATTATCTT	TTTGGGAGGC CGGGACGACC	AAGGCCGGCT	ACCCCTATAA	CTATGACACA
6860	ACTGCTAGTG ATCAGATTTT	GATTGAAAAT GCGGCTGGTC	ATCGTGTTGC	TATTTCCACG	TATGCCGCCA
6930	GTCTGGGCGC TGGCCCTGTG	TCTGTTTCTG CAGTTGGTGT	TTTAGCCCCA	CATTCGGCCC	TTGCAGTCCT
7000	TGAAGACACT ATTGACTACC	CTGCCCGTGC CCACACTTTC	GATGATTTTT	GCCCGGAGTG	TCGCGCTCTT
7070	GGTTTACAGG GGTGTGCCTT	CCAGTCTACT ATTGCTGAGC	TCCAGCGTCT	TAAAATGAAG	GTAGGTAAAA
7140	CCCGGGAGTT TTAATTAATT	TCCTTTGTGC CCCCTTCATA	GCTTTGCTTT	ATTTTCTCTT	TTCTGCGGTT
7210	CGCGCTCCCT GGAANNNNNN	NNNNNNN			

B4-NO-RBV

File name	B4-NO-RBV.sam
Ref name	FJ705359.1
Ref length	$\mathbf{7} 237$ nt
Program used	Tanoti Assembler 1.0
Total reads	189446
Mapped reads	189446 (100.00\%)
Average read length	$130 n t$
Coverage	$5979 n t(82.62 \%)$
Average depth	3382 reads/site

B4-NO-RBV Consensus sequence

NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN CTCGTGTGCA AACTGAGATT CTTATTAATT TGATGCAACC CTGGAATCAT CCTATCCAAC GGGTTATCCA TAATGAACTT tGTCTAGAGG TTGGGGCCCA CCCAAGATCC ATTAATGACA GACCAGTTGG GAGAGATGTT CAGCGCTGGT ACTCCGCTCC TTCTGCCTTG CGTGGCCTCC CCCCCGTTGA TCGTACCTAC GCCGCAGAAA CTGGGGTTGC TCTTTATTCT TTGCATGACC CCCGGCACGG GATGACACGC TTGTATGCTG CACTACATCT TTACCATACA ACTTCATACC TTCTGATTCA CGACGGTGAT AGTGCAGGCT ACAACCATGA TGTCTCCATA CTTCGTGCAT ATCCGCTGGT GATAGAGCGT GTGCGGGCCA TTGGTTGCCA GCCGTCACCA ATGCCTTATG TCCCATACCC CCGGTCGACG GGCGGGTCCC CATCTCTATT CCCATCAGCT TGCTCTACGA TTTGGGACCG GCTTATGCTT TTTGGCGCTA CCCTGGACGA TTACCNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN gaggacgcti ttactgctgt tattactgca gcgtacttaa AGGCTATATC CAAGGGTATG CGCCGACTGG AGGTTGAGCA TTGGCTGTTT GAGAAGTCCG GCCGTGACTA TATCCCCGGC CGTTGGTTAT CGGCGGGTTT CCACCTTGAC CCAAGGGTGC GTAGGACATT TCTTAAGAAG GCTGTGGGTA AATTCTGNNN NNNNNNNNNN NNNNNCCCGC ATGACATCGC CGAACTTGTT GCAGGTCCAG ACTACTTGGA GTGCCGCACT GTGGTTGATG GTGCCCATCT TGAGGCGAAC GGCCCCGAGC AGTCTATGGG GGCCGGACCG CATAGTCTCA CCTACGAGCN ATCTAATGGC CTGGATTGCA CTGCAACATT CCCCCCGGGC ACAGCCTTTT GCAGTGCTCT TTATAGATAC AACAGGTTCA GGCTGCACCC TGAGGGGTTG TTGGGTATCT TCCCCCCTTT NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNCATGG CCCCCTGAGG CAGCCGTCGC AGCGCCGGCT GCTACTCCGG CCATTTGGGT GTTACCACCA CCTTCTGAAG AATTTCTGGT GCCCGCTCAA CCATCTAGCC CCGCCGGGCC GAAGGCTCCC CGCACCCGCC GCCTTCTTTA CACCTATCCG GATGGGGCAA ACTGTGATTG GCTGGTTAAT GCGTCGAATC CCGGCCATCG CCAACGCTAC CCCGAGTCTT TCTACTCAAC TGAGTTCATT ACTCCCCGGC CTATTATTCA TGCAGTGGCC CCTGATTATA CAGCATACCG GGAGACTTGC TCCCGCCGCG GCACCGCCGC AGTCCCCGTC AGCCTCAGCT TTGACGCTTG GGAGCGTAAC GACCTCGCCG CTACCTGGTT CGAGGCTAAT AAGCCAACAC CCCGCACAGC CAACCTAGCA CTGGAGATCG ATGCCGCTAC AGTTAGTCCT GGGGTTGTGT ACTATCAGTT TACTGCTGGG CAGCAGGGNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NCGCAGCTTT TACACCTCAT ACGGCGGCCC GTGTCACCAC ATCCCTCCCA CCGCATTTGT TGCTACTGCA CATGCAGCGG AACCAGATCC CTGCTATAGA CTTCGAGCAC GCCGGCCTGG CCAGTTGGTG GCATGTCACC CACCGCTGCC CTGCTGANNN AATCCAGACT ACTAGCCGCG TGCTGCGGTC TTTATTCTGG TTCACACAGG CCGCTAAGGC TGCCAACCCC GGTGCGATCA CGGAAACTAC AATCATAGCC ACAGCTGATG CCAGGGGGCT CGCACTTACC CGCCACACAG AGAAGTGCAT TATTCTTGAT GCCCOC TCCCGAGCCC ATGCCATAG TCAGATGTGA TTGTTAACAA TTTTTTCCTT GCCGGTGGGG AGATGGGCCA CCATCGCCCT TCTGTGATAC

B4-NO-RBV Consensus sequence

3710	CTCGCGGTAA TCCTGACCAG	AANNNNNNNN	NNNNNNNNNN	NNNNNNNNNN	NNNNGCCAGA	TCAGTGCTTA
3780	CCATCAGTTA	GCTGAGGAGC	TGGGTCACCG	CCCGGCCCCC	GTCGCTGCCG	TCCTGCCCCC
3850	CTTGAGCAGG	GCCTGCTGTA	TATGCCACAA	GAGCTTACGG	TGTCTGACAG	CGTGCTGGTC

C1-NO-RBV

File name	C1-NO-RBV.sam
Ref name	FJ705359.1
Ref length	$\mathbf{7 2 3 7 n t}$
Program used	Tanoti Assembler 1.0
Total reads	35778732
Mapped reads	35778732 (100.00\%)
Average read length	$\mathbf{1 7 n t}$
Coverage	$\mathbf{7 2 2 2 n t}(99.79 \%)$
Average depth	$\mathbf{6 7 6} 578$ reads/site

C1-NO-RBV Consensus sequence

NNNGACCACG TATGTGGTCG ATGCCATGGA GGCCCACCAG TTTATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAT TCTGCCCTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTAT CTCGTGTGCA AACCGAGATT CTTATTAATT TGATGCAACC CCGGCAGTTG GTTTTTCGGC CTGAAGTGCT CTGGAATCAT CCTATCCAAC GGGTTATCCA TAATGAACTT GAACAGTACT GTCGGGCCCG GGCTGGTCGT TGTCTAGAGG TTGGGGCCCA TCCAAGATCC ATTAATGACA ACCCAAATGT TCTTCACCGG TGCTTTCTAC GACCAGTAGG GAGAGATGTT CAGCGCTGGT ACTCTGCTCC TACCCGCGGC CCTGCGGCTA ATTGCCGCCG TTCTGCCTTG CGTGGCCTCC CCCCCGTTGA TCGTACCTAT TGCTTTGATG GATTCTCCCG CTGCTCATTT GCCGCAGAAA CTGGGGTTGC CCTTTATTCC CTGCATGACC TCTGGCCGGC CGATGTTGCG GAGGCTATGG CCCGACACGG CATGACACGC TTGTATGCCG CACTACATCT CCCCCCTGAA GTACTACTAC CACCTGGTAC TTACCATACA ACTTCATACC TTCTGATTCA CGACGGTGAT CGCGCTGTTG TGACCTATGA AGGTGATACT AGTGCAGGCT ACAACCATGA TGTCTCCATA CTTCGTGCAT GGATCCGCAC AACTAAGATA GTCGGCGATC ATCCGCTGGT GATAGAGCGT GTGCGGGCTA TTGGCTGCCA TTTTGTGCTG CTGCTTACTG CAGCCCCTGA GCCGTCACCA ATGCCTTATG TTCCATACCC CCGGTCGACA GAGGTGTATG TCCGTTCTAT ATTCGGCCCT GGCGGGTCCC CATCCCTATT CCCATCAGCC TGCTCTACGA AATCCACATT TCACGCTGTC CCGGTTCATA TTTGGGACCG GCTCATGCTT TTTGGCGCTA CTCTGGATGA TCAGGCGTTT TGCTGCTCAC GACTTATGAC CTATCTCCGC GGGATTAGTT ACAAGGTCAC TGTTGGCGCC CTTGTCGCTA ACGAGGGGTG GAATGCTTCG GAGGACGCTC TTACCGCTGT TATTACTGCA GCGTATTTGA CCATTTGCCA TCAGCGTTAC CTCCGTACTC AAGCTATATC CAAGGGTATG CGCCGACTGG AGGTTGAGCA TGCCCAAAAA TTCATTACAA GACTTTATAG TTGGCTGTTC GAGAAGTCCG GCCGTGATTA CATCCCCGGT CGCCAGCTCC AGTTCTATGC ACAGTGCCGT CGTTGGTTAT CGGCGGGTTT CCATCTTGAC CCAAGGGTGC TTGTTTTTGA TGAGTCTGTG CCCTGCCGTT GTAGGACATT TCTTAAGAAG GCTGTGGGTA AGTTCTGCTG TTTTATGAAG TGGTTGGGAC AGGAGTGCAC CTGCTTTTTTA GAACCAGCAG AGGGTCTAGT TGGCGACCAT GGCCACGATA ATGAAGCCTA TGAGGGCTCT GAGGTCGATC AGGCTGAGCC CGCCTGTCTC GATGTTTCTG GGACTTATGC CGTCCATGGC CGCCAACTTG AGGCCCTGTA TAGGGCGCTT AACATCCCGC ATGACATCGT TGCCCGAGCC TCCCGTTTGA CTGCCACCGT CGAACTCGCC GCAGGTCCAG ACCGCCTGGA GTGCCGCACT GTGCTCGGGA ATAAGACTTT CCGGACGACG GTGGTTGATG GCGCCCACCT TGAGGCGAAC GGCCCCGAGC AGTATGTTCT TTCGTTCGAC GCCTCTCGCC AGTCAATGGG GGCCGGGCCG CATAGTCTCT CCTACGAGCT TACTCCTGCT GGTTTGCAGG TCAAGATTTC ATCTAATGGC CTGGATTGCA CTGCAACATT CCCCCCGGGC GGGGCCCCTA GCGCTGATCC GGGGGAGGTA GCAGCCTTCT GCAGCGCCCT TTACAGGTAC AACAGGTTCA CTCAGCGCCA TTCGCTTATA GGTGGCTTGT GGCTGCATCC TGAGGGGTTG TTGGGTATCT TCCCCCCTTT TTCTCCCGGA CACCTTTGGG AGTCCGCTAA TCCTTTTTGT GGGGAGGGAA CTTTGTACAC CCGGACATGG TCAACATCTG GTTTTTCTAG TGACTTTTCC CCCCCTGAGG CAGCTGTTGC AGCGCCGGCT GCTACTCCGG GGTTACGCCA CCCCACACCC CCTGTTAGTG ACGTTCGGGT GTTACCGCCA CCTTCTGAAG AATTTCAGGT TGATACAGCG CCCACTCCCC CTGCCCCTGA GCCCGCTCAA CCATCTAGCT CCGCTGGGCC AAAGGCCCCC GTGCGTAAGC CGCCAACGCT GCCATCCCCG CGCACTCGCC GCCTTCTTTA CACCTATCCA GATGGGGCAA AGGTGTATGC GGGGTCACTG TTTGAGTCTG ACTGTGATTG GCTGGTTAAT GCGTCGAATC CCGGTCATCG TCCTGGAGGC GGCCTTTGCC ATGCCTTTTA CCAGCGCTAT CCCGAGTCTT TCTACTCAAC TGAGTTCATC ATGCGCGACG GTCTTGCCGC GTACACTTTA ACCCCCCGGC CTATTATTCA TGCAGTGGCT CCTGATTATA GGGTTGAGCA TAACCCGAAG AGGCTTGAGG CAGCATACCG AGAGACTTGC TCTCGCCGCG GCACCGCCGC CTATCCACTC CTCGGTTCGG GCATATATCA AGTTCCCGTC AGCCTCAGCT TCGACGCTTG GGAGCGTAAC CACCGCCCCG GGGACGAGCT CTACCTAACC GACCTCGCCG CTACCTGGTT CGAGGCCAAT AAGCCAACAC AGCCGGCCCT CACAATAACT GAGGACGCAG CCCGCACAGC CAACCTAGCA TTGGAGATCG ATGCTGCTAC TGAGGTCGGC CGGGCTTGTG CCGGCTGCGC GGTTAGTCCT GGGGTTGTGC ACTATCAGTT TACTGCTGGG GTCCCAGGTT CGGGGAAGTC GCGTTCTATA CAGCAGGGGG ATGTTGACGT AGTGGTTGTT CCCACTCGGG AGCTCCGGAA CAGTTGGCGT CGCCGGGGTT TCGCAGCTTT TACACCTCAT ACGGCGGCCC GTGTCACCAC GGGTCGTCGT GTTGTAATTG ATGAGGCCCC ATCCCTCCCA CCGCATCTGT TGCTACTACA CATGCAGCGG GCCTCGTCGG TCCACCTTCT CGGCGACCCA AACCAGATCC CTGCCATAGA CTTCGAGCAT GCCGGCCTGG TCCCCGCAAT ACGCCCTGAG CTTGCACCCA CCAGTTGGTG GCATGTCACC CACCGCTGCC CCGCTGATGT GTGCGAGCTT ATACGCGGGG CTTACCCCAA AATCCAAACC ACTAGCCGCG TGCTGCGGTC ATTATTCTGG AATGAGCCTG CCATTGGCCA GAAGTTAGTT TTCACCCAGG CCGCTAAGGC CGCCAACCCC GGTGCGATTA CAGTCCACGA GGCCCAGGGC GCCACTTTCA CGGAAACTAC AATCATAGCC ACGGCTGATG CTAGGGGGCT CATCCAATCC TCCCGAGCTC ATGCCATAGT CGCACTTACC CGCCACACAG AGAAGTGCGT TATTCTTGAC GCCCCCGGCT TGTTACGTGA GGTTGGTATA TCGGATGTGA TTGTCAACAA CTTTTTCCTC GCCGGCGGCG AAGTGGGTCA TCATCGTCCC TCTGTGATAC

C1-NO-RBV Consensus sequence

3710	CTCGCGGTAA TCCTGACCAG	AACCTCGCGA	CACTACAGGC	CTTTCCACCT	TCCTGCCAGA	TCAGCGCCTA
3780	TCACCAGTTA	GCTGAGGAAC	TTGGCCACCG	CCCAGCTCCT	GTCGCCGCCG	TCCTGCCCCC

C2-NO-RBV

File name
Ref name
Ref length
Program used
Total reads
Mapped reads
Average read length
Coverage
Average depth

C2-NO-RBV.sam
FJ705359.1
7237
Tanoti Assembler 1.0
714671
714671 (100.00\%)
140nt
7218nt (99.74\%)
13779 reads/site

C2-NO-RBV Consensus sequence

NNNNNNCACG TATGTGGTCG ATGCCATGGA GGCCCACCAG TTTATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAT TCTGCCCTGG CGAATGCTGT GGTGGTTCGG CCGTTCTTAT CCCGTGTGCA AACCGAGATT CTTATTAATT TGATGCAACC CCGGCAGTTG GTTTTTCGGC CTGAAGTGCT CTGGAATCAT CCTATCCAAC GGGTTATCCA TAATGAACTT GAACAGTACT GTCGGGCCCG GGCTGGTCGT TGTCTAGAGG TTGGGGCCCA TCCAAGATCC ATTAATGACA ACCCAAATGT TCTTCACCGG TGCTTTCTAC GACCAGTAGG GAGAGATGTT CAGCGCTGGT ACTCTGCTCC TACCCGCGGC CCTGCGGCTA ATTGCCGCCG TTCTGCCTTG CGTGGCCTCC CCCCCGTTGA TCGTACCTAT TGCTTTGATG GATTCTCCCG CTGCTCATTT GCCGCAGAAA CTGGGGTTGC CCTTTATTCC CTGCATGACC TCTGGCCGGC CGATGTTGCG GAGGCTATGG CCCGACACGG CATGACACGC TTGTATGCCG CACTACATCT CCCCCCTGAA GTACTACTAC CACCTGGTAC TTACCATACA ACTTCATACC TTCTGATTCA CGACGGTGAT CGCGCTGTTG TGACCTATGA AGGTGATACT AGTGCAGGCT ACAACCATGA TGTCTCCATA CTTCGTGCAT GGATCCGCAC AACTAAGATA GTCGGCGATC ATCCGCTGGT GATAGAGCGT GTGCGGGCTA TTGGCTGCCA TTTTGTGCTG CTGCTTACTG CAGCCCCTGA GCCGTCACCA ATGCCTTATG TTCCATACCC CCGGTCGACA GAGGTGTATG TCCGTTCTAT ATTCGGCCCT GGCGGGTCCC CATCCCTATT CCCATCAGCC TGCTCTACGA AATCCACATT TCACGCTGTC CCGGTTCATA TTTGGGACCG GCTCATGCTT TTTGGCGCTA CTCTGGATGA TCAGGCGTTT TGCTGCTCAC GACTTATGAC CTATCTCCGC GGGATTAGTT ACAAGGTCAC TGTTGGCGCC CTTGTCGCTA ACGAGGGGTG GAATGCTTCG GAGGACGCTC TTACCGCTGT TATTACTGCA GCGTATTTGA CCATTTGCCA TCAGCGTTAC CTCCGTACTC AAGCTATATC CAAGGGTATG CGCCGACTGG AGGTTGAGCA TGCCCAAAAA TTCATTACAA GACTTTATAG TTGGCTGTTC GAGAAGTCCG GCCGTGATTA CATCCCCGGT CGCCAGCTCC AGTTCTATGC ACAGTGCCGT CGTTGGTTAT CGGCGGGTTT CCATCTTGAC CCAAGGGTGC TTGTTTTTGA TGAGTCTGTG CCCTGCCGTT GTAGGACATT TCTTAAGAAG GCTGTGGGTA AGTTCTGCTG TTTTATGAAG TGGTTGGGAC AGGAGTGCAC CTGCTTTTTA GAACCAGCAG AGGGTCTAGT TGGCGACCAT GGCCACGATA ATGAAGCCTA TGAGGGCTCT GAGGTCGATC AGGCTGAGCC CGCCTGTCTC GATGTTTCTG GGACTTATGC CGTCCATGGC CGCCAACTTG AGGCCCTGTA TAGGGCGCTT AACATCCCGC ATGACATCGT TGCCCGAGCC TCCCGTTTGA CTGCCACCGT CGAACTCGCC GCAGGTCCAG ACCGCCTGGA GTGCCGCACT GTGCTCGGGA ATAAGACTTT CCGGACGACG GTGGTTGATG GCGCCCACCT TGAGGCGAAC GGCCCCGAGC AGTATGTTCT TTCGTTCGAC GCCTCTCGCC AGTCAATGGG GGCCGGGCCG CATAGTCTCT CCTACGAGCT TACTCCTGCT GGTTTGCAGG TCAAGATTTC ATCTAATGGC CTGGATTGCA CTGCAACATT CCCCCCGGGC GGGGCCCCTA GCGCTGATCC GGGGGAGGTA GCAGCCTTCT GCAGCGCCCT TTACAGGTAC AACAGGTTCA CTCAGCGCCA TTCGCTTATA GGTGGCTTGT GGCTGCATCC TGAGGGGTTG TTGGGTATCT TCCCCCCTTT TTCTCCCGGA CACCTTTGGG AGTCCGCTAA TCCTTTTTGT GGGGAGGGAA CTTTGTACAC CCGGACATGG TCAACATCTG GTTTTTCTAG TGACTTTTCC CCCCCTGAGG CAGCTGTTGC AGCGCCGGCT GCTACTCCGG GGTTACGCCA CCCCACACCC CCTGTTAGTG ACGTTCGGGT GTTACCGCCA CCTTCTGAAG AATTTCAGGT TGATACAGCG CCCACTCCCC CTGCCCCTGA GCCCGCTCAA CCATCTAGCT CCGCTGGGCC AAAGGCCCCC GTGCGTAAGC CGCCAACGCT GCCATCCCCG CGCACTCGCC GCCTTCTTTA CACCTATCCA GATGGGGCAA AGGTGTATGC GGGGTCACTG TTTGAGTCTG ACTGTGATTG GCTGGTTAAT GCGTCGAATC CCGGTCATCG TCCTGGAGGC GGCCTTTGCC ATGCCTTTTA CCAGCGCTAT CCCGAGTCTT TCTACTCAAC TGAGTTCATC ATGCGCGACG GTCTTGCCGC GTACACTTTA ACCCCCCGGC CTATTATTCA TGCAGTGGCT CCTGATTATA GGGTTGAGCA TAACCCGAAG AGGCTTGAGG CAGCATACCG AGAGACTTGC TCTCGCCGTG GCACCGCCGC CTATCCACTC CTCGGTTCGG GCATATATCA AGTTCCCGTC AGCCTCAGCT TCGACGCTTG GGAGCGTAAC CACCGCCCCG GGGACGAGCT CTACCTAACC GACCTCGCCG CTACCTGGTT CGAGGCCAAT AAGCCAACAC AGCCGGCCCT CACAATAACT GAGGACGCAG CCCGCACAGC CAACCTAGCA TTGGAGATCG ATGCTGCTAC TGAGGTCGGC CGGGCTTGTG CCGGCTGCGC GGTTAGTCCT GGGGTTGTGC ACTATCAGTT TACTGCTGGG GTCCCAGGTT CGGGGAAGTC GCGTTCTATA CAGCAGGGGG ATGTTGACGT GGTGGTTGTT CCCACTCGGG AGCTCCGGAA CAGTTGGCGT CGCCGGGGTT TCGCAGCTTT TACACCTCAT ACGGCGGCCC GTGTCACCAC GGGTCGTCGT GTTGTAATTG ATGAGGCCCC ATCCCTCCCA CCGCATCTGT TGCTACTACA CATGCAGCGG GCCTCGTCGG TCCACCTTCT CGGCGACCCA AACCAGATCC CTGCCATAGA CTTCGAGCAT GCCGGCCTGG TCCCCGCAAT ACGCCCTGAG CTTGCACCCA CCAGTTGGTG GCATGTCACC CACCGCTGCC CCGCTGATGT GTGCGAGCTT ATACGCGGGG CCTACCCCAA AATCCAAACC ACTAGCCGCG TGCTGCGGTC ATTATTCTGG AATGAGCCTG CCATTGGCCA GAAGTTAGTT TTCACCCAGG CCGCTAAGGC CGCCAACCCC GGTGCGATTA CAGTCCACGA GGCCCAGGGC GCCACTTTCA CGGAAACTAC AATCATAGCC ACGGCTGATG CTAGGGGGCT CATCCAATCC TCCCGAGCTC ATGCCATAGT CGCACTTACC CGCCACACAG AGAAGTGCGT TATTCTTGAC GCCCCCGGCT TGTTACGTGA GGTTGGTATA TCGGATGTGA TTGTCAACAA CTTTTTCCTC GCCGGCGGCG AAGTGGGTCA TCATCGTCCC TCTGTGATAC

C2-NO-RBV Consensus sequence

3710 3780 3850 3920

3990

4060
4130
4200
4270
4340
4410
4480
4550
4620
4690
4760
4830
4900
4970
5040
5110
5180
5250
5320
5390
5460
5530
5600
5670
5740
5810

5880

5950
6020
6090
6160
6230
6300
6370

6440

6510
6580
6650
6720
6790
6860
6930
7000
7070
7140
7210

CTCGCGGTAA TCCTGACCAG AACCTCGCGA CACTACAGGC CTTTCCACCT TCCTGCCAGA TCAGCGCCTA TCACCAGTTA GCTGAGGAGC TTGGCCACCG CCCAGCTCCT GTCGCCGCCG TCCTGCCCCC TTGCCCTGAA CTTGAGCAAG GCTTGTTATA TATGCCGCAG GAGCTTACGG TGTCTGATAG CGTGCTGGCC TTTGAACTCA CGGACATAGT CCACTGCCGG ATGGCAGCCC CCAGCCAGCG GAAGGCCATC CTATCGACGC TCGTGGGCAG GTACGGCCGT CGGACGAAGC TGTACGAAGC AGCTCACTCT GACGTCCGTG AGTCCCTGGC TAGATTTATC CCCACCATTG GGCCCGTTCA GGCTACTACG TGTGAGTTAT ATGAGCTGGT TGAGGCCATG GTGGAGAAAG GTCAGGATGG CTCTGCCGTG CTTGAGCTCG ACCTTTGCAA TCGTGATGTA TCGCGTATCA CATTTTTCCA GAAAGATTGT AACAAATTCA CCACAGGGGA GACCATTGCC CACGGTAAGG TCGGCCAGGG CATCTCGGCT TGGAGCAAGA CCTTCTGTGC CCTGTTTGGT CCGTGGTTTC GTGCTATCGA AAAAGAAATA CTAGCCCTGC TCCCGCCTAA TATTTTCTAC GGCGACGCAT ACGAGGAGTC TGTGTTTGCC GCCGCTGTGT CGGGGGCAGG TTCAAGCATG GTATTTGAGA ATGATTTTTC AGAGTTTGAT AGCACCCAAA ATAACTTTTC CCTTGGTCTC GAGTGCGTAG TCATGGAGGA ATGTGGCATG CCCCAGTGGC TAATCCGGTT GTACCATCTG GTTCGGTCGG CCTGGATCTT ACAGGCACCG AAGGAGTCTC TTAAGGGATT TTGGAAGAAG CATTCTGGTG AGCCTGGCAC CCTCCTTTGG AACACTGTTT GGAACATGGC GATCATAGCA CACTGCTATG AATTTCGTGA TTTTAGGGTT GCCGCTTTCA AGGGAGATGA TTCCGTGGTC CTCTGTAGCG ACTACCGTCA GAGCCGCAAT GCAGCGGCCC TGATTGCAGG TTGCGGGCTC AAACTGAAGG TTGACTATCG CCCTATTGGG TTGTATGCTG GTGTGGTGGT GGCCCCTGGC CTGGGGACGC TACCCGATGT GGTGCGCTTC GCCGGCCGGC TGTCTGAGAA GAACTGGGGC CCTGGGCCGG AGCGAGCTGA GCAGTTGCGC CTAGCTGTTT GTGACTTCCT CCGAGGGTTA ACGAATGTTG CGCAGGTATG TGTTGATGTT GTATCCCGAG TTTATGGAGT TAGCCCTGGG CTGGTACATA ACCTTATTGG CATGTTGCAA ACCATAGCCG ATGGCAAAGC CCATTTCACA GAGACTGTTA AACCTGTGCT TGACCTCACG AACTCTATCA TACAGCGGGT GGAATGAATA ACATGTTTTG TGCATTGCCC ATGGGATCAC CATGCGCCCT AGGGCTGTTC TGTTGCTGTT CTTCGTGCTT TTGCCTATGC TGCCCGCGCC ACCGGCCGGC CAGCCGTCTG GCCGCCGTCG TGGGCGGCGC AGCGGCGGTA CCGGCAGTGG TTTCTGGGGT GACAGGGTTG ATTCTCAGCC CTTCGCCCTC CCCTATATTC ATCCAACCAA CCCCTTTGCC GCCGATGTCG TACCGCAATC CGGGGCTGGA GCTCGCCCTC GACAGCCGCC CCGCCCCCTC GGCTCCTCTT GGCGCGATCA GTCCCAGCGC CCCTCCGCTG CCCCACGCCG TCGATCTGCC CCAGCCGGGG CTGCGCCGCT GACTGCCATA TCACCTGCCC CCGATACAGC CCCTGTACCT GATGTTGACT CACGTGGTGC CATATTGCGA CGCCAGTACA ATTTATCCAC ATCCCCGCTT ACATCATCTG TTGCTTCGGG TACTAATCTG GTTCTTTACG CTGCCCCGCT AAACCCTTTG CTGCCCCTTC AGGATGGCAC TAATACTCAC ATCATGGCCA CTGAGGCATC TAATTATGCC CAGTATCGGG TTGTTCGAGC TACGATTCGT TACAGGCCAT TGGTGCCAAA TGCCGTCGGC GGTTATGCAA TATCCATCTC ATTCTGGCCT CAGACAACTA CCACCCCCAC GTCTGTTGAT ATGAACTCTA TTACTTCCAC TGATGTTAGG ATTCTAGTCC AGCCCGGCAT TGCTTCTGAG TTGGTTATCC CTAGTGAGCG CCTCCACTAT CGTAACCAGG GCTGGCGCTC TGTGGAGACC TCGGGTGTGG TTGAAGAGGA GGCTACTTCT GGTTTGGTAA TGCTTTGTAT CCATGGCTCC CCTGTTAACT CCTATACCAA CACCCCCTAC ACCGGGGCGC TTGGGCTCCT TGATTTCGCT TTAGAGCTTG AGTTTAGGAA CCTGACACCC GGGAACACCA ACACCCGTGT GTCTCGGTAT ACAAGCACAG CCCGTCATCG GCTGCGCCGC GGTGCTGATG GCACCGCCGA ACTTACCACC ACAGCGGCCA CGCGCTTCAT GAAGGACCTG CACTTCACCG GTACGAATGG GGTTGGTGAA GTGGGTCGTG GTATTGCTCT CACACTCTTT AATCTTGCTG ACACGCTTCT CGGTGGTTTG CCGACAGAAT TAATTTCGTC GGCTGGGGGA CAGTTATTTT ACTCCCGCCC TGTCGTCTCA GCCAATGGCG AGCCGACTGT CAAGTTATAT ACATCTGTAG AGAATGCGCA GCAGGATAAA GGGATCGCTA TCCCACATGA TATAGATCTA GGTGACTCCC GTGTGGTCAT CCAAGACTAT GACAACCAGC ATGAGCAGGA TCGACCCACC CCCTCGCCTG CCCCTTCTCG CCCTTTTTCG GTCCTTCGCG CTAATGATGT TTTATGGCTT TCTCTTACTG CCGCCGAGTA CGACCAGACC ACATATGGGT CGTCCACCAA CCCGATGTAT GTCTCGGATA CTGTCACATT TGTCAACGTG GCTACAGGAG CCCAGGCTGT CGCCCGTTCC CTTGACTGGT CTAAAGTTAC TCTGGACGGC CGCCCTCTTA CTACTATCCA GCAGTACTCC AAAACATTTT ATGTTCTCCC GCTTCGCGGG AAGTTATCCT TTTGGGAGGC CGGGACGACT AAGGCCGGCT ACCCCTATAA TTACAACACA ACTGCTAGTG ATCAGATCTT GATTGAAAAT GCGGCTGGTC ATCGTGTAGC TATTTCCACG TATACCACCA GCTTGGGCGC AGGTCCTGTG TCTGTTTCTG CAGTCGGTGT TTTAGCCCCA CATTCGGCTC TTGCAGTCCT TGAAGACACT ATTGACTACC CTGCCCGTGC CCACACTTTT GATGATTCCT GTCCGGAGTG TCGCGCTCTT GGTTTGCAGG GGTGTGCTTT CCAGTCTACT GTTGCTGAGC TTCAGCGTCT TAAAATGAAG GTAGGTAAAA CCCGGGAGTT TTAATTAATT TCCTTTGTGC CCCCTTCATA GCTTTGCTTT ATTTCTTTTT TTCTGCTTTT CGCGCTCCCT GGAANNNNNN NNNNNNN

C3-NO-RBV

File name	C3-NO-RBV.sam
Ref name	FJ705359.1
Ref length	$\mathbf{7} 237$ nt
Program used	Tanoti Assembler 1.0
Total reads	$\mathbf{2 1 5} 515$
Mapped reads	$\mathbf{2 1 5} 515$ (100.00\%)
Average read length	$\mathbf{1 3 6 n t}$
Coverage	$\mathbf{7 2 1 4 n t}$ (99.68\%)
Average depth	$\mathbf{4 0 4 2}$ reads/site

C3-NO-RBV Consensus sequence

NNNNNNNNCG TATGTGGTCG ATGCCATGGA GGCCCACCAG TTTATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAT TCTGCCCTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTAT CTCGTGTGCA AACCGAGATT CTTATTAATT TGATGCAACC CCGGCAGTTG GTTTTTCGGC CTGAAGTGCT CTGGAATCAT CCTATCCAAC GGGTTATCCA TAATGAACTT GAACAGTACT GTCGGGCCCG GGCTGGTCGT TGTCTAGAGG TTGGGGCCCA TCCAAGATCC ATTAATGACA ACCCAAATGT TCTTCACCGG TGCTTTCTAC GACCAGTAGG GAGAGATGTT CAGCGCTGGT ACTCTGCTCC TACCCGCGGC CCTGCGGCTA ATTGCCGCCG TTCTGCCTTG CGTGGCCTCC CCCCCGTTGA TCGTACCTAT TGCTTTGATG GATTCTCCCG CTGCTCATTT GCCGCAGAAA CTGGGGTTGC CCTTTATTCC CTGCATGACC TCTGGCCGGC CGATGTTGCG GAGGCTATGG CCCGACACGG CATGACACGC TTGTATGCCG CACTACATCT CCCCCCTGAA GTACTACTAC CACCTGGTAC TTACCATACA ACTTCATACC TTCTGATTCA CGACGGTGAT CGCGCTGTTG TGACCTATGA AGGTGATACT AGTGCGGGCT ACAACCATGA TGTCTCCATA CTTCGTGCAT GGATCCGCAC AACTAAGATA GTCGGCGATC ATCCGCTGGT GATAGAGCGT GTGCGGGCTA TTGGCTGCCA TTTTGTGCTG CTGCTTACTG CAGCCCCTGA GCCGTCACCA ATGCCTTATG TTCCATACCC CCGGTCGACA GAGGTGTATG TCCGTTCTAT ATTCGGCCCT GGCGGGTCCC CATCCCTATT CCCATCAGCC TGCTCTACGA AATCCACATT TCACGCTGTC CCGGTTCATA TTTGGGACCG GCTCATGCTT TTTGGCGCTA CTCTGGATGA TCAGGCGTTT TGCTGCTCAC GACTTATGAC CTATCTCCGC GGGATTAGTT ACAAGGTCAC TGTTGGCGCC CTTGTCGCTA ACGAGGGGTG GAATGCTTCG GAGGACGCTC TTACCGCTGT TATTACTGCA GCGTATTTGA CCATTTGCCA TCAGCGTTAC CTCCGTACTC AAGCTATATC CAAGGGTATG CGCCGACTGG AGGTTGAGCA TGCCCAAAAA TTCATTACAA GACTTTATAG TTGGCTGTTC GAGAAGTCCG GCCGTGATTA CATCCCCGGT CGCCAGCTCC AGTTCTATGC ACAGTGCCGT CGTTGGTTAT CGGCGGGTTT CCATCTTGAC CCAAGGGTGC TTGTTTTTGA TGAGTCTGTG CCCTGCCGTT GTAGGACATT TCTTAAGAAG GCTGTGGGTA AGTTCTGCTG TTTTATGAAG TGGTTGGGAC AGGAGTGCAC CTGCTTTTTA GAACCAGCAG AGGGTCTAGT TGGCGACCAT GGCCACGATA ATGAAGCCTA TGAGGGCTCT GAGGTCGATC AGGCTGAGCC CGCCTGTCTC GATGTTTCTG GGACTTATGC CGTCCATGGC CGCCAACTTG AGGCCCTGTA TAGGGCGCTT AACATCCCGC ATGACATCGT TGCCCGAGCC TCCCGTTTGA CTGCCACCGT CGAACTCGCC GCAGGTCCAG ACCGCCTGGA GTGCCGCACT GTGCTCGGGA ATAAGACTTT CCGGACGACG GTGGTTGATG GCGCCCACCT TGAGGCGAAC GGCCCCGAGC AGTATGTTCT TTCGTTCGAC GCCTCTCGCC AGTCAATGGG GGCCGGGCCG CATAGTCTCT CCTACGAGCT TACTCCTGCT GGTTTGCAGG TCAAGATTTC ATCTAATGGC CTGGATTGCA CTGCAACATT CCCCCCGGGC GGGGCCCCTA GCGCTAATCC GGGGGAGGTA GCAGCCTTCT GCAGCGCCCT TTACAGGTAC AACAGGTTCA CTCAGCGCCA TTCGCTTATA GGTGGCTTGT GGCTGCATCC TGAGGGGTTG TTGGGTATCT TCCCCCCTTT TTCTCCCGGA CACCTTTGGG AGTCCGCTAA TCCTTTTTGT GGGGAGGGAA CTTTGTACAC CCGGACATGG TCAACATCTG GTTTTTCTAG TGACTTTTCC CCCCCTGAGG CAGCTGTTGC AGCGCCGGCT GCTACTCCGG GGTTACGCCA CCCCACACCC CCTGTTAGTG ACGTTCGGGT GTTACCGCCA CCTTCTGAAG AATTTCAGGT TGATACAGCG CCCACTCCCC CTGCCCCTGA GCCCGCTCAA CCATCTAGCT CCGCTGGGCC AAAGGCCCCC GTGCGTAAGC CGCCAACGCT GCCATCCCCG CGCACTCGCC GCCTTCTTTA CACCTATCCA GATGGGGCAA AGGTGTATGC GGGGTCACTG TTTGAGTCTG ACTGTGATTG GCTGGTTAAT GCGTCGAATC CCGGTCATCG TCCTGGAGGC GGCCTTTGCC ATGCCTTTTA CCAGCGCTAT CCCGAGTCTT TCTACTCAAC TGAGTTCATC ATGCGCGACG GTCTTGCCGC GTACACTTTA ACCCCCCGGC CTATTATTCA TGCAGTGGCT CCTGATTATA GGGTTGAGCA TAACCCGAAG AGGCTTGAGG CAGCATACCG AGAGACTTGC TCTCGCCGCG GCACCGCCGC CTATCCACTC CTCGGTTCGG GCATATATCA AGTTCCCGTC AGCCTCAGCT TCGACGCTTG GGAGCGTAAC CACCGCCCCG GGGACGAGCT CTACCTAACC GACCTCGCCG CTACCTGGTT CGAGGCCAAT AAGCCAACAC AGCCGGCCCT CACAATAACT GAGGACGCAG CCCGCACAGC CAACCTAGCA TTGGAGATCG ATGCTGCTAC TGAGGTCGGC CGGGCTTGTG CCGGCTGCGC GGTTAGTCCT GGGGTTGTGC ACTATCAGTT TACTGCTGGG GTCCCAGGTT CGGGGAAGTC GCGTTCTATA CAGCAGGGGG ATGTTGACGT AGTGGTTGTC CCCACTCGGG AGCTCCGGAA CAGTTGGCGT CGCCGGGGTT TCGCAGCTTT TACACCTCAT ACGGCGGCCC GTGTCACCAC GGGTCGTCGT GTTGTAATTG ATGAGGCCCC ATCCCTTCCA CCGCATCTGT TGCTACTACA CATGCAGCGG GCCTCGTCGG TCCACCTTCT CGGCGACCCA AACCAGATCC CTGCCATAGA CTTCGAGCAT GCCGGCCTGG TCCCCGCAAT ACGCCCTGAG CTTGCACCCA CCAGTTGGTG GCATGTCACC CACCGCTGCC CCGCTGATGT GTGCGAGCTT ATACGCGGGG CTTACCCCAA AATCCAAACC ACTAGCCGCG TGCTGCGGTC ATTATTCTGG AATGAGCCTG CCATTGGCCA GAAGTTAGTT TTCACCCAGG CCGCTAAGGC CGCCAACCCC GGTGCGATTA CAGTCCACGA GGCCCAGGGC GCCACTTTCA CGGAAACTAC AATCATAGCC ACGGCTGATG CTAGGGGGCT CATCCAATCC TCCCGAGCTC ATGCCATAGT CGCACTTACC CGCCACACAG AGAAGTGCGT TATTCTTGAC GCCCCCGGCT TGTTACGTGA GGTTGGTATA TCGGATGTGA TTGTCAACAA CTTTTTCCTC GCCGGCGGCG AAGTGGGTCA TCATCGTCCC TCTGTGATAC

C3-NO-RBV Consensus sequence

3710
3780
3850
3920
3990
4060
4130
4200
4270
4340
4410
4480
4550
4620
4690
4760
4830
4900
4970
5040
5110
5180
5250
5320
5390
5460
5530
5600
5670
5740
5810

5880

5950
6020
6090
6160
6230
6300
6370
6440
6510
6580
6650
6720
6790
6860
6930
7000
7070
7140
7210

CTCGCGGTAA TCCTGACCAG AACCTCGCGA CACTACAGGC CTTTCCACCT TCCTGCCAGA TCAGCGCCTA TCACCAGTTA GCTGAGGAAC TTGGCCACCG CCCAGCTCCT GTCGCCGCCG TCCTGCCCCC TTGCCCTGAA CTTGAGCAAG GCTTGTTATA TATGCCGCAG GAGCTTACGG TGTCTGATAG CGTGCTGGTC TTTGAACTCA CGGACATAGT CCACTGCCGG ATGGCAGCCC CCAGCCAGCG GAAGGCCGTC CTATCGACGC TCGTGGGTAG GTACGGCCGT CGGACGAAGC TGTACGAAGC AGCTCACTCC GACGTCCGTG AGTCCCTGGC TAGATTTATC CCCACCATTG GGCCCGTTCA GGCTACTACG TGTGAGTTAT ATGAGCTGGT TGAGGCCATG GTGGAGAAAG GTCAGGATGG CTCTGCCGTG CTTGAGCTCG ACCTTTGCAA TCGTGATGTA TCGCGTATCA CATTTTTCCA GAAAGATTGT AACAAATTCA CCACAGGGGA GACCATTGCC CACGGTAAGG TCGGCCAGGG CATCTCGGCT TGGAGCAAGA CCTTCTGTGC CCTGTTTGGT CCGTGGTTTC GTGCTATCGA AAAAGAGATA CTAGCCCTGC TCCCGCCTAA CATTTTCTAC GGCGACGCAT ACGAGGAGTC TGTGTTTGCC GCCGCTGTGT CGGGGGCAGG TTCAAGCATG GTATTTGAGA ATGATTTTTC AGAGTTTGAT AGCACCCAAA ATAACTTTTC CCTTGGTCTC GAGTGCGTAG TCATGGAGGA ATGTGGCATG CCCCAGTGGC TAATCCGGTT GTACCATCTG GTCCGGTCGG CCTGGATCTT ACAGGCACCG AAGGAGTCTC TTAAGGGATT TTGGAAGAAG CATTCTGGTG AGCCTGGCAC CCTCCTCTGG AACACTGTTT GGAACATGGC GATCATAGCA CACTGCTATG AATTTCGTGA TTTTAGGGTT GCCGCTTTCA AGGGAGATGA TTCCGTGGTC CTCTGTAGCG ACTACCGTCA GAGCCGCAAT GCAGCGGCCC TGATTGCAGG TTGCGGGCTC AAACTGAAGG TTGACTATCG CCCTATTGGG TTGTATGCTG GTGTGGTGGT GGCCCCTGGC CTGGGGACGC TACCCGATGT GGTGCGCTTC GCCGGCCGGC TGTCTGAGAA GAACTGGGGC CCTGGGCCGG AGCGAGCTGA GCAGTTGCGC CTAGCTGTTT GTGACTTCCT CCGAGGGTTA ACGAATGTTG CGCAGGTATG TGTTGATGTT GTATCCCGAG TTTATGGAGT TAGCCCTGGG CTGGTACATA ACCTTATTGG CATGTTGCAA ACCATAGCCG ATGGCAAAGC CCATTTCACA GAGACTGTTA AACCTGTGCT TGACCTCACG AACTCTATCA TACAGCGGGT GGAATGAATA ACATGTTTTG TGCATTGCCC ATGGGGTCAC CATGCGCCCT AGGGCTGTTC TGTTGCTGTT CTTCGTGCTT TTGCCTATGC TGCCCGCGCC ACCGGCCGGC CAGCCGTCTG GCCGCCGTCG TGGGCGGCGC AGCGGCGGTA CCGGCAGTGG TTTCTGGGGT GACAGGGTTG ATTCTCAGCC CTTCGCCCTC CCCTATATTC ATCCAACCAA CCCCTTTGCC GCCGATGTCG TACCGCAATC CGGGGCTGGA GCTCGCCCTC GACAGCCGCC CCGCCCCCTC GGCTCCTCTT GGCGCGATCA GTCCCAGCGC CCCTCCGCTG CCCCACGTCG TCGATCTGCC CCAGCCGGGG CTGCGCCGCT GACTGCCATA TCACCTGCCC CCGATACAGC CCCTGTACCT GATGTTGACT CACGTGGTGC CATATTGCGA CGCCAGTACA ATTTATCCAC ATCCCCGCTT ACATCATCTG TTGCTTCGGG TACTAATCTG GTTCTTTACG CTGCCCCGCT AAACCCTTTG CTGCCCCTTC AGGATGGCAC TAATACTCAC ATCATGGCCA CTGAGGCATC TAATTATGCC CAGTATCGGG TTGTCCGAGC TACGATTCGT TACAGGCCAT TGGTGCCAAA TGCCGTCGGC GGTTATGCAA TATCCATCTC ATTCTGGCCT CAGACAACTA CCACCCCCAC GTCTGTTGAT ATGAACTCTA TTACTTCCAC TGATGTTAGG ATTCTAGTCC AGCCCGGCAT TGCTTCTGAG TTGGTTATCC CTAGTGAGCG CCTCCACTAT CGTAACCAGG GCTGGCGCTC TGTGGAGACC TCGGGTGTGG TTGAAGAGGA GGCTACTTCT GGTTTGGTAA TGCTTTGTAT CCATGGCTCC CCTGTTAACT CCTATACCAA CACCCCCTAC ACCGGGGCGC TTGGGCTCCT TGATTTCGCT TTAGAGCTTG AGTTCAGGAA CCTGACACCC GGGAACACCA ACACCCGTGT GTCTCGGTAT ACAAGCACAG CCCGTCATCG GCTGCGCCGC GGTGCTGATG GCACCGCCGA ACTTACCACC ACAGCGGCCA CGCGCTTCAT GAAGGACCTG CACTTCACCG GTACGAATGG GGTTGGTGAA GTGGGTCGTG GTATTGCTCT CACACTCTTT AATCTTGCTG ACACGCTTCT CGGTGGTTTG CCGACAGAAT TAATTTCGTC GGCTGGGGGA CAGTTATTTT ACTCCCGCCC TGTCGTCTCA GCCAATGGCG AGCCGACTGT CAAGTTATAT ACATCTGTAG AGAATGCGCA GCAGGATAAA GGGATCGCTA TCCCACATGA TATAGATCTA GGTGACTCCC ATGAGCAGGA TCGACCCACC CCCTCGCCTG CCCCTTCTCG TTTATGGCTT TCTCTTACTG CCGCCGAGTA CGACCAGACC GTCTCGGATA CTGTCACATT TGTCAACGTG GCTACAGGAG CTAAAGTTAC TCTGGACGGC CGCCCTCTTA CTACTATCCA GCTTCGCGGG AAGTTATCCT TCTGGGAGGC CGGGACGACT ACTGCTAGTG ATCAGATCTT GATTGAAAAT GCGGCTGGTC GCTTGGGCGC AGGTCCTGTG TCTGTTTCTG CAGTCGGTGT TGAAGACACT ATTGACTACC CTGCCCGTGC CCACACTTTT GGTTTGCAGG GGTGTGCTTT CCAGTCTACT GTTGCTGAGC CCCGGGAGTT TTAATTAATT TCCTTTGTGC CCCCTTCATA GCTTTGCTTT ATTTCTTTTT TTCTGCTTTT CGCGCTCCCT GGNNNNNNNN NNNNNNN

D1-PRE-RBV

File name	D1-PRE-RBV.sam
Ref name	KJ701409.1
Ref length	7 110nt
Program used	Tanoti Assembler 1.0
Total reads	3794466
Mapped reads	$3794466(100.00 \%)$
Average read length	$138 n t$
Coverage	$7110 n t$ (100.00\%)
Average depth	$\mathbf{7 2 7 1 1}$ reads/site
Average insert length	$3433 n t$

Read quality

D1-PRE-RBV Consensus sequence

TGGTCGACGC CATGGAGGCC CACCAATTCA TCAAGGCTCC TGGCATCACT ACTGCCATTG AGCAAGCTGC TCTGGCTGCG GCCAATTCTG CCCTGGCGAA TGCTGTGGTG GTTCGGCCGT TTTTATCGCG TGTGCAAACT GAGATTCTTA TTAACTTGAT GCAACCCCGG CAGCTGGTTT TCCGACCTGA AGTGCTCTGG AATCATCCTA TCCAACGGGT TATTCATAAT GAATTAGAAC AGTACTGCCG GGCCCGGGCT GGTCGCTGTT TAGAGGTTGG GGCCCACCCA AGATCCATCA ATGATAACCC GAATGTTCTG CATCGCTGCT TCCTACGACC AGTTGGCAGA GATGTTCAGC GCTGGTATTC AGCCCCTACC CGTGGCCCTG CGGCTAACTG TCGCCGCTCT GCTTTGCGTG GCCTTCCCCC CGCTGACCGC ACCTACTGTT TTGATGGATT CTCTCGTTGT TCGTTTGCTG CGGAGACTGG TGTTGCCCTT TATTCATTGC ATGACCTCTG GCCGGCCGAT GTTGCAGAGG CTATGGCCCG GCACGGGATG ACACGCTTAT ATGCTGCACT ACATCTCCCC CCTGAAGTAT TACTACCACC TGGTACATAC CACACAACTT CATACCTTCT CATCCACGAC GGTGATCGTG CCGTTGTGAC TTACGAGGGT GACACTAGTG CAGGTTACAA CCACGATGTC TCCATACTCC GCGCATGGAT CCGCACAACC AAGATAGTTG GCGACCATCC GCTGGTGATA GAGCGTGTGC GGGCTATCGG CTGCCACTTT GTGCTGCTGC TCACTGCGGC CCCTGAGCCG TCACCGATGC CTTATGTCCC ATACCCCCGG TCGACAGAGG TGTACGTTCG TTCCATCTTC GGCCCCGGCG GGTCTCCGTC CTTGTTTCCA TCAGCTTGCT CTACAAAATC TACATTTCAT GCCGTCCCAG TTCACATTTG GGACCGGCTC ATGCTCTTTG GTGCTACCCT GGACGATCAG GCGTTTTGCT GTTCACGGCT TATGACTTAC CTTCGTGGGA TTAGTTACAA GGTTACTGTA GGCGCCCTTG TTGCTAATGA TGCTGTTATT ACCGCAGCAT ACTTGACCAT TTGCCATCAA GGCATGCGCC GGCTGGAGGT TGAGCATGCT CAAAAATTTA AGTCTGGCCG TGACTACATC CCCGGCCGCC AGCTCCAGTT GGGTTTCCAC CTCGATCCAA GGGTGCTTGT TTTTGATGAG AAGAAGGTTG CGGGTAAGTT CTGCTGTTTT ATGAAGTGGC CAGCTGAGGG TCTGGTTGGT GACCATGGTC ACGATAATGA TGAGCCTGCC CATCTTGATG TCTCTGGGAC CTATGCCGTC GCGCTTAACA TCCCACATGA CATTGCCGCT CGAGCCTCCC GTCCAGACCG TTTGGAGTGT CGCACTGTGC TCGGGAATAA CCACCTTGAG GTGAATGGCC CCGAGCAGTA TGTCCTTTCG GGGCCGCATA ACCTCACCTA TGAGCTTACT CCTGCTGGTT ATTGCACTGC AACATTTCCC CCGGGTGGAG CCCCTAGTGC TGCCCTCTAT AGGTACAACA GGTTCACCCA ACGCCATTCG GGGCTATTGG GCATCTTCCC TCCCTTTTCC CCCGGGCATC AGGGAACTTT GTATACCCGG ACTTGGTCAA CATCTGGTTT TGCCGCTGTA CCGGCCGCTA CCACAGGGTT ACCCCACCCT CCGCCACCCT CTGAGGAGTC TCAGGTTGAT GCAGCGCCTG CCGACCCTGT CGGGCTGAGG GCCTCCGTGC GTAAGCCACC CCTCTATACT TATCCGGATG GGGCAAAGGT GTATGCGGGG GTCAATGCGT CGAATCCCGG CCATCGCCCC GGAGGTGGCC AGTCTTTCCA CCCAACTGAG TTCATTATGC GTGATGGTCT TATCCACGCG GTGGCTCCCG ATTATAGGGT TGAGCAGAAC ACTTGCTCCC GCCGCGGCAC CGCCGCTTAC CCACTCCTCG TCAGTTTTGA CGCTTGGGAG CGCAACCACC GTCCCGGGGA CTGGTTCGAG GCCAACAAGC CAGCACAACC GGCCCTCACA CTGGCACTAG AGATCGACGC TGCTACGGAG GTTGGCCGGG TTGTGCACTA TCAATTTACT GCCGGGGTCC CAGGTTCAGG CGATGTGGTG GTTGTCCCCA CTCGGGAGCT TCGGAATAGT CCTCACACGG CGGCCCGTGT TACCACGGGC CGACGTGTTG ACCTGCTGCT TTTACATATG CAGCGGGCCT CGTCGGTCCA TATAGACTTT GAGCATGCCG GCCTGGTCCC CGCAATACGT GTCACTCACC GCTGCCCCGC TGATGTGTGC GAGCTTATAC G GCCGCGTGCT GCGGTCTTTA TTCTGGAATG AGCCCGCCAT ATAGCCACGG CCGATGCTAG GGGGCTCATT CAATCCTCCC GAGCCCATGC CATAGTCGCA CTTACCCGCC ACACAGAGAA GTGCGTTATC CTTGATGCTC CCGGTTTGTT ACGTGAGGTC GGTATATCTG ACATAATTGT CAACAATTTC TTCCTCGCCG GTGGGGAAGT GGGCCACCAC CGCCCCTCTG TGATACCCCG CGGCAGTCCT

D1-PRE-RBV Consensus sequence

GACCAGAACC TCGCGACACT GCAGGCTTTT CCACCCTCCT GCCAGATCAG TGCTTACCAT CAGTTAGCTG AGGAGCTGGG TCACCGCCCG GCCCCCGTCG CTGCCGTCCT GCCCCCCTGC CCCGAACTTG AGCAGGGCCT GCTGTATATG CCACAAGAGC TCACGGTGTC TGATAGCGTG CTGGTTTTTG AACTCACGGA CATAGTTCAT TGTCGGATGG CCGCCCCTAG CCAGCGGAAG GCCGTCCTAT CGACGCTTGT GGGTAGGTAT GGCCGCCGGA CAAAGCTGTA TGAGGCGGCT CACTCCGATG TCCGTGAGTC TCTGACAAGA TTTATCCCTA CCATCGGGCC CGTTCAGGCA ACTACGTGTG AGTTATACGA ACTGGTTGAG GCCATGGTGG ACAAGGGTCA GGACGGCTCT GCCGTACTTG AGCTTGATCT TTGCAATCGC GATGTGTCGC GTATTACATT CTTCCAGAAA GATTGTAACA AGTTCACCAC AGGGGAGACC ATTGCTCATG GTAAGGTCGG CCAGGGCATT TCGGCTTGGA GCAAGACCTT CTGTGCCCTC TTTGGCCCGT GGTTTCGTGC CATTGAAAAA GAAATATTGG CCCTGCTCCC GCCCAATATC TTCTATGGCG ATGCATATGA AGAGTCTGTG TTTGCTGCCG CTGTGTCTGG GGCAGGTTCA TGCATGGTAT TTGAGAATGA TTTTTCAGAG TTTGACAGTA CTCAAAATAA CTTCTCCCTT GGCCTCGAGT GTGTAGTCAT GGAGGAGTGC GGCATGCCCC AGTGGCTAAT CCGGTTGTAC CACTTGGTTC GGTCGGCCTG GATTCTACAG GCGCCGAAGG AGTCACTTAA AGGGTTTTGG AAGAAGCATT CTGGTGAGCC CGGCACCCTC CTTTGGAACA CCATTTGGAA TATGGCGATC ATAGCACATT GCTATGAGTT TCGTGATCTT AGGGTTGCCG CCTTCAAGGG AGATGATTCG GTGGTCCTTT GTAGCGACTA CCGTCAGAGC CGCAACGCAG CGGCCCTGAT TGCAGGTTGC GGGCTCAAAC TGAAGGTTGA TTACCGCCCT ATTGGGTTGT ATGCTGGTGT GGTGGTGGCC CCCGGCCTGG GGACGCTACC CGATGTAGTG CGCTTTGCCG GCCGGTTGTC TGAGAAGAAC TGGGGCCCTG GGCCGGAGCG GGCCGAGCAG CTGCGCCTTG CTGTTTGTGA TTTTCTTCGA GGGCTGACGA ATGTTGCGCA GGTATGTGTT GATGTTGTAT CCCGAGTGTA TGGAGTTAGC CCTGGGCTGG TACATAACCT TATCGGCATG TTGCAAACCA TTGCTGATGG TAAGGCCCAC CTTACAGAGA CTGTTAAACC TGTGCTTGAC CTGACGAATT CTATCATACA GCGGGTAGAA TGAATAACAT GTTTTGTGCA TCGCCCATGG GGTCACCATG CGCCCTAGGG CTGTTCTGTT GCTGTTCCTC GTGCTTTTGC CTATGCTGCC CGCGCCACCG GCCGGCCAGC CGTCTGGCCG CCGTCGTGGG CGGCGCAGCG GCGGTACCGG CAGTGGTTTC TGGAGTGACA GGGTTGATTC TCAGCCCTTC GCCCTCCCCT
ATATTCATCC AACCAACCCC TTTGCCACCG ATGTCATTTC GCAACCCGGG GCTGGAGCTC GCCCTCGACA GCCACCCCGC CCCCTCGGCT CCTCTTGGCG TGACCAGTCC CAGCGCCCCT CCGCTGCCTC ACGCCGTCGA CCTGCCCCAA CTGGGGCTGC GCCGCTGACT GCTATATCAC TTGACTCTCG TGGCGCTATA TTGCGGCGCC AGTATAATTT TTCCGGCACT AATCTGGTTC TTTATGCTGC CCCGCTAAAT ACTCATATCA TGGCTACTGA GGCATCTAAC TATGCCCAGT GGCCGTTGGT GCCGAATGCT GTCGGCGGCT ATGCAATCTC CCCTACGTCT GTTGACATGA ATTCTATTAC CTCCACTGAT TCCGAGCTAG TTATTCCTAG TGAACGCCTC CACTACCGTA GTGTAGCTGA GGAGGAGGCT ACTTCTGGTC TGGTGATGCT CACCAATACC CCTTATACCG GGGCGCTTGG GCTCCTTGAC ACACCCGGGA ACACCAACAC CCGTGTTTCC CGGTATACAA CCGATGGCAC CGCTGAGCTT ACTACCACAG CAGCTACACG GAATGGGGTC GGTGAGGTGG GCCGTGGTAT TGCTCTTACA GGTTTGCCGA CAGAATTAAT TTCGTCGGCT GGGGGACAGT ATGGCGAGCC GGCTGTCAAG TTATATACAT CTGTGGAGAA GCATGACATA GACTTAGGTG ATTCCCGTGT GGTTATTCAA CCCACCCCTT CGCCCGCCCC ATCTCGCCCT TTTTCGGTTC TTACCGCTGC CGAGTATGAT CAGACTACAT ATGGGTCGTC TACATTTGTC AATGTGGCTA CAGGAGCCCA GGCTGTTGCC GATGGTCGCC CCCTCACTAC CATTCAACAG TACTCTAAAA TGTCCTTTTG GGAGGCTGGG ACAACTAAAG CTGGTTATCC GATTTTAATT GAAAATGCAG CTGGCCACCG TGTTGCTATC CCTGTGTCAG TTTCTGCAGT CGGTGTGTTA GCCCCACATT ACTACCCTGC CCGCGCCCAC ACTTTTGATG ACTTCTGTCC TGCCTTCCAG TCTACTATTG CTGAGCTTCA GCGTCTTAAA

CAGCTCCTGA TACAGCCCCC GTGCCTGATG ATCTACATCC CCACTCACAT CATCTGTTGC CCCTTGTTAC CTCTTCAGGA TGGCACTAAC ACCGGGTTGT CCGAGCTACG ATCCGTTACA CATTTCATTC TGGCCTCAGA CCACTACCAC GTTAGGATCC TAGTTCAGCC CGGTATTGCT ACCAAGGTTG GCGCTCTGTG GAGACCTCGG TTGTATCCAT GGTTCCCCTG TTAATTCCTA TTTGCTCTAG AACTTGAGTT TAGGAACTTG GCACTGCCCG TCATCGGCTG CGCCGCGGTG TTTCATGAAG GACCTGCACT TCACCGGTAC CTCTTTAATC TTGCTGACAC GCTCCTCGGC TGTTCTACTC CCGCCCCGTC GTCTCGGCCA TGCGCAGCAG GATAAAGGTA TTGCTATTCC GATTATGATA ATCAGCATGA GCAGGATCGG TTCGTGCTAA TGATGTTTTA TGGCTTTCCC CACCAACCCA ATGTATGTCT CAGATACTGT CGCTCTCTTG ACTGGTCTAA GGTCACCCTA CATTTTATGT TCTCCCACTG CGCGGGAAGT TTATAATTAT GACACGACTG CTAGTGACCA TCTACTTATA CTACCAGCCT TGGCGCTGGC CGGCTCTTGC AGTTCTTGAG GATACTACTG AGAGTGTCGC ACTCTTGGCT TGCAAGGGTG

D2-PRE-RBV

File name	D2-PRE-RBV.sam
Ref name	KJ701409.1
Ref length	$\mathbf{7 1 1 0 n t}$
Program used	Tanoti Assembler 1.0
Total reads	2830383
Mapped reads	2830383 (100.00\%)
Average read length	$\mathbf{1 4 1 n t}$
Coverage	$\mathbf{7 1 1 0 n t}(100.00 \%)$
Average depth	54888 reads/site

Read quality

D2-PRE-RBV Consensus sequence

TGGTCGACGC CATGGAGGCC CACCAATTCA TCAAGGCTCC TGGCATCACT ACTGCCATTG AGCAAGCTGC TCTGGCTGCG GCCAATTCTG CCCTGGCGAA TGCTGTGGTG GTTCGGCCGT TTTTATCGCG TGTGCAAACT GAGATTCTTA TTAACTTGAT GCAACCCCGG CAGCTGGTTT TCCGACCTGA AGTGCTCTGG AATCATCCTA TCCAACGGGT TATTCATAAT GAATTAGAAC AGTACTGCCG GGCCCGGGCT GGTCGCTGTT TAGAGGTTGG GGCCCACCCA AGATCCATCA ATGATAACCC GAATGTTCTG CATCGCTGCT TCCTACGACC AGTTGGCAGA GATGTTCAGC GCTGGTATTC AGCCCCTACC CGTGGCCCTG CGGCTAACTG TCGCCGCTCT GCTTTGCGTG GCCTTCCCCC CGCTGACCGC ACCTACTGTT TTGATGGATT CTCTCGTTGT TCGTTTGCTG CGGAGACTGG TGTTGCCCTT TATTCATTGC ATGACCTCTG GCCGGCCGAT GTTGCAGAGG CTATGGCCCG GCACGGGATG ACACGCTTAT ATGCTGCACT ACATCTCCCC CCTGAAGTAT TACTACCACC TGGTACATAC CACACAACTT CATACCTTCT CATCCACGAC GGTGATCGTG CCGTTGTGAC TTACGAGGGT GACACTAGTG CAGGTTACAA CCACGATGTC TCCATACTCC GCGCATGGAT CCGCACAACC AAGATAGTTG GCGACCATCC GCTGGTGATA GAGCGTGTGC GGGCTATCGG CTGCCACTTT GTGCTGCTGC TCACTGCGGC CCCTGAGCCG TCACCGATGC CTTATGTCCC ATACCCCCGG TCGACAGAGG TGTACGTTCG TTCCATATTC GGTCCTGGCG GATCCCCATC CCTATTCCCA TCAGCTTGCT CTACGAAATC CACATTTCAT GCCGTCCCAG TTCACATTTG GGACCGGCTC ATGCTCTTTG GTGCTACCCT GGACGATCAG GCGTTTTGCT GTTCACGGCT TATGACTTAC CTTCGTGGGA TTAGTTACAA GGTTACTGTA GGCGCCCTTG TTGCTAATGA TGCTGTTATT ACCGCAGCAT ACTTGACCAT TTGCCATCAA GGCATGCGCC GGCTGGAGGT TGAGCATGCT CAAAAATTTA AGTCTGGCCG TGACTACATC CCCGGCCGCC AGCTCCAGTT GGGTTTCCAC CTCGATCCAA GGGTGCTTGT TTTTGATGAG AAGAAGGTTG CGGGTAAGTT CTGCTGTTTT ATGAAGTGGC CAGCTGAGGG TCTGGTTGGT GACCATGGTC ACGATAATGA TGAGCCTGCC CATCTTGATG TCTCTGGGAC CTATGCCGTC GCGCTTAACA TCCCACATGA CATTGCCGCT CGAGCCTCCC GTCCAGACCG TTTGGAGTGT CGCACTGTGC TCGGGAATAA CCACCTTGAG GTGAATGGCC CCGAGCAGTA TGTCCTTTCG GGGCCGCATA ACCTCACCTA TGAGCTTACT CCTGCTGGTT ATTGCACTGC AACATTTCCC CCGGGTGGAG CCCCTAGTGC TGCCCTCTAT AGGTACAACA GGTTCACCCA ACGCCATTCG GGGCTATTGG GCATCTTCCC TCCCTTTTCC CCCGGGCATC AGGGAACTTT GTATACCCGG ACTTGGTCAA CATCTGGTTT TGCCGCTGTA CCGGCCGCTA CCACAGGGTT ACCCCACCCT CCGCCACCCT CTGAGGAGTC TCAGGTTGAT GCAGCGCCTG CCGACCCTGT CGGGCCGAGG GCCTCCGTGC GTAAGCCACC CCTCTATACT TATCCGGATG GGGCAAAGGT GTATGCGGGG GTCAATGCGT CGAATCCCGG CCATCGCCCC GGAGGTGGCC AGTCTTTCCA CCCAACTGAG TTCATTATGC GTGATGGTCT TATCCACGCG GTGGCTCCCG ATTATAGGGT TGAGCAGAAC ACTTGCTCCC GCCGCGGCAC CGCCGCTTAC CCACTCCTCG TCAGTTTTGA CGCTTGGGAG CGCAACCACC GTCCCGGGGA CTGGTTCGAG GCCAACAAGC CAGCACAACC GGCCCTCACA CTGGCACTAG AGATCGACGC TGCTACGGAG GTTGGCCGGG TTGTGCACTA TCAATTTACT GCCGGGGTCC CAGGTTCAGG CGATGTGGTG GTTGTCCCCA CTCGGGAGCT TCGGAATAGT CCTCACACGG CGGCCCGTGT TACCACGGGC CGACGTGTTG ACCTGCTGCT TTTACATATG CAGCGGGCCT CGTCGGTCCA TATAGACTTT GAGCATGCCG GCCTGGTCCC CGCAATACGT GTCACTCACC GCTGCCCCGC TGATGTGTGC GAGCTTATAC G GCCGCGTGCT GCGGTCTTTA TTCTGGAATG AGCCCGCCAT TAAGGCTGCC AACCCCGGTG CGATTACAGT CCATGAGGCC CAGGGTGCCA CTTTCACGGA GACCACAATT ATAGCCACGG CCGATGCTAG GGGGCTCATT CAATCCTCCC GAGCCCATGC CATAGTCGCA CTTACCCGCC ACACAGAGAA GTGCGTTATC CTTGATGCTC CCGGTTTGTT ACGTGAGGTC GGTATATCTG ACATAATTGT CAACAATTTC TTCCTCGCCG GTGGGGAAGT GGGCCACCAC CGCCCCTCTG TGATACCCCG CGGCAGTCCT

D2-PRE-RBV Consensus sequence

3710
3780
3850
3920
3990
4060
4130
4200
4270
4340
4410
4480
4550
4620
4690
4760
4830
4900
4970
5040
5110
5180
5250
5320
5390
5460

5530

5600
5670
5740
5810
5880
5950
6020
6090
6160
6230
6300
6370
6440
6510
6580
6650
6720
6790
6860
6930
7000
7070

GACCAGAACC TCGCGACACT GCAGGCTTTT CCACCCTCCT GCCAGATCAG TGCTTACCAT CAGTTAGCTG AGGAGCTGGG TCACCGCCCG GCCCCCGTCG CTGCCGTCCT GCCCCCCTGC CCCGAACTTG AGCAGGGCCT GCTGTATATG CCACAAGAGC TCACGGTGTC TGATAGCGTG CTGGTTTTTG AACTCACGGA CATAGTTCAT TGTCGGATGG CCGCCCCTAG CCAGCGGAAG GCCGTCCTAT CGACGCTTGT GGGTAGGTAT GGCCGCCGGA CAAAGCTGTA TGAGGCGGCT CACTCCGATG TCCGTGAGTC TCTGACAAGA TTTATCCCTA CCATCGGGCC CGTTCAGGCA ACTACGTGTG AGTTATACGA ACTGGTTGAG GCCATGGTGG ACAAGGGTCA GGACGGCTCT GCCGTACTTG AGCTTGATCT TTGCAATCGC GATGTGTCGC GTATTACATT CTTCCAGAAA GATTGTAACA AGTTCACCAC AGGGGAGACC ATTGCTCATG GTAAGGTCGG CCAGGGCATT TCGGCTTGGA GCAAGACCTT CTGTGCCCTC TTTGGCCCGT GGTTTCGTGC CATTGAAAAA GAAATATTGG CCCTGCTCCC GCCCAATATC TTCTATGGCG ATGCATATGA AGAGTCTGTG TTTGCTGCCG CTGTGTCTGG GGCAGGTTCA TGCATGGTAT TTGAGAATGA TTTCTCAGAG TTTGACAGTA CTCAAAATAA CTTCTCCCTT GGCCTCGAGT GTGTAGTCAT GGAGGAGTGC GGCATGCCCC AGTGGCTAAT CCGGTTGTAC CACTTGGTTC GGTCGGCCTG GATTCTACAG GCGCCGAAG AGTCACTTAA AGGGTTTTGG AAGAAGCATT CTGGTGAGCC CGGCACCCTC CTTTGGAACA CCATTTGGAA TATGGCGATC ATAGCACATT GCTATGAGTT TCGTGATCTT AGGGTTGCCG CCTTCAAGGG AGATGATTCG GTGGTCCTTT GTAGCGACTA CCGTCAGAGC CGCAACGCAG CGGCCCTGAT TGCAGGTTGC GGGCTCAAAC TGAAGGTTGA TTACCGCCCT ATTGGGTTGT ATGCTGGTGT GGTGGTGGCC CCCGGCCTGG GGACGCTACC CGATGTAGTG CGCTTTGCCG GCCGGTTGTC GGCCGAGCAG CTGCGCCTTG CTGTTTGTGA TTTTCTTCGA GATGTTGTAT CCCGAGTGTA TGGAGTTAGC CCTGGGCTGG TTGCTGATGG TAAGGCCCAC CTTACAGAGA CTGTTAAACC gCGGgTAGAA tGAATAACAT GTtTTGTGCA TCGCCCATGG GCTGTTCCTC GTGCTTTTGC CTATGCTGCC CGCGCCACCG CGGCGCAGCG GCGGTACCGG CAGTGGTTTC TGGAGTGACA ATATTCATCC AACCAACCCC TTTGCCACCG ATGTCATTTC GCCACCCCGC CCCCTCGGCT CCTCTTGGCG TGACCAGTCC CCTGCCCCAA CTGGGGCTGC GCCGCTGACT GCTATATCAC TTGACTCTCG TGGCGCTATA TTGCGGCGCC AGTATAATTT TTCCGGCACT AATCTGGTTC TTTATGCTGC CCCGCTAAAT tGAGAAGAAC TGGGGCCCTG GGCCGGAGCG gGGCTGACGA ATGTTGCGCA GGTATGTGTT tacataacct tatcgccatg ttgcaaacca tGTGCTTGAC CTGACGAATT CTATCATACA gGTCACCATG CGCCCTAGGG CTGTTCTGTT GCCGGCCAGC CGTCTGGCCG CCGTCGTGGG GGGTTGATTC TCAGCCCTTC GCCCTCCCCT GCAACCCGGG GCTGGAGCTC GCCCTCGACA CAGCGCCCCT CCGCTGCCTC ACGCCGTCGA CAGCTCCTGA taCAGCCCCC GTGCCTGATG ATCTACATCC CCACTCACAT CATCTGTTGC CCCTTGTTAC CTCTTCAGGA TGGCACTAAC ACCGGGTTGT CCGAGCTACG ATCCGTTACA CATtTCATTC TGGCCTCAGA CCACTACCAC GTTAGGATCC TAGTTCAGCC CGGTATTGCT ACCAAGGTTG GCGCTCTGTG GAGACCTCGG TTGTATCCAT GGTTCCCCTG TTAATTCCTA tTTGCTCTAG AACTTGAGTT TAGGAACTTG GCACTGCCCG TCATCGGCTG CGCCGCGGTG tTTCATGAAG GACCTGCACT TCACCGGTAC CTCTTTAATC TTGCTGACAC GCTCCTCGGC TGTTCTACTC CCGCCCCGTC GTCTCGGCCA tgcgcagcag gataalggta ttgctattcc gattatgata atcagcatga gcaggatcga TTCGTGCTAA TGATGTTTTA TGGCTTTCCC CACCAACCCA ATGTATGTCT CAGATACTGT CGCTCTCTTG ACTGGTCTAA GGTCACCCTA CATTTTATGT TCTCCCACTG CGCGGGAAGT ttataattat gacacgactg ctagtgacca TCTACTTATA CTACCAGCCT TGGCGCTGGC CGGCTCTTGC AGTTCTTGAG GATACTACTG AGAGTGTCGC ACTCTTGGCT TGCAAGGGTG ACTACCCTGC CCGCGCCCAC ACTTTTGATG ACTTCTGTCC

E1-PRE-IFN

File name	E1-PRE-IFN.sam
Ref name	KT159771.1
Ref length	$\mathbf{7 2 5 1 n t}$
Program used	Tanoti Assembler 1.0
Total reads	$\mathbf{7 5 9 0 5}$
Mapped reads	$\mathbf{7 5} 905$ (100.00\%)
Average read length	$\mathbf{1 4 5 n t}$
Coverage	$\mathbf{6 8 6 1 n t}(\mathbf{9 4 . 6 2 \%})$
Average depth	$\mathbf{1 4 0 5}$ reads/site

E1-PRE-IFN Consensus sequence

TTACTACTGC CATTGAGCAA GCTGCTCTGG CAGCGGCCAA GCCGTTCTTG TCTCGTGTAC AAACCGAGAT TCTTATTAGT CCTGAAGTTT TGTGGAATCA CCCGATCCAG CGAGTTATAC GCGCCGGTCG CTGCCTGGAG GTCGGGGCTC ATCCGAGATC GTGTtTCCTT CGCCCGGTCG GGAGAGATGT ACAGCGTTGG AACTGCCGCC GCTCAGCGTT GCGCGGTCTC CCACCTGTCG GTTGCGCTTT TGCTGCGGAG ACCGGTGTGG CCCTCTATTC TGAGGCTATG GCCCGCCACG GGATGACACG CCTGTATGCC CCACCTGGCA CCTACCACAC AACCTCATAC CTCCTGATTC AGGGTGATAC CAGTGCAGGT TATAACCATG ATGTGTCCAT AGTTGGCGAT CATCCGCTGG TGATAGAGCG TGTGCGGGCT GCAGCCCCTG AGCCGTCACC AATGCCTTAT GTCCCATATC TATTCGGCCC TGGCGGGTCC CCATCTCTAT TCCCATCAGC CCCGGTTCAT ATTTGGGATC GGCTCATGCT TTTTGGCGCC CGGCTTATGA CTTACCTCCG TGGTATTAGC TACAAGGTCA GGAACGCCTC TGAGGAAGCT CTTACCGCTG TTATTACTGC CCTCCGTACC CAAGCTATAT CTAAGGGCAT GCGCCGACTG AGACTCTATA GTTGGTTGTT TGAGAAGTCC GGTCGAGATT CACAGTGCCG CCGTTGGCTG TCGGCAGGTT TTCATCTTGA ACCCTGCCGC TGCAGGACGT TTCTTAAGAA GGCTGCCGGC CAGGAGTGCA CCTGCTCTCT GGAGCCGCCC GAGGGCCTGG ATGAGGGCTC TGAGGTCGAC CAGGCTGAGC CCGCCCACCT GCGCCAGCTT GAGGCCTTGT ACAGGGCGCT CAACATCCCA NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN TCCGGACGAC GGTGGTTGAT GGCGCCCATC TTGAGGCGAA CGCCTCTCGC CAGTCTATGG GGGCCGGGCC GCATAGTCTC GTCAAGATTT CATCTAATGG CCTGGATTGC ACTGCAACAT CGGGGGAGGT AGCGGCTTTT TGTACTGCCC TTTACAGATA tGGTGGGTTG TGGTTACACC CTGAGGGGCT GGTCGGCATT GAGTCTGCCA ATCCTTTCTG CGGAGAGGGG ACTCTGTACA GTGATTTCTC CCCCCCTGAA GCGGCCGCCC TTGCACCGGC ACCTGTCAGT GATATCTGGG TGTTACCGCC GCCTTCTGAA CCTNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN CTCCATCTTC TCGCACCCGC CGTCTCCTTT ACACCTATCC GTtTGAGTCT GACTGTGATT GGCTGGTTAA TGCGTCAAAT CATGCCTTCT ATCAACGCTA CCCCGAGTCT TTNNNNNNNN nNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNC GGTATATACC AAGTTCCCGT CAGCCTCAGC TTTGACGCTT TTTACCTAAC CGACCTCGCA GCTACCTGGT TCGAGGCTAA TGAGGACACA GCCCGTACGG CTAACCTAGC ACTAGAGATC GCCGGCTGTA CAGTTAGACC TGGGGTTGTG CATTATCAAT CGCGGTCTAT ACAGCAGGGG GATGTCGATG TTGTGGTTGT CCGCCGGGGC TTTGCTGCTT TTACACCTCA TACGGCGGCC GATGAGGCGC CTTCGCTTCC ACCACATTTG CTGCTGCTTC TCGGCGACCC CAACCAGATT CCCGCCATTG ATTTCGAGCA GCTTGCCCCA ACCAGTTGGT GGCACGTTAC ACACCGTTGC GCTTATCCCA AAATCCAAAC CACGAGCCGT GTGCTACGGT AGAAGTTGGT TTTTACGCAG GCTGCTAAGG CTGCTAACCC CGCCACTTTC ACGGAAACTA CAATCATAGC CACAGCTGAT CATGCCATAG TTGCACTCAC CCGCCACACA GAAAAATGCG AGGTTGGTAT CTCGGATATA ATTGTTAACA ATTTTTTCCT tTCCGTGATA CCCCGCGGTA ACCCTGATCA AAACCTCGGG

CTCCGCCTTG GCGAATGCTG TGGTGGTTCG TTGATGCAAC CCCGGCAGCT CGTATTCCGA aCAATGAGCT TGAGCAGTAC TGCCGTGCCC CATTAATGAC AACCCTAACG TCCTGCACCG TATTCCGCCC CGACTCGCGG CCCTGCGGCC aCCGCACTTA TTGTtTTGAT GGATTCTCCC TCTACATGAC CTTTGGCCAG CTGATGTTGC GCACTGCACC TTCCCCCTGA GGTGTTGTTA ATGACGGTAA CCGTGCCGTC GTGACTTATG tCtTcGCGCA tgGatccgca caactaagat ATTGGCTGCC ATTTTGTGTT GCTGCTTACT CCCGGTCGAC AGAGGTGTAT GTCCGCTCTA tTGCTCTACG AAATCCACAT TTCACGCCGT ACTCTGGATG ATCAGGCGTT TTGCTGTTCA CTGTTGGTGC ACTTGTTGCT AACGAAGGAT GGCATACCTG ACTATCTGCC ATCAGCGCTA GAGGTTGAAC ATGCTCAGAA ATTCATCACA ATATCCCCGG CCGTCAGCTC CAGTTTTATG CCCAAGAGTG CTTGTCTTCG ATGAGTCTGT AAGTTCTGCT GCTTTATGAA GTGGCTGGGG TTGGCGACCA TGGTCATGAT AATGAGGCCT AGATGTTTCT GGGACTTATG CTGTCCATGG CATGACATTG CGGCCCGNNN NNNNNNNNNN NNNNNNNCAC TGTGCTTGGG AATAAGACTT CAGCCCCGAG CAGTACGTCC TTTCGTTTGA TCCTACGAGC TCACTCCTGC TGGTTTGCAG TCCCTCCGGG TGGGGCCCCC AGTGCTGCGC TAACAGATTC ACTCAGCGAC ACTCGCTGAC TTCCCCCCCT TTTCCCCCGG GCATATTTGG CCCGCACCTG GTCAACCTCC GGCTTCTCTA TGTTGCCCCA GGGCCGCCAC ATCCTACCCC gaacticagg ttgacacagc gcccgctccc NNNNNNNNCC CGTGCGTAAG CCATCTGTAC tGacgGcgct aaggtgtatg cggggtcatt CCTGGCCATC GTCCTGGCGG CGGCCTTTGC NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN GGTACCGCCG CCTATCCACT CCTCGGCTCG GGGAGCGTAA CCATCGCCCC GGAGACGAGC caAaccaaca cagccggccc tcacaataac GATGCTGCCA CGGAGGTTGG CAGGGCTTGT TCACTGCCGG GGTGCCAGGT TCGGGGAAGT TCCTACCCGG GAGCTCCGGA ATAGTTGGCG CGCGTCACTG CCGGCCGACG TGTTGTGATT ATATGCAGCG AGCTTCGTCA GTCCACCTTC TGCAGGCCTA GTGCCAGCGA TCCGCCCTGA cCTGCCGACG TGTGTGAGCT CATACGCGGG CTCTGTTTTG GAATGAACCG GCTACCGGCC TGGTGCAATC ACGGTCCACG AGGCCCAGGG GCTAGGGGAC TTATCCAATC TTCTCGGGCT TCATTCTTGA CGCCCCCGGC CTGTTACGTG CGCCGGCGGG GAGGTTGGTC ACCACCGCCC ACTTTACAGG CCTTCCCGCC GTCTTGCCAG

E1-PRE-IFN Consensus sequence

E2-PRE-IFN

File name
Ref name
Ref length
Program used
Total reads
Mapped reads
Average read length
Coverage
Average depth

E2-PRE-IFN.sam
KT159771.1
7 251nt
Tanoti Assembler 1.0
52390
52390 (100.00\%)
146nt
6 305nt (86.95\%)
991 reads/site

413

E2-PRE-IFN Consensus sequence

TTACTACTGC CATTGAGCAA GCTGCTCTGG CTGCGGCCAA GCCGTTTTTA TCTCGTGTGC AAACTGAGAT TCTCATTAAT CCTGAAGTGC TCTGGAATCA CCCGATCCAG CGAGTTATAC GCGCCGGTCG CTGCCTGGAG GTCGGGGCTC ACCCAAGATC GTGTTTCCTT CGCCCGGTCG GGAGAGATGT ACAGCGTTGG AACTGCCGGC GTTCCGCATT ACGTGGCCTG CCCCCTGTCG GCTGTGCTTT TGCTGCTGAG ACTGGAATTG CTTTGTATTC GGAGGCCATG GCCCGACACG GGATGACACG CCTGTATGCC CCACCTGGCA CCTACCACAC AACCTCATAC CTCCTGATCC AGGGTGATAC CAGTGCAGGC TATAACCATG ATGTTTCCAT AGTTGGCGAT CATCCGCTGG TGATAGAGCG TGTGCGGGCT GCGGCCCCTG AGCCGTCCCC TATGCCCTAT GTCCCGTACC TATTCGGCCC CGGCGGCTCG CCATCTCTGT TCCCATCAGC CCCGGTTCAT ATTTGGGATC GGCTCATGCT TTTTGGCGCC CGGCTTATGA CCTACCTCCG CGGGATTAGT TACAAGGTCA GGAACGCCTC AGAGGATGCG CTCACTGCTG TGATCACTGC CCTCCGTACC CAAGCTATAT CTAAGGGCAT GCGCCGACTG AGACTCTATA GTTGGTTGTT TGAGAAGTCT GGCCGTGACT CACAGTGCCG CCGTTGGCTG TCGGCAGGTT TTCATCTTGA ACCCTGCCGC TGCAGGACGT TTCTTAAGAA GGNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN GAGGGCCTGG ATGAGGGCTC TGAGGTCGAT CCAGCTGAAC CTGCACACCT GCACCAGCTT GAGGCCCTCT ATAGGGCACT CAACATCCCG NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN TCCGCACATC GATAATGGAT GGCGCTCACC TCGAGGCTAA CGACTCCCGC CAAGCGATGG GGGCTGGGTC GCATAGTCTN GTCAAGATTT CATCTAATGG CCTGGATTGC ACTGCAACAT CGGGGGAGGT GGCAGCCTTT TGCAGTGCCC TCTACAGGTA AGGTGGCTTG TGGCTACATC CTGAGGGGTT ATTGGGCATT GAGTCCGCGA ATCCTTTTTG CGGGGAGGGA ACCTTGTACN NNNNNNNNNN NNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNACCTATCC GTTTGAGTCT GACTGTGATT GGCTGGTTAA TGCGTCGAAT CATGCCTTCT ACCAACGCTA CCCCGAGTCT TTNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNC GGTATATACC AAGTTCCCGT CAGCCTCAGC TTTGACGCTT TTTACCTAAC CGACCTCGCA GCTACCTGGT TCGAGGCTAA TGAGGACACA GCCCGTACGG CTAACCTAGC ACTAGAGATC GCCGGCTGTA CAGTTAGACC TGGGGTTGTG CATTATCAAT CGCGGTCTAT ACAGCAGGGG GATGTTGATG TGGTGGTTGT CCGCCGGGGG TTTGCGGCGT TTACACCTCA CACAGCCGCC GACGAGGCCC CGGCACTCCC GCCGCACTTG CTGCTGCTGC TTGGTGACCC AAATCAGATT CCTGCCCTAG ACTTCGAGCA GCTTGCGCCA ACCAGCTGGT GGCATGTCAC CCACCGCTGC GCTTATCCCA AGATCCAAAC CACCAGCCGT GTGCTGCGGT AGAAGTTAGT TTTCACTCAG GCCGCTAAGG CCGCTAACCC CGCCACTTTC ACGGAAACTA CAATTATAGC CACAGCTGAT CACGCCATAG TTGCACTTAC CCGCCACACA GAAAAATGCG AGGTTGGTAT CTCGGATGTG ATTGTTAACA ATTTTTTCCT CTCCGTGATA CCCCGCGGTA ATCCTGACCA GAACCTCGCG

TTCTGCCCTG GCGAATGCTG TGGTGGTTCG TTGATGCAAC CCCGGCAGCT CGTTTTCCGA ACAATGAGCT TGAGCAGTAC TGCCGTGCCC CATTAATGAC AACCCTAACG TCCTGCACCG TATTCCGCCC CGACTCGCGG CCCAGCTGCC ACCGTACTTA CTGTTTCGAC GGGTTCTCCC ACTACATGAC CTCTGGCCTG CCGATGTTGC GCACTGCACC TTCCCCCTGA GGTGTTGTTA ATGATGGTAA CCGTGCCGTC GTGACTTATG ACTCCGTGCG TGGATCCGCA CAACTAAGAT ATTGGCTGCC ATTTTGTGTT GCTGCTTACT CCCGGTCGAC GGAGGTCTAT GTCCGGTCCA NNNNNNNNNN NNNNNNNNAT TTCACGCCGT ACTCTGGATG ATCAGGCGTT TTGCTGTTCA CTGTTGGCGC CCTTGTCGCT AATGAGGGTT AGCCTACTTG ACCATCTGTC ACCAGCGCTA GAGGTTGAAC ATGCTCAGAA ATTCATCACA ACATCCCCGG CCGTCAGCTC CAGTTTTATG CCCAAGAGTG CTTGTCTTCG ATGAGTCTGT NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN TTGGCGACCA TGGTCATGAT AATGAGGCCT CGATGTTTCG GGGACCTACG CCGTCAGTGG CATGATATTG CCGCCCGAGC NNNNNNNNNN NNTGCCGTAC AGTGCTCGGA AATAAGACCT CGGCCCTGAG CAGTATGTTT TAACATTTGA NNNNNNNAGC TCACTCCTGC TGGTTTGCAG TCCCTCCGGG TGGGGCCCCT AGCGCTGCTC CAACAGGTTC ACTCAGCGGC ACTCGCTTAC TTCCCCCCTT TTNCTCCCGG GCATCTTTGG NNNNNNNNNN NNNNNNNNN GGATGGGGCA AAGGTGTATG CGGGGTCACT CCTGGCCATC GTCCTGGCGG CGGCCTTTGC NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN GGTACCGCCG CCTATCCACT CCTCGGCTCG GGGAGCGTAA CCATCGCCCC GGAGACGAGC CAAACCAACA CAGCCGGCCC TCACAATAAC GATGCTGCCA CGGAGGTTGG CAGGGCTTGT TCACTGCCGG GGTGCCAGGT TCGGGGAAGT CCCCACCCGG GAGCTTCGCA ACAGCTGGCG CGTGTCACTA TCGGCCGCCG CGTTGTGATC ATATGCAGCG GGCCTCTTCG GTCCATCTTC CGCCGGCCTC GTTCCCGCAA TACGCCCCGA CCCGCTGATG TGTGCGAGCT TATTCGCGGG CTTTATTCTG GAATGAGCCT GCCATTGGCC CGGTGCGATT ACAGTCCATG AGGCTCAGGG GCTAGGGGGC TCATCCAATC TTCCCGAGCA TCATTCTTGA CGCCCCTGGC CTGTTACGTG GCCGGCGGG GAGGTGGGCC ACCATCGCCC ACACTTCAGG CCTTCCCGCC CTCTTGCCAG

E2-PRE-IFN Consensus sequence

3710
3780
3850
3920 3990
4060
4130
4200
4270
4340
4410
4480
4550
4620
4690
4760
4830
4900
4970
5040
5110

ATTAGTGCCT ATCACCAGTT AGCTGAGNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNN NNNNNNNNNN NNNNNNNNNC ACGGACATAG TCCACTGCCG GATGGCCGCC CCTAGCCAGC CTTGTGGGCA GGTACGGCCG CCGGACTAAG CTGTACGAAG CAGCCCACTC CTAGATTCAT CCCTACCATC GGACCAGTTC AGGCCACCAC ATGTGAGTTG GGTTGAGAAG GGTCAGGACG GTTCCGCTGT GTTAGAGCTT GATCTCTGTA ACATTTTTCC AGAAGGACTG TAATAAGTTT ACAACAGGTG AGACTATTGC GTATATCGGC CTGGAGTAAG ACTTTTTGCG CCCTGTTCGG CCCATGGTTC ATTGGCCTTG CTCCCACCTA ACATCTTTTA CGGCGACGCC TATGAGGAGT TCCGGGGCGG GGTCTTGCAT GGTGTTTGAG AATGACTTTT CAGAGTTTGA CTCTTGGCCT TGAGTGTGTT ATTATGGAGG AGTGTGGCAT GCCCCAGTGG AGTTCGGTCG GCCTGGATAC TACAGGCGCC GAAGGAGTCT CTTAAGGGAT GAGCCCGGCA CCCTTCTCTG GAACACCGTC TGGAACATGG CGATCATAGC ATCTTAGGGT TGCCGCCTTC AAGGGAGATG ACTCCGTAGT CCTCTGTAGC TGCGGCTGCC CTAATTGCGG GCTGCGGACT CAAACTGAAG GTTGATTATC GGTNNGGTGG TGGTCCCTGG TCTGGGGACG CTACCCGATG TGGTGCGCTT AGAACTGGGG CCCTGGGCCG GAGCGGGCTG AGCAGTTGCG CCTGGCTGTT AACGAATGTT GCGCAGGTTT GTGTCGATGT TGTGTCCCGT GTTTATGGGG AACCTTATTG GCATGNNNNN NACTATAGCC GATGGGAAGG CCCATTTTAC TTGACCTCAC AAATTCAATC ATACAACGGA CGGAATGAAT AACATGTTTT CCATGCGCCC TAGGGCTGTT CTGCTGTTGC TCTTCGTGTT TCTGCCTATG CCAGCCGTCT GGCCGCCGTC GTGGGCGGCG CAGCGGCAGT GCCGGCAGTG GATTCTCAGC CCTTTGCCCT CCCCTATATT CATCCAACCA ACCCCTTTGC CCGGGGCTGG AGCTCGCCCT CGACAGCCAC CCCGCCCCCT CGGCTCCTCT CCCCTCCGCT GCCCCACGTC GTCGACTTGC CCCAGCTGGG GCTGCGCCGC CCCGANNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNN NNNNNNNNNN NNNNNNNNNN CAGGATGGCA CCAATACTCA TATCATGGCG ACTGAGGCGT GTTGTCCGAG CCACAATCCG TTATCGCCCT TTGGTGCCGA ATGCTGTTGG CCTTTTGGCC CCAGACTACA ACTACNNNNN NNNNNNNNNN NNNNAATTCT GATGTTAGTT CAGCCTGGCA TAACCTCCGC GTTGGGTATT CCAAGCGAGC GGCTGGCGTT CTGTTGAGAC CTCAGGTGTG GCTGAGGAGG AGGCGACTTC G TCCATGGTTC CCCTGTTAAT TCCTACACTA ATACCCCCTA TACCGGGGCG TTTAGAGCTT GAGTTTAGGA ACTTGACACC CGGGAACACC AACACCCGTG GCCCGCCACC GCCTGCGCCG CGGTGCTGAT GGCACCGCCG AGCTCACGAC TGAAGGACCT GCATTTTACC GGGATGAATG GTGTCGGCGA GGTGGGCCGT TAATCTTGCT GACACGCTTC TCGGTGGTNN NNNNNNNNN NNNNNNNNNN NNCTCCCGCC CCGTCGTCTC AGCCAATGGC GAGCCGACTG TAAAGTTGTA AGCAGGATAA GGGCATCACC ATCCCGCACG ATATAGACCT TGGTGACTCC TGACAACCAA CATGAGCAGG ATCGACCTAC CCCGTCACCT GCCCCTTCCC GCCAATGATG TTCTGTGGCT CTCTCTCACT GCCGCTGAGT ATGATCAGAC ACCCCATGTA TGTCTCTGAT ACTGTTACCC TCGTTAACGT GGCAACGGGA G TCTTGACTGG TCTAAAGTTA CTCTGGATGG TCGCCCTCTT ACTACTATTC AGC TATGTTCTCC CGCTTCGAGG TAAGCTGTCC TTCTGGGAGG CCGGGACGAC ATTATAATAC AACTGCTAGT GATCAGATCC TGATTGAAAA TGCGGCCGGT CTATACCACT AGCTTGAGTG CCGGCCCTGT ATCAATCTCT GCAGCCGGTG CTTGCAGTTC TTGAGGATAC TATTGATTAC CCCGCCCGCG CCCACNNNNN NNNNNNNNNN NNNNNNNCAG GGCTGTGCTT TTCAATCCAC TATCGCTGAG GGTAGGCAAA ACCCGGGAGT CTTAATTAAT TCCATCTGTG CCCCCTTCAN CTTCTGCGTT TCGCGCTCCC TGGAAACAAA AAAAAAAAAA AAGCAAAAAA CAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA A

NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN GGAAGGCCGT CCTATCGACG TGACGTCCGC GAGTCCCTGG TACGAGTTGG TAGAGGCTAT GCCGTGATGT CTCGCGTATC TCATGGCAAG GTGGGCCAGG CGAGCCATTG AAAAAGAAAT CAGTGTTTGC TGCCGCCGTG CAGTACTCAG AACAATTTCT CTAATACGGT TGTACCACTT TCTGGAAGAA GCACTCTGGT GCACTGCTAT GAATTCCGTG GACTACCGCC AAAGCCGCAA GCCCTATTGG GTTGTATGCT GCCGGCCGG CTGTCTGAGA TGTGACTTCC TTCGAAGGTT TTAGTCCTGG GCTGGTACAT TGAGACTGTT AAACCTGTGC GTGCATTGCC CATGGGTTCA CTGCCCGCGC CACCGGCCAG GTTTCTGGGG TGACAGGGTT CACCGATGTC GTACCACAAT TGGCGTGATC AGTCCCAGCG TGACCGCTAT ATCACCTGCT NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN CTAACTATGC TCAATATCGG AGGCTATGCA ATTTCTATTT ATTACCTCTA CAGATGTTAG GCCTCCCTGA TCGTAATCAG GGGCCTGGTG ATGCTCTGTA CTCGGGCTCC TTGATTTCGC TGTCCCGGTA TACAAGCACA CACTGCGGCC ACGCGCTTCA GGTATTGCTC TCACACTCTT NNNNNNNNNN NNNNNNNNNN CACATCTGTT GAGAATGCGC CGTGTGGTTA TCCAGGACTA GCCCATTTTC AGTTCTCCGT TACTTATGG TCGTCCACCA GCCCAGGCTG TCGCCCGCTC AGCAGTACTC TAAAACATTT TAAGGCCGGA TACCCCTATA CACCGTGTTG CCATTTCTAC TATTGGCCCC GCATTCGGCT NNNNNNNNNN NNNNNNNNNN CTTCAGCGTC TTAAAGTGAA AGGTCTTGGT TTATTTCTTT AAAAAAAAAA AAAAACATAT

E3-PRE-IFN

File name	E3-PRE-IFN.sam
Ref name	KT159771.1
Ref length	$\mathbf{7} 251$ nt
Program used	Tanoti Assembler 1.0
Total reads	268985
Mapped reads	$268985(100.00 \%)$
Average read length	$145 n t$
Coverage	$\mathbf{7 1 8 6 n t}(99.10 \%)$
Average depth	4901 reads/site

E3-PRE-IFN Consensus sequence

TTACTACTGC CATTGAGCAG GCTGCTCTGG CTGCGGCTAA GCCGTTTTTG TCCCGTGTTC AGACTGACAT TCTCATCAAT CCTGAAGTGC TCTGGAATCA TCCTATCCAA CGGGTTATAC GCGCCGGTCG CTGCCTGGAG GTCGGGGCTC ATCCGAGATC GTGTtTCCTT CGCCCGGTCG GGAGAGATGT ACAGCGTTGG AACTGCCGGC GTTCCGCATT ACGTGGCCTG CCCCCTGTCG GCTGTGCTTT TGCTGCTGAG ACTGGAATTG CTTTGTATTC GGAGGCCATG GCCCGACACG GGATGACACG CCTATATGCT CCACCTGGTA CCTACCACAC AACCTCATAC CTTCTGATTC AAGGTGATAC TAGTGCAGGT TACAACCATG ATGTTTCCAT AGTTGGCGAT CATCCGCTGG TGATAGAGCG TGTGCGGGCT GCAGCCCCTG AGCCGTCACC AATGCCTTAT GTCCCATACC TATTTGGCCC CGGCGGCTCG CCATCTCTGT TCCCGTCAGC CCCGGTTCAT ATTTGGGATC GGCTCATGCT TTTTGGCGCC CGGCTTATGA CCTACCTCCG CGGGATTAGT TACAAGGTCA GGAACGCCTC AGAGGATGCG CTCACTGCTG TGATCACTGC CCTCCGTACC CAAGCTATAT CTAAGGGCAT GCGCCGACTG AGACTCTATA GTTGGTTGTT TGAGAAGTCC GGTCGAGATT CACAGTGCCG CCGTTGGCTG TCGGCAGGTT TTCATCTTGA ACCCTGCCGC TGCAGGACGT TTCTTAAGAA GGCTGCCGGC CAGGAGTGCA CTTGCTTTCT GGAGCCGGCC GAGGGCCTGG ATGAGGGCTC TGAGGTCGAC CAGGCTGAGC CCGCCCACCT GCGCCAGCTT GAGGCCTTGT ACAGGGCGCT CAACATCCCA ACTGCCACCG TCGAGCTCGT TGCAGGTCCA GACCGCTTAG TCCGGACGAC GGTGGTTGAT GGCGCCCATC TTGAGGCGAA CGCCTCCCGC CAGTCTATGG GGGCTGGGCC GCATAGTCTT GTCAAGATTT CATCTAATGG CCTGGATTGC ACTGCAACAT CGGGGGAGGT GGCAGCCTTT TGCAGTGCCC TCTACAGGTA AGGCGGCTTG TGGCTGCACC CTGAGGGGCT GCTGGGCATC GAGTCCGCAA ATCCTTTTTG CGGTGAGGGC ACACTTTACA GTGATTTCTC TCCCCCTGNN NCAGCCGTTG TAGCGCCGGC TCCTGTTAGT GACATTTGGG TGTTACCGCC ACCTTCTGAA CCTGCCCCTG GGCCCGCTCA ACCATCTAGC CCTGTTGGGC CACCATCCCC GCGCACCCGC CGCCTTCTTT ACACCTATCC GTTTGAGTCT GACTGTGATT GGCTGGTTAA TGCGTCAAAT CATGCCTTCT ATCAACGCTA CCCCGAGTCT TTCTATCCGA CCTACACNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN GAGGCTTGAG GCAGCATATC GAGAGACTTG TTCTCGCCGC GGTATATACC AAGTTCCCGT CAGCCTCAGC TTTGACGCTT tTtacctaac cgacctcgca gctacctggt tcgaggctaa GGAAGATACG GCCCGTACGG CCAACCTAGC GTTAGAGATC GCCGGCTGTA CAGTTAGACC TGGGGTTGTG CATTATCAAT CGCGGTCTAT ACAGCAGGGG GATGTCGATG TTGTGGTTGT CCGCCGGGGT TTTGCAGCTT TTACACCTCA TACGGCGGCC GATGAGGCCC CTTCGCTTCC ACCACATTTG CTGCTGCTTC TCGGCGACCC CAACCAGATT CCCGCCATAG ACTTCGAGCA GCTTGCCCCA ACCAGTTGGT GGCATGTCAC CCACCGCTGC GCCTATCCTA AAATCCAGAC CACGAGCCGT GTGCTACGAT AGAAGTTGGT TTTTACGCAG GCTGCTAAGG CTGCTAACCC CGCCACTTTC ACGGAAACTA CAATTATAGC CACAGCTGAT CATGCCATAG TTGCACTCAC CCGCCACACA GAAAAATGCG AGGTTGGTAT GTCGGATACA ATTGTTAACA ATTTTTTCCT AGGTTGGTAT CTCGGATACA ATTGTTAACA ATTTTTTCCT CGCTGGTGGG GAGGTGGGCC ACCATCGCCC

E3-PRE-IFN Consensus sequence

3710

ATTAGCGCTT ACCATCAGCT GGCTGAGGAG TTGGGCCACC GCCCTGCCCC CGTCGCCGCT GTCTTGCCTC CCTGCCCTGA GCTTGAGCAG GGTCTGTTGT ACATGCCACA GGAGCTTACC GTGTCCGACA GCGTTTTAGT CTTCGAGCTC ACGGACATAG TCCATTGCCG CATGGCCGCT CCAAGCCAGC GGAAGGCTAT CCTCTCAACA CTCGTTGGGA GGTACGGCCG CAGGGCGAAA TTATATGAGG CAGCACATTC TGATGTCCGT GAGTCCCTGG CCAGGTTTAT CCCTACCATC GGACCAGTTC AGGCCACCAC ATGTGAGTTA TATGAGCTGG TAGAGGCCAT GGTGGAGAAG GGCCAGGACG GCTCCGCCAT CCTGGAGCTT GACCTCTGCA ACCGCGACGT CTCGCGTATC ACATTCTTTC AAAAGGATTG TAATAAGTTT ACAACTGGTG AAACTATCGC CCATGGCAAG GTTGGTCAGG GTATATCGGC CTGGAGTAAG ACTTTTTGCG CCCTGTTCGG CCCATGGTTC CGAGCCATCG AAAAAGAAAT ATTGGCCTTG CTCCCACCTA ACATCTTTTA CGGCGATGCC TATGAGGAGT CAGTGTTTGC TGCCGCCGTG TCCGGGGCGG GGTCTTGCAT GGTGTTTGAG AATGATTTTT CAGAGTTTGA CAGTACTCAG AATAATTTCT CTCTTGGCCT TGAGTGTGTT ATTATGGAGG AGTGTGGCAT GCCCCAGTGG AGTTCGGTCG GCCTGGATAC TACAGGCGCC GAAGGAGTCT CTTAAAGGAT GAGCCCGGCA CCCTCCTCTG GAACACCGTC TGGAACATGG CGATCATAGC ATCTTAGGGT TGCCGCCTTC AAGGGAGATG ACTCCGTAGT CCTCTGTAGC TGCGGCTGCC CTAATTGCGG GCTGCGGGCT CAAACTGAAG GTGGACTATC GGTGTGGTGG TTGCCCCTGG TCTGGGGACG TTGCCCGATG TGGTACGTTT AGAATTGGGG CCCCGGCCCT GAGCGAGTTG AGCAGCTGCG TCTTGCTGTT AACGAATGTT GCGCAGGTCT GTGTTGACGT TGTATCTCGT GTCTATGGAG AACCTTATAG GCATGCTGCA GACTATCGCC GATGGCAAGG CCCATTTCAC TTGACCTCAC AAATTCAATC ATACAACGGA CGGAATGAAT AACATGTTTT G CCATGCGCCC TAGGGCTGTT CTGCTGCTGT TCTTCGTGTT TCTGCCTATG C CCAGCCGTCT GGCCGCCGTC GTGGGCGGCG CAGCGGCGGT GCCGGCGGTG G CCGGGGCTGG AGCTCGCCCT CGACAGCCAC CCCGCCCCCT CGGCTCCTCT TGGCGTGATC AGTCCCAGCG CCCCTCCGCT GCCCCACGTC GTCGACTTGC CCCAGCTGGG GCTGCGCCGC TGACCGCTAT ATCACCTGCT CCCGATACAG CTCCTGTACC TGATGTTGAT TCTCGCGGTG CTATTTTGCG CCGCCAGTAC AATTTATCCA CATCCCCGCT TACGTCATCT GTCGCCTCGG GTACTAATTT GGTTCTTTAT GCCGCCCCAT TGAATCCTCT CTTACCCCTT CAGGATGGCA CTAATACTCA TATCATGGCG ACTGAGGCAT CCAACTACGC CCAGTATCGG GTGGTTCGAG CTACGATCCG TTACCGCCCC TTGGTCCCAA ATGCCGTCGG CGGCTATGCT ATCTCTATTT CTTTTTGGCC TCAGACTACA ACTACTCCCA CCTCTGTTGA TATGAATTCT ATTACCTCTA CTGATGTTAG GATTTTAGTT CAGCCTGGCA TAGCCTCCGA GTTGGTTATT CCAAGCGAGC GCCTCCATTA TCGTAATCAG GGCTGGCGTT CTGTTGAGAC CTCGGGTGTG GCTGAGGAGG AGGCTACATC GGGCTTGGTT ATGCTCTGTA TCCATGGTTC CCCTGTTAAC TCTTACACTA ATACGCCCTA CACTGGTGCA CTGGGACTCC TTGATTTTGC ATTAGAACTT GAATTTAGGA ATTTGACACC CGGGAATACT AACACCCGCG TGTCTCGGTA CACCAGTACA GCCCGCCACC GCCTGCGCCG CGGTGCCGAT GGGACTGCCG AGCTCACGAC CACTGCGGCC ACGCGCTTCA TGAAGGACCT GCATTTCACC GGGACGAATG GGGTCGGCGA GGTGGGCCGT GGCATTGCCC TCACATTCTT TAATCTTGCT GATACGCTTC TCGGCGGTTT ACCGACAGAA TTGATTTCGT CGGCTGGGGG TCAGCTATTT TACTCCCGCC CCGTCGTCTC AGCCAATGGC GAGCCGACTG TAAAGTTGTA CACATCTGTT GAGAATGCGC AGCAGGATAA GGGCATCACC ATCCCGCACG ATATAGACCT TGGTGACTCC CGTGTGGTTA TCCAGGACTA TGACAACCAA CATGAGCAGG ATCGGCCTAC CCCGTCACCT GCCCCTTCCC GCCCATTTTC AGTTCTCCGT GCCAATGATG TTCTGTGGCT CTCCCTCACT GCTGCCGAAT ATGATCAAAC TACTTATGGT TCGTCCACCA ACCCTATGTA TGTTTCAGAT ACTGTTACCC TCGTTAACGT GGCAACGGGA GCCCAGGCTG TCGCCCGCTC CCTTGATTG TCTAAAGTTA CTCTGGATGG CCGCCCTCTC ACTGTCACCC AGCAGTATTC TAAAACATTT TATGTCCTCC CGCTCCGCGG GAAACTTTCT TTTTGGGAGG CCGGTACGAC CAAGGCTGGT TACCCTTATA ATTATAATAC AACTGCTAGT GATCAGATTC TGATTGAAAA TGCAGCCGGT CATCGTGTTG CTATTTCCAC CTATACTACC AGCCTGGGCG CTGGTCCTGT GTCAGTCTCC GCAGTCGGTG TGCTTGCCCC ACATTCGGCT CTTGCAGCCC TTGAGGATAC TATTGATTAC CCCGCTCGTG CCCATACTTT TGATGATTTC TGCCCTGAGT GCCGTAATCT CGGCCTACAG GGCTGTGCTT TTCAATCCAC TATCGCTGAG CTTCAGCGTC TTAAAGTGAA GGTAGGCAAA ACCCGGGAGT CTTAATTAAT TCCATCTGTG CCCCCTTCAT AGGTCTTGGT TTATTTCTTT CTTCTGCGTT TCGCGCTCCC TGGAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA A

CTAATACGGT TGTACCACTT TCTGGAAGAA GCACTCTGGT GCACTGCTAT GAATTCCGTG GACTACCGCC AAAGCCGCAA GCCCTATTGG GCTGTATGCT TGCTGGCCGG CTGTCTGAAA TGTGATTTTC TTCGAGGGTT TTAGCCCTGG GCTGGTACAT AGAGACTATT AAACCTGTGC GTGCATCGCC CATGGGTTCA TGCCCGCGC CACCGGCCGG GTTTCTGGGG TGACAGGGTT CGCCGATGTC GTACCACAAG GACCGCTAT ATCACCTGCT CGCCAGTAC AATTTATCCA CCAACTACGC CCAGTATCGG TGCTTGCCCC ACATTCGGCT CTTCAGCGTC \quad TTAAAGTGAA

F1-PRE-RBV

File name	F1-PRE-RBV.sam
Ref name	FJ705359.1
Ref length	$\mathbf{7 2 3 7 n t}$
Program used	Tanoti Assembler 1.0
Total reads	297130
Mapped reads	297130 (100.00\%)
Average read length	$140 n t$
Coverage	$6452 n t(89.15 \%)$
Average depth	5710 reads/site

F1-PRE-RBV Consensus sequence

NNNNNNNNG TATGTGGTCG ACGCCATGGA GGCCCACCAG TTCATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAT TCTGCCCTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTAT CTCGTGTGCA AACTGAGATT CTTATTAACT TGATGCAACC CCGGCAGTTG GTTTTTCGAC CTGAAGTGCT CTGGAATCAT CCTATCCAAC GGGTTATCCA TAATGAACTT GAACAGTACT GTCGGGCCCG GGCTGGTCGT TGTTTAGAGG TTGGGGCCCA CCCAAGATCC ATCAATGACA ACCCGAATGT TCTGCACCGG TGCTTTTTAC GGCCAGTTGG GAGAGATGTT CAGCGCTGGT ATTCTGCTCC TACCCACGGC CCCGCGGCTA ACTGCCGCCG TTCTGCCTTG CGTGGCCTCC CCCCCGCTGA TCGTACNNNN NGTTTTGATG GATTCTCTCG TTGTTCATTT GCTGCGGAGA CTGGTGTTGC CCTTTATTCA TTGCATGACC TCTGGCCGGC CGATGTTGCA GAGGCTATGG CCCGGCACGG GATGACACGC TTATATGCTG CACTACATCT CCCCCCTGAA GTAATACTAC CACCTGGTAC ATACCACACA ACTTCATACC TTCTCATCCA CGACGGTGAT CGTGCCGTTG TGACTTACGA GGGTGACACT AGTGCAGGTT ACAACNNNNN TGTCTCCATA CTTCGTGCAT GGATCCGCAC AACCAAGATA GTCGGCGACC ATCCGCTGGT CATAGAGCGT GTGCGGGCTA TTGGCTGCCA TTTTGTGCTG CTGCTTACCG CAGCCCCTGA GCCGTCACCA ATGCCTTATG TCCCATACCC CCGGTCGACA GAGGTGTATG TCCGCTCTAT ATTCGGCCCT GGCGGGTCCC CATCCCTATT CCCATCAGCT TGTTCTACGA AATCTACATT TCACGNNNNN NNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NCAGGCGTTT TGCTGCTCAC GGCTTATGAC CTACCTCCGC GGGATTAGTT ACAAGGTCAC TGTTGGCGCC CTTGTCGCTA ACGAGGGGTG GAATGCTTCG GAGGACGCTC TTACCGCTGT TATTACTGCA GCGTATCTGA CCATCTGCCA TCAGCGTTAC CTCCGCACCC AAGCTATATC CAAGGGTATG CGCCGACTGG AGGTTGAGCA TGCCCAAAAA TTCATTACAA GACTTTATAG TTGGCNNNNN NNNNNNNNNN NNNNNGACTA TATCCCCGGC CGCCAGCTCC AGTTCTATGC ACAGTGCCGC CGCTGGTTAT CGGCGGGTTT CCATCTTGAC CCAAGGGTGC TTGTTTTTGA TGAGTCTGTG CCCTGCCGTT GTAGGACATT CCTTAAGAAG GCTGTGGGTA AGTTCTGTTG TTTTATGAAG TGGTTGGGAC AGGAGTGTAC CTGTTTTTTTG GAACCAGCAG AGGGTCTAGT TGGCGACCAT GGCCACGATA ATGAAGCCTA TGAGGGCTCT GAGGTCGATC AGGCCGAGCC CGCCCATCTC GATGTTTCTG GGACTTATGC TGTCCATGGC CGCCAGCTTG AGGCCCTGTA TAGGGCGCTT AACATCCCGC ATGACANNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNACTTT CCGGACGACG GTGGTTGATG GCGCCCATCT TGAGGTGAAC GGCCCCGAGC AGTACGTTCT TTCGTTTGAC GCCTCTCGCC AGTCTATGGG GGCCGGGCCG CATAGTCTCT CCTACGAGCT CACTCCTGCT GGTTTGCAGG TCAAGATTTC ATCTAATGGC CTGGACTGCA CCGCAACATT TCCCCCGGGC GGGGCCCCTA GCGCCGCTCC GGGGGAGGTA GCAGCCTTTT GCAGTGCCCT TCACAGGTAC AACAGGTTCA CTCAGCGCCA TTCGCTTATA GGTGGCCTGT GGCTGCATCC TGAGGGGTTA TTGGGTATTT TCCCCCCTTT CTCCCCCGGG CACCTTTGGG AGTCTGCCAA CCCTTTTTGT GGAGAGGGAA CCTTGTACAC CCGGACATNN NNNNNNNCTG GTTTTTCTAG TGACTTTTCC CCCCCTGAAG CAGCCGTTGC AGCGCCGGCT GCTACTCCGG GGTTACGCCA CCCCACACCT CCTGTTAGTG ACATTTGGGT GTTACCGCCA CCTTCTGAAG AATTTCAGGT CGATACAGCA CCCGTTCCCC CCGCCCCTGA GCCCGCTCAA CCATCTAGCC CCGCTGGGCC AAAGGCTCCC GTGCGTAAGC CGCCAACGCC ATCACCCCCG CGCACCCGCC GCCTCCTTTA TACCTATCCG GATGGGGCAA AGGTGTATGC GGGGTCACTG TTTGAGTCTG ACTGTGATTG GCTGGTTAAT GCGTCGAATC CCGGCCATCG TCCTGGCGGT GGCCTCTGCC ATGCCTTTTA CCAGCGTTAT CCCGAGTCTT TCCACCCAAC TGAGTTCATT ATGCGCGACG GTCTTGCCGC GTACACTTTA ACTCCCCGGC CTATTATTCA TGCAGTGGCC CCTGATTACA GGGTTGAGCA TAACCCAAAG AGGCTTGAGG CAGCATACCG AGAGACTTGC TCTCGCCGCG GTACCGCCGC CTACCCACTC CTCGGCTCGG GCATATACCA AGTTCCCATC AGCCTCAGCT TTGACGCTTG GGGGCGTAAC CACCGCCCCG GGGACGAGCT CTACTTAACC GATCTCGCCG CTACCTGGTT TGAGGCTAAT AAGCCAACAC AGCCGGCCCT TACAATAACT GAGGATGCAG CCCGCACAGC CAACCTAGCA CTGGAGATCG ATGCTGCTAC GGAAGTTGGC CGGGCTTGTG CCGGCTGTGC AGTTAGTCCT GGGGTTGTGC ACTATCAGTT TACTGCTGGG GTCCCAGGTT CGGGGAAGTC GCGTTCTATA CAGCAGGGAG ATGTTGACGT AGTGGTTGTT CCCACTCGGG AGCTCCGGAA TAGTTGGCGT CGCCGGGGTT TCGCAGCNNN NNNNNNNNNN NNNNNNTAGA TTTCGAGCAC GCCGGCCTGG TCCCCGCAAT ACGCCCTGAG CTTGCGCCCA CCAGTTGGTG GCATGTCACC CATCGCTGCC CCGCTGACGT GTGCGAGCTT ATACGCGGGG CTTACCCCAA AATTCAAACC ACTAGCCGCG TGCTGCGGTC TTTATTCTGG AATGAGCCCG CCATTGGCCA GAAGTTAGTC TTCACACAGG CCGCTAAGGC TGCCAACCCC GGTGCGATCA CAGTCCACGA GGCTCAGGGC GCCACTTTCA CGGAAACTAC AATCATAGCT ACAGCTGATG CCAGGGGGCT CATCCAATCC TCCCGAGCTC ATGCCATAGT TGCACTTACC CGCCATACAG AGAAGTGCGT TATTCTTGAC GCCCCCGGCT TGTTACGTGA GGTTGGTATA TCGGATGTGA TTGTCAACAA TTTTTTCTTC GCCGGCGGGG AGGTGGGTCA CCATCGCCCC TCTGTGATAC

F1-PRE-RBV Consensus sequence

3710	AG	AACCTCGCGA	CACTACAGGC	Стttccacct	tCCTGCCAGA	TTAGCGCCTA
3780	TCACCAGTTA GCTGAGGAAC	TTGGTCACCG	CCCAGCTCCC	GTCGCTGCTG	TTTTGCCCCC	CTGCCCTGAA
3850	CTTGAGCAAG GCTTATTATA	tatgccecag	GAGCTTACGG	tGTCTGATAG	CGTGCTGGTC	tttgaictca
3920	CGGACATAGT CCACTGTCGG	ATGGCTGCCC	CTAGCCAGCG	GAAGGCCGTC	CTATCGACGC	TCGTGGGTAG
3990	GTACGGCCGT CGGACGAAGC	tGTATGAAGC	AGCTCACTCT	GACGTCCGTG	AGTCCCTGGC	tagattcatc
4060	CCCACCATTG GGCCCGTTCA	GGCTACTACG	TGTGAGTTAT	ATGAGCTGGT	TGAGGCCATG	GTGGAGAAAG
4130	GTCAGGATGG CTCTGCCGTG	CTTGAGCTCG	ACCTCTGCAA	TCGTGATGTA	TCGCGTATCA	-
4200	GAAAGATTGC AACAAATTCA	CCACAGGGGA	gaccattgcc	CACGGtaAGG	TCGGCCAGGG	catctcgeca
4270	TGGAGTAAGA CCTTCTGTGC	CCTGTTTGGC	CCGTGGTTTC	GTGCTATTGA	AAAAGAAATA	CTAGCCCTGC
4340	TCCCGTCTAA TATCTTCTAC	GGCGACGCAT	ACGAGGAGTC	TGTGTTTGCC	GCCGCTGTGT	CAGGGGCAGG
4410	tCCAAGCATG GTATTTGAGA	ATGATtTTTC	AGAGTtTGAC	agcacccaga	ATAACTTTTC	CCTTGGCCTT
4480	GAGTGCGTAG TTATGGAGGA	ATGTGGCATG	CCCCAGTGGC	TAATCCGGTT	GTACCATTTG	GTTCGGTCGG
4550	CCTGGATCCT ACAGGCGCCG	AAGGAGTCTC	tTAAGGGATT	tTGGAAGAAG	CATTCTGGTG	AGCCCGGCAC
4620	CCTCCTCTGG AACACTGTTT	GGAATATGGC	gatcatagca	CACTGCTATG	AATtTCGTGA	TCTTAGGGTC
4690	GCCGCTTTCA AGGGTGATGA	TTCCGTGGTC	ctttgtagcg	actaccetca	gagccgcait	GCAGCGGCCT
4760	TGATTGCAGG TTGCGGGCTC	AAACTGAAGG	ttgattatcg	CCCTATTGGG	tTGTATGCTG	GTGTGGTGGT
4830	GGCCCCTGGT CTGGGGACGC	TACCCGATGT	GGTGCGCTTT	GCTGGCCGGC	TGTCTGAGAA	GAACTGGGGC
4900	CCTGGGCCGG AGCGGGCTGA	GCAGTTGCGC	CTAGCTGTTT	GTGACTTCCT	TCGAGGGTTA	ACGAATGTTG
4970	CGCAGGTATG TGTCGATGTT	gtatcccgag	tTtatgGagt	TAGCCCTGGG	tTGGTACATA	ACCtTATTGG
5040	CATGTTGCAA ACCGTAGCTG	ATGGCAAAGC	CCATTTTACA	GAGACTGTTA	AACCTGTGCT	TGACCTCACG
5110	AACTCTATCA TACAGCGGGT	GNNNNNNNNN	NNNNNNNNNN	NNNNNNNNNN	NNNNNNNNNN	N
5180	NNNNNNNNNN NNNNNNNNNN	NNNNNNNNTT	CTGCCTATGC	tGCCCGCGCC	ACCGGCCGGC	Cagccgtcta
5250	GCCGTCGTCG TGGGCGGCGC	AGCGGCGGTG	CCGGCAGTGG	TTTCTGGGGT	GACAGGGTTG	ATTCTCAGCC
5320	CTTCGCCCTC CCCTATATTC	ACCCAACCAA	CCCCTTTGCC	GCCGACGTCG	TACCGCAACC	CGGGGCTGGA
5390	GCTCGCCCTC GACAGCCACC	CCGTCCCCTC	GGCTCCTCTT	gGcgtgacca	gTCCCAGCGC	ccctccgetg
5460	CCCCACGTCG TCGATCTGCC	CCAGCTGGGG	CTGCGCCGCT	gactaccata	tCACCTGCTC	ccgatacagc
5530	CCCTGTGCCT GATGTTGATT	CGCGTGGCGC	CATATTGCGG	cgCCagtaca	atteatccac	ATCCCCGCTC
5600	ACATCATCTG TTGCTTCGGG	CACtAATCTG	GTtCTtTATG	CTGCCCCGCT	AAACCCCTTG	CTGCCCCTTC
5670	AGGATGGTAC TAACACTCAC	ATCATGGCTA	CTGAGGCATC	taAttatgci	CAGTATCGGG	ttgitcgagc
5740	TACGATCCGT TATAGGCCAT	TGGTGCCAAA	tGCTGTCGGC	GGTTATGCGA	tatccatcta	ATTTTGGCCT
5810	CAGACTACTA CCACCCCCAC	GTCTGTTGAT	ATGAACTCTA	tTACtTCCAC	tGatgttag	Attttagttc
5880	AGCCTGGCAT TGCTTCTGAG	TTGGttatcC	CCAGTGAGCG	CCTCCATTAT	cgtaaccaig	GTTGGCGCTC
5950	tGtagagacc tcgeccgigg	CTGAGGAGGA	gGctactict	GGNNNNNNN	NNNNNNNNNN	NnNnNNCTCC
6020	CTGTtAATT CCTACACCAA	taccccctat	ACCGGGGCGC	TTGGACTCCT	tGATtTCGCT	Ttagagctig
6090	AGTTTAGGAA TCTGACACCC	GGGAATACCA	ACACCCGTGT	GTCCCGGTAT	ACAAGCACAG	cccetcatcg
6160	GTTGCGCCGC GGTGCTGACG	gcaccgccga	acttaccacc	acagcgecca	cgcgcticat	gatg ${ }^{\text {actig }}$
6230	CACTTCACCG GTACGAATGG	GGTCGGTGAG	GTGGGTCGTG	GTATTGCTCT	CACACTTTTT	AATCTTGCTG
6300	ACACGCTTCT CGGTGGTTTG	CCGACAGAAT	taAtttcgic	GGCTGGGNNN	NNNNNNNNNN	NNNNNNNNN
6370	NNNNNNNNNN NNNNNNNNNN	nnnnnnnnnn	NnNnNNNNNN	NnNNNNNNNN	nNnNnNNNNN	nnnnnnnnnn
6440	NNNNNNNNNN NNNNNNNNNN	NnNNNNNNNN	NnNnNNNNNN	NNNNNNNNNN	NNNNNNNNNN	NNNNNNNNNN
6510	NNNNNNNNNN NNNNNNNNNN	NNNNNNNNNN	NNNNNNNNCG	CCCTTTtTCG	GTTCTTCGTG	CTAATGATGT
6580	TTTATGGCTT TCCCTTACCG	CTGCCGAGTA	tgatcagact	ACATATGGGT	CGTCCACCAA	cCCAATGTAT
6650	GTCTCAGATA CTGTTACATT	TGTCAATGTG	gCtacaggag	CCCAGGCTGT	TGCCCGTTCC	CTCGACTGGT
6720	CTAAGGTTAC TCTGGATGGC	cgCcCCCtta	ctaccatcca	GCAGTGCTCC	aAAACATTTT	ATGTTCTCCC
6790	GCTTCGCGGG AAATTATCTT	TCTGGGAGGC	CGGGACGACT	AAGGCCGGCT	atccctataa	ttacalcaca
6860	ACTGCTAGTG ATCAGATTCT	GATTGAAAAT	GCGGCTGGTC	ATCGTGTTGC	tatttccacg	tacaccacca
6930	GCTTGGGCGC TGGCCCTGTG	tctatticta	CGGTTGGTGT	tTtGGCCCCA	CATTCGGCCC	tTGCAGTCCT
7000	TGAAGACACT ATTGATTACC	CTGCCCGTGC	ccacacttt	GATGATtTTT	GCCCGGAGTG	tCGCGCTCTT
7070	GGCTTGCAGG GGTGCGCCTT	CCAGTNNNNN	NnNnNNNNNN	NNNNNNNNNN	NNNNNNNNNN	NnNNNNNNNN
7140	NNNNNNNNNN NNNNNNNNNN	NNNNNNNNNN	NNNNNNNNN	NNNNNNNNN	NNNNNNNNNN	NNNNNNNNN
7210						

F2-PRE-RBV

File name	F2-PRE-RBV.sam
Ref name	FJ705359.1
Ref lenth	$\mathbf{7 2 3 7}$
Program used	Tanoti Assembler 1.0
Total reads	$\mathbf{7 1 0 1 3}$
Mapped reads	$\mathbf{7 1 0 1 3}(100.00 \%)$
Average read length	$149 n t$
Coverage	$6776 n t(93.63 \%)$
Average depth	1461 reads/site

F2-PRE-RBV Consensus sequence

NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNG CTGCTCTGGC TGCGGCTAAC TCCGCCTTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTGT CCCGTGTTCA GACTGACATT CTCATCAATT TGATGCAACC CCGGCAGCTC GTTTTCCGAC CTGAAGTTTT GTGGAATCAC CCGATCCAGC GAGTTATACA CAATGAGCTT GAGCAGTACT GCCGTGCCCG CGCCGGTCGC TGCCTGGAGG TCGGGGCTCA TCCGAGATCC ATTAATGACA ACCCTAACGT CCTGCACCGG TGTTTCCTTC GCCCGGTCGG GAGAGATGTT CAGCGCTGGT ATTCTGCTCC TACTCGCGGC CCTGCGGCTA ACTGCCGCCG TTCTGCTTTG CGTGGTCTCC CCCCCGCTGA TCGTACCTAT TGTTTTGATG GGTTCTCCCG CTGCTCATTT GCCGCAGAAA CTGGGGTTGC CCTCTATTCT CTGCATGACC TCTGGCCGGC CGATGTTGCG GAGGCTATGG CCCGACACGG GATGACACGC TTGTATGCTG CACTACATCT CCCCCCCGAA GTACTACTAC CACCTGGTAC CTACCACACA ACCTCATACC TTCTGATTCA CGACGGTGAT CGTGCTGTTG TGACCTATGA AGGTGATACT AGTGCAGGTT ACAACCATGA TGTTTCCATA CTTCGTGCAT GGATCCGCAC AACTAAGATA GTTGGCGATC ATCCGCTGGT GATAGAGCGT GTGCGGGCTA TTGGCTGCCA TTTTGTGCTG CTGCTTACTG CAGCCCCTGA GCCGTCACCA ATGCCTTATG TCCCATATCC CCGGTCGACA GAGGTGTATG TCCGCTCTAT ATTCGGTCCT GGCGGGTCCC CATCCCTATT CCCATCTGCC TGCTCTACGA AATCTACATT TCACGCTGTC CCGGTTCATA TCTGGGACCG GCTCATGCTT TTTGGCGCCA CTCTGGATGA TCAGGCGTTT TGCTGCTCAC GGCTTATGAC CTACCTCCGC GGGATTAGTT ATAAGGTCAC TGTTGGCGCC CTTGTCGCTA ACGAGGGGTG GAATGCTTCG GAGGACGCTC TTACCGCTGT TATTACTGCA GCGTATCTGA CCATCTGCCA TCAGCGTTAC CTCCGCACCC AAGCTATATC CAAGGGCATG CGCCGACTGG AGGTTGAACA TGCTCAGAAA TTCATCACAA GACTCTATAG TTGGTTGTTT GAGAAGTCCG GCCGCGACTA CATCCCCGGC CGTCAGCTCC AGTTTTATGC ACAGTGCCGC CGTTGGCTGT CGGCAGGTTT TCATCTTGAC CCAAGAGTGC TTGTCTTCGA TGAGTCTGTA CCCTGCCGCT GCAGGACGTT TCTTAAGAAG GCTGTGGGTA AGTTCTGTTG TTTTATGAAG TGGTTGGGAC AGGAGTGTAC CTGTTTTTTG GAACCAGCAG AGGGTCTAGT TGGCGACCAT GGCCACGATA ATGAAGCCTA TGAGGGCTCT GAGGTCGATC AGGCCGAGCC CGCCCATCTC GATGTTTCTG GGACTTATGC TGTCCATGGG CGCCAGCTTG AGGCCTTGTA CAGGGCGCTC AACATCCCAC ATGACNNNNN NNNNNNNNNN NNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNGGATG GCGCTCACCT CGAGTCTAAC GGCCCTGAGC AAGCGATGGG GGCTGGGCCG CATAGTCTTA CATATGAGCT ATCTAATGGC CTGGATTGCA CTGCAACATT CCCTCCGGGT GCAGCCTTTT GCAGTGCCCT CTACAGGTAC AACAGGTTCA CTCAGCGCCA CTCGCTGACC GGCGGGCTGT GGCTGCACCC TGAGGGGCTG GTCGGCATTT TCCCCCCCTT TTCCCCCGGG CATGTCTGGG AGTCCGCAAA TCCTTTTTGC GGTGAGGGCA CCCTGTACAC CCGGACTTGG CCCCCTGAGG CAGCTNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN GCCCGCTCAA CCATCCAGCC CTGTTGGGCC GAAGGCTCCC CGCACCCGCC GCCTTCTTTA CACCTATCCG GATGGGGCAA ACTGTGATTG GCTGGTTAAT GCGTCAAATC CTGGCCATCG CCAACGCTAC CCCGAGTCTT TCCATTCAAC TGAGTTCATT ACTCCCCGGC CTATTATTCA TGCAGTGGCC CCTGATTACA NNNNNNNNCG AGATACTTGT TCTCGCCGCG GTACCGCCGC AGTTCCCGTC AGCCTCAGCT TTGACGCTTG GGAGCGTAAC GACCTCGCAG CTACCTGGTT CGAGGCTAAC AAACCAACAC CCCGTACGGC TAACCTAGCA CTAGAGATCG ATGCTGCTAC GGAGGTGGGC CGTGCTTGTA CCGGCTGTAC TGTTAGCCCT GGCGTTGTCC ATTATCAGTT TACTGCCGGG GTGCCAGGTT CGGGGAAGTC GCGGTCTATA CAGCAGGGGG ATGTCGATGT TGTGGTTGTT CCTACCCGGG AGCTCCGGAA TAGTTGGCGC CGCCGGGGTT TTGCAGCTTT TACACCTCAT ACGGCGGCCC GCGTCACTGC CGGCCGACGT GTTGTGATTG ATGAGGCCCC TTCGCTTCCA CCACATTTGC TGCTGCTTCA CATGCAGCGG GCCTCGTCGG TCCACCTTCT CGGCGACCCA AACCAGATCC CTGCCATAGA CTTCGAGCAT GCCGGCCTGG TCCCCGCAAT ACGCCCTGAG CTTGCGCCCA CCAGTTGGTG GCATGTCACC CATCGCTGCC CCGCTGATGT GTGCGAGCTT ATTCGCGGGG CTTATCCCAA GATCCAAACC ACCAGCCGTG TGCTGCGGTC TTTATTCTGG AATGAGCCTG CCATTGGCCA GAAGTTAGTC TTTACGCAGG CTGCTAAGGC TGCTAACCCC GGTGCGATTA CAGTTCATGA GGCCCAGGGT GCCACTTTCA CTGAAACTAC AATCATAGCC ACAGCTGATG CTAGGGGGCT CATCCAATCT TCCCGAGCTC ATGCCATAGT TGCACTCACC CGCCACACAG AAAAATGCGT CATTCTTGAC GCCCCTGGCC TGTTACGTGA GGTTGGTATT TCTGATATAA TTGTTAACAA TTTTTTCCTT GCCGGCGGGG AGGTGGGCCA CCATCGCCCT TCCGTGATAC

F2-PRE-RBV Consensus sequence

3710	CCCGCGGTAA TCCTGACCAG	AATCTCGCGA	CACTTCAGGC	CTTTCCACCT	TCCTGCCAGA	TTAGCGCCTA
3780	TCACCAGTTA	GCTGAGGAAC	TTGGTCACCG	CCCAGCTCCC	GTCGCTGCTG	TTTTGCCCCC

G1-PRE-RBV

File name	G1-PRE-RBV.sam
Ref name	FJ705359.1
Ref length	$\mathbf{7} 237 \mathrm{nt}$
Program used	Tanoti Assembler 1.0
Total reads	25373167
Mapped reads	25373167 (100.00\%)
Average read length	$138 n t$
Coverage	$7225 n t$ (99.83\%)
Average depth	480380 reads/site

G1-PRE-RBV Consensus sequence

GCAGACCACG TATGTGGTCG ATGCCATGGA GGCCCACCAG TTCATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAT TCTGCCCTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTAT CTCGTGTGCA AACTGAGATT CTTATTAATT TGATGCAACC CCGGCAGTTG GTTTTTCGAC CTGAAGTGCT CTGGAATCAT CCTATCCAAC GGGTTATCCA TAATGAACTT GAACAGTACT GTCGGGCCCG GGCTGGTCGC TGTTTAGAGG TTGGGGCCCA CCCAAGATCT ATTAATGACA ATCCAAATGT TCTGCACCGG TGCTTTCTAC GACCAGTTGG GAGAGATGTT CAGCGCTGGT ACTCTGCTCC TACCCGTGGC CCCGCGGCTA ACTGCCGCCG TTCTGCCTTG CGTGGTCTTC CCCCTGTTGA TCGCACCTAC TGTTTTGATG GATTCTCCCG CTGCTCATTT GCTGCAGAAA CTGGGGTTGC CCTTTATTCT CTGCATGACC TCTGGCCGGC CGATGTTGCG GAGGCTATGG CCCGACACGG GATGACACGC CTGTATGCTG CACTACATCT CCCCCCTGAG GTACTATTAC CACCCGGTAC TTACCATACA ACTTCATACC TTCTGATTCA CGACGGTAAT CGTGCTGTTG TGACCTATGA AGGTGATACT AGTGCAGGCT ACAACCATGA TGTTTCCATA CTCCGTGCAT GGATCCGCAC AACTAAGATA ACCGGCGATC ATCCGCTGGT GATAGAGCGT GTGCGGGCTA TTGGCTGCCA TTTTGTGCTG CTGCTTACTG CAGCCCCTGA GCCGTCACCA ATGCCTTATG TTCCATACCC CCGGTCGACA GAGGTGTACG TCCGCTCTAT ATTCGGCCCT GGCGGGTCCC CATCCCTATT CCCATCAGCT TGCTCTACGA AATCCACATT TCACGCTGTC CCGGTTCATA TTTGGGACCG GCTCATGCTT TTTGGCGCTA CTCTGGATGA TCAGGCGTTT TGCTGTTCAC GGCTTATGAC CTATCTCCGC GGGATTAGTT ACAAGGTCAC TGTTGGCGCT CTTGTCGCTA ATGAGGGGTG GAATGCTTCG GAGGACGCTC TTACCGCTGT TATTACTGCA GCGTATTTAA CCATTTGCCA TCAGCGTTAT CTCCGTACTC AAGCTATATC CAAGGGTATG CGCCGACTAG AGGTTGAGCA CGCCCAAAAA TTTATTACAA GACTCTATAG TTGGCTGTTC GAGAAGTCCG GCCGTGACTA TATCCCCGGC CGCCAGCTCC AGTTTTATGC ACAGTGCCGC CGTTGGTTAT CGGCGGGTTT TCATCTTGAC CCAAGGGTGC TTGTTTTTGA TGAGTCTGTG CCCTGCCGTT GTAGGACATT TCTTAAGAAG GCTGTGGGTA AGTTCTGCTG TTTTATGAAG TGGTTGGGGC AGGAGTGCAC CTGCTTTTTG GAACCAGCAG AGGGTCTAGT TGGCGACCAT GGCCACGATA ATGAGGCCTA TGAGGGCTCT GAGGTCGATC AGGCCGAGCC CGCCCATCTT GATGTTTCTG GGACTTATGC TGTCCACGGC CGCCAACTTG AGGCCCTGTA TAGGGCGCTT AACATCCCGC ATGACATCGC TGCCCGAGCC TCTCGTCTGA CCGCCACCGT CGAACTTGTT GCAGGTCCAG ACCGTCTGGA GTGCCGCACT GTGCTCGGGA ACAAGACTTT CCGGACGACG GTGGTTGATG GCGCCCATCT TGAGGCGAAC GGCCCCGAGC AGTACGTTCT TTCGTTTGAC GCCTCTCGCC AGTCCATGGG GGCTGGGCCG CATAGTCTCT CCTACGAGCT CACTCCTGCC GGTTTGCAGG TCAAGATTTC ATCTAATGGC CTGGATTGCA CTGCAACATT CCCCCCGGGC GGGGCTCCTA GCGCAGCTCC GGGGGAGGTA GCAGCCTTCT GCAGTGCCCT TTACAGGTAC AACAGGTTCA CTCAGCGCCA CTCGCTTATA GGCGGCCTGT GGCTGCATCC TGAGGGGTTG TTGGGTATCT TCCCCCCTTT CTCCCCCGGG CACCTTTGGG AGTCCGCTAA CCCGTTTTGT GGGGAGGGAA CCTTGTACAC CCGGACATGG TCAACATCCG GTTTTTCTAG TGACTTTTCC CCCCCCGAGG CAGCCGTCGC AACGCCGGCT GCTGCCCCGG AGCTACGCCA CCCTACACCC CCTGTTAGTG ACATTTGGGT GCTACCGCCA CCTTCTGAAG AATTTCAGGT TGATACAGCG CTCGCTACCC CTGCTCCTGA GCCCGCTCAG CCATCCAGCC CCGCTGGGCC AAAGGCTCCC GTGCGTAAGC CGCCAATGCC ACCACCCCCG CGCACCCGCC GACTTCTTTA CACCTACCCG GATGGGGCAA AGGTGTATGC GGGGTCACTG TTTGAGTCTG ACTGTGATTG GCTGGTTAAT GCGTCGAATC CCGGCCATCG TCCTGGAGGC GGCCTTTGCC ATGCCTTCTA TCAACGCTAC CCTGAGTCTT TCCACCCAAC TGAGTTCATT ATGCGCGACG GTCTTGCCGC GTACACTTTG ACTCCCCGGC CTATTATTCA TGCAGTGGCT CCTGACTATA GGGTTGAGCA TAACCCAAAG AGGCTTGAGG CAGCATACCG AGAGACTTGC TCTCGCCGCG GTACCGCCGC CTATCCACTC CTCGGCTCGG GCATATACCA AGTTCCTGTT AGCCTCAGCT TTGACGCATG GGAGCGTAAC CACCGCCCCG GGGATGAGCT CTACCTAACC GACCTCGCCG CTACCTGGTT CGAGGCTAAT AAGCCAGCAC AGCCGGCCCT CACAATAACT GAGGATGCAG CCCGTACAGC CAACCTAGCA CTAGAGATCG ATGCTGCTAC GGAGGTTGGC CGGGCTTGTG CCGGCTGCGT AGTTAGTCCT GGGGTTGTGC ACTATCAGTT TACTGCTGGG GTCCCAGGTT CGGGGAAGTC ACGTTCTATA CAGCAGGGGG ATGTTGACGT AGTGGTTGTT CCCACTCGGG AGCTCCGGAA TAGTTGGCGC CGCCGGGGTT TCGCGGCTTT TACACCTCAT ACGGCGGCCC GCGTTACCAC GGGCCGCCGT GTTGTGATTG ACGAGGCCCC ATCCCTCCCA CCGCATTTGT TGCTACTACA CATGCAGCGG GCCTCGTCGG TCCACCTTCT CGGCGACCCA AACCAGATCC CTGCCATAGA TTTCGAGCAT GCCGGCCTGG TCCCCGCAAT ACGCCCTGAA CTTGCGCCCA CCAGTTGGTG GCATGTTACC CATCGCTGCC CCGCTGACGT GTGCGAGCTT ATACGCGGGG CTTATCCTAA AATTCAAACT ACTAGCCGCG TACTGCGGTC TTTATTCTGG AATGAGCCTG CCATTGGCCA GAAGTTAGTT TTCACCCAGG CTGCTAAGGC TGCCAATCCC GGTGCGATTA CAGTCCACGA AGCCCAGGGC GCCACTTTCA CGGAAACTAC AATCATAGCC ACGGCTGATG CTAGGGGGCT CATCCAATCT TCCCGAGCCC ATGCCATAGT CGCACTTACC CGCCACACAG AGAAGTGCGT TATTCTTGAT GCCCCCGGCT TGTTACGTGA GGTCGGTATA TCGGATGTGA TTGTCAACAA TTTTTTCCTC GCCGGCGGGG AGGTGGGTCA CCATCGCCCC TCTGTGATAC

G1-PRE-RBV Consensus sequence

3710
3780
3850
3920
3990
4060
4130
4200
4270
4340
4410
4480
4550
4620
4690
4760
4830
4900
4970
5040
5110
5180
5250
5320
5390
5460
5530
5600
5670
5740
5810
5880
5950
6020
6090
6160
6230
6300
6370
6440
6510
6580
6650
6720
6790
6860
6930
7000
7070
7140
7210

CTCGCGGCAA TCCTGACCAG AACCTCGCAA CACTACAGGC CTTTCCACCT TCCTGCCAGA TTAGTGCCTA TCACCAGCTG GCTGAGGAAC TTGGCCACCG CCCAGCACCC GTCGCTGCTG TCTTACCTCC CTGCCCTGAA CTTGAGCAGG GCTTGCTATA TATGCCCCAG GAGCTTACGG TGTCTGATAG CGTGCTGGTC TTTGAACTCA CGGACATAGT CCACTGCCGG ATGGCCGCCC CCAGCCAGCG GAAGGCCGTC CTGTCGACGC TCGTGGGTAG GTACGGCCGT CGGACGAAGC TGTATGAAGC AGCTCACTCT GACGTCCGTG AGTCCCTGGC TAGATTCATC CCCACCATTG GGCCCGTTCG GGCTACTACG TGTGAGTTAT ATGAGCTGGT TGAGGCCATG GTGGAGAAAG GTCAGGATGG CTCTGCCGTG CTTGAGCTCG ACCTCTGCAA TCGTGATGTA TCGCGCATCA CATTTTTCCA GAAAGATTGT AACAAATTCA CCACAGGGGA GACCATTGCC CATGGTAAGG TCGGCCAGGG CATCTCGGCT TGGAGTAAGA CCTTCTGTGC CCTGTTCGGT CCGTGGTTCC GTGCTATTGA GAAAGAAATA CTAGCCCTGC TCCCGCCTAA CATCTTCTAC GGTGACGCAT ATGAGGAGTC TGTGTTTGCC GCCGCTGTGT CAGGGGCAGG TTCAAGCATG GTATTTGAGA ATGATTTTTC AGAGTTTGAT AGCACCCAAA ATAACTTCTC CCTTGGTCTC GAGTGTGTAG TTATGGAAGA GTGTGGCATG CCCCAGTGGC TAATCCGGCT GTACCATTTG GTCCGGTCGG CCTGGATTCT ACAGGCGCCG AAGGAGTCTC TTAAGGGATT TTGGAAGAAG CATTCTGGCG AGCCCGGTAC CCTCCTCTGG AACACCGTTT GGAACATGGC GATCATAGCA CACTGCTATG AATTTCGTGA TTTTAGGGTT GCCGCTTTCA AGGGGGATGA TTCCGTGGTC CTCTGTAGTG ACTACCGTCA GAGCCGCAAT GCAGCGGCCC TGATTGCAGG TTGCGGGCTC AAGCTGAAGG TTGATTATCG CCCCATTGGG TTGTATGCTG GTGTGGTGGT GGCCCCTGGT CTGGGGACGC TACCCGATGT GGTGCGCTTC GCCGGCCGGC TGTCTGAGAA GAACTGGGGC CCTGGGCCGG AGCGAGCTGA GCAGTTGCGC TTAGCTGTTT GTGACTTTCT TCGAGGGTTA ACGAATGTTG CGCAGGTATG TGTTGATGTT GTATCTCGAG TTTACGGAGT TAGCCCTGGG CTGGTACATA ACCTTATTGG CATGTTGCAA ACCATAGCTG ATGGCAAAGC CCATTTTACA GAGACTGTTA AACCTGTGCT TGACCTCACG AACTCTATCA TACAGCGGGT GGAATGAATA ACATGTCTTG TGCATCGCCC ATGGGATCAC CATGCGCCCT AGGGCTGTTT TGTTGCTGTT CTTCGTGCTT CTGCCTATGC TGCCCGCGCC ACCGGCCGGC CAGCCGTCTG GCCGCCGTCG TGGGCGGCGC AGCGGCGGTA CCGGCAGTGG TTTCTGGGGT GACAGGGTTG ATTCTCAGCC CTTCGCCCTC CCCTATATTC ATCCAACCAA CCCCTTTGCC GCCGATGTCA CACCGCAATC CGGGGCTGGA GCTCGCCCTC GACAGCCACC CCGCCCCCTT GGCTCCTCTT GGCGCGATCA GTCCCAGCGC CCCCCCGCTG TCCCACGTCG TCGATCTGCC CCAGCTGGGG CTGCGCCGCT GACTGCCGTA TCACCCGCTC CCGATACAGC TCCTGTACCT GATGTCGACT CGCGTGGCGC TATATTGCGA CGCCAGTACA ATTTATCCAC ATCCCCGCTC ACATCATCTG TTGCTTCGGG TACTAATCTG GTTCTTTATG CTGCCCCGCT AAACCCTTTG CTGCCCCTTC AGGATGGTAC TAACACTCAT ATCATGGCCA CTGAGGCATC TAATTATGCC CAGTATCGGG TTGTCCGAGC TACGATCCGT TATAGGCCAT TGGTACCAAA TGCTGTCGGC GGCTATGCAA TATCCATCTC ATTCTGGCCT CAGACTACTA CTACCCCCAC GTCTGTTGAT ATGAACTCTA TTACTTCCAC TGATGTTAGG ATTCTAGTTC AGCCCGGTAT TGCTTCTGAG TTGGTTATCC CTAGTGAGCG CCTCCATTAT CGTAACCAGG GCTGGCGCTC TGTGGAGACC TCGGGTGTGG CTGAAGAGGA GGCCACTTCT GGTCTGGTAA TGCTTTGTAT CCATGGTTCT CCTGTCAATT CCTACACCAA TACCCCCTAT ACCGGGGCGC TTGGACTCCT TGACTTCGCT TTAGAGCTCG AGTTTAGGAA CCTGACACCC GGGAACACTA ACACCCGTGT GTCCCGGTAT ACAAGCACAG CCCGTCATCG GCTGCGCCGC GGTGCCGACG GCACCGCCGA ACTTACCACC ACAGCGGCCA CGCGCTTCAT GAAGGACCTG CACTTCACCG GTACGAATGG TGTCGGTGAG GTGGGTCGTG GTATTGCTCT CACACTCTTT AATCTTGCTG ATACGCTTCT CGGTGGTTTG CCGACAGAAT TAATTTCGTC GGCTGGGGGA CAGTTATTCT ACTCCCGCCC CGTCGTCTCA GCCAATGGCG AGCCGACTGT CAAGTTATAT ACATCTGTAG AGAATGCGCA GCAGGACAAA GGGATCGCTA TCCCACATGA TATAGATCTG GGTGACTCCC GTGTGGTCAT CCAAGACTAT GACAACCAGC ATGAGCAGGA TCGACCCACC CCTTCGCCTG CCCCTTCTCG CCCTTTTTCG GTTCTTCGCG CTAATGATGT TCTATGGCTT TCTCTTACCG CCGCTGAGTA CGACCAGACC ACATATGGGT CGTCCACTAA CCCGATGTAT GTCTCGGATA CTGTCACATT TGTCAATGTG GCTACAGGAG CCCAGGCTGT CGCCCGTTCC CTCGACTGGT CTAAAGTTAC TTTGGACGGC CGCCCTCTTA CTACTATCCA GCAGTACTCC AAAACATTTT ATGTTCTCCC GCTTCGCGGG AAGTTATCCT TTTGGGAGGC CGGGACGGCT AAGGCCGGCT ACCCCTACAA TTACAACACA ACTGCTAGTG ATCAGATTCT GATCGAAAAT GCGGCTGGTC ATCGTGTTGC TATTTCTACG TACACCACCA GCTTGGGCGC TGGCCCTGTG TCTGTTTCTG CAGTTGGTGT TTTAGCCCCA CATTCGGCTC TTGCAGTCCT TGAAGACACT ACTGACTACC CTGCCCGTGC CCACACTTTT GATGATTTTT GCCCGGAGTG CCGCACTCTT GGTTTGCAGG GGTGTGCCTT CCAGTCTACT ATTGCTGAGC TTCAGCGTCT TAAAATGAAG GTAGGTAAAA CCCGGGAGTT TTAATCAATT TCCTTTGTGC CCCCTTCATA GCTTTGCTTT ATTTCTTTTT TTCTGCGGTT CGCGCTCCCT GGAAANNNNN NNNNNNN

H1-PRE-RBV

File name	H1-PRE-RBV.sam
Ref name	FJ705359.1
Ref length	7237 nt
Program used	Tanoti Assembler 1.0
Total reads	933333
Mapped reads	933333 (100.00\%)
Average read length	$137 n t$
Coverage	$7218 n t$ (99.74\%)
Average depth	17548 reads/site

H1-PRE-RBV Consensus sequence

NNNNNNCACG TACGTGGTCG ATGCCATGGA GGCCCATCAG TTCATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAT TCTGCCCTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTAT CTCGTGTGCA AACTGAGATT CTTATTAATT TGATGCAACC CCGGCAGTTG GTTTTTCGAC CTGAAGTGCT CTGGAATCAT CCCATCCAAC GGGTTATCCA TAATGAACTT GAACAGTACT GTCGGGCCCG GGCTGGCCGT TGTTTAGAGG TTGGGGCCCA CCCAAGATCC ATTAATGACA ATCCAAATGT TCTGCACCGG TGCTTCCTAC GACCAGTTGG GAGAGACGTT CAGCGCTGGT ACTCTGCTCC TACTCGTGGC CCCGCGGCTA ACTGCCGCCG TTCTGCCTTG CGTGGCCTCC CCCCTGTTGA TCGTACCTAT TGTTTTGATG GATTCTCCCG TTGTTCATTT GCCGCAGAAA CTGGAGTTGC CCTTTATTCT CTGCATGACC TCTGGCCGGC CGATGTTGCA GAGGCTATGG CCCGACACGG GATGACACGC TTGTATGCTG CACTACATCT CCCCCCTGAA GTACTATTAC CACCCGGTAC TTACCATACA ACTTCATACC TTCTGATTCA CGACGGTGAT CGTGCTGTTG TGACCTATGA AGGCGATACT AGTGCAGGCT ACAACCATGA TGTTTCCATA CTTCGTGCAT GGATCCGCAC AACTAAGATA GTTGGTGATC ATCCGTTGGT GATAGAGCGT GTGCGGGCTA TTGGCTGTCA CTTTGTGCTG CTGCTCACTG CAGCTCCTGA GCCGTCACCA ATGCCTTACG TTCCATACCC CCGGTCGACA GAGGTGTATG TCCGCTCTAT ATTCGGTCCT GGCGGGTCCC CATCCCTATT CCCATCAGCT TGCTCTACGA AATCTACATT TCACGCTGTC CCGGTTCATA TTTGGGACCG GCTCATGCTT TTTGGCGCTA CCCTGGATGA TCAGGCGTTT TGCTGTTCAC GGCTCATGAC CTACCTCCGC GGGATTAGTT ACAAGGTCAC TGTTGGCGCC CTTGTCGCTA ATGAGGGGTG GAATGCTTCG GAGGACGCTC TTACCGCTGT TATTACTGCA GCGTATTTGA CCATTTGCCA TCAGCGTTAC CTCCGCACTC AAGCTATATC CAAGGGTATG CGTCGACTGG AGGTTGAGCA TGCCCAAAAG TTCATTACAA GGCTTTACAG TTGGCTGTTC GAGAAGTCCG GCCGTGACTA TATCCCCGGC CGCCAGCTCC AGTTTTATGC ACAGTGCCGC CGTTGGTTAT CGGCAGGTTT CCATCTTGAT CCAAGGGTGC TTGTTTTTGA TGAGTCTGTG CCCTGCCGTT GTAGGACATT TCTTAAGAAG GCCGCGGGTA AGTTCTGCTG TTTTATGAAG TGGTTGGGAC AGGAGTGCAC CTGCTTTTTG GAACCAGCAG AGGGTCTAGT CGGCGACCAT GGCCACGATA ATGAAGCCTA TGAGGGCTCT GAGGTCGATC AGGCCGAGCC CGCCCATCTC GATGTTTCTG GGACCTATGC CGTCCATGGC CGCCAACTTG AGGCCCTGTA TAGAGCGCTT AACATCCCGC ATGATATCGC TGCCCGAGCC TCCCGTTTGA CTGCCACCGT CGAACTCGTT GCAGGTCCAG ACCGCCTGGA GTGCCGCACT GTGCTCGGGA ACAAGACTTT CCGGACGACG GTGGTTGATG GCGCCCATCT TGAGGCGAAC GGCCCCGAGC AGTACGTTCT TTCGTTTGAC GCCTCTCGCC AGTCCATGGG GGCCGGACCG CATAGTCTCT CCTACGAACT CACTCCTGCT GGTTTGCAGG TCAAGATTTC ATCTAATGGC CTAGATTGCA CTGCAATATT CCCCCCGGGC GGGGCCCCTA GCGCCGCTCC GGGGGAGGTA GCAGCCTTTT GCAGTGCCCT TTACAGGTAC AACAGGTTCA CTCAGCACCA TTCGCTCATA GGTGGCCTGT GGCTGCATCC TGAGGGGTTG TTGGGTATCT TCCCCCCTTT CTCTCCCGGG CACCTCTGGG AGTCCGCTAA CCCTTTTTGT GGGGAGGGAA CTTTGTATAC CCGGACATGG TCAACATCTG GTTTTTCTAG TGACTTCTCC CCCCCTGAGG CAGCCGCCGC AGCGCCGGCT GCTGCCCCGG GGCTGCGCCA CCCTACACCT CCTGTCAGTG ACATTCGGGT GCTACCGCCA CCCTCTGAAG AATTTCAGGT TGACACAGCG CCCGCTCTCC CTGCCCCTGA GCCCGCTCAA CCATCTAACC CCGCTGGGCC AAAGGCTCCC GTGCGTAAGC CACTAATGCC ACCATCCCCG CGCACCCGTC GCCTTCTTTA CACCTATCCG GATGGGGCAA AGGTGTATGC GGGATCACTG TTTGAGTCTG ATTGTGACTG GCTGGTTAAT GCGTCGAATC CCGGCCATCG CCCTGGAGGC GGCCTTTGCC ACGCCTTCTA CCAACGTTAT CCTGAGTCTT TCCACTCAAC TGAGTTCATT ATGCGCGACG GTCTTGCCGC GTACACTCTA ACTCCCCGGC CTATTATTCA TGCAGTGGCT CCTGATTATA GGGTTGAGCA TAACCCAAAG AGGCTTGAGG CGGCATACCG AGAGACTTGC TCTCGCCGCG GTACCGCCGC CTACCCACTC CTCGGCTCGG GCATATACCA AGTTCCTGTT AGCCTCAGCT TTGACGCATG GGAGCGTAAC CATCGCCCCG GGGATGAGCT CTACTTACCC GACCCCGCCG CCACCTGGTT CGAGGCTAAT AAGCCAACAC AGCCGGCCCT CACAATAACT GAGGATGCAG CCCGCACAGC CAACCTAGCA CTGGAGATCG ATGCTGCCAC GGAGGTCGGC CGGGCTTGTG CCGGCTGCGC AATTAGCCCT GGGGTTGTGC ACTATCAGTT TACCGCTGGG GTCCCAGGTT CGGGGAAGTC GCGTTCTATA CAGCAGGGGG ATGTTGACGT AGTGGTTGTT CCCACTCGAG AGCTCCGGAA TAGTTGGCGT CGCCGGGGTT TTGCGGCTTT TACACCTCAT ACGGCGGCCC GTGTCACCAC AGGCCGTCGT GTTGTGATTG ATGAGGCCCC ATCCCTTCCA CCGCATTTGT TGTTACTACA CATGCAGCGG GCCTCGTCGG TCCACCTTCT CGGCGACCCA AACCAGATCC CTGCCATAGA CTTCGAGCAT GCCGGCCTGG TCCCCGCAAT ACGCCCTGAG CTTGCGCCCA CCAGTTGGTG GCATGTTACC CATCGCTGCC CCGCTGACGT GTGCGAGCTT ATACGCGGGG CATATCCCAA AATCCAAACC ACTAGCCGCG TGCTGCGGTC TTTATTCTGG AATGAGCCTG CCATCGGCCA AAAGTTAGTT TTCACCCAGG CTGCTAAGGC TGCCAACCCC GGTGCGATTA CAGTCCACGA GGCCCAGGGC GCCACTTTCA CGGAAACTAC AATCATAGCC ACGGCTGATG CTAGGGGGCT CATCCAATCT TCCCGAGCTC ATGCCATAGT CGCACTAACC CGCCACACAG AGAAGTGCGT TATTCTTGAT GCCCCCGGCT TGCTACGTGA GGTCGGTATA TCGGATGTGA TTGTCAACAA TTTTTTCCTC GCCGGCGGGG AGGTAGGTCA CCACCGCCCC TCTGTGATAC

H1-PRE-RBV Consensus sequence

3710
3780
3850
3920
3990
4060
4130
4200
4270
4340
4410
4480
4550
4620
4690
4760
4830

4900

4970

5040

5110

5180

5250

5320
5390
5460

5530

5600

5670

5740

5810
5880
5950
6020
6090
6160

6230

6300
6370
6440
6510
6580
6650
6720
6790

6860

6930

7000

7070
7140
7210

CTCGCGGTAA TCCTGACCAG AACCTCGCGA CACTACAGGC CTTTCCACCT TCTTGTCAGA TTAGTGCCTA TCACCAGTTG GCTGAGGAAC TTGGCCACCG CCCAGCACCC GTTGCCGCTG TCTTGCCCCC TTGCCCTGAA CTTGAGCAGG GCCTGTTATA TATGCCTCAG GAGCTTACGG TGTCTGATAG CGTGCTGGTC TTTGAACTCA CGGACATAGT CCACTGCCGG ATGGCCGCCC CCAGCCAGCG GAAGGCCGTC CTATCGACGC TCGTGGGTAG GTACGGCCGT CGGACTAAGC TGTATGAAGC AGCTCACTCT GACGTCCGTG AGTCCCTGGC TAGATTCATC CCCACCATTG GGCCCGTTCA GGCTACTACG TGTGAGTTAT ATGAGCTGGT TGAGGCCATG GTGGAGAAAG GTCAGGATGG CTCTGCCGTG CTTGAGCTCG ACCTCTGCAA CCGTGATGTA TCGCGTATCA CATTTTTCCA GAAAGATTGT AACAAATTCA CCACAGGGGA GACCATTGCC CACGGTAAGG TCGGCCAGGG CATCTCGGCT TGGAGTAAGA CCTTCTGTGC CCTGTTTGGT CCGTGGTTTC GTGCTATCGA AAAAGAAATA CTAGCCCTGC TCCCGCCTAA TATTTTCTAC GGTGACGCAT ACGAGGAGTC TGTGTTTGCC GCCGCTGTGT CAGGGGCAGG CTCAAGTATG GTATTTGAGA ATGATTTTTC AGAGTTTGAT AGCACCCAAA ATAACTTCTC CCTTGGTCTT GAGTGTGTAG TCATGGAGGA GTGTGGCATG CCCCAGTGGC TAATCCGGTT GTACCATTTG GTCCGGTCGG CCTGGATCCT GCAGGCGCCG AAGGAGTCTC TTAAGGGATT TTGGAAGAAG CATTCTGGTG AGCCTGGCAC CCTTCTCTGG AATACTGTTT GGAATATGGC GATCATAGCA CACTGCTATG AATTCCGCGA TTTTAGGGTT GCCGCTTTCA AGGGAGATGA TTCCGTGGTC CTTTGTAGCG ACTACCGCCA GAGCCGCAAT GCAGCGGCCC TGATTGCAGG TTGCGGGCTC AAATTGAAGG TTGATTATCG CCCCATTGGG TTGTATGCTG GTGTGGTGGT GGCCCCTGGC CTGGGGACGC TACCCGATGT GGTGCGCTTT GCCGGCCGGC TGTCTGAGAA GAATTGGGGC CCTGGGCCGG AGCGGGCTGA GCAGTTGCGC CTAGCAGTTT GTGACTTTCT TCGAGGGTTA ACGAATGTTG CGCAGGTATG TGTGGATGTT GTATCCCGAG TTTACGGAGT TAGCCCTGGG CTGGTACATA ACCTTATTGG CATGTTGCAA ACCATAGCTG ATGGCAAAGC TCATTTTACA GAGACTGTTA AACCTGTGCT TGACCTCACG AACTCTATCA TACAGCGGGT AGAATGAATA ACATGTTTTG TGCATTGCCC ATGGGATCAC CATGCGCCCT AGGGCTGTTC TGTTGCTGTT CTTCGTGCTT CTGCCTATGC TGCCCGCGCC ACCGGCCGGC CAGTCGTCTG GCCGCCGTCG TGGGCGGCGC AGCGGCGGTA CCGGCAGTGG TTTCTGGGGT GACAGGGTTG ATTCTCAGCC CTTCGCCCTC CCCTATATTC ATCCAACCAA CCCCTTTGCC GCCGATGTCG TACCGCAATC CGGGGCTGGA GCTCGCCCTC GACAGCCACC CCGCCCCCTC GGCTCCTCTT GGCGCGATCA GTCCCAGCGC CCCTCCGCTG TCTCACGTCG TCGACCTGCC CCAGCTGGGG CTGCGCCGCT GACTGCCGTA TCACCTGCTC CCGATACAGC TCCTGTACCT GATGTTGACT CGCGCGGCGC CATACTGCGA CGCCAGTACA ATTTATCCAC ATCCCCGCTC ACATCATCTG TTGCCTCAGG TACTAACCTG GTTCTTTATG CTGCCCCGCT GAACCCTTTG CTGCCCCTTC AGGATGGCAC TAACACTCAC ATCATGGCCA CTGAGGCATC TAATTATGCC CAGTATCGGG TTGTCCGAGC TACGATCCGT TACAGGCCAT TGGTGCCAAA TGCTGTCGGC GGCTATGCAA TATCCATCTC ATTCTGGCCT CAGACTACTA CTACCCCCAC GTCTGTTGAT ATGAACTCTA TCACTTCCAC TGATGTTAGG ATTCTAGTTC AGCCCGGTAT TGCTTCTGAG CTGGTCATTC CTAGTGAGCG CCTCCATTAT CGTAACCAGG GCTGGCGCTC TGTGGAGACC TCGGGTGTGG CTGAAGAGGA GGCTACTTCT GGTTTGGTAA TGCTTTGTAT TCATGGCTCC CCTGTTAATT CCTACACCAA TACCCCCTAT ACCGGGGCGC TTGGACTCCT TGATTTCGCT TTGGAGCTTG AGTTTAGGAA CTTGACACCC GGGAACACTA ACACCCGTGT GTCCCGGTAC ACAAGCACAG CCCGTCATCG GCTGCGCCGC GGTGCTGATG GCACTGCCGA ACTTACCACC ACGGCGGCCA CGCGCTTCAT GAAGGACCTG CATTTTACCG GTACGAATGG GGTTGGTGAG GTGGGTCGTG GTATTGCTCT CACACTCTTT AATCTTGCTG ATACGCTTCT CGGTGGCTTG CCGACAGAAT TAATTTCGTC GGCTGGGGGA CAGTTATTCT ACTCCCGCCC CGTCGTCTCA GCCAATGGCG AGCCGACTGT CAAGTTATAT ACATCTGTAG AGAATGCGCA GCAGGATAAA GGGATCGCTA TCCCACATGA CATAGATCTG GGTGACTCCC GTGTGGTCAT CCAAGACTAT GACAACCAGC ATGAGCAAGA TCGACCCACC CCCTCGCCTG CCCCTTCTCG CCCTTTTTCG GTTCTTCGCG CTAATGATGT CCTATGGCTT TCTCTTACTG CCGCTGAGTA CGACCAGACT ACATATGGGT CGTCCACTAA CCCGATGTAT GTCTCTGATA CTGTCACATT TGTCAATGTG GCTACAGGAG CCCAGGCTGT CGCCCGCTCC CTTGACTGGT CTAAAGTTAC TCTGGACGGC CGCCCTCTTA CTACTATCCA GCAATACTCC AAAACATTTT ATGTTCTCCC GCTCCGCGGG AAGTTATCTT TTTGGGAGGC CGGGACGACT AAGGCCGGCT ACCCCTATAA TTACAACACA ACTGCTAGTG ATCAGATTTT GATCGAAAAT GCGGCTGGTC ATCGCGTCGC CATTTCCACC TATACCACTA GCTTGGGCGC CGGCCCTGTG TCTGTTTCTG CAGTCGGTGT TTTAGCCCCA CATTCGGCTC TTGCAGCTCT $\begin{array}{lll}\text { TGAAGACACC ATTGACTACC CTGCCCGTGC CCACACCCTT } & \text { GATGATTCTT GCCCGGAGTG CCGCGCTCTT } \\ \text { GGTTTGCAGG GGTGCGCCTT CCAGTCTACC ATTGCTGAGC } & \text { TTCAGCGTCT CAAAATGAAG GCAGGTAAAA }\end{array}$ CCCGGGAGTT TTAATTAATT TCCTTTGTGC CCCCTTCACA GCTTTGCTTT ATTTCTTCTC TTCTGCGTTT CGCGCTCCCT GGAANNNNNN NNNNNNN

H2-POST-RBV1

File name	H2-POST-RBV1.sam
Ref name	FJ705359.1
Ref length	7237 nt
Program used	Tanoti Assembler 1.0
Total reads	3602560
Mapped reads	$3602560(100.00 \%)$
Average read length	$137 n t$
Coverage	$7224 n t$ (99.82\%)
Average depth	67813 reads/site

H2-POST-RBV1 Consensus sequence

NCAGACCACG TACGTGGTCG ATGCCATGGA GGCCCATCAG TTCATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAT TCTGCCCTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTAT CTCGTGTGCA AACTGAGATT CTTATTAATT TGATGCAACC CCGGCAGTTG GTTTTTCGAC CTGAAGTGCT CTGGAATCAT CCCATCCAAC GGGTTATCCA TAATGAACTT GAACAGTACT GTCGGGCCCG GGCTGGCCGT TGTTTAGAGG TTGGGGCCCA CCCAAGATCC ATTAATGACA ATCCAAATGT TCTGCACCGG TGCTTCCTAC GACCAGTTGG GAGAGACGTT CAGCGCTGGT ACTCTGCTCC TACTCGTGGC CCCGCGGCTA ACTGCCGCCG TTCTGCCTTG CGTGGCCTCC CCCCTGTTGA TCGTACCTAT TGTTTTGATG GATTCTCCCG TTGTTCATTT GCCGCAGAAA CTGGAGTTGC CCTTTATTCT CTGCATGACC TCTGGCCGGC CGATGTTGCA GAGGCTATGG CCCGACACGG GATGACACGC TTGTATGCTG CACTACATCT CCCCCCTGAA GTACTATTAC CACCCGGTAC TTACCATACA ACTTCATACC TTCTGATTCA CGACGGTGAT CGTGCTGTTG TGACCTATGA AGGCGATACT AGTGCAGGCT ACAACCATGA TGTTTCCATA CTTCGTGCAT GGATCCGCAC AACTAAGATA GTTGGTGATC ATCCGTTGGT GATAGAGCGT GTGCGGGCTA TTGGCTGTCA CTTTGTGCTG CTGCTCACTG CAGCTCCTGA GCCGTCACCA ATGCCTTACG TTCCATACCC CCGGTCGACA GAGGTGTATG TCCGCTCTAT ATTCGGTCCT GGCGGGTCCC CATCCCTATT CCCATCAGCT TGCTCTACGA AATCTACATT TCACGCTGTC CCGGTTCATA TTTGGGACCG GCTCATGCTT TTTGGCGCTA CCCTGGATGA TCAGGCGTTT TGCTGTTCAC GGCTCATGAC CTACCTCCGC GGGATTAGTT ACAAGGTCAC TGTTGGCGCC CTTGTCGCTA ATGAGGGGTG GAATGCTTCG GAGGACGCTC TTACCGCTGT TATTACTGCA GCGTATTTGA CCATTTGCCA TCAGCGTTAC CTCCGCACTC AAGCTATATC CAAGGGTATG CGTCGACTGG AGGTTGAGCA TGCCCAAAAG TTCATTACAA GGCTTTACAG TTGGCTGTTC GAGAAGTCTG GCCGTGACTA TATCCCCGGC CGCCAGCTCC AGTTTTATGC ACAGTGCCGC CGTTGGTTAT CGGCAGGTTT CCATCTTGAT CCAAGGGTGC TTGTTTTTGA TGAGTCTGTG CCCTGCCGTT GTAGGACATT TCTTAAGAAG GCCGCGGGTA AGTTCTGCTG TTTTATGAAG TGGTTGGGAC AGGAGTGCAC CTGCTTTTTG GAACCAGCAG AGGGTCTAGT CGGCGACCAT GGCCACGATA ATGAAGCCTA TGAGGGCTCT GAGGTCGATC AGGCCGAGCC CGCCCATCTC GATGTTTCTG GGACCTATGC CGTCCATGGC CGCCAACTTG AGGCCCTGTA TAGAGCGCTT AACATCCCGC ATGATATCGC TGCCCGAGCC TCCCGTTTGA CTGCCACCGT CGAACTCGTT GCAGGTCCAG ACCGCCTGGA GTGCCGCACT GTGCTCGGGA ACAAGACTTT CCGGACGACG GTGGTTGATG GCGCCCATCT TGAGGCGAAC GGCCCCGAGC AGTACGTTCT TTCGTTTGAC GCCTCTCGCC AGTCCATGGG GGCCGGACCG CATAGTCTCT CCTACGAACT CACTCCTGCT GGTTTGCAGG TCAAGATTTC ATCTAATGGC CTAGATTGCA CTGCAATATT CCCCCCGGGC GGGGCCCCTA GCGCCGCTCC GGGGGAGGTA GCAGCCTTTT GCAGTGCCCT TTACAGGTAC AACAGGTTCA CTCAGCACCA TTCGCTCATA GGTGGCCTGT GGCTGCATCC TGAGGGGTTG TTGGGTATCT TCCCCCCTTT CTCTCCCGGG CACCTCTGGG AGTCCGCTAA CCCTTTTTGT GGGGAGGGAA CTTTGTATAC CCGGACATGG TCAACATCTG GTTTTTCTAG TGACTTCTCC CCCCCTGAGG CAGCCGCCGC AGCGCCGGCT GCTGCCCCGG GGCTGCGCCA CCCTACACCT CCTGTCAGTG ACATTCGGGT GCTACCGCCA CCCTCTGAAG AATTTCAGGT TGACACAGCG CCCGCTCTCC CTGCCCCTGA GCCCGCTCAA CCATCTAACC CCGCTGGGCC AAAGGCTCCC GTGCGTAAGC CACTAATGCC ACCATCCCCG CGCACCCGTC GCCTTCTTTA CACCTATCCG GATGGGGCAA AGGTGTATGC GGGATCACTG TTTGAGTCTG ATTGTGACTG GCTGGTTAAT GCGTCGAATC CCGGCCATCG CCCTGGAGGC GGCCTTTGCC ACGCCTTCTA CCAACGTTAT CCTGAGTCTT TCCACTCAAC TGAGTTCATT ATGCGCGACG GTCTTGCCGC GTACACTCTA ACTCCCCGGC CTATTATTCA TGCAGTGGCT CCTGATTATA GGGTTGAGCA TAACCCAAAG AGGCTTGAGG CGGCATACCG AGAGACTTGC TCTCGCCGCG GTACCGCCGC CTACCCACTC CTCGGCTCGG GCATATACCA AGTTCCTGTT AGCCTCAGCT TTGACGCATG GGAGCGTAAC CATCGCCCCG GGGATGAGCT CTACTTACCC GACCCCGCCG CCACCTGGTT CGAGGCTAAT AAGCCAACAC AGCCGGCCCT CACAATAACT GAGGATGCAG CCCGCACAGC CAACCTAGCA CTGGAGATCG ATGCTGCCAC GGAGGTCGGC CGGGCTTGTG CCGGCTGCGC AATTAGCCCT GGGGTTGTGC ACTATCAGTT TACCGCTGGG GTCCCAGGTT CGGGGAAGTC GCGTTCTATA CAGCAGGGGG ATGTTGACGT AGTGGTTGTT CCCACTCGAG AGCTCCGGAA TAGTTGGCGT CGCCGGGGTT TTGCGGCTTT TACACCTCAT ACGGCGGCCC GTGTCACCAC AGGCCGTCGT GTTGTGATTG ATGAGGCCCC ATCCCTTCCA CCGCATTTGT TGTTACTACA CATGCAGCGG GCCTCGTCGG TCCACCTTCT CGGCGACCCA AACCAGATCC CTGCCATAGA CTTCGAGCAT GCCGGCCTGG TCCCCGCAAT ACGCCCTGAG CTTGCGCCCA CCAGTTGGTG GCATGTTACC CATCGCTGCC CCGCTGACGT GTGCGAGCTT ATACGCGGGG CATATCCCAA AATCCAAACC ACTAGCCGCG TGCTGCGGTC TTTATTCTGG AATGAGCCTG CCATCGGCCA AAAGTTAGTT TTCACCCAGG CTGCTAAGGC TGCCAACCCC GGTGCGATTA CAGTCCACGA GGCCCAGGGC GCCACTTTCA CGGAAACTAC AATCATAGCC ACGGCTGATG CTAGGGGGCT CATCCAATCT TCCCGAGCTC ATGCCATAGT CGCACTAACC CGCCACACAG AGAAGTGCGT TATTCTTGAT GCCCCCGGCT TGCTACGTGA GGTCGGTATA TCGGATGTGA TTGTCAACAA TTTTTTCCTC GCCGGCGGGG AGGTAGGTCA CCACCGCCCC TCTGTGATAC

H2-POST-RBV1 Consensus sequence

3710	CTCGCGGTAA TCCTGACCAG	AACCTCGCGA	CACTACAGGC	CTTTCCACCT	TCTTGTCAGA	TTAGTGCCTA
3780	TCACCAGTTG	GCTGAGGAAC	TTGGCCACCG	CCCAGCACCC	GTTGCCGCTG	TCTTGCCCCC
3850	CTTGAGCAGG	TCCTGTTATA	TATGCCTCAG	GAGCTTACGG	TGTCTGATAG	CGTGCTGGTC

I1-PRE-RBV

File name	I1-PRE-RBV.sam
Ref name	FJ705359.1
Ref length	7237 nt
Program used	Tanoti Assembler 1.0
Total reads	5306159
Mapped reads	5306159 (100.00\%)
Average read length	$147 n t$
Coverage	$7216 n t(99.71 \%)$
Average depth	96580 reads/site

434

I1-PRE-RBV Consensus sequence

NNNNNNNNCG TATGTGGTCG ATGCCATGGA GGCCCATCAG TTTATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAGG CTGCTCTGGC TGCGGCTAAC TCCGCCTTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTGT CCCGTGTTCA GACTGACATT CTCATCAATT TGATGCAACC CCGGCAGCTC GTATTCCGAC CTGAAGTTTT GTGGAATCAC CCGATCCAGC GAGTTATACA CAATGAGCTT GAGCAGTACT GCCGTGCCCG CGCCGGTCGC TGCCTGGAGG TCGGGGCTCA TCCGAGATCC ATTAATGACA ACCCTAACGT CCTGCACCGG TGTTTCCTTC GCCCGGTCGG GAGAGATGTA CAGCGTTGGT ATTCCGCCCC GACTCGCGGC CCAGCTGCCA ACTGCCGGCG TTCCGCATTA CGTGGCCTGC CCCCTGTCGA CCGTACTTAC TGTTTCGACG GGTTCTCCCG CTGTGCTTTT GCTGCTGAGA CTGGAATTGC TTTGTATTCA CTACATGACC TCTGGCCTGC CGATGTCGCG GAGGCCATGG CCCGTCATGG GATGACACGC CTGTACGCAG CCCTCCATTT ACCCCCTGAG GTTCTGTTAC CACCTGGTAC TTACCATACC ACCTCTTATT TGTTGATTCA TGACGGCAAC CGCGCCGTCG TAACTTATGA GGGGGATACC AGCGCGGGTT ATAACCATGA TGTGTCCATT CTTCGCGCAT GGATTCGCAC AACTAAAATA GTTGGCGACC ATCCGTTGGT TATAGAAAGG GTCCGTGCTA TCGGCTGCCA TTTTGTACTA CTCCTTACTG CTGCCCCTGA GCCATCCCCT ATGCCTTATG TCCCATACCC TCGTTCAACG GAGGTGTATG TCAGGTCCAT ATTTGGCCCC GGCGGCTCGC CATCTCTGTT CCCGTCAGCC TGCTCTACTA AATCCACATT TCATGCTGTT CCGGTCCATA TCTGGGACCG GCTCATGCTC TTCGGCGCCA CTCTAGACGA CCAAGCCTTT TGTTGCTCGC GGCTTATGAC TTATCTCCGC GGGATTAGTT ATAAGGTGAC CGTTGGTGCA CTCGTCGCCA ACGAAGGTTG GAACGCCTCA GAGGATGCGC TCACTGCTGT GATCACTGCA GCCTACTTGA CCATCTGTCA CCAGCGCTAC CTCCGAACTC AGGCTATATC TAAAGGCATG CGTCGGCTAG AAGTCGAGCA TGCCCAGAAG TTTATTACTA GACTTTACAG CTGGCTGTTT GAAAAGTCCG GTCGAGATTA TATCCCCGGC CGTCAACTTC AGTTTTACGC CCAGTGTCGC CGTTGGCTGT CGGCAGGTTT TCATCTTGAC CCAAGAGTGC TTGTCTTCGA TGAGGCGGTT CCCTGTCGTT GTAGGAGTTT TCTGAAGAAG GCTGCCGGCA AGTTCTGCTG CTTTATGAAG TGGCTGGGGC AGGAGTGCAC TTGTTTTCTG GAGCCGGCTG AGGGCTTGAT CGGCGATTGT GGTCACGATA ATGAGGCCTA CGAGGGTTCC GAAGTAGATC CTGCTGAGCC CGCCCACCTC GATGTCTCTG GAACCTACAC AGTTCATGGC CGTCAACTTG AGGCTCTATA CAGGGCGCTC AACATCCCAC ATGACATTGT GGCCCGTGCG TCACGCCTGA CAGCCACTGT GGAGCTCACC GCCGGCCCAG GTCGCCTCGA ATGCCGTACA GTGCTCGGAA ATAAGACCTT CCGCACATCG ATAATGGATG GCGCTCACCT CGAGGCTAAC GGCCCTGAGC AGTATGTTTT AACATTTGAC GACTCCCGCC AAGCGATGGG GGCTGGGCCG CATAGTCTTA CATATGAGCT CACCCCTGCT GGTTTGCAGG TTAAGATATC CTCTAATGGC CTAGATTGCA CTGCTGTTTT CCCTCCCGGT GGGGCGCCAA GTGCCGAACC GGGTGAGGTT GCAGCCTTCT GCAGTGCTTT ATATAGATAC AATAGATTTA CCCAGCGCCA TTCGCTAACC GGCGGACTGT GGCTGCACCC TGAGGGGCTT CTGGGCTTGT TTCCCCCCTT TTCCCCCGGG CATGTCTGGG AGTCCGCAAA TCCTTTTTGC GGTGAGGGCA CACTTTACAC CCGTACTTGG TCTACGTCTG GTTTTTCTAG TGATTTCTCT CCCCCTGAGG CAGCTGTCGC AGCGCCGGCT GCTACTCCGG GGTTACGCTA CCCTACACCT CCTGTTAGTG ACATTTGGGT GCTACCGCCG CCTTCTGAAG AACTTCAGGT TGACACAGCG CCCGCTCCCC CTGCCCCTGG GCCCGCTCAA CCATCCAGCC CTGTTGGGCC GAAGGCTCCC GTGCGTAAGC CGCCAACGCC ACCATCCCCG CGCACCCGCC GGCTTCTCTA CACCTACCCA GATGGAGCTA AGGTCTATGC AGGCTCCTTG TTCGAGTCAG ATTGCGACTG GCTGGTTAAC GCGTCCAATC CTTGCCACCG CCCTGGTGGC GGCCTTTGCC ATGCTTTTTA CCAGCGCTTC CCAGAGTCGT TTTATCATAC TAATTTTGTC ATGCGTGAGG GCCTCGCTGC GTACACCTTG ACCCCACGCC CAATTATTCA TGCTGTGGCT CCTGATTATA GGGTTGAGCA GAACCCCAAG AGGTTGGAGG CGGCGTACCG CGAGACTTGC TCTCGCCTTG GCACAGCCGC TTACCCACTA CTGGGGTCGG GGATTTATCA AGTCCCCGTG GGTCTAAGTT TTGATGCCTG GGAGCGTAAC CATCGCCCGG GCGATGAGCT CTATCTCACC GACCTCGCAG CTACCTGGTT CGAGGCTAAC AAACCAACAC AGCCGGCCCT AACAATAACT GAGGACACAG CCCGCACGGC TAACCTCGCG CTTGAGATTG ACTCTGCTAC CGAGGTGGGC CGTGCTTGTA CCGGCTGTAC TGTTAGCCCT GGCATTGTCC ATTATCAGTT TACTGCCGGG GTGCCTGGCT CCGGGAAGTC TAGGTCTATA CAACAAGGGG ACGTCGATGT TGTGGTTGTG CCAACCCGCG AGCTTCGCAA CAGCTGGCGG CGCCGTGGCT TTGCTGCTTT TACACCTCAT ACGGCGGCCC GCGTCACTGC CGGCCGACGT GTTGTGATTG ATGAGGCGCC TTCGCTTCCA CCACATTTGC TGCTGCTTCA TATGCAGCGA GCTTCGTCAG TCCACCTTCT CGGCGACCCC AACCAGATTC CCGCCATTGA TTTCGAGCAT GCAGGCCTAG TGCCAGCGAT CCGCCCTGAG CTTGCCCCAA CCAGTTGGTG GCACGTTACA CACCGTTGCC CTGCCGACGT GTGTGAGCTC ATACGCGGGG CTTATCCCAA AATCCAAACT ACTAGCCGCG TGGTGCGGTC TCTGTTTTGG AATGAGCCTG CGGTGGGCCA GAAGTTGGTT TTTACGCAAG CAGCTAAGGC AGCCAACCCC GGTGCAATTA CTGTTCACGA GGCCCAGGGT GCTACATTCA CAGAAACTAC CATTATTGCT ACGGCCGATG CTAGGGGCCT TATTCAGTCC TCTCGTGCAC ATGCAATCGT TGCACTTACT CGCCACACAG AGAAATGTGT TATTTTGGAC GCCCCCGGCC TACTGCGTGA GGTCGGTATT TCTGATATAA TTGTTAATAA TTTTTTCTTA GCCGGCGGTG AAGTCGGCCA CCACCGCCCT TCCATTATAC

I1-PRE-RBV Consensus sequence

3710	CCCGAGGTAA TCCAGATCAG	AACTTGGATA	CTCTGCAGGC	GTTCCCTCCA	TCCTGTCAAA	TTAGTGCTTA
3780	CCACCAGTTG	GCTGAGGAAC	TAGGCCACCG	CCCAGCCCCT	GTCGCCGCTG	TCCTGCCGCC

I2-POST-RBV

File name	I2-POST-RBV.sam
Ref name	FJ705359.1
Ref length	7237 nt
Program used	Tanoti Assembler 1.0
Total reads	263021
Mapped reads	263021 (100.00\%)
Average read length	$143 n t$
Coverage	6074 nt (83.93\%)
Average depth	4557 reads/site

I2-POST-RBV Consensus sequence

NNNNNNNNNN NATGTGGTCG ACGCCATGGA GGCCCACCAA TTCATCAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAGG CTGCTCTGGC TGCGGCTAAC TCCGCCTTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTGT CCCGTGTTCA GACTGACATT CTCATCAATT TGATGCAACC GTGGAATCAC CCGATCCAGC GAGTTATACA TGCCTGGAGG TCGGGGCTCA TCCGAGATCC GCCCGGTCGG GAGAGATGTA CAGCGTTGGT ATTCCGCCCC GACTCGCGGC CCAGCTGCCA ACTGCCGGCG TTCTGCATTA CGTGGCCTGC CCCCTGTCGA CCGTACTTAC TGTTTCGACG GGTTCTCCCG CTGTGCTTTT GCTGCTGAGA CTGGAATTGC TTTGTATTCA CTACATGACC TCTGGCCTGC CGATGTCGCG GAGGCCATGG CCCGTCATGG GATGACACGC CTGTACGCAG CCCTCCATTT TTACCATACA ACCTCATANN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNN ATCCGCTGGT GATAGAGCGT GTGCGGGCTA TCGGCTGCCA GCCATCCCCT ATGCCTTATG TCCCATACCC TCGTTCAACG GGCGGCTCGC CATCTCTGTT CCCGTCAGCC TGCTCTACTA TCTGGGACCG GCTCATGCTC TTCGGCGCCA CTCTAGACGA TTATCTCCGC GGGATTAGTT ATAAGGTGAC CGTTGGTGCA GAGGATGCGC TCACTGCTGT GATCACTGCA GCCTACTTGA AGGCTATATC TAAAGGCATG CGTCGGCTAG AAGTCGAGCA CTGGCTGTTT GAAAAGTCCG GTCGAGATTA TATCCCCGGC CGTTGGTTAT CGGCGGGTTT CCATCTTGAC CCAAGGGTGC GTAGGAGTTT TCTGAAGAAG GCTGCCGGCA AGTTCTGCTG TTGTTTTTTG GAGCCAGCTG AGGGTCTGGT TGGCGACCAT GAAGTAGATC CTGCTGAGCC CGCCCACCTC GATGTCTCTG AGGCTCTATA CAGGGCGCTC AACATCCCAC ATGACATTGT NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNTTGATG GCGCTCACCT CGAGGCTAAC GGCCCTGAGC AAGCGATGGG GGCTGGGCCG CATAGTCTTA CATATGAGCT CTCTAATGGC CTAGATTGCA CNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN GGCTGCACCC TGAGGGGCTT CTGGGCTTGT TTCCCCCCTT TCCTTTTTGC GGTGAGGGCA CACTTTACAC CCGTACTTGG NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNACCCGCC GGCTTCTCTA CACCTACCCA GATGGAGCTA ATTGCGACTG GCTGGTTAAC GCGTCCAATC CTGGCCACCG CCAGCGCTTC CCAGAGTCTT TCCACCCNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN CGGCATACCG CGAGACTTGT TCTCGCCTTG GCACAGCCGC AGTCCCCGTG GGTCTAAGTT TTGATGCCTG GGAGCGTAAC GACCNNNNNN NNNNNNNNNN CGAGGCTAAT AAGCCAGCAC CCCGCACGGC TAACCTCGCG CTTGAGATTG ACTCTGCTAC CGAGGTGGGC CGTGCTTGTA CCGGCTATAC TGTTAGCCCT GGCATTGTCC ATTATCAGTT TACTGCTGGG GTGCCTGGCT CCGGGAAGTC TAGGTCTATA CAACAAGGGG ACGTCGATGT TGTGGTTGTG CCAACCCGCG AGCTTCGCAA CAGCTGGCGG CGCCGTGGCT TTGCTGCTTT TACACCTCAT ACGGCGGCCC GCGTCACTCC CGGCCGACGT GTTGTGATTG ATGAGGCGCC TTCGCTTCCA CCACATTTGC TGCTGCTTCA TATGCAGCGA GCTTCGTCAG TCCACCTTCT CGGCGACCCC AACCAGATTC CCGCCATTGA TTTCGAGCAT GCAGGCCTAG TGCCAGCGAT CCGCCCTGAG CTTGCCCCAA CCAGTTGGTG GCACGTTACA CACCGTTGCC CTGCCGACGT GTGTGAGCTC ATACGCGGGG CTTATCCCAA AATCCAAACC ACTAGCCGCG TGCTGCGGTC ATTATTCTGG AATGAGCCTG CCATTGGCCA GAAGTTAGTT TTCACCCAGG CCGCTAAGGC CGCCAACCCC GGTGCGATTA CAGTCCATGA GGCCCAGGGT GCCACTTTCA CGGAGACCAC AATTATAGCC ACGGCCGATG CTAGGGGGCT CATTCAATCC TCCCGAGCCC ATGCCATAGT CGCACTTACC CGCCACACAG AGAAGTGCGT TATTTTGGAC GCCCCCGGCC TACTGCGTGA GGTCGGTATT TCTGATATAA TTGTTAATAA TTTTTTCTTA GCCGGCGGTG AAGTCGGCCA CCACCGCCCC TCTGTGATAC

I2-POST-RBV Consensus sequence

3710	CCCGCGGCAG TCCCGACCAG	AACCTCGCGA	CACTGCAGGC	TTTTCCACCN	NNNNNNNNNN	NNNNNNNNNN
3780	NNNNNNNNNN	NNNNNNNNNN	NNNNNNNNNN	NNNNNNNNNN	NNNNNNNNNN	NNNNNNNNNN

I3-POST-RBV

File name	I3-POST-RBV.sam
Ref name	FJ705359.1
Ref length	7237
Program used	Tanoti Assembler 1.0
Total reads	90925
Mapped reads	$90925(100.00 \%)$
Average read length	$140 n t$
Coverage	$5245 n t(72.47 \%)$
Average depth	1553 reads/site

I3-POST-RBV Consensus sequence

NNNNNNNNCG TATGTGGTCG ATGCCATGGA GGCCCATCAG TTTATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAGG CTGCTCTGGC TGCGGCTAAC TCCGCCTTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTGT CCCGTGTTCA GACTGACATT CTCATCAATT TGATGCAACC CCGGCAGCTC GTATTCCGAC CTGAAGTTTT GTGGAATCAC CCGATCCAGC GAGTTATACA CAATGAACTT TGCCTGGAGG TCGGGGCTCA TCCGAGATCC ATTAATGACA NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNTATTCA CCCGTCATGG GATGACACGC CTGTACGTAG TTACCATACA ACNNNNNNNN NNNNNNNNNN AGCGCGGGTT ATAACCATGA TGTGTCCATT CTTCGCGCAT ACCCGTTGGT TATAGAAAGG GTCCGTGCTA TCGGCTGCCA GCCATCCCCT ATGCCTTATG TCCCATACCC TCGTTCAACG GGCGGCTCGC CATCTCTGTT CCCGTCAGCC TGCTCTACTA TCTGGGACCG GCTCATGCTC TTCGGCGCCA CTCTAGATGA
TTATCTCCGC GGGATTAGTT ATAAGGTGAC CGTTGGTGCA GAGGATGCGC TCACTGCTGT GATCACTGCA GCCTACTTGA AGGCTATATC TAAAGGCATG CGTCGGCTAG AAGTCGAGCA CTGGCTGTTT GAAAAGTCCG GTCGAGATTA TATCCCCGGC CNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNGTGC GTAGGAGTTT TCTGAAGAAG GCTGCCGGCA AGTTCTGCTG TTGTTTTCTG GAGCCGGCAG AGGGNNNNNN NNNNNNNNNN GAAGTAGATC CTGCTGAGCC CGCCCACCTC GATGTATCTG AGGCTCTATA CAGGGCGCTN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNN NNNNNATGGG GGCTGGGCCG CATAGTCTTA CATATGAGCT ATCTAATGGC CTAGATTGCA CTGCNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN GGCTGCACCC TGAGGGGCTT CTGGGCTTGT TTCCCCCCTT TCCTTTTTGC GGTGAGGGCA CACTTTACAC CCGTACTTGG CCCCCTGAGG CAGNNNNNNN NNNNNNNNNN NNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNTA CACCTACCCA GATGGAGCTA ATTGCGACTG GCTGGTTAAC GCGGCCAATC CTCGCCACCA CCAGCGCTTC CCAGAGTCTT TNNNNNNNNN NNNNNNNNTC ACCCCCCGCC CAATTATTCA TGCTGTGGCT CCCGATTATA NNNNNNNNNN NNNCGAGCAT GCAGGCCTAG CCAGTTGGTG GCACGTTACA CACCGTTGCT CTGCCGACGT AATCCAAACT ACTAGCCGCG TGGTGCGGTC TCTGTTTTGG TTTACGCAAG CAGCTAAGGC AGCCAACCCC GGTGCAATTA CAGAAACTAC CATTATTGCT ACGGCCGATG CTAGGGGCCT TGCACTTACT CGCCANNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN

I3-POST-RBV Consensus sequence

3710
3780
3850
3920
3990
4060
4130
4200
4270
4340
4410
4480
4550
4620
4690
4760
4830
4900
4970
5040
5110
5180
5250
5320
5390
5460
5530
5600
5670
5740

5810

5880

5950
6020
6090
6160

6230

6300
6370
6440
6510
6580
6650
6720
6790
6860
6930

7000

7070
7140
7210

NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN CTTGAGCAGG GTTTACTTTA CATGCCGCAA GAGCTCACAG CGGACATAGT TCACTGCCGA ATGGCGGCCC CNNNNNNNNN NNNNNNNNNN NNNNNNNNGC TGTATGAGGC AGCTCACTCT CCTACCATCG GACCAGTTCA GGCCACCACA TGTGAGTTGT GTCAGGACGG TTCCGCTGTG TTAGAGCTTG ATCTCTGTAG GAATGACTGT AATAAGTTTA CAACAGGTGA GACTATTGCT TGGAGCAAGA CCTTTTGTGC CCTATTCGGA CCGTGGTTCC TCCCACCTAA TATCTTCTAT GGTGATGCCT TTGAAGAGTC TTCTAGTATG GTTTTTGAGA ATGATTTCTC TGAGTTTGAC GAGTGTGTTA TTATGGAGGA GTGTGGCATG CCCCAGTGGC CCTGGACTTT GCAGGCCCCG AAGGAGTCCC TGAAAGGCTT ACTCCTCTGG AATACTGTCT GGAACATGGC AATCATGGCG GCAGCGTTTA AAGGGGATGA TTCAGTAGTC CTTTGCAGTG TGATCGCTGG TTGNNNNNNN NNNNTGAAGG TTGATTACCG GGCCCCGGGT CTCGGGGCAC TCCCTGACGT CGTTCGGTTC CCGAGTCCCG AGCGCGCTGA GCAGTTACGC TTGGCTGTTT CGCAGGTTTG TGTTGATGTT GTGTCCCGTG TTTATGGGGT CATGTTACAG ACTATAGCCG ATGGGAAGGC CCATTTTACT NNNTCTATCA TACAGAGGTT GGAATGAATA ACATGTTGTG CGGGCTGTTC TGTTGTTGTT CGTCGTGCTT TTGCCTATGC GCCGCCGTNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN CTTTGCCCTC CCCTATATTC ATCCAACCAA CCCCTTTGCC GCTCGCCTTC GACAACCACC CCGCCCCCTC GGCTCCTCTT CCCCCCGCCG TCGATCTACC CCAGCTGGGG CTGCGCCGTT CCCAGTCCCC GATGTTGATT CTCGCGGTGC TATTTTGCGC ACTTCTTCTG TCGCCTCTGG CACTAATCTC GTTCTGTATG AGGATGGCAC CAATACTCAT ATCATGGCGA CTGAGGCATC CACAATCCGT TATCGCCCTT TGGTGCCAAA TGCTGTTGGA CAGACTACAA CTACCCCCNN NNNNNNNNNN NNNNNNNNNN AGCCTGGCAT AGCCTCCGAG TTGGTTATTC CGAGCGAGCG TGTTGAGACC TCGGGTGTGG CTGAGGAGGA GGCGACATCG NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNTTTAGGAA CTTGACCCCT GGGAACACTA ACACCCGTGT CCTACGCCGT GGCGCCGATG GGACTGCTGA GCTCACGACC NNNNNNNNNN NNNNNNNNNN NNNNCAGAAT TGATTTCGTC AGTTGTCTCG GCCAATGGCG AGCCAACTGT TAAATTATAC GGCATTGCCA TACCACATGA CATAGATCTG GGAGATTCCC ATGAGCAGGA TAGGCCTACC CCTTCGCCGG CCCCGTCTCG TCTGTGGCTC TCCCTCACTG CTGCCGAATA TGATCAAACT GTTTCAGATA CTGTTACCCT CGTTAACGTG GCAACGGGAG CTAAGGTCAC TCTAGATGGT CGACCTCTCA CTACTATTCA ACTCCGTGGG AAGCTTTCTT TCTGGGAGGC TGGCACCACT ACTGCTAGTG ACCAAATTCT GATAGAAAAT GCAGCCGGCC GCCTTGGTGC TGGTCCTGTG TCTGTCTCTG CGGTAGGTGT TGAGGATACT ATTGATTACC CCGCTCGTGC CCATACTTTT GGCCTACAGG GCTGTGCTTT TCAATCCACT ATCGCTGAGC CCCGGGAGTC TTAATTAATT CCATCTGTGC CCCCTTCAAG CGCGCTCCCT GGANNNNNNN NNNNNNN

NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NTGCCCTGAG tGTCCGACAG CGTTCTAGTC TTCGAGCTCA NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN GATGTCCGCG AGTCTCTGGG GAGGTTTATC ACGAGTTGGT AGAGGCTATG GTTGAGAAGG CCGTGATGTC TCGCGTATCA CATTTTTCCA CATGGCAAGG TGGGCCAGGG CATTTCGGCC GTGCCATTGA GAAGGAAATC TTAGCCCTAC AGTGTTCTCT GCGGCCATTT CTGGAGCAGG AGTACCCAAA ACAATTTCTC CCTCGGCCTT TCATTAGGCT ATACCATTTA GTTAGGTCGG TTGGAAGAAG CACTCTGGTG AGCCCGGTAC CATTGCTATG AATTTCGTGA CCTGAGAGTG ATTACCGCCA GAGCCGTAAT GCAGCTGCCT CCCCATAGGG TTGTACGCCG GTGTTGTGGT GCCGGCCGGT TGTCTGAGAA GAATTGGGGC GTGACTTCCT TCGAAAGTTA ATGAATGTTG TAGTCCTGGG CTGGTACATA ACCTTATTGG GAGACTGTTA AACCTGTNNN NNNNNNNNNN TGCATCGCCC ATGGGTTCAC CATGCGCCCT TGCCCGCGCC ACCGGCCGGC CAGCCGTCTG NNNNNNNNNN NNCAGGGTTG ATTCTCAGCC GCCGACGTCG TATCACAACC CGGGGCTGGA GGCGTGACCA GTCCCAGCGC CCCCCCGCCG AACTGCCGTC TCCCCTGCGC CTGATACTGC CGCCAGTATA ATTTGTCTAC TTCCCCTCTG CTGCCCCGNN NNNNNNNNNN NNNNNNNNNC TAACTATGCT CAATATCGGG TTGTCCGAGC GGCTATGCAA TTTCTATTTC CTTTTGGCCC NNNNNNNNAC TGATGTTAGG ATTTTAGTTC CCTCCATTAT CGTAATCAGG GTTGGCGTTC GGTCTGGTTA TGCTCTGTAT CCATGNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN GTCCCGGTAC ACCAGCACAG CCCGCCATCG ACTGCGGCCA CGCGCTTCAT GAAGGACCTG GCATTGCNNN NNNNNNNNNN NNNNNNNNNN GGCTGGAGGT CAACTCTTTT ACTCCCGTCC ACCTCCGTCG AGAATGCACA GCAGGACAAG GTGTGGTTAT TCAGGATTAT GACAATCAAC CCCCTTCTCG GTTCTTCGCG CTAACGACGT ACTTATGGTT CGTCGACCAA CCCTATGTAT CCCAGGCTGT CGCCCGCTCT CTTGATTGGT GCAGTACTCT AAGACATTTT ATGTTCTCCC AAGGCCGGGT ATCCTTACAA TTATAATACC ACCGTGTTGC TATATCTACC TACACTACTA GCTTGCCCCC CATTCTGCTT TAGCTGTGCT GATGATTTCT GCCCTGAGTG CCGTGATCTC TTCAGCGTCT TAAAGTGAAG GTAGGCAAAA GTATTGGTTT ATTTCTTCTC TTCTGCGTTT

I4-POST-RBV

File name	I4-POST-RBV.sam
Ref name	FJ705359.1
Ref length	$\mathbf{7 2 3 7 n t}$
Program used	Tanoti Assembler 1.0
Total reads	$\mathbf{1 4 5 5 8 8 4}$
Mapped reads	$\mathbf{1 4 5 5} 884$ (100.00\%)
Average read length	$\mathbf{1 4 8 n t}$
Coverage	$\mathbf{7 2 1 6 n t}$ (99.71\%)
Average depth	$\mathbf{2 6} 632$ reads/site

14-POST-RBV Consensus sequence

NNNNNNNNCG TATGTGGTCG ATGCCATGGA GGCCCATCAG TTTATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAGG CTGCTCTGGC TGCGGCTAAC TCCGCCTTGG CGAATGCTGT GGTGGTTCGG CCGTtTTTGT CCCGTGTTCA GACTGACATT CTCATCAATT TGATGCAACC CCGGCAGCTC GTATTCCGAC CTGAAGTTTT GTGGAATCAC CCGATCCAGC GAGTTATACA CAATGAGCTT GAGCAGTACT GCCGTGCCCG CGCCGGTCGC TGCCTGGAGG TCGGGGCTCA TCCGAGATCC ATTAATGACA ACCCTAACGT CCTGCACCGG TGTTTCCTTC GCCCGGTCGG GAGAGATGTA CAGCGTTGGT ATTCCGCCCC GACTCGCGGC CCAGCTGCCA ACTGCCGGCG TTCCGCATTA CGTGGCCTAC CCCCTGTCGA CCGTACTTAC TGTTTCGACG GGTTCTCCCG CTGTGCTTTT GCTGCTGAAA CTGGAATTGC TTTGTATTCA CTACATGACC TCTGGCCTGC CGATGTCGCG GAGGCCATGG CCCGTCATGG GATGACACGC CTGTACGCAG CCCTCCATTT ACCCCCTGAG GTTCTGTTAC CACCTGGTAC TTACCATACC ACCTCTTATT TGTTGATTCA TGACGGCAAT CGCGCCGTCG TAACTTATGA GGGGGATACC AGCGCAGGTT ATAACCATGA TGTGTCCATT CTTCGCGCAT GGATTCGCAC AACTAAAATA GTTGGCAACC ATCCGTTGGT TATAGAAAGG GTCCGTGCTA TCGGCTGCCA TTTTGTACTA CTCCTTACTG CTGCCCCTGA GCCATCCCCT ATGCCTTATG TCCCATACCC TCGTTCAACG GAGGTGTATG TCAGGTCCAT ATTTGGCCCC GGCGGCTCGC CATCTCTGTT CCCGTCAGCC TGCTCTACTA AATCCACATT TCATGCTGTT CCGGTCCATA TTTGGGACCG GCTCATGCTC TTCGGCGCCA CTCTAGACGA CCAAGCCTTT TGTTGCTCGC GGCTTATGAC tTATCTCCGC GGGATtAGTT ATAAGGTGAC CGTTGGTGCA CTCGTCGCCA ACGAAGGTTG GAACGCCTCA GAGGATGCGC TCACTGCTGT GATCACTGCA GCCTACTTGA CCATCTGTCA CCAGCGCTAC CTCCGAACTC AGGCTATATC TAAAGGCATG CGTCGGCTAG AAGTCGAGCA TGCCCAGAAG TTTATTACTA GACTTTATAG CTGGCTGTTT GAAAAGTCCG GTCGAGATTA TATCCCCGGT CGTCAACTTC AGTTTTACGC CCAGTGTCGC CGTTGGCTGT CGGCAGGTTT TCATCTTGAC CCAAGAGTGC TTGTCTTTGA TGAGGCGGTT CCCTGTCGTT GTAGGAGTTT TCTGAAGAAG GCTGCCGGCA AGTTCTGCTG CTTTATGAAG TGGCTGGGGC AGGAGTGCAC tTGTtttcta gagccgacta agggittgat cggcgattgt ggtcacgata atgagcccta cgaggattct GAAGTAGATC CTGCTGAGCC CGCCCACCTC GATGTCTCTG GAACCTACAC AGTTCATGGC CGTCAACTTG AGGCTCTATA TAGGGCGCTC AACATCCCAC ATGACATTGT GGCCCGTGCG TCCCGCCTGA CAGCCACTGT GGAACTCACT GCCGGCCCAG ATTGCCTCGA ATGCCGTACA GTGCTCGGAA ATAAGACCTT CCGCACATCG ATAATGGATG GCGCTCACCT CGAGGCTAAC GGCCCTGAGC AGTATGTTTT AACATTTGAC GACTCCCGCC AAGCGATGGG GGCTGGGCCG CATAGTCTTA CATATGAGCT CACCCCTGCT GGTTTGCAGG TTAAGATATC CTCTAATGGC CTAGATTGCA CTGCAACATT CCCTCCGGGT GGGGCCCCTA GCGCTGCTCC GGGTGAGGTT GCAGCCTTCT GCAGTGCTTT ATATAGATAC AATAGATTTA CCCAGCACCA TTCGCTAACC GGCGGACTGT GGCTGCACCC TGAGGGGCTT CTGGGCTTGT TTCCCCCCTT TTCCCCCGGG CATGTCTGGG AGTCCACAAA TCCTTTTTGC AGTGAGGACA CACTTTACAC CCGTACTTGG TCTACGTCTG GTTTTTCTAG TGATTTCTCT CCCCCTGAGG CAGCTGCCGC AGCGCCGGCT GCTACTCCGG GGTTACGCTA CCCTACACCT CCTGTTAGTG ACATTTGGGT GTTACCGCCA CCTTCTGAAG AATTTCAGGT TGACACAGCG CCCGCTCCCC CTGCCCCTGG GCCCGCTCAA CCATCCAGCC CTGTTGGGCC GAAGGCTCCC GTGCGTAAGC CGCCAACGCC ACCATCCCCG CGCACCCGCC GGCTTCTCTA TACCTACCCA GATGGAGCTA AGGTCTATGC AGGCTCCTTG TTCGAGTCAG ATTGCGACTG GCTGGTTAAC GCGGCCAATC CTCGCCACCA CCCTGGTGGC GGTCTTTGCC ATGCTTTTTA CCAGCGCTAC CCCGAGTCTT TCCACCCAAC TGAGTTCATC ATGCGTGAGG GCCTCGCCGC GTACACCTTG ACCCCACGCC CAATTATTCA TGCTGTGGCT CCTGATTATA GGGTTGAGCA GAACCCCAAG AGATTGGAGG CGGCGTACCG CGAGACTTGC TCTCGCCGCG GTACCGCCGC CTATCCACTC CTCGGCTCGG GTATATACCA AGTTCCCGTC AGCCTCAGCT TTGACGCTTG GGAGCGTAAC CATCGCCCCG GAGACGAGCT TTACCTAACC GACCTCGCAG CTACCTGGTT CGAGGCTAAC AAACCAACAC AGCCGGCCCT CACAATAACT GAGGACACAG CCCGCACGGC TAACCTCGCA CTTGAGATTG ACTCTGCTAC TGAGGTGGGC CGTGCTTGTA CCGGCTGTAC TGTTAGCCCT GGCATTGTCC ATTATCAGTT TACTGCCGGG GTGCCTGGCT CCGGGAAGTC TAGGTCTATA CAACAAGGGG ACGTCGATGT TGTGGTTGTA CCAACCCGCG AGCTTCGCAA TAGCTGGCGG CGTCGTGGCT TTGCTGCTTT TACACCTCAT ACGGCGGCCC GCGTCACTGC CGGCCGACGT GTTGTGATTG ATGAGGCGCC TTCGCTTTCA CCACATTTGC TGCTGCTTCA TATGCAGCGA GCTTCGTCAG TCCACCTTCT CGGCGACCCC AACCAGATTC CCGCCATTGA TTTCGAGCAT GCAGGCCTAG TGCCAGCGAT CCGCCCTGAG CTTGCCCCAA CCAGTTGGTG GCACGTTACA CACCGTTGCC CTGCCGACGT GTGTGAGCTC ATACGCGGGG CTTATCCCAA AATCCAAACT ACTAGCCGCG TGGTGCGGTC TCTGTTTTGG AATGAGCCTG CGGTGGGCCA GAAGTTGGTT TTTACGCAAG CAGCTAAGGC AGCCAACCCC GGTGCAATTA CTGTTCACGA GGCCCAGGGT GCTACATTCA CAGAAACTAC CATTATTGCT ACGGCCGATG CTAGGGGCCT TATTCAGTCC TCTCGTGCAC ATGCAATCGT TGCACTTACT CGCCACACAG AGAAATGTGT TATTTTGGAC GCCCCCGGCC TACTGCGTGA GGTCGGTATT TCTGATATAA TTGTTAATAA TTTTTTCTTA GCCGGCGGTG AAGTCGGCCA CCACCGCCCT TCCATTATAC

I4-POST-RBV Consensus sequence

3710	CCCGAGGTAA	TCCAGATCAG	AACTTGGCTA	CTCTGCAGGC	CTTCCCTCCG	TCCTGTCAAA	TTAGTGCTTA
3780	CCACCAGTTG	GCTGAGGAGC	TGGGCCACCG	CCCAGTCCCA	GTCGCCGCTG	TACTGCCGCC	CTGCCCTGAG
3850	CTTGAGCAGG	GTTTACTTTA	CATGCCGCAA	GAGCTCACAG	TGTCCGACAG	CGTTTTAGTC	TTCGAGCTCA
3920	CGGACATAGT	TCACTGCCGA	ATGGCGGCCC	CTAGTCAACG	GAAGGCTGTC	CTTTCAACGC	TTGTTGGCAG
3990	GTACGGCCGC	CGAACGAGGC	TGTATGAGGC	AGCTCACTCC	GATGTCCGCG	AGTCTCTGGG	GAGGTTTATC
4060	CCTACCATCG	GACCAGTTCA	GGCCACCACA	TGTGAGTTGT	ACGAGTTGGT	AGAGGCTATG	GTTGAGAAGG
4130	GTCAGGACGG	TTCCGCTGTG	TTAGAGCTTG	ATCTCTGTAG	CCGTGATGTC	TCGCGTATCA	CATTTTTCCA
4200	GAATCACTGT	AATAAGTTTA	CAACAGGTGA	GACTATTGCT	CATGGCAAGG	TGGGCCAGGG	CATTTCGGCC
4270	TGGAGCAAGA	CCTTTTGTGC	CCTATTCGGA	CCGTGGTTCC	GTGCCATTGA	GAAGGAGATC	TTAGCCCTAC
4340	TCCCACCTAA	TATCTTCTAT	GGTGACGCCT	TTGAAGAGTC	AGTGTTCTCT	GCGGCCATTT	CTGGAGCAGG
4410	TTCTAGTATG	GTTTTTGAGA	ATGATTTCTC	TGAGTTTGAC	AGTACCCAAA	ACAATTTCTC	CCTCGGCCTT
4480	GAGTGTGTTA	TTATGGAGGA	GTGTGGCATG	CCCCAGTGGC	TCATTAGGTT	ATACCATTTA	GTCAGGTCGG
4550	CCTGGACTTT	GCAGGCCCCG	AAGGAGTCCC	TGAAAGGCTT	TTGGAAGAAG	CACTCTGGTG	AGCCCGGTAC
4620	ACTCCTCTGG	AATACTGTCT	GGAACATGGC	AATCATAGCG	CATTGCTACG	AATTTCGTGA	CCTGAGAGTG
4690	GCAGCGTTTA	AAGGGGATGA	TTCAGTAGTC	CTTTGCAGTG	ATTACCGCCA	GAGCCGTAAT	GCAGCTGCCT
4760	TGATCGCTGG	TTGTGGGTTA	AAATTGAAGG	TTGATTACCG	CCCCATAGGG	TTGTACGCCG	GTGTTGTGGT
4830	GGCCCCGGGT	CTCGGGGCAC	TCCCTGACGT	CGTTCGGTTC	GCCGGCCGGT	TGTCTGAGAA	GAATTGGGGC
4900	CCGAGTCCCG	AGCGCGCCGA	GCAGTTACGC	TTGGCTGTTT	GTGACTTCCT	TCGAAAGTTA	ACGAATGTTG
4970	CGCAGGTTTG	TGTTGATGTT	GTGTCCCGTG	TTTATGGGGT	TAGTCCTGGG	CTGGTACATA	ACCTTATTGG
5040	CATGTTACAG	ACTATAGCCG	ATGGGAAGGC	CCATTTTACT	GAGACTGTTA	AACCTGTACT	GGATCTTACA
5110	AATTCTATCA	TACAGAGGTT	GGAATGAATA	ACATGTTGTG	TGCATTGCCC	ATGGGTTCAC	CATGCGCCCT
5180	CGGGCTGTTC	TGTTGTTGTT	CCTCGTGCTT	TTGCCTATGC	TGCCCGCGCC	ACCGGCCGGC	CAGCCGTCTG
5250	GCCGCCGTCG	TGGGCGGCGC	AGCGGCAGTG	CCGGCGGTGG	TTTCTGGGGT	GACAGGGTTG	ATTCTCAGCC
5320	CTTTGCCCTC	CCCTATATTC	ATCCAACCAA	CCCCTTTGCC	GCCGACGTCG	TATCACAACC	CGGGGCTGGA
5390	GCTCGCCTTC	GACAGCCACC	CCGCCCCCTC	GGCTCCTCTT	GGCGTGACCA	GTCCCAGCGC	CCCCCCGCCG
5460	CCCCCCCGCCG	TCGATCTACC	CCAGCTGGGG	CTGCGCCGTT	AACTGCCGTC	TCCCCTGCGC	CTGATACTGC
5530	CCCAGTCCCC	GATGTTGATT	CTCGCGGTGC	TATTTTGCGC	CGCCAGTATA	ATTTGTCTAC	TTCCCCTCTG
5600	ACTTCTTCTG	TCGCCTCTGG	CACTAATCTC	GTTCTGTATG	CTGCCCCGCT	AAACCCCCTC	TTGCCCCTTC
5670	AGGATGGCAC	CAATACTCAT	ATCATGGCGA	CTGAGGCATC	TAACTATGCT	CAATATCGGG	TTGTCCGAGC
5740	CACAATCCGT	TATCGCCCTT	TGGTGCCGAA	TGCTGTTGGA	GGCTATGCAA	TTTCTATTTC	CTTTTGGCCC
5810	CAGACTACAA	CTACTCCCAC	CTCTGTTGAT	ATGAATTCTA	TTACCTCTAC	TGATGTTAGG	ATTTTAGTTC
5880	AGCCTGGCAT	AGCCTCCGAG	TTGGTTATTC	CAAGCGAGCG	CCTCCATTAT	CGTAATCAGG	GCTGGCGTTC
5950	TGTTGAGACC	TCGGGTGTGG	CTGAGGAGGA	GGCGACATCG	GGCCTGGTTA	TGCTCTGTAT	CCATGGTTCC
6020	CCTGTTAATT	CCTATACTAA	TACGCCCTAC	ACTGGGGCTT	TGGGACTTCT	TGACTTTGCA	CTCGAGCTCG
6090	AATTTAGGAA	CTTGACCCCT	GGGAACACTA	ACACCCGTGT	GTCCCGGTAC	ACCAGCACAG	CCCGCCACCG
6160	CCTACGCCGT	GGCGCCGATG	GGACTGCCGA	GCTCACGACC	ACTGCGGCCA	CGCGCTTCAT	GAAGGACCTG
6230	CATTTTACCG	GGATGAATGG	CGTCGGCGAG	GTGGGCCGTG	GCATAGCCCT	AACTTTATTT	AATCTCGCTG
6300	ATACACTTCT	TGGCGGTTTG	CCGACAGAAT	TGATTTCGTC	GGCCGGAGGT	CAACTCTTTT	ACTCCCGTCC
6370	AGTTGTCTCG	GCCAATGGCG	AGCCGACTGT	TAAATTATAC	ACCTCCGTCG	AGAATGCACA	GCAGGACAAG
6440	GGCATTGCCA	TACCACATGA	CATAGATCTG	GGAGATTCCC	GTGTGGTTAT	TCAGGATTAT	GACAATCAAC
6510	ATGAGCAGGA	TAGGCCTACC	CCTTCGCCGG	CCCCGTCTCG	CCCCTTCTCG	GTTCTTCGCG	CTAACGACGT
6580	TCTGTGGCTC	TCCCTCACTG	CTGCCGAATA	TGATCAAACT	ACTTATGGTT	CGTCGACCAA	CCCTATGTAT
6650	GTTTCAGATA	CTGTTACCCT	CGTTAACGTG	GCAACGGGAG	CCCAGGCTGT	CGCCCGCTCT	CTTGATTGGT
6720	CTAAGGTCAC	TCTAGATGGT	CGACCTCTCA	CTACTATTCA	GCAGTACTCT	AAGACATTTT	ATGTTCTCCC
6790	ACTCCGCGGG	AAGCTTTCTT	TCTGGGAGGC	TGGCACCACT	AAGGCCGGGT	ATCCTTACAA	TTATAATACC
6860	ACTGCTAGTG	ACCAGATTCT	GATAGAAAAT	GCAGCCGGCC	ACCGTGTTGC	TATATCTACC	TACACTACTA
6930	GCCTTGGTGC	TGGTCCTGTG	TCTGTCTCTG	CGGTAGGTGT	ACTTGCCCCC	CATTCTGCTT	TAGCTGTACT
7000	TGAGGATACT	ATTGATTACC	CCGCTCGTGC	CCATACTTTT	GATGATTTCT	GCCCTGAGTG	CCGTAATCTC
7070	GGCCTACAGG	GCTGTGCTTT	TCAATCCACT	ATCGCTGAGC	TTCAGCGTCT	TAAAGTGAAG	GTAGGCAAAA
7140	CCCGGGAGTC	TTAATTAATT	CCATCTGTGC	CCCCTTCAAG	GTCTTGGTTT	ATTTCTTCTC	TTCTGCGTTT
7210	CGCGCTCCCT	GGAANNNNNN	NNNNNNN				

J1-PRE-RBV

File name	J1-PRE-RBV.sam
Ref name	FJ705359.1
Ref length	7237 nt
Program used	Tanoti Assembler 1.0
Total reads	1651056
Mapped reads	1651056 (100.00\%)
Average read length	$136 n t$
Coverage	$7224 n t$ (99.82\%)
Average depth	30831 reads/site

J1-PRE-RBV Consensus sequence

	GCAGACCACG	TCG	ATGCCATGGA	GG	G	CTCCTGGCAT	TACTACTGCC
70	AtTGAGCAAG	CTGCTCTGGC	TGCGGCCAAT	TCTGCCCTGG	CGAATGCTGT	GGTGATTCGG	CCGtttttat
140	CTCGTGTGCA	AACTGAGATT	CTTATTAATT	tGATGCAACC	CCGGCAGTTG	GTTTTTCGGC	CTGAAGTGCT
210	CTGGAATCAT	cСTATCCAAC	GGGTtatcla	taAtgaactt	GAACAGTACT	GTCGGGCCCG	GGCTGGTCGT
280	tGtttagaga	TTGGGGCCCA	CCCAAGATCC	AtTAATGACA	ACCCAAATGT	tCtGCACCGG	tgctttctac
350	GACCAGTTGG	GAGAGATGTT	CAGCGCTGGT	ACTCTGCTCC	TACCCGTGGC	CCTGCGGCTA	ACTGCCGCCG
420	TTCTGCCTTG	CGTGGTCTCC	CCCCCGTTGA	tCGTACCTAT	TGTTTTGATG	GATTCTCTCG	CTGCTCATTT
490	GCTGCGGAA	CTGGGGTTGC	tCTtTACTCT	CTGCATGACC	TCTGGCCGGC	CGATGTTGCG	GAGGCTATGG
560	CCCGACACGG	GATGACACGC	CTGTATGCTG	CACTACATCT	CCCTCCTGAA	gTactactac	CACCTGGTAC
630	tTACCATACA	acttcatacc	ttctgatcca	CGACGGTGAT	CGTGCTGTTG	tgacctatga	AgGtgatact
700	AGTGCAGGCT	acaaccatga	tGTCTCCATA	CTtcgtgcat	gGatccgcac	aActaagata	gtcgecgatc
770	ATCCGCTGGT	GATAGAGCGT	GTGCGGGCTA	TTGGCTGCCA	ttttgtgttg	ttgcttacta	CAGCCCCTGA
84	GCCGTCGCCA	ATGCCTTATG	ttccatacci	CCGGTCGACA	GAGGTGTATG	TCCGCTCTAT	ATTCGGCCCT
910	GGCGGGTCCC	CATCTCTATT	cccatctact	tgctctacga	agtccacatt	tCACGCTGTC	ccggttcata
980	TCTGGGACCG	GCTCATGCTT	tTTGGCGCAA	CTCTGGATGA	TCAGGCATTT	tGCtgttcac	GGCTTATGAC
1050	CTACCTCCGC	GGGATtAGTT	ACAAGGTCAC	TGTTGGTGCC	CTTGTCGCTA	ACGAAGGGTG	GAATGCTTCG
1120	GAGGACGCTC	TTACCGCTGT	tattactgca	GCGTACCTGA	CCATTTGTCA	TCAGCGTTAC	ctccgtacti
1190	AAGCTATATC	taAgGgtatg	CGCCGACTGG	AGGTTGAGCA	TGCCCAAAAA	ttcattacaa	gactitatag
1260	TTGGCTGTTT	gagatgtccg	GCCGTGACTA	tatccccgec	CGCCAGCTCC	AGTTCTACGC	ACAGTGCCGC
1330	CGTTGGTTAT	CGGCGGGTTT	TCATCTTGAC	CCTAGGGTGC	TTGTTTTTGA	TGAGTCTGTG	CCCTGCCGTT
1400	GTAGGACATT	TCTTAAGAAG	GCTGTGGGTA	AGTtCTGCTG	ttttatgang	tGGTtagGac	AGGAGTGCAC
1470	CTGCtttita	gatccagcag	AGGGTCTAGT	tgGcgaccat	GGCCACGATA	ATGAAGCCTA	tGagGcctct
1540	GAGGTCGATC	AGGCTGAGCC	CGCCTGTCTC	GATGTTTCTG	GGACTTATGC	CGTCCATGGC	cgCcaacttg
1610	AGGCCCTGTA	tagagccct	AACATCCCGC	ATGACATCGC	TGCCCGAGCC	TCTCGCTTGA	CTGCCACCGT
1680	CGAACTCGTT	GCAAGTCCAG	ACCGCTTGGA	GTGCCGCACT	GTGCTCGGGA	ATAAGACTTT	tcgeacgacg
1750	GTGGTTGATG	GCGCCCATCT	tGAGGCGAAC	GGCCCCGAGC	AGTACGTTCT	ttcgtttgac	GCCTCTCGCC
1820	AGTCTATGGG	GGCCGGACCG	CATAGTCTCT	CCTATGAGCT	CACTCCTGCT	GGTtTGCAGG	tcaagatttc
1890	ATCTAATGGC	CTGGACTGCA	CTGCAACATT	CCCTCCGGGC	GGGGCCCCTA	GTGCTGCCCC	GGGGGAAGTA
1960	GCAGCCTTTT	GCAGTGCCCT	ttacaggtac	AACAGGTTCA	CTCAGCGCCA	tTCGC	GGTGGCCTGT
2030	GGCTGCATCC	TGAGGGGTTG	tTGGGTATCT	TCCCCCCTTT	CTCTCCCGG	CACCTTTGGG	AGTCTGCTAA
2100	CCCTTTTTGT	GGGGAGGGAA	ccctatacac	CCGAACATGG	tcaAcatcta	gtttttctag	tgatttttc
2170	CCCCCTGAGG	CAGCCGTCGC	AGCGCCGGCT	GCTACCCCGG	GGTTACGCCA	CCCT	cctattagtg
2240	ACATCTGGGT	GTTACCGCCG	CCTTCTGAAG	AATTTCAGGT	tgacacagtg	cCCGCTCCC	CtGCCCCTGA
2310	GCCCGCTCAA	CCATCTAGCT	CCGCTGGGCC	AAAGGCTCCC	GTGCGTAAGC	CGCCAACGC	ACCATCCCCG
2380	CGCACTCGCC	GCCTTCTTTA	cacctatccg	GATGGGGCAA	AGGTGTATGC	GGGGTCACTG	TTTGAGTCTG
2450	ACTGTGACTG	GCTGGTTAAT	GCGTCGAATC	CCGGCCATCG	TCCTGGGGGC	GGCCTTTGCC	AtGCCtTCTA
252	CCAACGCTTC	CCCGAGTCTT	tCCACCCAAC	TGAGTtTATT	ATGCGCGACG	GTCTTGCCG	gTATACTITA
2590	ACTCCCCGGC	CTATCATCCA	TGCAGTGGCT	CCTGATTATA	GGGTTGAGCA	taAccianag	AGGCTTGAGG
2660	CAGCATACCG	AGAGACCTGC	TCCCGCCGCG	GTACTGCCGC	CTACCCACTC	CTTGGCTCGG	gtatatacca
2730	AGTTCCCGTC	agcctcagct	ttgacgettg	gGagcgtal	caccgcccco	GGGACGAGCT	стассtaacc
2800	GACCCCGCAG	CTACCTGGTT	CGAGGCTAAT	AAGCCAACAC	AGCCGGCCCT	CACAATAACT	GAGGATGCAG
2870	CCCGTACAGC	CAACCTAGCA	CTGGAGATCG	ATGCTGCTAC	GGAGGTCGGC	CGGGCTTGTG	CCGGttGTGC
2940	AGTTAGTCCT	GGGGTTGTCC	ATTATCAGTT	TACTGCTGGG	GTCCCGGGTt	CGGGGAAGTC	gCgttctata
3010	CAGCAGGGGG	ATGTTGACGT	AGTGGTTGTT	CCCACTCGGG	AGCTCCGGAA	TAGTTGGCGC	CGCCGGGGTT
3080	TCGCAGCTTT	tacaccacat	ACGGCGGCCC	GTGTCACCAC	GGGCCGTCGT	GTtGtaAttg	ATGAGGCCCC
3150	ATCTCTCCCA	CCGCATTTGT	tgctactaca	TATGCAGCGG	GCCTCGTCGG	TCCACCTTCT	CGGCGACCCG
3220	aACCAGATCC	ctgccataga	cttcgagcat	GCCGGCCTGG	tccccgcaat	ACGCCCTGAG	cttgcgccca
3290	CCAGTTGGTG	gCatgitacc	CACCGCTGCC	CCGCTGATGT	GTGCGAGCTT	ATACGCGGGG	cttatcctaa
3360	AATTCAAACC	ACTAGCCGTG	TGCTGCGGTC	tTtattctag	AATGAGCCTG	CCATTGGCCA	GAAGTtAGTt
3430	tTCACCCAGG	CTGCTAAGGC	cgCcaacclc	GGTGCGATTA	cagtccacga	gGcccagcce	gccactttca
3500	CGGAAACTAC	AATCATAGCC	ACAGCTGATG	CTAGGGGGCT	tatccaatct	tCCCGAGCTC	atgccatagt
3570	CGCACTTACC	cgCCaCACAG	AGAAGTGCGT	TATTCTTGAC	GCCCCCGGCT	tGttacgtga	Ggttgatata
3640	TCGGATGTG	TTGT	TTT	GCCG	AGGTGGGTCA	CCATCGCCCC	tCtgtgatac

J1-PRE-RBV Consensus sequence

3710	CTCGCGGTAA TCCTGACCAG	AACCTCGCGA	CACTACAGGC	CTTTCCACCT	TCCTGCCAGA	TTAGTGCCTA
3780	TCACCAGTTA	GCTGAGGAAC	TTGGCCACCG	CCCAGCCCCC	GTCGCCGCTG	TCTTGCCCCC
3850	CTTGAGCAAG	CCTTGTTATA	TATGCCGCAG	GAGCTTACGG	TGTCAGATAG	CGTGCTAGTC

J2-PRE-RBV

File name	J2-PRE-RBV.sam
Ref name	FJ705359.1
Ref length	$\mathbf{7 2 3 7 n t}$
Program used	Tanoti Assembler 1.0
Total reads	5883395
Mapped reads	5883395 (100.00\%)
Average read length	$138 n t$
Coverage	$7225 n t$ (99.83\%)
Average depth	111533 reads/site

J2-PRE-RBV Consensus sequence

1	GCAGACCACG TATGTGGTCG	ATGCCATGGA GGCCCACCAG	TTCATTAAGG	CTCCTGGCAT	TACTACTGCC
70	ATTGAGCAAG CTGCTCTGGC	TGCGGCCAAT TCTGCCCTGG	CGAATGCTGT	GGTGATTCGG	CCGTTTTTAT
140	CTCGTGTGCA AACTGAGATT	CTTATTAATT TGATGCAACC	CCGGCAGTTG	GTTTTTCGGC	CTGAAGTGCT
210	CTGGAATCAT CCTATCCAAC	GGGTTATCCA TAATGAACTT	GAACAGTACT	GTCGGGCCCG	GGCTGGTCGT
280	TGTTTAGAGA TTGGGGCCCA	CCCAAGATCC ATTAATGACA	ACCCAAATGT	TCTGCACCGG	TGCTTTCTAC
350	GACCAGTTGG GAGAGATGTT	CAGCGCTGGT ACTCTGCTCC	TACCCGTGGC	CCTGCGGCTA	ACTGCCGCCG
420	TTCTGCCTTG CGTGGTCTCC	CCCCCGTTGA TCGTACCTAT	TGTTTTGATG	GATTCTCTCG	CTGCTCATTT
490	GCTGCGGAAA CTGGGGTTGC	TCTTTACTCT CTGCATGACC	TCTGGCCGGC	CGATGTTGCG	GAGGCTATGG
560	CCCGACACGG GATGACACGC	CTGTATGCTG CACTACATCT	CCCTCCTGAA	GTACTACTAC	CACCTGGTAC
630	TTACCATACA ACTTCATACC	TTCTGATCCA CGATGGTGAT	CGTGCTGTTG	TGACCTATGA	AGGTGATACT
700	AGTGCAGGCT ACAACCATGA	TGTCTCCATA CTTCGTGCAT	GGATCCGCAC	AACTAAGATA	GTCGGCGATC
770	ATCCGCTGGT GATAGAGCGT	GTGCGGGCTA TTGGCTGCCA	TTTTGTGTTG	TTGCTTACTG	CAGCCCCTGA
840	GCCGTCGCCA ATGCCTTATG	TTCCATACCC CCGGTCGACA	GAGGTGTATG	TCCGCTCTAT	ATTCGGCCCT
910	GGCGGGTCCC CATCTCTATT	CCCATCTGCT TGCTCTACGA	AGTCCACATT	TCACGCTGTC	CCGGTTCATA
980	TCTGGGACCG GCTCATGCTT	TTTGGCGCAA CTCTGGATGA	TCAGGCATTT	TGCTGTTCAC	GGCTTATGAC
1050	CTACCTCCGC GGGATTAGTT	ACAAGGTCAC TGTTGGTGCC	CTTGTCGCTA	ACGAAGGGTG	GAATGCTTCG
1120	GAGGACGCTC TTACCGCTGT	TATTACTGCA GCGTACCTGA	CCATTTGTCA	TCAGCGTTAC	CTCCGTACTC
1190	AAGCTATATC TAAGGGTATG	CGCCGACTGG AGGTTGAGCA	TGCCCAAAAA	TTCATTACAA	GACTTTATAG
1260	TTGGCTGTTT GAGAAGTCCG	GCCGTGACTA TATCCCCGGC	CGCCAGCTCC	AGTTCTACGC	ACAGTGCCGC
1330	CGTTGGTTAT CGGCGGGTTT	TCATCTTGAC CCTAGGGTGC	TTGTTTTTGA	TGAGTCTGTG	CCCTGCCGTT
1400	GTAGGACATT TCTTAAGAAG	GCTGTGGGTA AGTTCTGCTG	TTTTATGAAG	TGGTTAGGAC	AGGAGTGCAC
1470	CTGCTTTTTG GAACCAGCAG	AGGGTCTAGT TGGCGACCAT	GGCCACGATA	ATGAAGCCTA	TGAGGGCTCT
1540	GAGGTCGATC AGGCTGAGCC	CGCCTGTCTC GATGTTTCTG	GGACTTATGC	CGTCCATGGC	CGCCAACTTG
1610	AGGCCCTGTA TAGAGCGCTT	AACATCCCGC ATGACATCGC	TGCCCGAGCC	TCTCGCTTGA	CTGCCACCGT
1680	CGAACTCGTT GCAAGTCCAG	ACCGCTTGGA GTGCCGCACT	GTGCTCGGGA	ATAAGACTTT	TCGGACGACG
1750	GTGGTTGATG GCGCCCATCT	TGAGGCGAAC GGCCCCGAGC	AGTACGTTCT	TTCGTTTGAC	GCCTCTCGCC
1820	AGTCTATGGG GGCCGGACCG	CATAGTCTCT CCTATGAGCT	CACTCCTGCT	GGTTTGCAGG	TCAAGATTTC
1890	ATCTAATGGC CTGGACTGCA	CTGCAACATT CCCTCCGGGT	GGGGCCCCTA	GTGCTGCCCC	GGGGGAAGTA
1960	GCAGCCTTTT GCAGTGCCCT	TTACAGGTAC AACAGGTTCA	CTCAGCGCCA	TTCGCTTATA	GGTGGCCTGT
2030	GGCTGCATCC TGAGGGGTTG	TTGGGTATCT TCCCCCCTTT	CTCTCCCGGG	CACCTTTGGG	AGTCTGCTAA
2100	CCCTTTTTTGT GGGGAGGGAA	CCCTGTACAC CCGAACATGG	TCAACATCTG	GTTTTTCTAG	TGATTTTTCC
2170	CCCCCTGAGG CAGCCGTCGC	AGCGCCGGCT GCTACCCCGG	GGTTACGCCA	CCCTACACCC	CCTGTTAGTG
2240	ACATCTGGGT GTTACCGCCG	CCTTCTGAAG AATTTCAGGT	TGACACAGTG	CCCGCTCCCT	CTGCCCCTGA
2310	GCCCGCTCAA CCATCTAGCT	CCGCTGGGCC AAAGGCTCCC	GTGCGTAAGC	CGCCAACGCC	ACCATCCCCG
2380	CGCACTCGCC GCCTTCTTTA	CACCTATCCG GATGGGGCAA	AGGTGTATGC	GGGGTCACTG	TTTGAGTCTG
2450	ACTGTGACTG GCTGGTTAAT	GCGTCGAATC CCGGCCATCG	TCCTGGGGGC	GGCCTTTGCC	ATGCCTTCTA
2520	CCAACGCTTC CCCGAGTCTT	TCCACCCAAC TGAGTTTATT	ATGCGCGACG	GTCTTGCCGC	GTATACTTTA
2590	ACTCCCCGGC CTATCATCCA	TGCAGTGGCT CCTGATTATA	GGGTTGAGCA	TAACCCAAAG	AGGCTTGAGG
2660	CAGCATACCG AGAGACCTGC	TCCCGCCGCG GTACTGCCGC	CTACCCACTC	CTTGGCTCGG	GTATATACCA
2730	AGTTCCCGTC AGCCTCAGCT	TTGACGCTTG GGAGCGTAAC	CACCGCCCCG	GGGACGAGCT	CTACCTAACC
2800	GACCCCGCAG CTACCTGGTT	CGAGGCTAAT AAGCCAACAC	AGCCGGCCCT	CACAATAACT	GAGGATGCAG
2870	CCCGTACAGC CAACCTAGCA	CTGGAGATCG ATGCTGCTAC	GGAGGTCGGC	CGGGCTTGTG	CCGGTTGTGC
2940	AGTTAGTCCT GGGGTTGTCC	ATTATCAGTT TACTGCTGGG	GTCCCGGGTT	CGGGGAAGTC	GCGTTCTATA
3010	CAGCAGGGGG ATGTTGACGT	AGTGGTTGTT CCCACTCGGG	AGCTCCGGAA	TAGTTGGCGC	CGCCGGGGTT
3080	TCGCAGCTTT TACACCACAT	ACGGCGGCCC GTGTCACCAC	GGGCCGTCGT	GTTGTAATTG	ATGAGGCCCC
3150	ATCTCTCCCA CCGCATTTGT	TGCTACTACA TATGCAGCGG	GCCTCGTCGG	TCCACCTTCT	CGGCGACCCG
3220	AACCAGATCC CTGCCATAGA	CTTCGAGCAT GCCGGCCTGG	TCCCCGCAAT	ACGCCCTGAG	CTTGCGCCCA
3290	CCAGTTGGTG GCATGTTACC	CACCGCTGCC CCGCTGATGT	GTGCGAGCTT	ATACGCGGG	CTTATCCTAA
3360	AATTCAAACC ACTAGCCGTG	TGCTGCGGTC TTTATTCTGG	AATGAGCCTG	CCATTGGCCA	GAAGTTAGTT
3430	TTCACCCAGG CTGCTAAGGC	CGCCAACCCC GGTGCGATTA	CAGTCCACGA	GGCCCAGGGC	GCCACTTTCA
3500	CGGAAACTAC AATCATAGCC	ACAGCTGATG CTAGGGGGCT	TATCCAATCT	TCCCGAGCTC	ATGCCATAGT
3570	CGCACTTACC CGCCACACAG	AGAAGTGCGT TATTCTTGAC	GCCCCCGGCT	TGTTACGTGA	GGTtGGTATA
3640	TCGGATGTGA TTGTCAACAA	TTTTTTCCTC GCCGGCGGGG	AGGTGGGTCA	CCATCGCCCC	TCTGTGATAC

J2-PRE-RBV Consensus sequence

3710	CTCGCGGTAA TCCTGACCAG	AACCTCGCGA	CACTACAGGC	CTTTCCACCT	TCCTGCCAGA	TTAGTGCCTA
3780	TCACCAGTTA	GCTGAGGAAC	TTGGCCACCG	CCCAGCCCCC	GTCGCCGCTG	TCTTGCCCCC
3850	CTTGAGCAAG	CCTTGTTATA	TATGCCGCAG	GAGCTTACGG	TGTCAGATAG	CGTGCTAGTC

K1-PRE-RBV

File name	K1-PRE-RBV.sam
Ref name	KC618403.1
Ref length	7 423nt
Program used	Tanoti Assembler 1.0
Total reads	1591019
Mapped reads	1591019 (100.00\%)
Average read length	$134 n t$
Coverage	$7338 n t$ (98.85\%)
Average depth	28503 reads/site

K1-PRE-RBV Consensus sequence

GCAGACCACG TATGTGGTCG ATGCCATGGA GGCCCACCAG TTCATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAT TCTGCCCTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTAT CTCGTGTGCA AACTGAGATT CTTATTAATT TGATGCAACC CCGGCAGTTG GTTTTCCGAC CTGAAGTACT CTGGAATCAC CCTATCCAAC GGGTTATCCA TAATGAACTT GAACAGTATT GTCGGGCCCG GGCTGGTCGC TGTCTGGAGG TTGGGGCCCA CCCAAGATCC ATTAATGATA ACCCAAATGT TCTGCACCGG TGCTTTTTAC GACCAGTTGG GAGAGATGTT CAGCGCTGGT ACTCTGCTCC TACCCGCGGC CCTGCGGCTA ACTGCCGCCG TTCTGCCTTG CGTGGCCTCC CCCCCGTTGA TCGTACCTAT TGTTTTGATG GATTCTCCCG CTGCTCATTT GCCGCAGAAA CTGGGGTTGC TCTTTACTCT CTGCATGACC TCTGGCCGGC CGATGTTGCG GAGGCTATGG CCCGACACGG GATGACACGC TTGTATGCTG CACTACATCT CCCCCCTGAG GTACTACTAC CACCTGGTAC TTACCATACA ACATCATACC TTCTGATTCA CGACGGAGAT CGTGCTGTTG TGACCTATGA AGGTGATACT AGTGCAGGCT ACAACCATGA TGTCTCCATA CTTCGTGCAT GGATCCGTAC AACTAAGATA GTCGGCGATC ATCCGCTGGT GATAGAGCGT GTGCGGGCTA TTGGCTGCCA TTTTGTGCTG CTGCTCACTG CAGCCCCTGA GCCGTCACCA ATGCCTTATG TTCCATACCC CCGGTCGACA GAGGTCTATG TCCGCTCTAT ATTTGGTCCT GGCGGGTCCC CATCCCTATT CCCATCAGCT TGCTCTACGA AATCCACATT TCACGCTGTT CCGGTTCATA TTTGGGACCG GCTCATGCTC TTTGGTGCTA CTCTGGATGA TCAGGCGTTT TGCTGTTCAC GGCTTATGAC CTACCTCCGC GGGATTAGTT ACAAGGTTAC TGTTGGCGCC CTTGTCGCTA ATGAGGGATG GAATGCTTCG GAGGACGCTC TTACCGCTGT TATTACTGCA GCCTATTTGA CCATTTGCCA TCAGCGTTAC CTCCGTACTC AAGCTATATC CAAGGGTATG CGCCGACTGG AGGTTGAGCA TGCCCAAAAA TTCATTACAA GACTTTATAG CTGGCTGTTC GAGAAGTCCG GCCGTGACTA TATCCCCGGC CGTTGGTTAT CGGCGGGCTT CCATCTTGAC CCAAGGGTGC GTAGGACATT CCTTAAGAAG GCTGTGGGTA AGTTCTGCTG CTGCTTCTTG GAACCAGCAG AGGGTCTAGT TGGCGACCAC GAAGTCGACC AGGCCGAGCC CGCCCATCTC GATGTTTCTG AGGCCCTGTA TAGGGCGCTT AATATCCCGC ATGACATCGC CGAACTTGTT GCAGGCCCAG ACCGCTTGGA GTGCCGCACT GTGGTTGATG GTGCCCATCT TGAGGCAAAC GGCCCCGAGC AGTCTATGGG GGCCGGTCCG CATAGTCTCT CCTATGAGCT ATCTAATGGG CTGGATTGCA CTGCAACATT CCCCCCGGGC GCAGCCTTTT GCAGTGCCCT TTACAGGTAT AACAGGTTTA GGCTGCATCC TGAGGGGTTG TTGGGTATCT TCCCCCCTTT CCCTTTTTGT GGGGAGGGAA CCTTGTACAC CCGGACATGG CCCCCTGAGG CAGCCGTTGC AGTGCCGGCC GCTACTCCGG ACATTTGGGT GTTACCGCCA CCTTCTGAAG AATTTCAGGT GCCCGCTCAA CCATCTAGCC CCGCTGAGCC AAAAGCTCCC NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN CTGAAGAATT TCAGGTTAAC ACAACTCCCG CCCCCCTTGC TGAGCCAAAA GCTCCCGTGC GTAAGCCGCC AACACCACCA TATCCTGATG GGGCAAAGGT GTACGCGGGG TCATTGTTTG CGAATCCCGG CCATCGTCCT GGAGGCGGCC TTTGCCACGC CCCAACTGAG TTCATCATGC GCGACGGTCT TGCCGCTTAC GTGGCTCCTG ATTATAGGGT TGAGCATAAC CCAAAGAGGC GCCGCGGTAC CGCCGCCTAT CCACTCCTCG GCTCAGGCAT CGCCTGGGAG CGTAACCACC GCCCCGGGGA TGAGCTCTAC GCTAATAAGC CAACACAACC GGCCCTCACA ATAACTGAGG AGATCGATGC TGCTACGGAG GTCGGCCGGG CTTGTGCCGG TCAGTTTACT GCTGGGGTCC CAGGCTCGGG GAAGTCGCGT GTTGTTCCTA CTCGGGAGCT CCGGAATAGT TGGCGTCGTC CAGCCCGTGT CACTACGGGC CGTCGTGTTG TGATTGATGA ACTACACATG CAGCGGGCCT CGTCGGTCCA CCTTCTCGGC GAGCATGCCG GCCTGGTCCC CGCTATACGC CCTGAGCTCG GCTGCCCCGC TGACGTGTGC GAGCTTATAC GCGGGGCTTA ACGGTCTCTA TTCTGGAATG AGCCTGCCAT TGGCCAGAAG AACCCTGGTG CGATTACAGT CCACGAGGCC CAGGGCGCCA

CGCCAGCTCC AGTTTTATGC ACAGTGCCGC TTGTTTTTGA TGAGTCTGTG CCCTGCCGTT TTTTATGAAG TGGTTGGGAC AGGAGTGCAC GGCCACGATA ATGAAGCCTA TGAGGGCTCT GGACTTATGC CGTCCATGGC CGCCAACTTG AGCCCGAGCC TCCCGTTTGA CTGCCACCGT GTGCTCGGGA ATAAGACTTT CCGGACGACG AGTACGTCCT TTCGTTTGAC GCCTCTCGCC CACTCCTGCT GGTTTGCAGG TCAAGATCTC GGCGCCCCAA GCGCTGCCCC GGGGGAGGTG CTCAGCGCCA TTCGCTTATA GGCGGCTTGT CTCCCCCGGG CACCTTTGGG AGTCCGCTAA TCAACATCTG GTTTTTCTAG TGACTTTTCC GGTCACGCCG CCCTACACCT CCTGCTAGTG TAACACAACT CCCGCCCCCC TTGCCCCCGG GTGCGTAAGC CGCCAANNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNGA CCGCCACCTT CCCCGGGCCC GCTCAACCAT CTAGCCCCGC TCCCCGCGCA CCCGCCGCCT TCTTTACACC AGTCTGACTG TGATTGGCTG GTCAATGCGT CTTCTATCAA CGCTACCCTG AGTCCTTCCA ACTTTAACTC CCAGGCCTAT TATTCATGCA TTGAGGCAGC ATACCGAGAA ACTTGCTCTC ATACCAAGTC CCCGTCAGCC TCAGCTTTGA CTAACTGACC TCGCTGCTAC CTGGTTTGAG ATGCGGCCCG TACAGCCAAC TTGGCACTGG CTGTGCAGTT AGTCCTGGGG TTGTGCACTA TCTATACAGC AGGGGGATGT TGACGTAGTG GGGGTTTCGC AGCTTTTACA CCTCATACGG GGCCCCATCC CTCCCACCGC ATTTGTTGCT GACCCAAACC AGATCCCTGC CATAGACTTT CGCCCACCAG TTGGTGGCAT GTCACCCATC TCCCAAAATC CAAACCACTA GCCGCGTGCT TTAGTTTTCA CCCAGGCTGC TAAGGCCGCC CCTTCACGGA AACTACAATC ATAGCCACGG

K1-PRE-RBV Consensus sequence

3710	CTGATGCTAG	GGGGCTTATC	CAATCTTCCC	GAGCTCACGC	CATAGTCGCA	CTCACCCGCC	ACACAGAGAA
3780	GTGCGTTATT	CTTGACGCCC	CCGGCTTGTT	ACGTGAGGTT	GGTATATCGG	ATGTGATTGT	TAACAATTTT
3850	TTCCTCGCCG	GTGGAGAGGT	GGGTCACCAT	CGCCCCTCTG	TGATACCTCG	CGGTAATCCT	GACCAGAACC
3920	TCGCGACACT	ACAGGCCTTT	CCACCCTCCT	GCCAAATTAG	TGCCTATCAC	CAGTTAGCTG	AGGAACTTGG
3990	CCACCGCCCA	GCCCCCGTCG	CCGCTGTCTT	GCCCCCTTGC	CCTGAACTTG	AGCAAGGCTT	GTTATATATG
4060	CCGCAGGAGC	TTACGGTGTC	TGATAGCGTG	CTGGTCTTCG	AACTCACGGA	CATAGTTCAC	TGCCGGATGG
4130	CTGCCCCCAG	CCAGCGGAAG	GCCGTCCTAT	CGACGCTCGT	GGGTAGGTAC	GGCCGTCGGA	CGAAGCTGTA
4200	TGAAGCAGCT	CACTCTGATG	TCCGTGAGTC	CCTGGCTAGA	TTCATCCCCA	CCATTGGGCC	CGTTCAGGCT
4270	ACTACATGTG	AGTTATATGA	GCTGGTTGAG	GCCATGGTGG	AGAAAGGTCA	GGATGGCTCT	GCCGTGCTCG
4340	AGCTCGACCT	CTGCAATCGT	GATGTATCGC	GTATCACATT	TTTCCAGAAA	GATTGTAACA	AATTCACCAC
4410	AGGGGAGACC	ATTGCCCACG	GTAAGGTCGG	CCAGGGCATC	TCGGCTTGGA	GTAAGACCTT	CTGTGCCCTG
4480	TTTGGTCCGT	GGTtTCGTGC	TATTGAAAAA	GAAATACTAG	CCCTGCTCCC	GCCTAATATT	TTCTACGGCG
4550	ACGCATACGA	GGAGTCTGTG	TTTGCCGCCG	CTGTGTCAGG	GGCAGGTTCA	AGTATGGTAT	TTGAGAATGA
4620	TTTTTCAGAG	TTTGATAGCA	CCCAAAATAA	CTTCTCCCTT	GGTCTCGAGT	GCGTAGTCAT	GGAGGAATGT
4690	GGCATGCCCC	AGTGGCTAAT	CCGGTTGTAC	CATCTGGTTC	GGTCGGCCTG	GATCCTACAG	GCGCCGAAGG
4760	AGTCTCTTAA	GGGATTTTGG	AAGAAGCATT	CTGGTGAGCC	AGGCACCCTC	CTCTGGAACA	CTGTTTGGAA
4830	CATGGCGATC	ATAGCACACT	GCTATGAATT	TCGTGATTTT	AGGGTTGCCG	CTTTCAAGGG	AGATGATTCT
4900	GTGGTCCTCT	GTAGCGACTA	CCGTCAGAGC	CGCAATGCAG	CGGCCCTGAT	TGCAGGTTGC	GGGCTCAAAC
4970	TGAAGGTTGA	TTATCGCCCT	ATTGGGTTGT	ATGCTGGTGT	GGTGGTGGCC	CCTGGCCTGG	GGACACTACC
5040	CGATGTGGTG	CGCTTTGCCG	GCCGGCTGTC	TGAGAAGAAC	TGGGGCCCTG	GGCCGGAGCG	GGCCGAGCAG
5110	TTGCGCCTCG	CTGTTTGTGA	CTTTCTTCGA	GGGTTAACGA	ATGTTGCGCA	GGTGTGTGTT	GATGTTGTAT
5180	CCCGAGTTTA	TGGGGTTAGC	CCTGGGTTGG	TACATAACCT	TATTGGCATG	CTGCAAACCA	TAGCTGATGG
5250	CAAAGCCCAT	TTTACAGAGA	CTGTTAAACC	TGTGCTTGAC	CTCACGAATT	CTATTATACA	GCGGGTGGAA
5320	TGAATAACAT	GTCTCGTGCA	TTGCCCATGG	GATCACCATG	CGCCCTAGGG	CTGTTCTGCT	GTTGTTCTTC
5390	GTGCTTTTGC	CTATGCTGCC	CGCGCCACCG	GCCGGCCAGC	CGTCTGGCCG	CCGTCGTGGG	CGGCGCAGCG
5460	GCGGTACCGG	CAGTGGTTTC	TGGGGTGACA	GGGTTGATTC	TCAGCCCTTC	GCCCTCCCCT	ATATTCATCC
5530	AACCAACCCC	TTTGCCGCCG	ATGTCGTACC	GCAACCCGGG	GCTGGAGCTC	GCCCTCGACA	GCCACCCCGC
5600	CCCCTCGGCT	CCTCTTGGCG	TGACCAGTCC	CAGCGCCCCT	CCGCTGTCCC	ACGTCGTCGA	TCTGCCCCAG
5670	CCGGGGCTGC	GCCGCTGACT	GCCATATCAC	CTGCTCCTGA	TACAGCTCCT	GTACCTGATG	TTGACTCGCG
5740	CGGCGCCATA	TTGCGACGCC	AGTACAATTT	ATCCACATCC	CCGCTCACAT	CATCTGTTGC	TTCGGGTACT
5810	AATTTGGTTC	TTTATGCCGC	CCCGCTAAAC	CCTTTGCTGC	CCCTTCAGGA	TGGCACTAAC	ACTCACATCA
5880	TGGCCACTGA	GGCATCTAAC	TATGCCCAGT	ATCGGGTTGT	CCGAGCTACG	ATCCGTTACA	GGCCATTGGT
5950	GCCGAATGCC	GTCGGCGGCT	ATGCAATATC	CATCTCATTC	TGGCCTCAGA	CTACTACTAC	CCCCACATCT
6020	GTTGATATGA	ACTCTATTAC	TTCCACTGAT	GTTAGGATTC	TAGTTCAGCC	CGGTATTGCT	TCTGAGTTGG
6090	TTATCCCCAG	TGAGCGCCTC	CATTATCGTA	ACCAGGGCTG	GCGCTCTGTG	GAGACCTCGG	GTGTGGCTGA
6160	AGAGGAGGCT	ACTTCTGGTT	TGGTAATGCT	TTGCATCCAT	GGTTCTCCTG	TTAATTCCTA	CACCAATACC
6230	CCTTATACCG	GGGCGCTTGG	ACTCCTTGAT	TTTGCTTTAG	AGCTTGAGTT	TAGGAACTTG	ACACCTGGAA
6300	ACACTAACAC	CCGTGTGTCC	CGGTATACAA	GCACAGCCCG	TCATCGGCTG	CGCCGCGGTG	CTGATGGCAC
6370	CGCCGAACTT	ACCACTACAG	CGGCTACGCG	CTTCATGAAG	GACCTGCACT	TCACCGGTAC	GAATGGGGTC
6440	GGTGAGGTGG	GTCGTGGTAT	TGCTCTCACA	CTCTTTAATC	TTGCTGACAC	GCTTCTTGGT	GGTTTGCCGA
6510	CAGAATTAAT	TTCGTCGGCT	GGGGGACAGT	TATTTTACTC	CCGCCCCGTC	GTCTCGGCCA	ATGGCGAGCC
6580	GACTGTCAAG	TTATACACAT	CTGTTGAGAA	TGCGCAGCAG	GATAAGGGGA	TCGCTATTCC	ACATGACATA
6650	GATCTGGGTG	ACTCCCGTGT	GGTCATCCAA	GACTATGACA	ACCAGCATGA	GCAGGATCGA	CCCACCCCCT
6720	CGCCTGCCCC	TTCTCGCCCT	TTTTCGGTCC	TTCGCGCTAA	TGATGTTCTT	TGGCTCTCTC	TTACTGCCGC
6790	TGAGTACGAC	CAGACTACAT	ATGGGTCGTC	CACCAACCCG	ATGTATGTCT	CGGATACTGT	CACATTTGTC
6860	AACGTGGCTA	CAGGAGCCCA	GGCTGTCGCC	CGTTCCCTCG	ACTGGTCTAA	AGTCACTCTG	GACGGCCGCC
6930	CTCTCACTAC	TATCCAGCAG	TACTCCAAAA	CATTTTATGT	TCTCCCGCTT	CGCGGGAAGT	TATCTTTCTG
7000	GGAGGCCGGG	ACGACTAAGG	CCGGTTATCC	CTATAATTAC	AACACAACTG	CTAGTGATCA	GATTTTGATT
7070	GAAAATGCGG	CTGGTCATCG	TGTTGCTATT	TCCACGTATA	CCACCAGCTT	GGGTGCCGGT	CCTGTGTCTG
7140	TTTCTGCAGT	TGGTGTTTTA	GCCCCACATT	CGGCCCTTGC	AGTCCTTGAA	GATACTATTG	ATTACCCTGC
7210	CCGTGCCCAC	ACTTTTGATG	ATTTTTGCCC	GGAGTGTCGC	GCTCTTGGTT	TGCAGGGGTG	TGCCTTCCAG
7280	TCTACTATTG	CTGAGCTTCA	GCGCCTTAAA	ATGAAGGTAG	GTAAAACCCG	GGAGTTTTAA	TCAATTTCCT
7350	TTGTGCCCCC	TTCATAGCTT	TTGCTTTATT	TCTTTTTTCT	GCGGTTCGCG	CTCCCTGGAA	NNNNNNNNNN
7420	NN						

K2-PRE-RBV

File name	K2-PRE-RBV.sam
Ref name	KC618403.1
Ref length	$\mathbf{7 4 2 3 n t}$
Program used	Tanoti Assembler 1.0
Total reads	1046889
Mapped reads	$1046889(100.00 \%)$
Average read length	$136 n t$
Coverage	$7338 n t(98.85 \%)$
Average depth	19004 reads/site

K2-PRE-RBV Consensus sequence

GCAGACCACG TATGTGGTCG ATGCCATGGA GGCCCACCAG TTCATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAT TCTGCCCTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTAT CTCGTGTGCA AACTGAGATT CTTATTAATT TGATGCAACC CCGGCAGTTG GTTTTCCGAC CTGAAGTACT CTGGAATCAC CCTATCCAAC GGGTTATCCA TAATGAACTT GAACAGTATT GTCGGGCCCG GGCTGGTCGC TGTCTGGAGG TTGGGGCCCA CCCAAGATCC ATTAATGATA ACCCAAATGT TCTGCACCGG TGCTTTTTAC GACCAGTTGG GAGAGATGTT CAGCGCTGGT ACTCTGCTCC TACCCGCGGC CCTGCGGCTA ACTGCCGCCG TTCTGCCTTG CGTGGCCTCC CCCCCGTTGA TCGTACCTAT TGTTTTGATG GATTCTCCCG CTGCTCATTT GCCGCAGAAA CTGGGGTTGC TCTTTACTCT CTGCATGACC TCTGGCCGGC CGATGTTGCG GAGGCTATGG CCCGACACGG GATGACACGC TTGTATGCTG CACTACATCT CCCCCCTGAG GTACTACTAC CACCTGGTAC TTACCATACA ACATCATACC TTCTGATTCA CGACGGAGAT CGTGCTGTTG TGACCTATGA AGGTGATACT AGTGCAGGCT ACAACCATGA TGTCTCCATA CTTCGTGCAT GGATCCGTAC AACTAAGATA GTCGGCGATC ATCCGCTGGT GATAGAGCGT GTGCGGGCTA TTGGCTGCCA TTTTGTGCTG CTGCTCACTG CAGCCCCTGA GCCGTCACCA ATGCCTTATG TTCCATACCC CCGGTCGACA GAGGTCTATG TCCGCTCTAT ATTTGGTCCT GGCGGGTCCC CATCCCTATT CCCATCAGCT TGCTCTACGA AATCCACATT TCACGCTGTT CCGGTTCATA TTTGGGACCG GCTCATGCTC TTTGGTGCTA CTCTGGATGA TCAGGCGTTT TGCTGTTCAC GGCTTATGAC CTACCTCCGC GGGATTAGTT ACAAGGTTAC TGTTGGCGCC CTTGTCGCTA ATGAGGGATG GAATGCTTCG GAGGACGCTC TTACCGCTGT TATTACTGCA GCCTATTTGA CCATTTGCCA TCAGCGTTAC CTCCGTACTC AAGCTATATC CAAGGGTATG CGCCGACTGG AGGTTGAGCA TGCCCAAAAA TTCATTACAA GACTTTATAG CTGGCTGTTC GAGAAGTCCG GCCGTGACTA TATCCCCGGC CGTTGGTTAT CGGCGGGCTT CCATCTTGAC CCAAGGGTGC GTAGGACATT CCTTAAGAAG GCTGTGGGTA AGTTCTGCTG CTGCTTCTTG GAACCAGCAG AGGGTCTAGT TGGCGACCAC GAAGTCGACC AGGCCGAGCC CGCCCATCTC GATGTTTCTG AGGCCCTGTA TAGGGCGCTT AATATCCCGC ATGACATCGC CGAACTTGTT GCAGGCCCAG ACCGCTTGGA GTGCCGCACT GTGGTTGATG GTGCCCATCT TGAGGCAAAC GGCCCCGAGC AGTCTATGGG GGCCGGTCCG CATAGTCTCT CCTATGAGCT ATCTAATGGG CTGGATTGCA CTGCAACATT CCCCCCGGGC GCAGCCTTTT GCAGTGCCCT TTACAGGTAT AACAGGTTTA GGCTGCATCC TGAGGGGTTG TTGGGTATCT TCCCCCCTTT CCCTTTTTGT GGGGAGGGAA CCTTGTACAC CCGGACATGG CCCCCTGAGG CAGCCGTTGC AGTGCCGGCC GCTACTCCGG ACATTTGGGT GTTACCGCCA CCTTCTGAAG AATTTCAGGT GCCCGCTCAA CCATCTAGCC CCGCTGAGCC AAAAGCTCCC GTGCGTAAGC CGCCAATNNN NNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNA CCGCCACCTT CTGAAGAATT TCAGGTTAAC ACAACTCCCG CCCCCCTTGC CCCCGGGCCC GCTCAACCAT CTAGCCCCGC TGAGCCAAAA GCTCCCGTGC GTAAGCCGCC AACACCACCA TCCCCGCGCA CCCGCCGCCT TCTTTACACC TATCCTGATG GGGCAAAGGT GTACGCGGGG TCATTGTTTG AGTCTGACTG TGATTGGCTG GTCAATGCGT CGAATCCCGG CCATCGTCCT GGAGGCGGCC TTTGCCACGC CTTCTATCAA CGCTACCCTG AGTCCTTCTA CCCAACTGAG TTCATCATGC GCGACGGTCT TGCCGCTTAC ACTTTAACTC CCAGGCCTAT TATTCATGCA GTGGCTCCTG ATTATAGGGT TGAGCATAAC CCAAAGAGGC TTGAGGCAGC ATACCGAGAA ACTTGCTCTC GCCGCGGTAC CGCCGCCTAT CCACTCCTCG GCTCAGGCAT ATACCAAGTC CCCGTCAGCC TCAGCTTTGA CGCCTGGGAG CGTAACCACC GCCCCGGGGA TGAGCTCTAC CTAACTGACC TCGCTGCTAC CTGGTTTGAG GCTAATAAGC CAACACAACC GGCCCTCACA ATAACTGAGG ATGCGGCCCG TACAGCCAAC TTGGCACTGG AGATCGATGC TGCTACGGAG GTCGGCCGGG CTTGTGCCGG CTGTGCAGTT AGTCCTGGGG TTGTGCACTA TCAGTTTACT GCTGGGGTCC CAGGCTCGGG GAAGTCGCGT TCTATACAGC AGGGGGATGT TGACGTAGTG GTTGTTCCTA CTCGGGAGCT CCGGAATAGT TGGCGTCGTC GGGGTTTCGC AGCTTTTACA CCTCATACGG CAGCCCGTGT CACTACGGGC CGTCGTGTTG TGATTGATGA GGCCCCATCC CTCCCACCGC ATTTGTTGCT ACTACACATG CAGCGGGCCT CGTCGGTCCA CCTTCTCGGC GACCCAAACC AGATCCCTGC CATAGACTTT GAGCATGCCG GCCTGGTCCC CGCTATACGC CCTGAGCTCG CGCCCACCAG TTGGTGGCAT GTCACCCATC GCTGCCCCGC TGACGTGTGC GAGCTTATAC GCGGGGCTTA TCCCAAAATC CAAACCACTA GCCGCGTGCT ACGGTCTCTA TTCTGGAATG AGCCTGCCAT TGGCCAGAAG TTAGTTTTCA CCCAGGCTGC TAAGGCCGCC AACCCTGGTG CGATTACAGT CCACGAGGCC CAGGGCGCCA CCTTCACGGA AACTACAATC ATAGCCACGG

K2-PRE-RBV Consensus sequence

3710	CTGATGCTAG	GGGGCTTATC	CAATCTTCCC	GAGCTCACGC	CATAGTCGCA	CTCACCCGCC	GAGAA
3780	GTGCGTTATT	CTTGACGCCC	CCGGCTTGTT	ACGTGAGGTT	GGTATATCGG	ATGTGATTGT	TAACAATTTT
3850	TTCCTCGCCG	GTGGAGAGGT	GGGTCACCAT	CGCCCCTCTG	TGATACCTCG	CGGTAATCCT	GACCAGAACC
3920	TCGCGACACT	ACAGGCCTTT	CCACCCTCCT	GCCAAATTAG	TGCCTATCAC	CAGTTAGCTG	AGGAACTTGG
3990	CCACCGCCCA	GCCCCCGTCG	CCGCTGTCTT	GCCCCCTTGC	CCTGAACTTG	AGCAAGGCTT	GTTATATATG
4060	CCGCAGGAGC	TTACGGTGTC	TGATAGCGTG	CTGGTCTTCG	AACTCACGGA	CATAGTTCAC	TGCCGGATGG
4130	CTGCCCCCAG	CCAGCGGAAG	GCCGTCCTAT	CGACGCTCGT	GGGTAGGTAC	GGCCGTCGGA	CGAAGCTGTA
4200	TGAAGCAGCT	CACTCTGATG	TCCGTGAGTC	CCTGGCTAGA	TTCATCCCCA	CCATTGGGCC	CGTTCAGGCT
4270	ACTACATGTG	AGTTATATGA	GCTGGTTGAG	GCCATGGTGG	AGAAAGGTCA	GGATGGCTCT	GCCGTGCTCG
4340	AGCTCGACCT	CTGCAATCGT	GATGTATCGC	GTATCACATT	TTTCCAGAAA	GATTGTAACA	AATTCACCAC
4410	AGGGGAGACC	ATTGCCCACG	GTAAGGTCGG	CCAGGGCATC	TCGGCTTGGA	GTAAGACCTT	CTGTGCCCTG
4480	TTTGGTCCGT	GGTTTCGTGC	TATTGAAAAA	GAAATACTAG	CCCTGCTCCC	GCCTAATATT	TTCTACGGCG
4550	ACGCATACGA	GGAGTCTGTG	TTTGCCGCCG	CTGTGTCAGG	GGCAGGTTCA	AGTATGGTAT	TTGAGAATGA
4620	TTTTTCAGAG	TTTGATAGCA	CCCAAAATAA	CTTCTCCCTT	GGTCTCGAGT	GCGTAGTCAT	GGAGGAATGT
4690	GGCATGCCCC	AGTGGCTAAT	CCGGTTGTAC	CATCTGGTTC	GGTCGGCCTG	GATCCTACAG	GCGCCGAAGG
4760	AGTCTCTTAA	GGGATTTTGG	AAGAAGCATT	CTGGTGAGCC	AGGCACCCTC	CTCTGGAACA	CTGTTTGGAA
4830	CATGGCGATC	ATAGCACACT	GCTATGAATT	TCGTGATTTT	AGGGTTGCCG	CTTTCAAGGG	AGATGATTCT
4900	GTGGTCCTCT	GTAGCGACTA	CCGTCAGAGC	CGCAATGCAG	CGGCCCTGAT	TGCAGGTTGC	GGGCTCAAAC
4970	TGAAGGTTGA	TTATCGCCCT	ATTGGGTTGT	ATGCTGGTGT	GGTGGTGGCC	CCTGGCCTGG	GGACACTACC
5040	CGATGTGGTG	CGCTTTGCCG	GCCGGCTGTC	TGAGAAGAAC	TGGGGCCCTG	GGCCGGAGCG	GGCCGAGCAG
5110	TTGCGCCTCG	CTGTTTGTGA	CTTTCTTCGA	GGGTTAACGA	ATGTTGCGCA	GGTGTGTGTT	GATGTTGTAT
5180	CCCGAGTTTA	TGGGGTTAGC	CCTGGGTTGG	TACATAACCT	TATTGGCATG	CTGCAAACCA	TAGCTGATGG
5250	CAAAGCCCAT	TTTACAGAGA	CTGTTAAACC	TGTGCTTGAC	CTCACGAATT	CTATTATACA	GCGGGTGGAA
5320	TGAATAACAT	GTCTCGTGCA	TTGCCCATGG	GATCACCATG	CGCCCTAGGG	CTGTTCTGCT	GTTGTTCTTC
5390	GTGCTTTTGC	CTATGCTGCC	CGCGCCACCG	GCCGGCCAGC	CGTCTGGCCG	CCGTCGTGGG	CGGCGCAGCG
5460	GCGGTACCGG	CAGTGGTTTC	TGGGGTGACA	GGGTTGATTC	TCAGCCCTTC	GCCCTCCCCT	ATATTCATCC
5530	AACCAACCCC	TTTGCCGCCG	ATGTCGTACC	GCAACCCGGG	GCTGGAGCTC	GCCCTCGACA	GCCACCCCGC
5600	CCCCTCGGCT	CCTCTTGGCG	TGACCAGTCC	CAGCGCCCCT	CCGCTGTCCC	ACGTCGTCGA	TCTGCCCCAG
5670	CCGGGGCTGC	GCCGCTGACT	GCCATATCAC	CTGCTCCTGA	TACAGCTCCT	GTACCTGATG	TTGACTCGCG
5740	CGGCGCCATA	TTGCGACGCC	AGTACAATTT	ATCCACATCC	CCGCTCACAT	CATCTGTTGC	TTCGGGTACT
5810	AATTTGGTTC	TTTATGCCGC	CCCGCTAAAC	CCTTTGCTGC	CCCTTCAGGA	TGGCACTAAC	ACTCACATCA
5880	TGGCCACTGA	GGCATCTAAC	TATGCCCAGT	ATCGGGTTGT	CCGAGCTACG	ATCCGTTACA	GGCCATTGGT
5950	GCCGAATGCC	GTCGGCGGCT	ATGCAATATC	CATCTCATTC	TGGCCTCAGA	CTACTACTAC	CCCCACATCT
6020	GTTGATATGA	ACTCTATTAC	TTCCACTGAT	GTTAGGATTC	TAGTTCAGCC	CGGTATTGCT	TCTGAGTTGG
6090	TTATCCCCAG	TGAGCGCCTC	CATTATCGTA	ACCAGGGCTG	GCGCTCTGTG	GAGACCTCGG	GTGTGGCTGA
6160	AGAGGAGGCT	ACTTCTGGTT	TGGTAATGCT	TTGCATCCAT	GGTTCTCCTG	TTAATTCCTA	CACCAATACC
6230	CCTTATACCG	GGGCGCTTGG	ACTCCTTGAT	TTTGCTTTAG	AGCTTGAGTT	TAGGAACTTG	ACACCTGGAA
6300	ACACTAACAC	CCGTGTGTCC	CGGTATACAA	GCACAGCCCG	TCATCGGCTG	CGCCGCGGTG	CTGATGGCAC
6370	CGCCGAACTT	ACCACTACAG	CGGCTACGCG	CTTCATGAAG	GACCTGCACT	TCACCGGTAC	GAATGGGGTC
6440	GGTGAGGTGG	GTCGTGGTAT	TGCTCTCACA	CTCTTTAATC	TTGCTGACAC	GCTTCTTGGT	GGTTTGCCGA
6510	CAGAATTAAT	TTCGTCGGCT	GGGGGACAGT	TATTTTACTC	CCGCCCCCGTC	GTCTCGGCCA	ATGGCGAGCC
6580	GACTGTCAAG	TTATACACAT	CTGTTGAGAA	TGCGCAGCAG	GATAAGGGGA	TCGCTATTCC	ACATGACATA
6650	GATCTGGGTG	ACTCCCGTGT	GGTCATCCAA	GACTATGACA	ACCAGCATGA	GCAGGATCGA	CCCACCCCCT
6720	CGCCTGCCCC	TTCTCGCCCT	TTTTCGGTCC	TTCGCGCTAA	TGATGTTCTT	TGGCTCTCTC	TTACTGCCGC
6790	TGAGTACGAC	CAGACTACAT	ATGGGTCGTC	CACCAACCCG	ATGTATGTCT	CGGATACTGT	CACATTTGTC
6860	AACGTGGCTA	CAGGAGCCCA	GGCTGTCGCC	CGTTCCCTCG	ACTGGTCTAA	AGTCACTCTG	GACGGCCGCC
6930	CTCTCACTAC	TATCCAGCAG	TACTCCAAAA	CATTTTATGT	TCTCCCGCTT	CGCGGGAAGT	TATCTTTCTG
7000	GGAGGCCGGG	ACGACTAAGG	CCGGTTATCC	CTATAATTAC	AACACAACTG	CTAGTGATCA	GATTTTGATT
7070	GAAAATGCGG	CTGGTCATCG	TGTTGCTATT	TCCACGTATA	CCACCAGCTT	GGGTGCCGGT	CCTGTGTCTG
7140	TTTCTGCAGT	TGGTGTTTTA	GCCCCACATT	CGGCCCTTGC	AGTCCTTGAA	GATACTATTG	ATTACCCTGC
7210	CCGTGCCCAC	ACTTTTGATG	ATTTTTGCCC	GGAGTGTCGC	GCTCTTGGTT	TGCAGGGGTG	TGCCTTCCAG
7280	TCTACTATTG	CTGAGCTTCA	GCGCCTTAAA	ATGAAGGTAG	GTAAAACCCG	GGAGTTTTAA	TCAATTTCCT
7350	TTGTGCCCCC	TTCATAGCTT	TTGCTTTATT	TCTTTTTTCT	GCGGTTCGCG	CTCCCTGGAA	NNNNNNNNNN
7420	NNN						

K3-POST-RBV

File name	K3-POST-RBV.sam
Ref name	KC618403.1
Ref length	$\mathbf{7} 423 n t$
Program used	Tanoti Assembler 1.0
Total reads	176656
Mapped reads	176656 (100.00\%)
Average read length	$138 n t$
Coverage	7321 nt (98.63\%)
Average depth	3256 reads/site

K3-POST-RBV Consensus sequence

NNNNNNNNCG TATGTGGTCG ATGCCATGGA GGCCCACCAG TTCATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAT TCTGCCCTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTAT CTCGTGTGCA AACTGAGATT CTTATTAATT TGATGCAACC CCGGCAGTTG GTTTTCCGAC CTGAAGTACT CTGGAATCAC CCTATCCAAC GGGTTATCCA TAATGAACTT GAACAGTATT GTCGGGCCCG GGCTGGTCGC TGTCTGGAGG TTGGGGCCCA CCCAAGATCC ATTAATGATA ACCCAAATGT TCTGCACCGG TGCTTTTTAC GACCAGTTGG GAGAGATGTT CAGCGCTGGT ACTCTGCTCC TACCCGCGGC CCTGCGGCTA ACTGCCGCCG TTCTGCCTTG CGTGGCCTCC CCCCCGTTGA TCGTACCTAT TGTTTTGATG GATTCTCCCG CTGCTCATTT GCCGCAGAAA CTGGGGTTGC TCTTTACTCT CTGCATGACC TCTGGCCGGC CGATGTTGCG GAGGCTATGG CCCGACACGG GATGACACGC TTGTATGCTG CACTACATCT CCCCCCTGAG GTACTACTAC CACCTGGTAC TTACCATACA ACATCATACC TTCTGATTCA CGACGGAGAT CGTGCTGTTG TGACCTATGA AGGTGATACT AGTGCAGGCT ACAACCATGA TGTCTCCATA CTTCGTGCAT GGATCCGTAC AACTAAGATA GTCGGCGATC ATCCGCTGGT GATAGAGCGT GTGCGGGCTA TTGGCTGCCA TTTTGTGCTG CTGCTCACTG CAGCCCCTGA GCCGTCACCA ATGCCTTATG TTCCATACCC CCGGTCGACA GAGGTCTATG TCCGCTCTAT ATTTGGTCCT GGCGGGTCCC CATCCCTATT CCCATCAGCT TGCTCTACGA AATCCACATT TCACGCTGTT CCGGTTCATA TTTGGGACCG GCTCATGCTC TTTGGTGCTA CTCTGGATGA TCAGGCGTTT TGCTGTTCAC GGCTTATGAC CTACCTCCGC GGGATTAGTT ACAAGGTTAC TGTTGGCGCC CTTGTCGCTA ATGAGGGATG GAATGCTTCG GAGGACGCTC TTACCGCTGT TATTACTGCA GCCTATTTGA CCATTTGCCA TCAGCGTTAC CTCCGTACTC AAGCTATATC CAAGGGTATG CGCCGACTGG AGGTTGAGCA TGCCCAAAAA TTCATTACAA GACTTTATAG CTGGCTGTTC GAGAAGTCCG GCCGTGACTA TATCCCCGGC CGTTGGTTAT CGGCGGGCTT CCATCTTGAC CCAAGGGTGC GTAGGACATT CCTTAAGAAG GCTGTGGGTA AGTTCTGCTG CTGCTTCTTG AAACCAGCAG AGGGTCTAGT TGGCGACCAC GAAGTCGACC AGGCCGAGCC CGCCCATCTC GATGTTTCTG AGGCCCTGTA TAGGGCGCTT AATATCCCGC ATGACATCGC CGAACTTGTT GCAGGCCCAG ACCGCTTGGA ATGCCGCACT GTGGTTGATG GTGCCCATCT TGAGGCAAAC GGCCCCGAGC AGTCTATGGG GGCCGGTCCG CATAGTCTCT CCTATGAGCT ATCTAATGGG CTGGATTGCA CTGCAACATT CCCCCCGGGC GCAGCCTTTT GCAGTGCCCT TTACAGGTAT AACAGGTTTA GGCTGCATCC TGAGGGGTTG TTGGGTATCT TCCCCCCTTT CCCTTTTTGT GGGGAGGGAA CCTTGTACAC CCGGACATGG CCCCCTGAGG CAGCCGTTGC AGTGCCGGCC GCTACTCCGG ACATTTGGGT GTTACCGCCA CCTTCTGAAA AATTTCAGGT GCCCGCTCAA CCATCTAGCC CCGCTGAGCC AAAAGCTCCC NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN CTGAAGAATT TCAGGTTAAC ACAACTCCCG CCCCCCTTGC TGAGCCAAAA GCTCCCGTGC GTAAGCCGCC AACACCACCA TATCCTGATG GGGCAAAGGT GTACGCGGGG TCATTGTTTG CGAATCCCGG CCATCGTCCT GGAGGCGGCC TTTGCCACGC CCCAACTGAG TTCATCATGC GCGACGGTCT TGCCGCTTAC GTGGCTCCTG ATTATAGGGT TGAGCATAAC CCAAAGAGGC GCCGCGGTAC CGCCGCCTAT CCACTCCTCG GCTCAGGCAT CGCCTGGGAG CGTAACCACC GCCCCGGGGA TGAGCTCTAC GCTAATAAGC CAACACAACC GGCCCTCACA ATAACTGAGG AGATCGATGC TGCTACGGAG GTCGGCCGGG CTTGTGCCGG TCAGTTTACT GCTGGGGTCC CAGGCTCGGG GAAGTCGCGT GTTGTTCCTA CTCGGGAGCT CCGGAATAGT TGGCGTCGTC CAGCCCGTGT CACTACGGGC CGTCGTGTTG TGATTGATGA ACTACACATG CAGCGGGCCT CGTCGGTCCA CCTTCTCGGC GAGCATGCCG GCTTAGTCCC CGCTATACGC CCTGAGCTCG GCTGCCCCGC TGACGTGTGC GAGCTTATAC GCGGGGCTTA ACGGTCTCTA TTCTGGAATG AGCCTGCCAT TGGCCAGAAG AACCCTGGTG CGATTACAGT CCACGAGGCC CAGGGCGCCA

CGCCAGCTCC AGTTTTATGC ACAGTGCCGC TTGTTTTTGA TGAGTCTGTG CCCTGCCGTT TTTTATGAAG TGGTTGGGAC AGGAGTGCAC GGCCACGATA ATGAAGCCTA TGAGGGCTCT GGACTTATGC CGTCCATGGC CGCCAACTTG AGCCCGAGCC TCCCGTTTGA CTGCCACCGT GTGCTCGGGA ATAAGACTTT CCGGACGACG AGTACGTCCT TTCGTTTGAC GCCTCTCGCC CACTCCTGCT GGTTTGCAGG TCAAGATCTC GGCGCCCCAA GCGCTGCCCC GGAGGAGGTG CTCAGCGCCA TTCGCTTATA GGCGGCTTGT CTCCCCCGGG CACCTTTGGG AGTCCGCTAA TCAACATCTG GTTTTTCTAG TGACTTTTCC GGTCACGCCG CCCTACACCT CCTGCTAGTG TAACACAACT CCCGCCCCCC TTGCCCCCGG GTGCGTAAGC CGCCAANNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNCTT CCCCGGGCCC GCTCAACCAT CTAGCCCCGC TCCCCGCGCA CCCGCCGCCT TCTTTACACC AGTCTGACTG TGATTGGCTG GTCAATGCGT CTTCTATCAA CGCTACCCTG AGTCCTTCCA ACTTTAACTC CCAGGCCTAT TATTCATGCA TTGAGGCAGC ATACCGAGAA ACTTGCTCTC ATACCAAGTC CCCGTCAGCC TCAGCTTTGA CTAACTGATC TCGCTGCTAC CTGGTTTGAG ATGCGGCCCG TACAGCCAAC TTGGCACTGG CTGTGCAGTT AGTCCTGGGG TTGTGCACTA TCTATACAGC AGGGGGATGT TGACGTAGTG GGGGTTTCGC AGCTTTTACA CCTCATACGG GGCCCCATCC CTCCCACCGC ATTTGTTGCT GACCCAAACC AGATCCCTGC CATAGACTTT CGCCCACCAG TTGGTGGCAT GTCACCCATC TCCCAAAATC CAAACCACTA GCCGCGTGCT TTAGTTTTCA CCCAGGCTGC TAAGGCCGCC CCTTCACGGA AACTACAATC ATAGCCACGG

K3-POST-RBV Consensus sequence

3710	CTGATGCTAG	GGGGCTTATC	CAATCTTCCC	GAGCTCACGC	CATAGTCGCA	CTCACCCGCC
ACACAGAGAA						
3780	GTGCGTTATT	CTTGACGCCC	CCGGCTTGTT	ACGTGAGGTT	GGTATATCGG	ATGTGATTGT

L1-PRE-RBV

File name
Ref name
Ref length
Program used
Total reads
Mapped reads
Average read length
Coverage
Average depth

L1-PRE-RBV.sam

KX462160.1
7 216nt
Tanoti Assembler 1.0
815209
815209 (100.00\%)
139nt
7 182nt (99.53\%)
15397 reads/site

L1-PRE-RBV Consensus sequence

AGGCTCCTGG CATCACTACT GCCATTGAGC AAGCTGCTCT GGCTGCGGCC AATTCTGCCC TGGCGAATGC tGTGGTGGTT CGGCCGTTTT TGTCCCGTGT ACAAACTGAG ATTCTTATTA ATTTAATGCA ACCCCGACAG CTGGTTTTCC GACCTGAAGT GCTTTGGAAT CATCCAATCC AACGGGTTAT TCATAATGAA TTGGAACAGT ACTGCCGGGC CCGGGCTGGT CGTTGTCTTG AAGTTGGGGC CCACCCAAGA TCCATCAATG ACAACCCGAA TGTTTTGCAT CGGTGTTTTT TACGACCAGT CGGGAGGGAC GTTCAGCGCT GGTACTCTGC CCCTACCCGC GGCCCTGCGG CTAATTGCCG CCGCTCCGCT TTGCGTGGCC TCCCCCCTGC TGATCGTACC TATTGTTTTG ACGGGTTCTC CCGCTGCTCG TTTGCTGCAG AGACTGGGGT GGCTCTCTAC TCTTTGCATG ACCTCTGGCC GGCCGATGTT GCGGAGGCCA TGGCCCGACA CGGGATGACA CGCTTATATG CTGCACTACA TCTCCCTCCT GAAGTACTAC TACCGCCAGG TACATACCAC ACAACATCAT ACCTTTTGAT CCACGACGGC GATCGTGCTG TTGTGACCTA TGAAGGTGAC ACTAGTGCAG GCTACAACCA TGATGTTTCC ATACTCCGCG CATGGATCCG CACAACTAAA ATAGTTGGCG ACCATCCGCT CGTGATAGAG CGTGTGAGGG CTATTGGCTG CCACTTTGTG TTGCTGCTTA CTGCAGCCCC TGAGCCGTCA CCAATGCCTT ATGTCCCATA CCCCCGGTCG ACAGAGGTGT ATGTCCGCTC TATATTCGGC CCTGGCGGGT CCCCGTCCCT TTTCCCGTCA GCTTGTTCTA CAAAGTCCAC ATTTCATGCT GTCCCAGTCC ATATTTGGGA CCGACTTATG CTCTTTGGCG CTACCCTGGA TGATCAGGCG TTTTGTTGCT CACGGCTTAT GACCTATCTC CGTGGGATTA GTTACAAGGT CACTGTCGGC GCCCTCGTTG CTAACGAGGG ATGGAATGCT TCGGAGGACG CCCTTACCGC TGTTATTACT GCGGCGTATC TGACCATTTG CCACCAACGC TACCTCCGTA CTCAGGCTAT ATCTAAGGGT ATGCGCCGAC TTGAGGTTGA GCATGCTCAA AAATTTATCA CAAGACTTTA CAGTTGGCTG TTTGAGAAGT CTGGCCGTGA CTACATCCCC GGTCGTCAGC TCCAGTTCTA TGCACAGTGC CGCCGCTGGT TATCGGCGGG TTTCCACCTT GATCCAAGGG TGCTTGTTTT TGATGAGTCT GTGCCCTGCC GTTGCAGGAC GTTCCTTAAG AAGGTTGCAG GTAAATTCTG TTGTTTTATG AAGTGGCTTG GACAGGAGTG CACCTGCTTT CTGGAACCAG CGGAGGGCCT GGTTGGCGAC CATGGCCATG ATAATGAAGC CTATGAGGGC TCTGAGGTCG ACCAGGCTGA ACCCGCCCAT CTAGATGTTT CTGGGACCTA TGCCGTCCAC GGACGCCAAC TTGAGGCCTT GTATAGGGCG CTTAACATCC CGCATGACAT CGCAGCTCGA GCCTCCCGTC TGACCGCCAC TGTTGAGCTC GTTGCAAGCC TAGACCGCTT GGAGTGTCGC ACCGTGCTCG GGAATAAGAC TTTCCGAACA ACGGTGGTTG ATGGCGCCCA TCTTGAGGCG AACGGCCCCG AGCAGTACGT CCTTTCGTTC GACGCCTCCC GTCAGTCTAT GGGTGCCGGG TCGCATAGCC TCACTTATGA GCTCACCCCT GCTGGCTTGC AGGTTAGGAT TTCATCTAAT GGCCTGGATT GTACTGCAAC ATTCCCCCCG GGCGGGGCCC CTAGCGCCGC TCCGGGAGAG GTGGCAGCCT TCTGCGGTGC CCTCTACAGG TATAATAGGT TCACCCAGCG GCATTCGCTT ACGGGCGGCT TGTGGCTGCA TCCTGAGGGG TTATTGGGTA TCTTCCCCCC CTTTTCCCCC GGGCATATCT GGGAGTCCGC TAATCCCTTT TGCGGGGAGG GAACTTTGTA CACTCGGACT TGGTCAACAT CTGGTTTTTC TAGTGATTTT TCCCCCCCCG AAGCGGCTGC CGCTGCGCCG GCTGATGTTC CGGGGTTACC CCACCCTACA CCCCCTGTTA GTGATATCCG GGTGTTGCCG CCACCCTCCG AAGAACTACA GGTTGATGCA GTACCTGCCC CTCCTGCCCC TGAGCCTGTT CTACTGCCCA GCCCCGTTGA GCCAAGGGTC CCCGTGCGTA AGCCGGCGGC ACTACCGCCT CCGCGCACCC GCCGGCTTCT TTATACTTAC CCGGACGGGG CAAAAGGTGT ATGCAGGGTT CATTGTTTGA GTCTGACTGT GACTGGTTGG GGTTAATGCG TCGAACCCTG GTCATCGCCC CGGAGGGGCC TTTGCCACGC CTTTTACCAA CGCTACCCCG GCGACGGTCT TGCCGCGTAC ACTTTAACTC CCCGGCCCAT tGagcagaic ccaaigagcc ttgagccagc atatcgagag CCGCTCCTTG GTTCGGGCAT ATACCAAGTT CCGGTTAGCC GCCCCGGGGA CGAGCTTTAT CTGACTGACC TCGCCGCTAC GGCCCTCACA ATAACTGAGG ATACAGCCCG TACGGCCAAC GTTGGTCGGG CTTGCGCCGG CTGTACAGTT AGTCCCGGGA CAGGTTCGGG GAAGTCGCGG TCTATACAGC AGGGGGATGT CCGGAACAGC TGGCGCCGCC GGGGTTTTGC AGCTTTCACA CGTCGCGTTG TGATTGATGA AGCCCCTTCT CTCCCACCGC CGTCGGTCCA TCTTCTTGGC GACCCAAACC AGATCCCTGC TGCAATACGC CCTGAGCTTG CGCCTACCAG CTGGTGGCAT GAGCTTATAC GCGGGGCCTA CCCTAAAATC CAGACTACCA AGCCCGCCAT TGGCCAGAAG TTAGTCTTTA CACAGGCTGC CCATGAGGCC CAGGGTGCCA CTTTTACTGA GACCACAATC CAGTCTTCCC GGGCTCACGC TATAGTCGCA CTCACCCGCC CCGGTTTGTT ACGAGAAGTT GGTATCTCGG ATATAATTGT GGGCCACCAC CGCCCCTCCG TGATACCCCG CGGTAGCCCT

AGTCCTTCCA TCCGACTGAG TTCATTATGC CATTCATGCG GTAGCCCCTG ATTATCGGGT ACTTGTTCCC GCCGTGGCAC TGCTGCTTAC TCAGCTTTGA CGCCTGGGAG CGTAACCATC CTGGTTCGAG GCTAATAAGC CAACACAGCC CTAGCACTGG AGATCGATGC TGCCACTGAG tTATACACTA TCAATtTACT GCCGGGGTAC CGATGTGGTG GTTGTTCCCA CTCGAGAGCT CCTCACACGG CGGCCCGTGT CACCACGGGC ACTTGCTGCT ACTACACATG CAGCGGGCCT TATAGACTTT GAGCATGCCG GCCTGGTCCC GTTACCCATC GTTGCCCCGC CGATGTGTGT GCCGCGTGTT GCGATCATTA TTCTGGAATG TAAGGCTGCC AACCCTGGTG CGATTACAGT atagccacgg ctgatgctag ggggctiatt ATACAGAGAA GTGCGTTATT CTTGATGCCC TAACAATTTT TTCCTCGCTG GTGGAGAAGT gaccagaicc tcgctacact acaggccttt

L1-PRE-RBV Consensus sequence

3710	CCACCCTCCT	gtcagatalg	TGCTTATCAT	CAGCTAGCTG	AGGAACTAGG	CCACCGCCCA	
3780	CTGCCGTTCT	GCCCCCTTGC	CCTGAGCTTG	AGCAGGGCTT	GCTGTATATG	cCGCAGGAAC	TCACGGTGTC
3850	TGATAGCGTG	CTGGTCTTTG	AGCTCACGGA	CATAGTCCAC	tGCCGCATGG	ccgcccctag	ccagcggat
3920	GCCGTCCTAT	CGACGCTTGT	GGGCAGGTAC	GGCCGTAGGA	CAAAGCTGTA	TGAAGCAGCC	cactctgacg
3990	TCCGTGAGTC	CCTCGCTAGA	ttcatcccca	CCATTGGGCC	CGTtCAGGCT	ACTACGTGCG	agctatatga
4060	GCTGGTTGAG	GCCATGGTGG	AGAAGGGTCA	GGATGGTTCA	GCCGTGCTTG	AGCTTGACCT	ttgcaatcgi
4130	GATGTATCGC	GTATCACATT	TTTCCAGAAA	GATTGTAACA	AGTTCACCAC	AGGGGAGACC	ATTGC
4200	GCAAAGTCGG	TCAGGGCATC	TCTGCTTGGA	GTAAGACCTT	TTGTGCCCTG	TTTGGTCCGT	GGTTCCGTGC
4270	tattganaia	GAAATACTGG	CCCTGCTCCC	gcccaatatC	tTttacgecg	ACGCGTATGA	GGAGTCTGTG
4340	TTTGCTGCTG	CCGTGTCCGG	GGCAGGTTCA	TCCATGGTAT	TTGAGAATGA	tttitcagag	TTTG
4410	CTCAAAATAA	CTTCTCCCTT	GGTCTCGAGT	GTGTAGTTAT	GGAGGAATGT	GGTATGCCCC	AGTGGCTAAT
4480	CCGGTTGTAC	CATTTGGTTC	GGTCGGCCTG	GATCCTACAG	GCGCCGAAGG	AGTCTCTCAA	GGG
4550	AAGAAGCATT	CTGGTGAGCC	CGGCACCCTC	CTTTGGAATA	CCGTtTGGAA	tatggcgatc	atagcacatt
4620	GCTATGAATT	CCGCGATTTT	AGGGTCGCCG	CCTTCAAGGG	AGATGATTCG	GTGGTTCTCT	GCAGCGACTA
4690	CCGTCAGAGC	cgcaitgcag	CGGCTCTGAT	TGCAGGTTGT	GGGCttaAAC	TGAAGGTTGA	tTACCGCCCT
4760	ATCGGGTTGT	ATGCTGGTGT	GGTGGTGGCC	CCCGGTTTGG	GGACGCTACC	CGATGTAGTG	cag
4830	GCCGGCTATC	tGAGAAGAAC	TGGGGCCCTG	GGCCGGAGCG	GGCTGAGCAG	tTGCGCCTTG	CTGTTTGTGA
4900	tTtTCTTCGA	GGGTTGACGA	ATGTTGCGCA	GGTATGTGTT	GATGTCGTAT	CCCGAGTTTA	tgGagttagC
4970	CCTGGGCTGG	tacatalcct	CATTGGTATG	CtGCAAACCA	tTGCTGACGG	CAAGGCTCAC	tttacagaga
5040	CTGTTAAACC	TGTGCTTGAC	CTCACTAACT	CTATTATACA	GCGGGTGGAA	TGAATAACAT	GTTCTGTGCA
5110	TTGCCCATGG	GATCACCATG	CGCCCTAGGG	CTGTTCTGTT	GCTGTTCTTC	GTGCTTTTGC	CTATGCTGCC
5180	CGCGCCACCG	GCCGGCCAGC	CGTCTGGCCG	CCGTCGCGGG	CGGCGCAGCG	GCGGTACCGG	CAGTGGTTTC
5250	TGGGGTGACA	GGATTGATTC	TCAGCCCTTC	GCCCTCCCCT	ATATTCATCC	AACCAACCCC	CG
5320	ATGTCGTtTC	GCAATCCGGG	GCTGGAGCTC	GCCCTCGACA	GCCACTCCGC	CCCCTCGGCT	CCTCTTGGCG
5390	TGACCAGTCC	CAGCGCCCCC	CCGCTGCCCC	ACGCCGTCGA	TCTGCCCCAA	CTGGGGCTGC	GCCGCTGACT
5460	GCCACATCAC	CCGCCCCTGA	TACCGCTCCT	GTACCTGATG	tTGAtTCGCG	CGGCGCTAT	TTGCGGCGCC
5530	AGTATAATCT	ATCTACATCC	CCACTCACGT	CATCTGTTGC	TTCGGGTACT	AACTTGGTTC	TTTATGCTGC
5600	CCCGTTAAAC	CCTTTGCTGC	CCCTTCAGGA	tGGCACTAAC	ACCCATATTA	TGGCCACTGA	gGCATCCAAT
5670	TATGCCCAGT	ATCGGGTTGT	tcgagccacg	ATCCGTtATA	GGCCATTGGT	GCCAAATGCT	GTTGGTGGCT
5740	ATGCAATATC	CATTTCATTC	TGGCCTCAGA	CTACTACTAC	CCCCACGTCT	GTTGATATGA	AtTCTATCAC
5810	CTCTACTGAT	GTCAGGATTT	TAGTCCAGCC	TGGTATTGCT	tCTGAGTTAG	ttatccctag	TGAGCGCCTC
5880	CATTATCGTA	ACCAGGGCTG	GCGTTCTGTG	GAGACCTCGG	GTGTGGCAGA	GGAGGAGGCC	ACTTCCGGTT
5950	TGGTGATGCT	CTGTATCCAT	GGCTCCCCTG	TCAATTCTTA	CACCAACACC	CCCTATACCG	GGGCACTTGG
6020	ACTTCTTGAC	TTTGCTtTAG	AGCTTGAGTT	TAGGAATTTG	ACACCCGGGA	ACACCAACAC	CCGTGTTTCC
6090	CGGTACACAA	GCACGGCCCG	tCACCGGCTG	CGCCGAGGCG	CTGATGGCAC	CGCTGAGCTT	accaccacag
6160	CGGCTACACG	TtTTCATGAA	AGGACCTGCA	TTTTACCGGC	ACGAACGGGG	TCGGTGAGGT	GGGCCGTGGT
6230	ATTGCTCTTA	CACTCTTTTA	ATCTTGCTGA	TACACTTCTC	GGTGGTCTGC	CGACAGAATT	AATTTCG
6300	GCTGGGGGAC	AGTTGTTTTA	CTCCCGCCCCC	GTCGTCTCAG	CCAATGGCGA	GCCGACTGTC	aAgctatata
6370	CATCTGTAGA	GAATGCGCAG	CAAGATAAAG	GGATTGCCAT	CCCACATGAT	ATAGACTTGG	GTGACTCCCG
6440	CGTGGTCATT	CAGGACTATG	ATAATCAGCA	TGAGCAGGAT	CGGCCCACCC	CTTCGCCTGC	CCCATCTCGT
6510	CCGTTCTCAG	TCCTTCGTGC	TAATGATGTT	CTATGGCTCT	CTCTCACCGC	tGCTGAGTAT	gaccagacta
6580	CATATGGGTC	GTCTACCAAC	CCGATGTATG	TCTCGGATAC	TGTCACATTT	GTCAACGTGG	CTACAGGGGC
6650	CCAGGCAGTC	GCCCGCTCCC	TTGACTGGTC	taAAGttact	CTGGATGGCC	GTCCCCTTAC	taccatccag
6720	CAGTACTCTA	AAACATTTTA	TGTCCTCCCG	CTTCGCGGGA	AGTTGTCCTT	CTGGGAGGCC	GGGACGACTA
6790	AGGCTGGTTA	CCCCTATAAT	TATAATACAA	CTGCTAGTGA	CCAGATCTTG	ATTGAAAATG	CAGCCGGCCA
6860	CCGTGTTGCT	ATTTCCACCT	atactaccag	CCTGGGCGCC	GGTCCTGTGT	CAGTCTCTGC	GGTCGGTGTG
6930	CTAGCCCCAC	ATTCGGCTCT	TGCAGTTCTT	GAGGATACTA	CCGATTACCC	TGCCCGTGCT	CATACTTTTG
7000	ATGATtTTTG	CCCGGAGTGT	CGCGCCCTTG	GTCTGCAGGG	GTGTGCCTTC	CAGTCTACTA	TTGCTGAACT
7070	TCAGCGTCTT	AAAATGAAGG	TAGGTAAAAC	CCGGGAGTTT	taAttaAtt	CCTTTGTGCC	CCCTTCATAG
7140	CTTCTGCTTT	ATTTCTTTTT	TCTGCTGTTC	GCGCTCCCTG	GGNNNNNNNN	NNNNNNNNNN	NNNNNNNNNN
72	NNNNNN						

L2-POST-RBV1

File name
Ref name
Ref length
Program used
Total reads
Mapped reads
Average read length
Coverage
Average depth

L2-POST-RBV1.sam

KX462160.1

7 216nt
Tanoti Assembler 1.0
1343901
1343901 (100.00\%)
140nt
7 182nt (99.53\%)
25534 reads/site

L2-POST-RBV1 Consensus sequence

AGGCTCCTGG CATCACTACT GCCATTGAGC AAGCTGCTCT GGCTGCGGCC AATTCTGCCC TGGCGAATGC tGTGGTGGTT CGGCCGTTTT TGTCCCGTGT ACAAACTGAG ATTCTTATTA ATTTAATGCA ACCCCGACAG CTGGTTTTCC GACCTGAAGT GCTTTGGAAT CATCCAATCC AACGGGTTAT TCATAATGAA TTGGAACAGT ACTGCCGGGC CCGGGCTGGT CGTTGTCTTG AAGTTGGGGC CCACCCAAGA TCCATCAATG ACAACCCGAA TGTTTTGCAT CGGTGTTTTT TACGACCAGT CGGGAGGGAC GTTCAGCGCT GGTACTCTGC CCCTACCCGC GGCCCTGCGG CTAATTGCCG CCGCTCCGCT TTGCGTGGCC TCCCCCCTGT TGATCGTACC TATTGTTTTG ACGGGTTCTC CCGCTGCTCG TTTGCTGCAG AGACTGGGGT GGCTCTCTAC TCTTTGCATG ACCTCTGGCC GGCCGATGTT GCGGAGGCCA TGGCCCGACA CGGGATGACA CGCTTATATG CTGCACTACA TCTCCCTCCT GAAGTACTAC TACCGCCAGG TACATACCAC ACAACATCAT ACCTTTTGAT CCACGACGGC GATCGTGCTG TTGTGACCTA TGAAGGTGAC ACTAGTGCAG GCTACAACCA TGATGTTTCT ATACTCCGCG CATGGATCCG CACAACTAAA ATAGTTGGCG ACCATCCGCT CGTGATAGAG CGTGTGAGGG CTATTGGTTG CCACTTTGTG TTGCTGCTTA CTGCAGCCCC TGAGCCGTCA CCAATGCCTT ATGTCCCATA CCCCCGGTCG ACAGAGGTGT ATGTCCGCTC TATATTCGGC CCTGGCGGGT CCCCGTCCCT TTTCCCGTCA GCTTGTTCTA CAAAGTCCAC ATTTCATGCT GTCCCAGTCC ATATTTGGGA CCGACTCATG CTCTTTGGCG CTACCCTGGA TGATCAGGCG TTTTGTTGCT CACGGCTTAT GACCTATCTC CGTGGGATTA GTTACAAGGT CACTGTCGGC GCCCTCGTTG CTAACGAGGG ATGGAATGCT TCGGAGGACG CCCTTACCGC TGTTATTACT GCGGCGTATC TGACCATTTG CCACCAACGC TACCTCCGTA CTCAGGCTAT ATCTAAGGGT ATGCGCCGAC TTGAGGTTGA GCATGCTCAA AAATTTATCA CAAGACTTTA CAGTTGGCTG TTCGAGAAGT CTGGCCGTGA CTACATCCCC GGTCGTCAGC TCCAGTTCTA TGCACAGTGC CGCCGCTGGT TATCGGCGGG TTTCCACCTT GATCCAAGGG TGCTTGTTTT TGATGAGTCT GTGCCCTGCC GTTGCAGGAC GTTCCTTAAG AAGGTTGCAG GTAAATTCTG TTGTTTTATG AAGTGGCTTG GACAGGAGTG CACCTGCTTT CTGGAACCAG CGGAGGGCCT GGTTGGCGAC CATGGCCATG ATAATGAAGC CTATGAGGGC TCTGAGGTCG ACCAAGCTGA ACCCGCCCAT CTAGATGTTT CTGGGACCTA TGCCGTCCAC GGACGCCAAC TTGAGGCCTT GTATAGGGCG CTTAACATCC CGCATGACAT CGCAGCTCGA GCCTCCCGTC TGACCGCCAC TGTTGAGCTC GTTGCAAGCC TAGACCGCTT GGAGTGTCGC ACCGTGCTCG GGAATAAGAC TTTCCGAACA ACGGTGGTTG ATGGCGCCCA TCTTGAGGCG AACGGCCCCG AGCAGTACGT CCTTTCGTTC GACGCCTCCC GTCAGTCTAT GGGTGCCGGG TCGCATAGCC TCACTTATGA GCTCACCCCT GCTGGCTTGC AGGTTAGGAT TTCATCTAAT GGCCTGGATT GTACTGCAAC ATTCCCCCCG GGCGGGGCCC CTAGCGCCGC TCCGGGAGAG GTGGCAGCCT TCTGCGGTGC CCTCTACAGG TATAATAGGT TCACCCAGCG GCATTCGCTT ACGGGCGGCT TGTGGCTGCA TCCTGAGGGG TTATTGGGTA TCTTCCCCCC CTTTTCCCCC GGGCATATCT GGGAGTCCGC TAATCCCTTT TGCGGGGAGG GAACTTTGTA CACTCGGACT TGGTCAACAT CTGGTTTTTC TAGTGATTTT TCCCCCCCCG AAGCGGCTGC CGCTGCGCCG GCTGATGTTC CGGGGTTACC CCACCCTACA CCCCCTGTTA GTGATATCCG GGTGTTGCCG CCACCCTCCG AAGAACTACA GGTTGATGCA GTACCTGCCC CTCCTGCCCC TGAGCCTGTT CTACTGCCCA GCCCCGTTGA GCCAAGGGTC CCCGTGCGTA AGCCGACGGC ACTACCGCCT CCGCGCACCC GCCGGCTTCT TTATACTTAC CCGGACGGGG CAAAAGGTGT ATGTAGGGTT CATTGTTTGA GTCTGACTGT GACTGGTTTG CGGAGGGGCC TTTGCCACGC CTTTTACCAA CGCTACCCCG GCGACGGTCT TGCCGCGTAC ACTTTAACTC CCCGGCCCAT TGAGCAGAAC CCAAAGAGGC TTGAGGCAGC ATATCGAGAG CCGCTCCTTG GTTCGGGCAT ATACCAAGTT CCGGTTAGCC GCCCCGGGGA CGAGCTTTAT CTGCCTGACC TCGCCGCTAC GGCCTTCACA ATAACTGAGG ATACAGCCCG TACGGCCAAC GTTGGTCGGG CTTGCGCCGG CTGTACAGTT AGTCCCGGGA CAGGTTCGGG GAAGTCGCGG TCTATACAGC AGGGGGATGT CCGGAACAGC TGGCGCCGCC GGGGTTTTGC AGCTTTCACA CGTCGCGTTG TGATTGATGA AGCCCCTTCT CTCCCACCGC CGTCGGTCCA TCTTCTTGGC GACCCAAACC AGATCCCTGC TGCAATACGC CCTGAGCTTG CGCCTACCAG CTGGTGGCAT GAGCTTATAC GCGGGGCCTA CCCTAAAATC CAGACTACCA AGCCCGCCAT TGGCCAGAAG TTAGTCTTTA CACAGGCTGC CCATGAGGCC CAGGGTGCCA CTTTTACTGA GACCACAATC CAGTCTTCCC GGGCTCACGC TATAGTCGCA CTCACCCGCC CCGGTTTGTT ACGAGAAGTT GGTATCTCGG ATATAATTGT GGGCCACCAC CGCCCCTCCG TGATACCCCG CGGTAGCCCT
gGTtaAtgcg tcgaiccctg gtcatcgccc AGTCCTTCCA TCCGACTGAG TTCATTATGC CATTCATGCG GTAGCCCCTG ATTATCGGGT ACCTGTTCCC GCCGTGGCAC TGCTGCTTAC TCAGTTTTGA CGCCTGGGAG CGTAACCATC CTGGTTCGAG GCTAATAAGC CAACACAGCC CTAGCACTGG AGATCGATGC TGCCACTGAG tTATACACTA TCAATtTACT GCCGGGGTAC CGATGTGGTG GTTGTTCCCA CTCGAGAGCT CCTCACACGG CGGCCCGTGT CACCACGGGC ACTTGCTGCT ACTACACATG CAGCGGGCCT TATAGACTTC GAGCATGCCG GCCTGGTCCC GTTACCCATC GTTGCCCCGC CGATGTGTGT GCCGCGTGTT GCGATCATTA TTCTGGAATG TAAGGCTGCC AACCCTGGTG CGATTACAGT atagccacgg ctgatgctag ggggctiatt ATACAGAGAA GTGCGTTATT CTTGATGCCC TAACAATTTT TTCCTCGCTG GTGGAGAAGT gaccagaicc tcgctacact acaggccttt

L2-POST-RBV1 Consensus sequence

3710	CCACCCTCCT	GTCAGATAAG	TGCTTATCAT	CAGCTAGCTG	AGGAACTAGG	CCACCGCCCA
GCCCCCGTAG						
3780	CTGCCGTTCT	GCCCCCTTGC	CCTGAGCTTG	AGCAGGGCTT	GCTGTATATG	CCGCAGGAAC

M1-PRE-RBV

File name	M1-PRE-RBV.sam
Ref name	KT159771.1
Ref length	$\mathbf{7} 251 \mathrm{nt}$
Program used	Tanoti Assembler 1.0
Total reads	54122
Mapped reads	54122 (100.00\%)
Average read length	$\mathbf{1 4 5 n t}$
Coverage	$\mathbf{6 2 7 3 n t}(86.51 \%)$
Average depth	$\mathbf{9 5 4}$ reads/site

M1-PRE-RBV Consensus sequence

tTACTACTGC CATTGAGCAG GCTGCTCTGG CTGCGGCTAA GCCGTTTTTA TCCCGTACTC AGACTGACAT TCTTATCAAT CCTGAAGTTT TGTGGAATCA CCCGATCCAG CGAGTTATAC GTGCTGGCCG CTGTCTGGAG GTCGGGGCCC ATCCAAGATC GTGTtTCCTT CGCCCAGTCG GGAGAGATGT GCAGCGTTGG AACTGCCGCC GTTCNNNNNN NNNNNNNNNN NNNNNNNNNN GTTGTGCCTT TGCCGCTGAG ACTGGGATTG CTTTATATTC GGAGGCCATG GCTCGCCACG GGATGACGCG CCTGTACGCG ACAACCGGTA CTTACAATAC AACTTCGTAC CTTCTGATTC AAGGAGATAC CAGCGCGGGT TATAACCACG ATGTATCCAT AACTGGTGAC CACCCGCTGG TCATAGAGAG GGTTCGTGCC GCCGCCCCTG AGCCGTCTCC TATGCCCTAC GTTCCATACC TATTTGGCCC CGGTGGATCG CCCTCTCTCT TCCCGTCAGC TCCAGTCCAT ATCTGGGACC GGCTCATGCT CTTCGGTGCC CGGCTTATGA CCTATCTCCG CGGGATCAGT TACAAGGTCA GGAATGCTTC GGAGGACGCT CTTACAGCTG TTATTACTGC CCTCCGAACC CAAGCTATAT CTAAAGGTAT GCGTCGCCTG AGACTTTACA GTTGGTTGTT CGAGAAGTCC GGTCGTGACT CGCAGTGNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN CCCTTGTCGC TGTAGGAGCT TTTTGAAGAA AGTTGCTGGC CAGGAGTGCA CCTGCTTTTT GGAACCAGCA GAGGGTCTAG ATGAGGGCGC TGAGGTCGAT CAGGCCGAGC CCGCCCGTCT CCGCCAACTT GAGGCCCTGT ATAGGGCGCT TAACATCCCG NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN CGCCTCTCGC CAGTCCATGG GGGCTGGGCC GCATAGTCTC GTCAAGATTT CATCTAATGG CCTGGATTGC ACTGCANNNN CGGGTGAGGT TGCAGCCTTC TGCAGTGCCT TATATAGATA CGGCGGGTTA TGGCTGCACC CTGAGGGNNN NNNNNNNNNN NCCTTCTGAA TCTGCCCCTG AGCCCGCTCA ACCATCTAGC TCCGCTGGGC NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN gTttgagtca gactgtgact ggctggttaa tgcgtccaic CATGCCTTTT ACCAGCGCTT CCCAGAGTCG TTCTACCCGA CGTACACTTT GACTCCCCGN NNNNNNNNNN NNNNNNNNNN GAGGCTTGAT GCAGCATAGC GAGAGACTTG CTCCCGCCGC GGTATATACC AAGTTCCCGT CAGCCTCAGC TTTGACGCTT TCTACCTAAC CGACCCCGCA GCTACCTGGT TCGAGGCTAA TGAGGATGCA GCCCGTACAG CCAACCTAGC ACTGGAGATC ACCGGCTGTA CTGTTAGCCC CGGGGTTGTC CATTATCAAT CCAGGTCTAT ACAACAAGGG GACGTCGATG TCGTGGTTGT GCGCCGCGGC TTTGCTGCTT TTACACCCCA CACGGCAGCC GATGAGGCCC CATCTCTCCC ACCGCATTTG TTGCTACTAC TCGGCGACCC GAACCAGATC CCTGCCATAG ACTTTGAGCA GCTTGCCCCA ACCAGTTGGT GGCACGTCAC ACACCGCTGC GCTTACCCCA AGATCCAAAC TACTAGCCGN NNNNNNNNNN AGAAATTGGT CTTCACGCAG GCAGCTAAGG CTGCCAACCC tGCTACATTC ACAGAGACCA CCATTATAGC CACGGCCGAT CATGCGATTG TTGCACTCAC CCGCCATACA GAAAAATGTA AGGTCGGTAT ATCGGATGTG ATTGTCAACA ATTTTTTCCT AGCGGCGGG GAGGTGGGTC ACCATCGCCC CTCTGTGATA CCTCGCGGCA ATCCTGACCA GAACCTCGCA ACACTACAGG CCTTTCCACC TTCCTGCCAG

M1-PRE-RBV Consensus sequence

3710
3780
3850
3920
3990
4060
4130
4200
4270
4340
4410
4480
4550
4620
4690
4760
4830
4900
4970
5040
5110
5180
5250
5320
5390
5460
5530
5600
5670
5740
5810
5880
5950
7210
6930
6790
6700
650
6580
6090
6160
6230
6300
6370

Abstract

ATTAGTGCCT ATCACCAGCT GGCTGAGGAA CTTGGCCACC GCCCAGCACC CGTCGCTGCT GTCTTACCTC CCTGCCCTGA ACTTGAGCAG GGCTTGCTAT ATATGCCCCA GGAGCTTACG CTTTGAACTC ACGGACATAG TCCACTGCCG GATGGCCGCC CCCAGCCAGC CTCGTGGGTA GATACGGCCG CCGAACAAGG CTATATGAGG CGGCTCACTC GAAGGTTTAT CCCTACCATC AGACCAGTTC AGGCCACTAC ATGTGAGCTG GGTTGAGAAA GGTCAGGATG GCTCTGCCGT GCTTGAGCTC GACCTCTGCA ACATTCTTCC AGAAGGACTG TAATAAGTTT ACAACAGGTG AGACTATTGC GTATTTCGGC CTGGAGCAAA ACGTTCTGCG CCCTGTTTGG GCCGTGGTTT CCTGGCCCTG CTCCCACCTA ATGTCTTCTA TGGTGATGCT TTTGAAGAGT NNNNNNNNNN NNNNNAGCAT GGTCTTTGAG AATGATTTCT CCGAGTTTGA CCCTTGGTCT TGAGTGTGTC ATTATGGAAG AGTGTGGCAT GCCCCAATGG NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN TGCGGCCGCC TTGATTGCTG GTTGTGGGCT AAAGTTGAAG GTTGATTATC GGTGTTGTGG TGGCCCCGGG CCTCGGAGCA CTCCCTGACG TCGTTCGGTT AGAATTGGG TCCGGGTCCA GAGCGCGCCG AGCAGTTGCG TTTAGCAGTT GACGAATGTT GCGCAGGTCT GTGTTGATGT TGTTTCCCGT GTCTACGGGG AACCTTATTG GCATGTTACA GACTATAGCC GATGGGAAGG CTCATTTTAC TGGACCTTAC AAACTCTATC ATACAGAGGT TGGAATGAAT AACATGTTGT CCATGCGCCC TCGGGCTGTT CTGTTGCTGT TCCTCGTGCT TTTGCCTATG CCAGCCGTCT GGCCGCCGTC GTGGGCGGCG CAGCGGCGGT ACCGGCGGTG GATTCTCAGC CCTTCACCCT CCCCTATATT CATCCAACCA ACCCCTTTGC CCGGGGCTGG AGCTCGCCCT CGACAGCCAC CCCGCCCCCT TGGCTCCTCT CCCCCCCGCT GTCCCACGTC GTCGATCTGC CCCAGCTGGG GCTGCGCCGC CCCGATACAG CTCCTGTACC TGATGTTGAC TCGCGCGGCG CCATATTGCG CATCTCCGCT CACATCATCT GTTGCTTCTG GCACCAATCT TGTTTTATAC TCTACCCCTC CAGGATGGCA CCAATACTCA CATCATGGCG ACTGAGGCGT GTTGTCCGGG CCACAATCCG TTATCGCCCT TTGGTGCCCA ATGCTGTTGG CCTTTTGGCC CCAGACTACA ACTACTCCCA CCTCTGTTGA TATGAATTCC GATTTTAGTC CAGCCCGGTA TAGCCTCTGA GTTGGTCATC CCAAGTGAGC GGCTGGCGCT CTGTGGAGAC CTCGGGTGTG GCTGAAGAGG AGGCCACTTC TCCATGGTTC TCCTGTCAAT TCCTACACCA ATACCCCNNN NNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNCTGACCCC TGGGAACACC AACACACGTG GCTCGTCACC GCCTACGTCG TGGCGCTGAT GGGACTGCCG AGCTCACGAC TGAAGGACCT GCACTTCACC GGGATGAACG GCGTGGGTGA GGNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNN TACTCCCGCC CCGTCGTCTC AGCCAATGGC GAGCCGACTG TCAAGTTATA AGCAGGACAA AGGGAGCGCT ATCCCACTTG ATATAGNNNN NNNNNNNNNC TGACTACCAG CATGAGCAGG ATCGACCCAC CCCCTCGACT GCCCCTTCTC GCTAATGATG TTTTATGGCT TTCTCTTACA GCCGCCGAGT ATGACCAGAN ACCCTATGTA TGTCTCAGAC ACTGTTACCT TTGTCAATGT GGCTACGGGA $\begin{array}{lll}\text { CCTTGATTGG TCTAAGGTCA } & \text { CTCTGGATGG } & \text { TCGACCTCTT } \\ \text { NNNNNNNNNN NNNNNNNCGG GAGTTATCC } & \text { TTTTGGGAGG } & \text { CCGGGACGGC }\end{array}$ | NNNNNNNNNN NNNNNNNCGG GAAGTTATCC | TTTTGGGAGG CCGGGACGGC |
| :--- | :--- |
| ATTACAACAC AACTGCTAGT GATCAGATTC | TGATCGAAAA | GTACACCACC AGCTTGGGCG CTGGCCCTGT GTCTGTTTCT GCAGTTGGTG CTTGCAGTCC TTGAAGACAC TACTGACTAC CCTGCCCGTA CCCACACTTT GTCGTGCCCT TGGTCTGCAG GGGTGTGCTT TCCAATCTAC TATTGCTGAA GGTAGGTAAG ACCCGGGAGT CTTAATTAAT TTCATTTGTA CCCCCTTCTA CTTCTGCGTC CCGCGCTCCC TGGAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA A

GTGTCTGATA GCGTGCTGGT GGAAGGCCGT CCTGTCGACG tgatgtccg gagtctttag TATGAGTTAG TGGAGGCCAT ATCGTGATGT CTCGCGTATT CCACGGCAAG GTGGGCCAGG CGTGCCATAG AGAAGGAGAT CAGTGTTNNN NNNNNNNNNN CAGCACCCAG AATAACTTCT CTCATTCGTT TGTACCATTT nNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNAA gCCCCATAGG GTtGTATGCC tGCCGGTCGG CTGTCTGAGA tGTGATtTTC TTCGAAGGCT TCAGTCCTGG GTTGGTACAT TGAAACTGTC AAACCTGTGC GTGCATCGCC CATGGGATCA ctGCCCGCGC CACCGGCCGG GTTTCTGGGG TGACAGGGTT CGCCGATGTC ACACCGCAAT TGGCGCGATC AGTCCCAGCG TGACTGCCGT ATCACCCGCT aCGCCAGTAC AATTTATCTA GCTGCCCCGC TCAACCCCCT ctaattacgc ccagtatcgg CgGCTACGCA GTtTCTATtT attacttcta ccgatgttag gCCTCCATTA TCGTAACCAG TGGTCTGGTA ATGCTTTGTA NNNNNNNNNN NNNNNNNNNN tGTCTCGGTA CACCAGCACC TATTGCAGCC ACGCGATTTA NNNNNNNNNN NNNNNNNNNN NNNNNGGGGG ACAGTTATTC tacatctgta gagattccgc CGTGTGGTCA TCCAAGACTA GCGCTTTCTC AGTTCTTCGC nacatatgg tcgtcgacca GCCCAGGCTG TTGCCCGCTC AGCAGTATNN NNNNNNNNNN taAgGccgec tacccctaca CATCGTGTTG CTATTTCTAC tTTTAGCCCC ACATTCGGCT tGatGattct tgcccggagt CTTCAGCGTC TTAAAATGAA agCctttgit ttattictit AAAAAAAAAA AAAAAAAAAA

N1-PRE-RBV

File name	N1-PRE-RBV.sam
Ref name	KC618403.1
Ref length	$\mathbf{7} 423 n t$
Program used	Tanoti Assembler 1.0
Total reads	2025094
Mapped reads	2025094 (100.00\%)
Average read length	$138 n t$
Coverage	$7334 n t(98.80 \%)$
Average depth	37269 reads/site

N1-PRE-RBV Consensus sequence

NNNNNNNACG TATGTGGTCG ATGCCATGGA GGCCCACCAG TTCATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAT TCTGCCCTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTAT CTCGTGTGCA AACTGAGATT CTTATTAATT TGATGCAACC CCGGCAGTTG GTTTTCCGAC CTGAAGTGCT CTGGAATCAT CCTATCCAAC GGGTTATCCA TAATGAACTT GAACAGTACT GTCGGGCCCG GGCTGGTCGT TGTCTAGAGG TTGGGGCCCA CCCAAGATCC ATTAATGACA ACCAAAATGT TCTACACCGG TGCTTTCTAC GGCCGGTCGG GAGAGATGTT CAGCGCTGGT ACTCTGCTCC TACCCGTGGC CCTGCGGCTA ACTGCCGCCG TTCTGCCTTG CGTGGCCTTC CCCCCGTTGA TCGTACCTAT TGTTTTGATG GATTCTCCCG CTGCTCATTT GCTGCAGAAA CTGGGGTTGC CCTTTACTCT CTGCATGATC TCTGGCCGGC CGATGTTGCG GAGGCTATGG CCCGGCACGG GATGACACGT TTGTATGCTG CACTACATCT CCCCCCTGAA GTACTACTAC CACCCGGTAC TTACCATACA ACTTCATACC TTCTGATTCA CGACGGTGAT CGTGCTGTTG TGACCTATGA AGGTGATACT AGTGCAGGCT ACAACCATGA TGTCTCCATA CTTCGTGCAT GGATCCGCAC AACTAAGATA GTCGGCGATC ATCCGCTGGT GATAGAGCGT GTGCGGGCTA TTGGCTGCCA CTTTGTGCTG CTGCTTACTG CGGCCCCTGA GCCGTCACCA ATGCCTTATG TTCCATACCC CCGGTCGACA GAGGTGTATG TCCGCTCTAT ATTCGGCCCT GGCGGGTCCC CATCCCTATT TCCATCTGCT TGCTCTACGA AATCCACATT TCACGCTGTC CCGGTTCATA TTTGGGACCG GCTCATGCTT TTTGGCGCTA CTCTGGATGA TCAGGCGTTT TGCTGTTCAC GGCTTATGAC CTACCTCCGT GGGATTAGTT ACAAGGTCAC TGTCGGCGCC CTTGTCGCTA ACGAGGGGTG GAATGCTTCG GAGGACGCTC TTACTGCTGT TATTACTGCA GCGTACTTAA CTATTTGTCA TCAGCGTTAC CTCCGTACTC AAGCTATATC CAAGGGTATG CGCCGACTGG AGGTTGAGCA TGCTCAAAAA TTCATTACAA GACTTTATAG TTGGCTGTTT GAGAAGTCCG GCCGTGACTA TATCCCCGGC CGTTGGTTAT CAGCGGGTTT CCATCTTGAC CCAAGGGTGC GTAGGACATT CCTTAAGAAG GCTGTGGGTA AGTTCTGCTG CTGCTTTTTA GAACCAGCAG AGGGTCTAGT TGGTGACCAT GAGGTCGATC AGGCCGAGCC CGCCCATCTT GATGTTTCTG AGGCCCTGTA TAGGGCGCTT AACATCCCGC ATGATATCGC CGAACTCGTT GCAGGCCCAG ACCGCTTGGA GTGCCGCACT GTGGTTGATG GTGCCCATCT TGAGGCGAAC GGCCCCGAGC AGTCTATGGG GGCCGGACCG CATAGTCTCT CCTACGAGCT ATCTAATGGC CTGGATTGCA CTGCAACATT CCCTCCGGGC GCAGCCTTTT GCAGTGCCCT TTACAGGTAC AACAGGTTCA GGCTGCACCC TGAGGGGTTG TTAGGTATCT TCCCCCCTTT CCCTTTCTGT GGGGAGGGAA CCTTGTACAC CCGGACATGG CCCCCTGAGG CAGCCGTCGC AGCGCCGGCT GCTACTCCGG ACATCTGGGT GTTACCGCCG CCTTCTGAAG AATTTCAGGT GTCCGCTCAG CCATCCAGCC CCGCAGGGCC AAAGGCTCCC NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN CTGAAGAATT TCAGGTTGAC ACAGCGCCCG CTCCCCCTGC AGGGCCAAAG GCTCCCGTGC GTAAGCCGCC AACGCCACCG TACCCGGATG GGGCAAAGGT GTATGCGGGG TCACTGTTTG CGAATCCCGG CCATCGTCCT GGAGGCGGCC TTTGCCATGC CTCAACTGAG TTCATTATGC GCGACGGTCT TGCCGCGTAT GTGGCTCCTG ATTATAGGGT TGAGCACAAC CCAAAGCGGC GCCGCGGTAC TGCCGCCTAC CCACTCCTCG GCTCGGGCAT CGCCTGGGAG CGTAACCACC GCCCTGGGGA CGAGCTCTAC GCTAATAAGC CAACACAGCC GGCCCTCACA ATAACTGAGG AGATCGATGC TGCTACAGAG GTCGGCCGGG CTTGTGCCGG TCAGTTTACC GCTGGGGTCC CAGGTTCGGG CAAGTCGCGC GTTGTTCCCA CTCGGGAGCT CCGGAATAGT TGGCGTCGCC CGGCCCGTGT CACCACGGGC CGTCGTGTTG TGATCGATGA ATTACACATG CAGCGGGCCT CGTCGGTCCA CCTCCTCGGC GAGCATGCCG GCCTGGTCCC TGCAATACGC CCCGAGCTTG GCTGCCCCGC TGATGTGTGC GAGCTTATAC GCGGGGCTTA GCGGTCTTTA TTCTGGAATG AGCCTGCCAT TGGCCAGAAG AACCCTGGTG CGATTACAGT CCACGAGGCC CAGGGCGCCA

CGCCAGCTCC AGTTCTATGC ACAGTGCCGC TTGTTTTTGA TGAGTCTGTG CCCTGCCGTT TTTTATGAAG TGGTTAGGGC AGGAGTGCAC GGCCACGATA ATGAAGCCTA TGAGGGCTCT GGACTTATGC CGTCCATGGC CGTCAACTTG TGCCCGAGCC TCCCGTCTGA CTGCCACCGT GTGCTCGGGA ATAAGACTTT CCGGACGACG AGTACGTTCT TTCGTTTGAC GCCTCTCGCC CACTCCTGCT GGTTTGCAGG TCAAGATTTC GGGGCCCCTA GCGCTGCTCC GGGGGAGGTG CTCAGCGCCA TTCGCTTATA GGTGGCCTGT CTCTCCCGGG CACCTTTGGG AGTCCGCTAA TCAACATCTG GTTTTTCTAG TGATTTTTCC GGTTACGCCA CCCTACACCT CCTGTTAGTG TGACACAGCG CCCGCTCCCC CTGCCCCTGA GTGCGTAAGC CGCCAATGCN NNNNNNNNNN NNNNNNNNNN NNNNNNNNGA CCGCCACCTT CCCTGAGTCC GCTCAGCCAT CCAGCCCCGC CCCCCGCGCA CCCGCCGCCT TCTCTACACC AGTCTGACTG TGATTGGCTG GTTAATGCGT CTTCTACCAA CGCTACCCCG AGTCTTTCCA ACTTTAACTC CCCGGCCTAT TATTCATGCA TTGAGGCAGC ATACCGAGAG ACCTGCTCCC ATATCAAGTT CCTGTCAGCC TCAGCTTTGA CTGACCGACC TCGCAGCTAC CTGGTTTGAG ATGCAGCCCG CACAGCCAAC CTAGCACTGG CTGTGCAGTT AGTCCTGGGG TTGTGCACTA TCTATACAGC AGGGGGATGT CGACGTAGTG GGGGTTTCGC GGCTTTTACA CCTCATACGG GGCCCCATCA CTCCCACCGC ATTTGTTGCT GACCCGAACC AGATCCCTGC CATAGACTTC CGCCCACCAG TTGGTGGCAT GTCACCCATC TCCCAAAATT CAAACCACCA GCCGCGTGCT TTAGTTTTCA CCCAGGCTGC TAAGGCCGCC CTTTCACGGA AACCACAATC ATAGCCACGG

N1-PRE-RBV Consensus sequence

3710	CTGATGCTAG	AGGGCTCATC	CAATCTTCCC	GAGCTCATGC	CATAGTCGCA	CTTACTCGCC	ACACAGAGAA
3780	GTGTGTTATT	CTTGACGCCC	CCGGCTTGTT	ACGTGAGGTT	GGTATATCGG	ATGTGATTGT	CAACAATTTT
3850	TTCCTCGCCG	GCGGGGAAGT	GGGCCACCAT	CGCCCCTCTG	TGATACCTCG	TGGTAATCCT	GACCAGAACC
3920	TCGCGACACT	ACAGGCCTTC	CCACCTTCCT	GCCAGATTAG	TGCTTATCAT	CAGTTAGCTG	AGGAACTTGG
3990	CCACCGCCCA	GCCCCCGTCG	CCGCTGTCTT	GCCCCCTTGC	CCTGAACTTG	AACAAGGCTT	GTTATACATG
4060	CCACAGGAGC	TCACGGTGTC	TGACAGCGTG	CTTGTCTTTG	AACTCACGGA	CATAGTCCAC	TGCCGGATGG
4130	CTGCCCCCAG	CCAGCGGAAG	GCCGTCCTAT	CGACGCTCGT	GGGTAGGTAC	GGCCGTCGGA	CGAAGCTGTA
4200	TGAAGCAGCT	CACTCTGACG	TCCGTGAGTC	CCTGGCTAGA	TTTATTCCCA	CCATTGGGCC	CGTTCAGGCT
4270	ACTACGTGTG	AGTTATATGA	GCTGGTTGAG	GCCATGGTGG	AGAAAGGTCA	GGATGGCTCT	GCCGTGCTTG
4340	AGCTCGACCT	CTGCAATCGT	GATGTATCGC	GTATTACATT	TTTCCAGAAA	GATTGTAATA	AATTCACCAC
4410	AGGGGAGACC	ATTGCCCACG	GTAAGGTCGG	TCAGGGCATC	TCGGCTTGGA	GTAAGACCTT	CTGTGCCCTG
4480	TTTGGTCCGT	GGTTTCGTGC	TATTGAAAAA	GAAATACTAG	CCCTGCTCCC	GCCTAATATT	TTCTACGGCG
4550	ACGCATATGA	GGAGTCTGTG	TTTGCCGCCG	CTGTGTCAGG	GGCAGGTTCA	AGCATGGTAT	TTGAAAATGA
4620	TTTTTCAGAG	TTTGATAGCA	CCCAAAATAA	CTTTTCCCTC	GGTCTCGAGT	GTGTAGTCAT	GGAGGAATGT
4690	GGCATGCCCC	AGTGGCTAAT	TCGGTTGTAC	CATTTGGTTC	GGTCGGCCTG	GATCCTACAG	GCGCCGAAGG
4760	AGTCTCTTAA	GGGATTTTGG	AAGAAGCATT	CCGGTGAGCC	CGGCACCCTC	CTCTGGAACA	CTGTTTGGAA
4830	TATGGCGATC	ATAGCACACT	GCTATGAATT	TCGTGATTTT	AGGGTTGCCG	CTTTCAAGGG	AGATGATTCC
4900	GTGGTCCTCT	GTAGCGACTA	CCGTCAGAGC	CGCAACGCAG	CGGCCCTGAT	TGCAGGTTGC	GGGCTCAAGC
4970	TGAAGGTTGA	TTACCGCCCC	ATTGGGTTGT	ATGCCGGTGT	GGTGGTGGCC	CCCGGTTTGG	GGACGCTACC
5040	CGATGTGGTG	CGCTTTGCCG	GCCGGCTGTC	TGAGAAGAAC	TGGGGCCCTG	GGCCGGAGCG	GGCTGAGCAG
5110	TTGCGCCTAG	CTGTTTGTGA	CTTCCTTCGA	GGGTTAACGA	ATGTTGCGCA	GGTATGTGTC	GATGTTGTAT
5180	CCCGAGTTTA	TGGAGTTAGC	CCTGGGTTGG	TACATAACCT	TATTGGCATG	TTGCAAACCA	TAGCTGATGG
5250	CAAAGCCCAT	TITACAGAGA	CTGTTAAACC	TGTGCTTGAC	CTCACGAACT	CTATCATACA	GCGGGTGGAA
5320	TGAATAACAT	GTTCTGTGCA	TTGCCCATGG	GATCATCATG	TGCCCTAGGG	CTGTTCTGTT	GTTGTTCCTC
5390	GTGCTTCTGC	CTATGCTGCC	CGCGCCACCG	GCCGGCCAGC	CGTCTGGCCG	CCGTCGTGGG	CGGCGCAGCG
5460	GCGGTACCGG	CAGTGGTTTC	TGGGGTGACA	GGGTTGATTC	TCAGCCCTTC	GCCCTCCCCT	ATATTCATCC
5530	AACCAACCCC	TTTGCCGCCG	ATGTCGTACC	GCAATCCGGG	GCTGGAGCTC	GCCCTCGACA	GCCACCCCGC
5600	CCCCTCGGCT	CCTCTTGGCG	TGACCAGTCC	CAGCGCCCCT	CCGCTGTCCC	ACGTCGTCGA	TCTGCCCCAG
5670	TTGGGGCTGC	GCCGCTGACT	GCCATATCAC	CTGCTCCCGA	CACGGCTCCT	GTACCTGATG	TTGACTCGCG
5740	TGGCGCTATA	TTGCGACGCC	AGTACAATTT	ATCCACATCC	CCGCTCACAT	CATCTGTTGC	TTCGGGTACT
5810	AATCTGGTTC	TTTATGCTGC	CCCGCTAAAC	CCTTTGCTGC	CCCTTCAGGA	TGGCACTAAC	ACTCACATCA
5880	TGGCCACTGA	GGCATCTAAT	TATGCCCAGT	ATCGGGTTGT	TCGAGCTACG	ATCCGTTACA	GGCCATTGGT
5950	GCCAAATGCT	GTCGGTGGTT	ATGCAATATC	CATCTCATTC	TGGCCTCAGA	CTACTACTAC	CCCCACGTCT
6020	GTTGATATGA	ATTCTATTAC	TTCCACTGAT	GTTAGGATTT	TAGTTCAGCC	TGGCATTGCT	TCTGAGTTGG
6090	TTATCCCTAG	TGAGCGCCTC	CATTATCGTA	ACCAGGGTTG	GCGCTCTGTG	GAGACCTCGG	GTGTGGCCGA
6160	AGAGGAGGCT	ACTTCTGGTT	TAGTAATGCT	TTGTATCCAT	GGCTCTCCTG	TTAATTCCTA	CACCAATACC
6230	CCCTATACTG	GGGCGCTTGG	ACTCCTTGAC	TTTGCTTTAG	AGCTTGAGTT	TAGGAACCTG	ACACCCGGGA
6300	ACACCAACAC	CCGTGTGTCC	CGGTATACAA	GCACAGCCCG	TCATCGGCTG	CGCCGCGGTG	CTGATGGCAC
6370	CGCTGAACTT	ACCACCACAG	CAGCCACGCG	CTTCATGAAG	GACCTGCACT	TCACCGGTAC	GAATGGGGTC
6440	GGTGAGGTGG	GTCGTGGTAT	TGCTCTTACA	CTCTTTAATC	TTGCTGACAC	GCTTCTCGGT	GGTTTGCCGA
6510	CAGAATTAAT	TTCGTCGGCT	GGGGGACAGT	TATTCTACTC	CCGCCCCCGTC	GTCTCAGCCA	ATGGCGAGCC
6580	GACTGTCAAG	TTATACACAT	CTGTAGAGAA	TGCGCAGCAG	GATAAAGGGA	TCGCCATCCC	ACATGACATA
6650	GATCTGGGTG	ACTCCCGTGT	GGTCATTCAA	GACTATGACA	ACCAGCATGA	GCAGGATCGA	CCCACCCCCT
6720	CGCCTGCCCC	TTCTCGCCCT	TTTTCGGTTC	TTCGCGCTAA	TGATGTTTTA	TGGCTTTCTC	TTACCGCCGC
6790	CGAGTACGAC	CAGACTACAT	ATGGGTCGTC	CACCAACCCG	ATGTATGTCT	CGGATACTGT	CACATTTGTT
6860	AATGTGGCCA	CAGGAGCCCA	GGCTGTCGCC	CGTTCCCTTG	ACTGGTCCAA	AGTTACTCTG	GACGGCCGCC
6930	CTCTTACTAC	TATCCAGCAG	TATTCCAAAA	CATTTTATGT	TCTCCCGCTT	CGCGGGAAGC	TATCTTTTTG
7000	GGAGGCCGGG	ACGACCAAGG	CCGGCTACCC	CTATAATTAC	AACACAACTG	CTAGTGATCA	GATTCTGATT
7070	GAAAATGCAG	CTGGTCATCG	TGTTGCCATT	TCCACGTATA	CCACCAGTTT	GGGCGCTGGC	CCTGTGTCTG
7140	TTTCTGCAGT	TGGTGTTTTA	GCTCCACATT	CGGCTCTTGC	AGTCCTTGAA	GACACTATTG	ACTACCCTGC
7210	CCGTGCCCAC	ACTTTTGATG	ATTTTTGCCC	GGAGTGTCGC	GCTCTTGGTT	TGCAGGGGTG	TGCCTTCCAG
7280	TCTACTATTG	CTGAGCTTCA	GCGTCTTAAA	ATGAAGGTAG	GTAAAACCCG	GGAGTTTTAA	TCAATTCCTT
7350	TTGTGCCCCC	TTCATAGCTT	TTGTTTTATT	TCTTTTTTCT	GCGGTTCGCG	CTCCCTGGAA	NNNNNNNNNN
7420	NNN						

N2-PRE-RBV

File name
Ref name
Ref len
Program used
Total reads
Mapped reads
Average read length
Coverage
Average depth

N2-PRE-RBV.sam

pKC618403.1
7423

Tanoti Assembler 1.0
10470491
10470491 (100.00\%)
137nt
7343nt (98.92\%)
191047 reads/site

N2-PRE-RBV Consensus sequence

GCAGACCACG TATGTGGTCG ATGCCATGGA GGCCCACCAG TTCATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAT TCTGCCCTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTAT CTCGTGTGCA AACTGAGATT CTTATTAATT TGATGCAACC CCGGCAGTTG GTTTTCCGAC CTGAAGTGCT CTGGAATCAT CCTATCCAAC GGGTTATCCA TAATGAACTT GAACAGTACT GTCGGGCCCG GGCTGGTCGT TGTCTAGAGG TTGGGGCCCA CCCAAGATCC ATTAATGACA ACCAAAATGT TCTACACCGG TGCTTTCTAC GGCCGGTCGG GAGAGATGTT CAGCGCTGGT ACTCTGCTCC TACCCGTGGC CCTGCGGCTA ACTGCCGCCG TTCTGCCTTG CGTGGCCTTC CCCCCGTTGA TCGTACCTAT TGTTTTGATG GATTCTCCCG CTGCTCATTT GCTGCAGAAA CTGGGGTTGC CCTTTACTCT CTGCATGATC TCTGGCCGGC CGATGTTGCG GAGGCTATGG CCCGGCACGG GATGACACGT TTGTATGCTG CACTACATCT CCCCCCTGAA GTACTACTAC CACCCGGTAC TTACCATACA ACTTCATACC TTCTGATTCA CGACGGTGAT CGTGCTGTTG TGACCTATGA AGGTGATACT AGTGCAGGCT ACAACCATGA TGTCTCCATA CTTCGTGCAT GGATCCGCAC AACTAAGATA GTCGGCGATC ATCCGCTGGT GATAGAGCGT GTGCGGGCTA TTGGCTGCCA CTTTGTGCTG CTGCTTACTG CGGCCCCTGA GCCGTCACCA ATGCCTTATG TTCCATACCC CCGGTCGACA GAGGTGTATG TCCGCTCTAT ATTCGGCCCT GGCGGGTCCC CATCCCTATT TCCATCTGCT TGCTCTACGA AATCCACATT TCACGCTGTC CCGGTTCATA TTTGGGACCG GCTCATGCTT TTTGGCGCTA CTCTGGATGA TCAGGCGTTT TGCTGTTCAC GGCTTATGAC CTACCTCCGT GGGATTAGTT ACAAGGTCAC TGTCGGCGCC CTTGTCGCTA ACGAGGGGTG GAATGCTTCG GAGGACGCTC TTACTGCTGT TATTACTGCA GCGTACTTAA CTATTTGTCA TCAGCGTTAC CTCCGTACTC AAGCTATATC CAAGGGTATG CGCCGACTGG AGGTTGAGCA TGCTCAAAAA TTCATTACAA GACTTTATAG TTGGCTGTTT GAGAAGTCCG GCCGTGACTA TATCCCCGGC CGTTGGTTAT CAGCGGGTTT CCATCTTGAC CCAAGGGTGC GTAGGACATT CCTTAAGAAG GCTGTGGGTA AGTTCTGCTG CTGCTTTTTA GAACCAGCAG AGGGTCTAGT TGGTGACCAT GAGGTCGATC AGGCCGAGCC CGCCCATCTT GATGTTTCTG AGGCCCTGTA TAGGGCGCTT AACATCCCGC ATGATATCGC CGAACTCGTT GCAGGCCCAG ACCGCTTGGA GTGCCGCACT GTGGTTGATG GTGCCCATCT TGAGGCGAAC GGCCCCGAGC AGTCTATGGG GGCCGGACCG CATAGTCTCT CCTACGAGCT ATCTAATGGC CTGGATTGCA CTGCAACATT CCCTCCGGGC GCAGCCTTTT GCAGTGCCCT TTACAGGTAC AACAGGTTCA GGCTGCACCC TGAGGGGTTG TTAGGTATCT TCCCCCCTTT CCCTTTCTGT GGGGAGGGAA CCTTGTACAC CCGGACATGG CCCCCTGAGG CAGCCGTCGC AGCGCCGGCT GCTACTCCGG ACATCTGGGT GTTACCGCCG CCTTCTGAAG AATTTCAGGT GTCCGCTCAG CCATCCAGCC CCGCAGGGCC AAAGGCTCCC NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN CTGAAGAATT TCAGGTTGAC ACAGCGCCCG CTCCCCCTGC AGGGCCAAAG GCTCCCGTGC GTAAGCCGCC AACGCCACCG TACCCGGATG GGGCAAAGGT GTATGCGGGG TCACTGTTTG CGAATCCCGG CCATCGTCCT GGAGGCGGCC TTTGCCATGC CTCAACTGAG TTCATTATGC GCGACGGTCT TGCCGCGTAT GTGGCTCCTG ATTATAGGGT TGAGCACAAC CCAAAGCGGC GCCGCGGTAC TGCCGCCTAC CCACTCCTCG GCTCGGGTAT CGCCTGGGAG CGTAACCACC GCCCTGGGGA CGAGCTCTAC GCTAATAAGC CAACACAGCC GGCCCTCACA ATAACTGAGG AGATCGATGC TGCTACAGAG GTCGGCCGGG CTTGTGCCGG TCAGTTTACC GCTGGGGTCC CAGGTTCGGG CAAGTCGCGC GTTGTTCCCA CTCGGGAGCT CCGGAATAGT TGGCGTCGCC CGGCCCGTGT CACCACGGGC CGTCGTGTTG TGATCGATGA ATTACACATG CAGCGGGCCT CGTCGGTCCA CCTCCTCGGC GAGCATGCCG GCCTGGTCCC TGCAATACGC CCCGAGCTTG GCTGCCCCGC TGATGTGTGC GAGCTTATAC GCGGGGCTTA GCGGTCTTTA TTCTGGAATG AGCCTGCCAT TGGCCAGAAG AACCCTGGTG CGATTACAGT CCACGAGGCC CAGGGCGCCA

CGCCAGCTCC AGTTCTATGC ACAGTGCCGC TTGTTTTTGA TGAGTCTGTG CCCTGCCGTT TTTTATGAAG TGGTTAGGGC AGGAGTGCAC GGCCACGATA ATGAAGCCTA TGAGGGCTCT GGACTTATGC CGTCCATGGC CGTCAACTTG TGCCCGAGCC TCCCGTCTGA CTGCCACCGT GTGCTCGGGA ATAAGACTTT CCGGACGACG AGTACGTTCT TTCGTTTGAC GCCTCTCGCC CACTCCTGCT GGTTTGCAGG TCAAGATTTC GGGGCCCCTA GCGCTGCTCC GGGGGAGGTG CTCAGCGCCA TTCGCTTATA GGTGGCCTGT CTCTCCCGGG CACCTTTGGG AGTCCGCTAA TCAACATCTG GTTTTTCTAG TGATTTTTCC GGTTACGCCA CCCTACACCT CCTGTTAGTG TGACACAGCG CCCGCTCCCC CTGCCCCTGA GTGCGTAAGC CGCCAATGCN NNNNNNNNNN NNNNNNNNNN NNNNNNNNGA CCGCCACCTT CCCTGAGTCC GCTCAGCCAT CCAGCCCCGC CCCCCGCGCA CCCGCCGCCT TCTCTACACC AGTCTGACTG TGATTGGCTG GTTAATGCGT CTTCTACCAA CGCTACCCCG AGTCTTTCTA ACTTTAACTC CCCGGCCTAT TATTCATGCA TTGAGGCAGC ATACCGAGAG ACCTGCTCCC ATATCAAGTT CCTGTCAGCC TCAGCTTTGA CTGACCGACC TCGCAGCTAC CTGGTTTGAG ATGCAGCCCG CACAGCCAAC CTAGCACTGG CTGTGCAGTT AGTCCTGGGG TTGTGCACTA TCTATACAGC AGGGGGATGT CGACGTAGTG GGGGTTTCGC GGCTTTTACA CCTCATACGG GGCCCCATCA CTCCCACCGC ATTTGTTGCT GACCCGAACC AGATCCCTGC CATAGACTTC CGCCCACCAG TTGGTGGCAT GTCACCCATC TCCCAAAATT CAAACCACCA GCCGCGTGCT TTAGTTTTCA CCCAGGCTGC TAAGGCCGCC CTTTCACGGA AACCACAATC ATAGCCACGG

N2-PRE-RBV Consensus sequence

3710	CTGATGCTAG	AGGGCTCATC	CAATCTTCCC	GAGCTCATGC	CATAGTCGCA	CTTACTCGCC
ACACAGAGAA						
3780	GTGTGTTATT	CTTGACGCCC	CCGGCTTGTT	ACGTGAGGTT	GGTATATCGG	ATGTGATTGT
CAACAATTTT						
3850	TTCCTCGCCG	GCGGGGAAGT	GGGCCACCAT	CGCCCCTCTG	TGATACCTCG	TGGTAATCCT
GACCAGAACC						
3920	TCGCGACACT	ACAGGCCTTC	CCACCTTCCT	GCCAGATTAG	TGCTTATCAT	CAGTTAGCTG

N3-POST-RBV2

File name	N3-POST-RBV2.sam
Ref name	KC618403.1
Ref length	$\mathbf{7 4 2 3 n t}$
Program used	Tanoti Assembler 1.0
Total reads	2036030
Mapped reads	$2036030(100.00 \%)$
Average read length	$138 n t$
Coverage	$7333 n t(98.79 \%)$
Average depth	37569 reads/site

N3-POST-RBV2 Consensus sequence

NNNNNNNNG TATGTGGTCG ATGCCATGGA GGCCCACCAG TTCATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAT TCTGCCCTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTAT CTCGTGTGCA AACTGAGATT CTTATTAATT TGATGCAACC CTGGAATCAT CCTATCCAAC GGGTTATCCA TAATGAACTT TGTCTAGAGG TTGGGGCCCA CCCAAGATCC ATTAATGACA GGCCGGTCGG GAGAGATGTT CAGCGCTGGT ACTCTGCACC TTCTGCCTTG CGTGGCCTTC CCCCCGTTGA TCGTACCTAT
GCTGCAGAAA CTGGGGTTGC CCTTTACTCT CTGCATGATC CCCGGCACGG GATGACACGT TTGTATGCTG CACTACATCT TTACCATACA ACTTCATACC TTCTGATTCA CGACGGTGAT AGTGCAGGCT ACAACCATGA TGTCTCCATA CTTCGTGCAT ATCCGCTGGT GATAGAGCGT GTGCGGGCTA TTGGCTGCCA GCCGTCACCA ATGCCTTATG TTCCATACCC CCGGTCGACA GGCGGGTCCC CATCCCTATT TCCATCTGCT TGCTCTACGA TTTGGGACCG GCTCATGCTT TTTGGCGCTA CTCTGGATGA CTACCTCCGT GGGATTAGTT ACAAGGTCAC TGTCGGCGCC GAGGACGCTC TTACTGCTGT TATTACTGCA GCGTACTTAA AAGCTATATC CAAGGGTATG CGCCGACTGG AGGTTGAGCA TTGGCTGTTT GAGAAGTCCG GCCGTGACTA TATCCCCGGC CGTTGGTTAT CAGCGGGTTT CCATCTTGAC CCAAGGGTGC GTAGGACATT CCTTAAGAAG GCTGTGGGTA AGTTCTGCTG CTGCTTTTTA GAACCAGCAG AGGGTCTAGT TGGTGACCAT GAGGTCGATC AGGCCGAGCC CGCCCATCTT GATGTTTCTG AGGCCTTGTA TAGGGCGCTT AACATCCCGC ATGATATCGC CGAACTCGTT GCAGGCCCAG ACCGCTTGGA GTGCCGCACT GTGGTTGATG GTGCCCATCT TGAGGCGAAC GGCCCCGAGC AGTCTATGGG GGCCGGACCG CATAGTCTCT CCTACGAGCT ATCTAATGGC CTGGATTGCA CTGCAACATT CCCTCCGGGC GCAGCCTTTT GCAGTGCCCT TTACAGGTAC AACAGGTTCA GGCTGCACCC TGAGGGGTTG TTAGGTATCT TCCCCCCTTT CCCTTTCTGT GGGGAGGGAA CCTTGTACAC CCGGACATGG CCCCCTGAGG CAGCCGTCGC AGCGCCGGCT GCTACTCCGG ACATCCGGGC GTTACCGCCG CCTTCTGAAG AATTTCAGGT GTCCGCTCAG CCATCCAGCC CCGCAGGGCC AAAGGCTCCC NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN CTGAAGAATT TCAGGTTGAC ACAGCGCCCG CTCCCCCTGC AGGGCCAAAG GCTCCCGTGC GTAAGCCGCC AACGCCACCG TACCCGGATG GGGCAAAGGT GTATGCGGGG TCACTGTTTG CGAATCCCGG CCATCGTCCT GGAGGCGGCC TTTGCCATGC CTCAACTGAG TTCATTATGC GCGACGGTCT TGCCGCGTAT GTGGCTCCTG ATTATAGGGT TGAGCACAAC CCAAAGCGGC GCCGCGGTAC TGCCGCCTAC CCACTCCTCG GCTCGGGTAT CGCCTGGGAG CGTAACCACC GCCCTGGGGA CGAGCTCTAC GCTAATAAGC CAACACAGCC GGCCCTCACA ATAACTGAGG AGATCGATGC TGCTACAGAG GTCGGCCGGG CTTGTGCCGG TCAGTTTACC GCTGGGGTCC CAGGTTCGGG CAAGTCGCGC GTTGTTCCCA CTCGGGAGCT CCGGAATAGT TGGCGTCGCC CGGCCCGTGT CACCACGGGC CGTCGTGTTG TGATCGATGA ATTACACATG CAGCGGGCCT CGTCGGTCCA CCTCCTCGGC GAGCATGCCG GCCTGGTCCC TGCAATACGC CCCGAGCTTG GCTGCCCCGC TGATGTGTGC GAGCTTATAC GCGGGGCTTA GCGGTCTTTA TTCTGGAATG AGCCTGCCAT TGGCCAGAAG AACCCTGGTG CGATTACAGT CCACGAGGCC CAGGGCGCCA

CCGGCAGTTG GTTTTCCGAC CTGAAGTGCT GAACAGTACT GCCGGGCCCG GGCTGGTCGT ACCAAAATGT TCTACACCGG TGCTTTCTAC TACCCGTGGC CCTGCGGCTA ACTGCCGCCG TGTTTTGATG GATTCTCCCG CTGCTCATTT TCTGGCCGGC CGATGTTGCG GAGGCTATGG CCCCCCTGAA GTACTACTAC CACCCGGTAC CGTGCTGTTG TGACCTATGA AGGTGATACT GGATCCGCAC AACTAAGATA GTCGGCGATC TTTTGTGCTG CTGCTTACTG CGGCCCCTGA GAGGTGTATG TCCGCTCTAT ATTCGGCCCT AATCCACATT TCACGCTGTC CCAGTTCATA TCAGGCGTTT TGCTGTTCAC GGCTTATGAC CTTGTCGCTA ACGAGGGGTG GAATGCTTCG CTATTTGTCA TCAGCGTTAC CTCCGTACTC TGCTCAAAAA TTCATTACAA GACTTTATAG CGCCAGCTCC AGTTCTATGC ACAGTGCCGC TTGTTTTTGA TGAGTCTGTG CCCTGCCGTT TTTTATGAAG TGGTTAGGGC AGGAGTGCAC GGCCACGATA ATGAAGCCTA TGAGGGCTCT GGACTTATGC TGTCCATGGC CGTCAACTTG TGCCCGAGCC TCCCGTCTGA CTGCCACCGT GTGCTCGGGA ATAAGACTTT CCGGACGACG AGTACGTTCT TTCGTTTGAC GCCTCTCGCC CACTCCTGCT GGTTTGCAGG TCAAGATTTC GGGGCCCCTA GCGCTGCTCC GGAGGAGGTG CTCAGCGCCA TTCGCTTATA GGTGGCCTGT CTCTCCCGGG CACCTTTGGG AGTCCGCTAA TCAACATCTG GTTTTTCTAG TGATTTTTCC GGTTACGCCA GCCTACACCT CCTGTTAGTG TGACACAGCG CCCGCTCCCC CTGCCCCTGA GTGCGTAAGC CGCCAATGCN NNNNNNNNNN NNNNNNNNNN NNNNNNNNGA CCGCCACCTT CCCTGAGTCC GCTCAGCCAT CCAGCCCCGC CCCCCGCGCA CCCGCCGCCT TCTTTACACC AGTCTGACTG TGATTGGCTG GTTAATGCGT CTTCTACCAA CGCTACCCCG AGTCTTTCTA ACTTTAACTC CCCGGCCTAT TATTCATGCA TTGAGGCAGC ATACCGAGAG ACCTGCTCCC ATATCAAGTT CCTGTCAGCC TCAGCTTTGA CTGACCGACC TCGCAGCTAC CTGGTTTGAG ATGCAGCCCG CACAGCCAAC CTAGCACTGG CTGTGCAGTT AGCCCTGGGG TTGTGCACTA TCTATACAGC AGGGGGATGT CGACGTAGTG GGGGTTTCGC GGCTTTTACA CCTCATACGG GGCCCCATCA CTCCCACCGC ATTTGTTGCT GACCCGAACC AGATCCCTGC CATAGACTTC CGCCCACCAG TTGGTGGCAT GTCACCCATC TCCCAAAATT CAAACCACCA GCCGCGTGCT TTGGTTTTCA CCCAGGCTGC TAAGGCCGCC CTTTCACGGA AACCACAATC ATAGCCACGG

N3-POST-RBV2 Consensus sequence

3710	CTGATGCTAG	AGGGCTCATC	CAATCTTCCC	GAGCTCATGC	CATAGTCGCA	CTTACTCGCC
ACACAGAGAA						
3780	GTGTGTTATT	CTTGACGCCC	CCGGCTTGTT	ACGTGAGGTT	GGTATATCGG	ATGTGATTGT

O1-PRE-RBV

File name	O1-PRE-RBV.sam
Ref name	FJ705359.1
Ref length	7237 nt
Program used	Tanoti Assembler 1.0
Total reads	1634741
Mapped reads	1634741 (100.00\%)
Average read length	$136 n t$
Coverage	$7226 n t$ (99.85\%)
Average depth	30561 reads/site

O1-PRE-RBV Consensus sequence

GCAGACCACG TATGTGGTCG ATGCCATGGA GGCCCACCAG TTCATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAT TCTGCCTTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTAT CTCGTGTGCA AACTGAGATT CTTATCAATT TGATGCAACC CCGGCAGTTG GTTTTTCGAC CTGAAGTGCT CTGGAATCAT CCTATCCAAC GGGTTATCCA TAATGAACTT GAACAGTACT GTCGGGCCCG GGCTGGTCGT TGTCTAGAGG TTGGGGCCCA CCCAAGATCC ATCAATGACA ATCCAAATGT TCTGCACCGG TGCTTCTTAC GACCAGTTGG GAGAGATGTT CAGCGCTGGT ACTCTGCTCC TACCCGCGGC CCTGCGGCTA ACTGCCGCCG TTCTGCTTTG CGTGGTCTCC CCCCCGTTGA TCGTACCTAT TGTTTTGATG GATTCTCCCG CTGCTCATTT GCCGCAGAAA CTGGGGTTGC CCTTTATTCT TTGCATGACC TCTGGCCGGC CGATGTTGCG GAGGCTATGG CCCGACACGG GATGACACGC TTGTATGCTG CACTACACCT CCCCCCTGAA GTACTACTAC CACCTGGTAC TTACCGTACA ACTTCATATC TTTTGATTCA CGACGGTGAT CGTGCTGTTG TGACTTATGA GGGTGACACT AGTGCAGGCT ACAACCATGA TGTCTCCATA CTTCGTGCAT GGATCCGCAC AACTAAGATA GTCGGCGATC ATCCGCTGGT GATAGAGCGT GTGCGGGCTA TTGGCTGCCA TTTTGTGCTG CTGCTCACTG CAGCTCCTGA GCCGTCACCA ATGCCTTACG TTCCATACCC CCGGTCGACA GAGGTGTATG TCCGCTCTAT ATTTGGCCCT GGCGGGTCCC CATCCCTATT CCCATCAGCT TGCTCTACGA AATCCACATT TCACGCTGTC CCGGTTCATA TTTGGGACCG GCTCATGCTT TTTGGCGCTA CTCTGGATGA TCAGGCGTTT TGCTGTTCAC GGCTTATGAC CTACCTCCGC GGGATTAGTT ACAAGGTCAC TGTTGGCGCC CTTGTCGCTA ATGAGGGTTG GAATGCTTCG GAGGACGCTC TTACCGCTGT CATTACTGCA GCGTATTTGA CCATCTGTCA TCAGCGCTAC CTCCGTACTC AAGCTATATC CAAGGGTATG CGTCGACTGG AGGTTGAGCA TGCCCAAAAA TTCATTACAA GACTTTATAG CTGGCTGTTC GAGAAGTCCG GCCGTGACTA TATCCCCGGC CGCCAGCTCC AGTTTTATGC ACAGTGCCGT CGTTGGTTAT CGGCGGGTTT CCATCTTGAC CCAAGGGTGC TTGTCTTTGA TGAGTCTGTG CCCTGCCGTT GTAGGACATT TCTTAAGAAG GCTGTGGGTA AGTTCTGTTG TTTCATGAAG TGGTTGGGGC AGGAGTGCAC CTGTTTCTTG GAACCAGCAG AGGGTCTAGT TGGAGACCAT GGCCACGATA ATGAAGCCTA TGAGGGCTCT GAGGTCGATC AGGCCGAGCC CGCCCATCTT GATGTTTCTG GGACTTATGC CGTCCATGGT CGCCAACTTG AGGCCCTGTA TAGGGCGCTT AACATCCCGC ATGACATCGC TGCCCGAGCC ACCCGTTTGA CTGCCACCGT CGAACTCGTT GCAGGTCCTG ACCGTTTGGA GTGCCGCACT GTGCTCGGGA ATAAGACTTT CCGGACGACG GTGGTTGATG GCGCCCATCT TGAGGCGAAC GGCCCCGAGC AGTACGTTCT TTCGTTTGAC GCCTCTCGCC AGTCTATGGG GGCCGGGCCG CATAGTCTCT CCTATGAGCT CACTCCTGCT GGTTTACAGG TCAAGATTTC ATCTAATGGC CTGGATTGCA CTGCAACATT TCCCCCGGGC GGCGCCCCGA GCGCTGCCCC GGGGGAGGTA GCAGCCTTCT GCAGTGCCCT TTACAGGTAT AACAGGTTTA CTCAGCGCCA TTCGCTTATA GGCGGCTTGT GGCTGCACCC TGAGGGGTTG TTGGGTATCT TCCCCCCTTT CTCTCCCGGG CACCTTTGGG AGTCCGCTAA CCCTTTTTGT GGGGAGGGAA CCTTGTACAC CCGGACATGG TCAACATCTG GTTTTTCTAG TGACTTTTCC CCCCCTGAGG CAGCCGTTGC AGTGCCGGCT GCTACTCCGG GGCTACGCCA CCCTACACCT CCTGCCAGTG ACATTTGGGT GTTACCGCCA CCTTCTGAAG AATTTCAGGT TGACTCAGCT CTTGCTCCCC CCGCCCCTGA GCCCGCTCAA CCATCTAGCC CCGCTGGGCC AAAAGCTCCC GTGCGTAAGC CGCCAACACC ACCACCCTCG CGCACCCGCC GTCTTCTTTA CACCTATCCG GATGGGGCAA AGGTGTACGC GGGGTCACTG TTTGAGTCTG ACTGTGATTG GCTGGTCAAT GCGTCGAATC CTGGCCATCG TCCTGGAGGT GGCCTTTGTC ATGCCTTTTA CCAACGCTAC CCCGAGTCTT TCCACCCAAC TGAGTTCATT ATGCGCGACG GTCTTGCCGC GTACACTTTA ACTCCCCGGC CTATTATTCA TGCAGTGGCT CCTGATTACA GGGTTGAGCA TAACCCAAAG AGGCTTGAGG CAGCATACCG AGAGACTTGT TCTCGCCGCG GTACCGCCGC CTATCCACTC CTCGGCTCGG GCATATACCA AGTTCCCGTC AGCCTCAGCT TTGACGCCTG GGAGCGTAAC CATCGCCCCG GGGATGAGCT TTACTTAACC GACCTCGCCG CTACCTGGTT CGAGGCTAAC AAGCCAACAC AGCCGGCCCT CACAATAACT GAGGATGCAG CCCGTACAGC CAACCTAGCA CTGGAGATCG ATGCTGCCAC GGAGGTTGGC CGGGCTTGTG CCGGCTGTGC AGTTAGACCT GGGGTTGTGC ACTATCAGTT TACTGCTGGG GTCCCAGGTT CGGGGAAGTC GCGTTCTATA CAGCAGGGGG ATGTTGACGT AGTGGTTGTT CCCACTCGGG AGCTCCGGAA TAGCTGGCGT CGCCGGGGTT TTGCAGCTTT TACACCTCAT ACGGCGGCCC GTGTTACCAC GGGCCGCCGT ATTGTGATTG ATGAGGCCCC ATCCCTCCCA CCGCATTTGC TGCTATTACA CATGCAGCGG GCCTCGTCGG TCCACCTTCT CGGCGACCCA AACCAGATCC CTGCTATAGA CTTCGAGCAT GCCGGCCTGG TCCCCGCCAT ACGCCCTGAG CTTGCGCCCA CCAGTTGGTG GCATGTCACC CATCGCTGCC CCGCTGATGT GTGCGAGCTT ATACGCGGGG CTTATCCCAA AATCCAAACC ACTAGCCGCG TGCTGCGGTC TTTATTCTGG AATGAGCCTG CCATTGGCCA GAAGTTAGTT TTCACCCAGG CTGCTAAGGC CGCCAATCCC GGTGCGATTA CAGTCCACGA GGCCCAGGGC GCCACTTTCA CGGAAACTAC AATTATAGCT ACGGCTGATG CTAGGGGGCT CATCCAATCT TCCCGAGCTC ACGCCATAGT CGCACTTACC CGCCACACAG AGAAGTGCGT TATTCTTGAC GCCCCCGGCT TGTTACGTGA GGTTGGTATA TCGGATGCGA TTGTCAACAA CTTTTTCCTC GCCGGCGGGG AGGTGGGTCA CCATCGCCCC TCTGTGATAC

O1-PRE-RBV Consensus sequence

3710
3780
3850
3920 3990
4060
4130 4200 4270
4340
4410
4480
4550
4620
4690
4760
4830
4900
4970
5040
5110
5180
5250
5320
5390
5460
5530
5600
5670
5740
5810
5880
5950
6020
6090
6160
6230
6300
6370
6440
6510
6580
6650
6720
6790
6860
6930
7000
7070
7140 7210

CTCGTGGTAA TCCAGACCAG AACCTCGCGA CACTACAGGC CTTTCCACCT TCCTGCCAGA TTAGTGCCTA TCACCAGTTA GCTGAGGAAC TTGGCCACCG CCCAGCTCCC GTCGCCGCTG TCTTGCCCCC TTGCCCTGAA CTTGAGCAGG GCTTGTTATA TATGCCACAG GAACTTACGG TGTCTGACAG CGTGCTGGTC TTTGAACTCA CGGACATAGT TCACTGCCGG ATGGCTGCCC CCAGCCAGCG GAAGGCCGTC CTATCGACGC TCGTGGGTAG GTACGGCCGC CGGACGAAGC TGTATGAAGC GGCTCACTCT GACGTCCGTG AGTCCCTGGC TAGATTCATC CCCACCATCG GGCCCGTTCG GGCTACTACG TGTGAGTTAT ATGAGTTGGT TGAGGCCATG GTGGAGAAAG GTCAGGATGG CTCTGCCGTG CTTGAGCTCG ACCTCTGCAA TCGTGATGTA TCGCGTATTA CATTTTTCCA GAAGGACTGT AACAAATTTA CCACAGGGGA GACCATTGCT CACGGTAAGG TTGGCCAGGG CATCTCGGCT TGGAGTAAGA CTTTCTGTGC CCTGTTTGGC CCGTGGTTCC GTGCTATTGA AAAAGAAATA CTAGCCCTGC TCCCGCCTAA TATTTTCTAC GGCGACGCAT ACGAGGAGTC TGTGTTTGCC GCCGCTGTGT CAGGGGCAGG TTCAAGCATG GTATTTGAGA ATGATTTTTC AGAGTTTGAT GAGTGTGTAG TCATGGAGGA GTGTGGCATG CCCCAGTGGT CCTGGATCTT ACAGGCGCCG AAGGAGTCTC TTAAGGGATT CCTCCTTTGG AACACTGTTT GGAATATGGC GATCATAGCA GCCGCCTTCA AGGGAGATGA TTCCGTGGTC CTCTGTAGCG TGATTGCAGG TTGCGGGCTT AAACTGAAGG TTGATTATCG GGCCCCTGGC CTGGGGACGC TACCCGATGT GGTGCGCTTT GCCGGCCGGC TGTCTGAGAA GAACTGGGGC CCTGGGCCTG AGCGGGCTGA GCAGTTGCGC CTAGCTGTTT GTGATTTCCT TCGAGGGTTA ACGAATGTTG CGCAGGTATG TGTTGATGTT GTATCCCGAG TTTATGGAGT TAGCCCTGGG TTGGTACATA ACCTTATTGG CATGCTGCAA ACCATAGCTG ATGGCAAAGC CCATTTTACA GAGACTGTTA AACCTGTGCT TGACCTCACG AATTCTATCA TACAGCGGGT GGAATGAATA ACATGTTTTG TGCATTGCCC ATGGGATCAC CATGCGCCCT AGGGCTGTTC TGTTGCTGTT CTTCGTGCTT CTGCCTATGC TGCCCGCGCC ACCGGCCGGC CAGCCGTCTG GCCGCCGTCG TGGGCGGCGC AGCGGCGGTA CCGGCAGTGG TTTCTGGGGT GACAGGGTTG ATTCTCAGCC
CTTCGCCCTC CCCTATATTC ATCCAACCAA CCCCTTTGCC GCCGACGTCG TACCGCAATC CGGGGCTGGA GCTCGCCCTC GACAGCCACC CCGCCCCCTC GGCTCCTCTT GGCGTGATCA GTCCCAGCGC CCCTCCGCTG TCCCACGTCG TCGATCTGCC CCAGCTGGGG CTGCGCCGCT GACTGCTATA TCGCCTGCTC CCGATACAGC TCCCGTGCCT GATGTTGACT CGCGTGGCGC CATATTGAGA CGCCAGTACA ATTTATCCAC ATCCCCGCTC ACATCATCCG TCGCTTCGGG TACCAATTTG GTTCTTTATG CTGCCCCGCT AAACCCCTTG CTGCCCCTTC AGGACGGCAC TAACACTCAC ATCATGGCCA CTGAGGCATC TAATTATGCC CAGTATCGGG TCGTCCGAGC CACGATTCGT TACAGGCCAT TGGTGCCAAA TGCTGTTGGC GGTTATGCAA TATCCATTTC ATTCTGGCCT CAGACTACTA CTACCCCCAC GTCTGTTGAT ATGAACTCTA TTACCTCCAC TGATGTTAGG ATTCTAGTCC AGCCCGGTAT TGCTTCTGAG TTGGTTATCC CCAGTGAGCG CCTCCATTAT CGTAACCAGG GCTGGCGCTC TGTGGAGACC TCGGGTGTTG CAGAAGAGGA GGCTACTTCT GGTTTGGTAA TGCTTTGTAT CCATGGTTCT CCTGTTAACT CCTACACCAA TACCCCCTAC ACCGGGGCAC TTGGACTCCT TGATTTCGCT TTAGAGCTAG AGTTTAGGAA CCTGACACCC GGGAATACCA ACACCCGTGT GTCTCGGTAT ACAAGCACAG CCCGTCATCG GTTGCGCCGC GGTGCTGATG GCACCGCCGA ACTCACCACC ACAGCCGCCA CGCGCTTCAT GAAGGACCTG CACTTCACCG GCACGAATGG GGTCGGTGAG GTGGGTCGTG GTATTGCTCT TACACTCTTT AATCTTGCTG ATACGCTTCT CGGTGGTTTG CCGACAGAAT TAATTTCGTC GGCTGGAGGA CAGTTATTCT ACTCCCGCCC CGTCGTCTCA GCCAATGGCG AGCCGACTGT CAAGTTATAC ACATCTGTTG AGAATGCGCA GCAGGATAAA GGGATTGCTA TTCCACATGA CATAGATCTG GGTGACTCCC GTGTGGTCAT CCAAGACTAT GACAACCAGC ATGAGCAGGA TCGACCTACC CCCTCGCCTG CCCCTTCCCG CCCTTTTTCG GTCCTTCGCG CTAATGATGT TCTTTGGCTT TCTCTTACTG CCGCCGAGTA CGACCAGACT ACATATGGGT CGTCCACCAA CCCGATGTAT GTCTCGGATA CTGTTACATT TGTCAACGTG GCTACAGGAG CCCAGGCTGT CGCCCGTTCC CTCGATTGGT CTAAAGTCAC TCTGGACGGC CGTCCTCTTA CTACTACCCA GCAGCACTCC AAAACATTTT ATGTTCTCCC GCTTCGCGGG AAGTTATCTT TCTGGGAGGC CGGGACAACT AAGGCTGGTT ATCCCTATAA TTACAACACA ACTGCTAGTG ATCAGATTCT GATTGAAAAT GCGGCTGGTC ATCGTGTTGC TATTTCCACG TACACCACCA GCTTGGGCGC TGGCCCTGTG TCTGTTTCTG CAGTCGGTGT TTTAGCCCCA CATTCTGCCC TCGCAGTCCT TGAAGACACT ATTGATTACC CTGCCCGTGC CCACACTTTT GATGATTTTT GCCCGGAGTG TCGCGCTCTT GGTCTGCAGG GGTGTGCCTT CCAGTCTACT ATTGCTGAGC TTCAGCGTCT TAAAATGAAG GTAGGTAAAA CCCGGGAGTT CTAATCAATT TCCTTTGTGC CCCCTTCATA GCTTTGCTTT ATTTTCTTTT TTCTGCGGTT CGCGCTCCCT GGAAAANNNN NNNNNNN

P1-PRE-RBV

File name	P1-PRE-RBV.sam
Ref name	KC618403.1
Ref length	$\mathbf{7 4 2 3 n t}$
Program used	Tanoti Assembler 1.0
Total reads	$\mathbf{2 4 5 6 0 9 4}$
Mapped reads	$\mathbf{2 4 5 6} 094$ (100.00\%)
Average read length	$\mathbf{1 4 7 n t}$
Coverage	$\mathbf{7 3 2 3 n t}$ (98.65\%)
Average depth	$\mathbf{4 6 9 6 5}$ reads/site

P1-PRE-RBV Consensus sequence

NNNNNNCACG TATGTGGTCG ATGCCATGGA GGCCCATCAG TTCATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAC TCTGCCTTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTAT CTCGTGTGCA AACTGAGATC CTTATCAATC TAATGCAACC CCGGCAACTG GTTTTCCGAC CTGAAGTGCT CTGGAATCAT CCTATCCAAC GGGTTATCCA CAATGAACTA GAACAGTACT GCCGGGCTCG GGCTGGTCGC TGTCTGGAAG TTGGGGCCCA CCCAAGATCT ATCAATGACA ACCCGAATGT TTTGCATCGG TGTTTTCTAC GACCAGTTGG GAGAGATGTT CAGCGTTGGT ATTCTGCTCC CACCCGTGGC CCTGCAGCTA ATTGTCGCCG CTCCGCCTTA CGCGGCCTCC CCCCCGTTGA TCGTACCTAT TGCTTTGATG GATTCTCCCG CTGCTCGTTT GCTGCGGAAA CTGGTATTGC CCTTTATTCT TTGCATGACC TCTGGCCGGC CGATGTTGCG GAGGCCATGG CCCGACACGG GATGACACGC CTATATGCTG TACTACATCT TCCCCCTGAA GTACTACTAC CACCTGGTAC CTACCACACA ACCTCATACC TTCTGATTCA CGACGGTGAT CGTGCTGTTG TGACCTACGA AGGTGACACT AGTGCAGGCT ACAATCATGA TGTTTCCATA CTCCGAGCAT GGATCCGCAC AACTAAAATA GTAGGCGATC ATCCGCTGGT GATAGAACGT GTGCGGGCCA TTGGTTGCCA CTTTGTGTTG CTGCTTACTG CGGCCCCTGA GCCGTCACCA ATGCCCTATG TCCCGTATCC CCGGTCGACA GAGGTCTATG TCCGTTCTAT ATTCGGCCCA GGTGGGTCCC CATCTCTCTT TCCATCAGCT TGCTCTACAA AATCCACATT TCATGCTGTC CCGGTTCACA TCTGGGACCG GCTCATGCTC TTCGGCGCCA CCCTCGATGA TCAGGCGTTT TGCTGTTCAC GCCTTATGAC
TTATCTCCGT GGGATTAGCT ACAAGGTCAC CGTTGGTGCC GAGGACGCTC TTACCGCTGT TATTACTGCG GCATACCTGA AAGCTATATC CAAGGGCATG CGTCGACTGG AGGTTGAACA CTGGCTGTTT GAGAAGTCTG GCCGTGACTA CATTCCCGGC CGCTGGTTAT CTGCAGGTTT TCACCTTGAT CCTAGGGTGC GCAGGACGTT TCTTAAGAAG GTTGCAGGCA AATTCTGCTG CTGTTTTTTG GAACCAGCGG AGGGCCTGGT TGGTGATCAT GAGGTCGACC AGGCTGAGCC TGCCTATCTT GATGTTTCTG AGGCCCTGTA TAGGGCGCTT AATATCCCGC AAGACATTGT CGAGCTCGTT GCAGGTCCAG ATCGCTTGGA GTGCCGTACT GTGGTTGATG GCGCCCATCT TGAGGCTAAC GGCCCTGAGC AGTCTATGGG GGCTGGATCG CATAATCTTA CCTATGAGCT ATCTAATGGC TTAGATTGCA CTGCAACATT CCCCCCGGGC GCAGCTTTCT GCAGTGCCCT TTACAGGTAT AACAGGTTCA GGTTGTATCC CGAGGGGTTG CTGGGTATCT TCCCCCCCTT TCCTTTCTGT GGGGAAGGAA CGTTATACAC CCGGACCTGG CCCCCAGAGG CGGCTGTCGC TGCGCCGGCT GCTGCCCCGG ATATTTGGGT GCTACCGTCA CTTTCTGAAG AATCTCAGGT GCCCGCTCAA CCGCCCAGCC CTGCTGGGTC AAAGACCCCC NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN CTGAAGAATC TCAGGTTGAT GCAACGCCAG CCATCCCTGC TGGGTCAAAG ACCCCCGTGC GTAAGCCATC AACACCACCA TATCCGGACG GGGCAAAGGT GTACGCGGGG TCGTTGTTTG CGAACCCTGG CCATCGTCCT GGGGGTGGCC TTTGCCATGC CTCAACTGAG TTCATCATGC GCGACGGTCT CGCCGCATAT GTGGCCCCTG ACTACCGAGT CGAGCAAAAC CCAAAGAGGC GCCGCGGTAC CGCCGCTTGT CCGCTTCTCG GCGCAGGTAT TGCTTGGGAG CGTAATCACC GCCCTGGGGA CGAGCTGTAC GCCAATAAGC CAACACAGCC GGCCCTCACA ATAACTGAGG AGATCGATGC TGCCACGGAG GTTGGCAGGG CTTGTGCCGG TCAATTCACT GCCGGGGTTC CAGGTTCAGG AAAGTCTCGG GTTGTCCCCA CCCGGGAGCT TCGGAATGGT TGGCGTCGCC CGGCCCGTGT CGCTGCGGGC CGCCGTGTTG TGATTGATGA ACTGCACATG CAGCGGGCTT CGTCGGTCCA TCTCCTTGGC GAGCATGCCG GCCTCGTTCC CGCAATACGC CCCGAGCTTG GCTGCCCCGC TGATGTGTGC GAGCTTATAC GTGGGGCTTA GCGGTCTCTA TTCTGGAATG AGCCTGCCAT TGGCCAGAAG AACCCTGGTG CGATTACTGT TCACGAGGCC CAGGGCGCCA

CTCGTTGCCA ATGAGGGGTG GAACGCTTCA CTATCTGCCA TCAGCGTTAC CTCCGCACTC CGCTCAAAAA TTTATCACAA GACTTTACAG CGTCAGCTCC AGTTCTATGC ACAGTGCCGC TTGTCTTTGA TGAGTCCGTG CCCTGCCGTT TTTTATGAAA TGGTTGGGGC AGGAATGCAC GGCCACGATA ACGAAGCCTA TGAGGGTTCT GGACTTATGC CGTCCATGGG CGTCAGCTTG TGCTCGAGCC TCTCGTCTAA CCGCCACTGT GTGCTCGGGA ATAAGACCTT TCGGACAACG AATACGTCCT CTCGTTTGAT GCCTCCCGCC TACCCCTGCT GGCCTACAGG TTAAGATCTC GGCGCCCCTA GCGCTGCTCC GGAGGAGGTG CCCAGCGACA CTCGCTTACA GGCGGCCTGT CTCCCCCGGT CATATTTGGG AGTCCGCCAA TCAACATCTG GTTTTTCTAG CGACTTTTCC GGCTGCCCCA CCCCACACCC CCTGTTAGTG TGATGCAACG CCAGCCATCC CTGCCCCTGA GTGCGTAAGC CGCCAANNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNCTT CCCTGAGCCC GCTCAACCGC CCAGCCCTGC CCCCCGCGCA CCCGCCGCCT CCTTTATACT AGTCTGACTG TGACTGGCTG GTCAATGCAT CTTTTACCAA CGCTATCCTG AGTCTTTCTA ACTTTAACTC CCCGGCCCAT TATCCATGCA TTGAGGCAGC ATATCGAGAG ACCTGCTCTC ATATCAAGTC CCCGTCAGCC TCAGCTTTGA CTTACCGACC TTGCCGCTGC CTGGTTTGAG ACACAGCCCG TACGGCTAAC CTAGCACTAG CTGTACAGTT AGACCTGGGG TTGTGCATTA TCTATACAGC AGGGGGATGT TGATGTGGTG GAGGTTTTGC AGCTTTTACA CCTCATACGG GGCCCCGTCC CTTCCACCGC ACTTGTTGTT GACCCAAATC AGATCCCTGC CCTAGACTTC CGCCAACCAG CTGGTGGCAT GTAACCCATC CCCCAAAATC CAGACCACTA GTCGCGTGTT TTGGTTTTTA CACAGGCCGC TAAGGCCGCT CCTTTACGGA AACCACAGTT ATAGCCACAG

P1-PRE-RBV Consensus sequence

3710	CTGATGCTAG	GGGACTTATC	CAATCTTCTC	GGGCTCATGC	CATAGTTGCA	CTCACCCGCC	ACACAGAAAA
3780	ATGCGTCATT	CTTGACGCCC	CTGGCCTGTT	ACGTGAGGTC	GGTATATCGG	ATATTATTGT	TAACAATTTC
3850	TTTCTTGCTG	GTGGGGAAGT	GGGCCATCAC	CGCCCCTCTG	TGATACCTCG	TGGTAGTCCT	GACCAAAATC
3920	TCGCGACGTT	ACAGGCCTTC	CCACCTTCCT	GTCAGATTAG	TGCCTACCAT	CAGCTGGCCG	AGGAACTAGG
3990	TCACCGCCCA	GCCCCTGTCG	CCGCTGTCCT	GCCCCCTTGC	CCCGAACTTG	AGCAGGGCTT	GTTATATATG
4060	CCCCAGGAGC	TCACGGTGTC	TGACAGTGTG	CTGGTCTTTG	AACTTACGGA	CATAGTCCAC	TGCCGGATGG
4130	CTGCCCCTAG	TCAGCGGAAG	GCCGTCCTGT	CGACGCTTGT	AGGTAGGTAC	GGCCGTAGAA	CGAAGCTGTT
4200	TGAGGCGGCC	CATTCTGACG	TCCGTGAGTC	CCTGGCTAGA	TTCATCCCCA	CCATTGGGCC	TGTTCAGGCC
4270	ACCACGTGTG	AGCTATACGA	GCTGGTTGAG	GCCATGGTGG	AGAAGGGTCA	GGATGGCTCG	GCCGTACTTG
4340	AGCTCGACCT	TTGCAATCGT	GATGTGTCGC	GCATCACATT	CTTCCAGAAA	GATTGCAATA	AGTTCACTAC
4410	AGGGGAGACC	ATTGCTCACG	GTAAGGTCGG	TCAGGGCATT	TCAGCTTGGA	GTAAGACCTT	TTGTGCCCTG
4480	TTCGGCCCGT	GGTTTCGCGC	TATTGAAAAG	GAAATATTGT	CCCTGCTCCC	GCCTAATATT	TTCTACGGCG
4550	ATGCATATGA	GGAGTCTGTG	TTTGCCGCCG	CTGTTTCTGG	TGCAGGTTCA	TGCATGGTGT	TTGAGAATGA
4620	TTTTTCCGAG	TTTGATAGCA	CTCAGAACAA	CTTCTCCCTA	GGTCTCGAGT	GTGTAATTAT	GGAGGAATGT
4690	GGCATGCCCC	AGTGGCTAAT	ACGGTTGTAC	CACTTAGTTC	GGTCGGCCTG	GATACTACAG	GCGCCGAAGG
4760	AGTCTCTTAA	AGGATTCTGG	AAGAAGCACT	CTGGTGAGCC	CGGCACCCTT	CTCTGGAACA	CCGTCTGGAA
4830	CATGGCGATC	ATAGCGCACT	GCTATGAATT	TCGTGATCTT	AGGGTTGCCG	CCTTCAAGGG	AgATGACTCC
4900	GTAGTCCTCT	GTAGCGACTA	CCGCCAAAGC	CGCAATGCGG	CTGCCCTAAT	TGCGGGCTGT	GGGCTCAAAT
4970	TGAAGGTTGA	TTATCGCCCT	ATTGGATTGT	ATGCTGGTGT	CGTGGTGGCC	CCCGGCCTGG	GGACGCTACC
5040	CGATGTAGTG	CGCTTTGCCG	GCCGGCTGTC	CGAGAAGAAC	TGGGGCCCTG	GGCCGGAGCG	GGCTGAGCAG
5110	CTGCGCCTTG	CTGTCTGTGA	TTTCCTTCGA	GGGTTGACGA	ATGTTGCGCA	GGTATGTGTT	GATGTTGTGT
5180	CCCGAGTTTA	TGGAGTTAGC	CCTGGGCTGG	tacatancct	TATTGGCATG	CTTCAGACCA	TTGCTGATGG
5250	CAAAGCCCAC	TTTACAGAGA	CTGTTAAACC	TGTGCTTGAC	CTCACAAATT	CTATTATACA	GCGGGTGGAA
5320	TGAATAACAT	GTTTTGTGCA	TCGCCCATGG	GATCACCATG	CGCCCTAGGG	CTGTTCTGTT	GCTGTTCCTC
5390	GTGCTTCTGC	CTATGCTGCC	CGCGCCACCG	GCCGGCCAGC	CGTCTGGCCG	CCGTCGTGGG	CGGCGCAGCG
5460	GCGGTTCCGG	CGGTGGTTTC	TGGGGTGACA	GGGTTGATTC	TCAGCCCTTC	GCCCTCCCCT	ATATTCATCC
5530	AACCAACCCC	TTTGCCGCCG	ATGTCGTTTC	GCAACCCGGG	GCTGGAGCTC	GCCCTCGACA	GCCACCCCGC
5600	CCCCTCGGCT	CCTCTTGGCG	TGACCAGTCC	CAGCGCCCCT	CCGCTCCCTC	ACGTCGTCGA	TCTGCCCCAA
5670	CTGGGGCTGC	GCCGCTGACA	GCTACATCAC	CCGCTCCTGA	TACAGCCCCT	GTGCCTGATG	TTGATTCGCG
5740	TGGCGCTATA	CTGCGGCGAC	AGTATAATCT	ATCTACATCC	CCACTTACAT	CATCTGTCGC	TTCGGGTACT
5810	AATCTTGTCC	TTTATGCCGC	CCCGCTAAAC	CCTCTGTTGC	CCCTCCAGGA	TGGCACTAAC	ACCCATATTA
5880	TGGCCACTGA	GGCATCTAAT	TATGCCCAGT	ATCGGGTTGT	CCGAGCCACG	ATCCGTTATA	GGCCACTGGT
5950	GCCAAATGCT	GTTGGTGGTT	ATGCAATATC	TATTTCATTC	TGGCCCCAAA	CTACTACTAC	CCCTACGTCT
6020	GTTGATATGA	actctattac	CTCTACTGAT	GTTAGGATTC	TGGTTCAGCC	TGGTATTGCT	TCCGAGTTGG
6090	TCATTCCCAG	TGAGCGCCTC	CATTATCGCA	ACCAGGGCTG	GCGTTCCGTA	GAGACCTCAG	GTGTGGCTGA
6160	AGAGGAGGCT	ACTTCTGGTT	TGGTGATGCT	TTGTATTCAT	GGTTCCCCTG	TTAATTCTTA	CACTAATACC
6230	CCCTATACTG	GGGCGCTCGG	GCTTCTTGAT	TTTGCTTTAG	AGCTTGAGTT	TAGGAACCTG	ACACCCGGGA
6300	ACACTAACAC	TCGTGTCTCC	CGGTACACAA	GTACAGCCCG	CCATCGGCTG	CGTCGCGGTG	CTGACGGCAC
6370	CGCCGAGCTC	accactacag	CGGCCACGCG	TTTCATGAAA	GACTTGCACT	TCACCGGAAC	GAATGGGGTC
6440	GGTGAGGTGG	GCCGTGGTAT	AGCTCTCACT	CTCTTTAATC	TTGCTGATAC	GCTTCTTGGT	GGTCTGCCGA
6510	CAGAATTAAT	TTCGTCGGCT	GGGGGACAGT	TATTCTATTC	CCGCCCCGTC	GTCTCAGCCA	ATGGCGAGCC
6580	GGCTGTCAAG	CTATATACAT	CTGTAGAGAA	TGCGCAGCAG	GATAAAGGGA	TCGCCATCCC	ACATGATATA
6650	GACCTGGGTG	ACTCTCGTGT	CGTCATTCAG	GATTATGATA	ATCAGCATGA	GCAGGATCGG	CCCACCCCTT
6720	CGCCTGCCCC	ATCTCGCCCT	TTTTCGGTTC	TTCGTGCTAA	TGATGTTTTA	TGGCTCTCTC	TCACCGCTGC
6790	TGAGTATGAC	CAGACTACAT	ATGGGTCGTC	CACCAACCCG	ATGTATGTCT	CGGATACTGT	CACGTTTGTC
6860	AATGTGGCTA	CAGGGGCTCA	GGCTGTCGCC	CGCTCCCTTG	ACTGGTCTAA	AGTTACCCTG	GATGGTCGCC
6930	CCCTTACTAC	TATTCAGCAG	TACTCTAAAA	TATTTTATGT	TCTCCCGCTT	CGAGGTAAGC	TGTCCTTCTG
7000	GGAGGCCGGG	ACGACTAAGG	CCGGATACCC	CTATAATTAC	AATACAACTG	CTAGTGATCA	GATTTTGATT
7070	GAAAATGCGG	CCGGTCACCG	TGTTGCTATT	TCTACCTATA	CCACTAGTTT	GAGTGCCGGC	CCTGTATCAA
7140	TCTCTGCAGT	CGGTGTATTG	GCCCCGCATT	CGGCTCTTGC	AGTTCTTGAG	GATACTATTG	ATTACCCCGC
7210	CCGCGCCCAC	ACTTTTGATG	ATTTCTGCCC	GGAGTGTCGC	ACCCTTGGCT	TACAGGGGTG	TGCCTTCCAA
7280	TCCACTATTG	CTGAGCTTCA	GCGTCTTAAA	ATGAAGGTAG	GTAAGACCCG	GGAGTCTTAA	TTAATTCCCT
7350	TTGTGCCCCC	TTCATATTCT	CTGCTTTATT	TCTTTTTTCT	GCGTTTCGCG	CTCCCAGGAA	NNNNNNNNNN
7420							

P2-PRE-RBV

File name	P2-PRE-RBV.sam
Ref name	KC618403.1
Ref length	7 423nt
Program used	Tanoti Assembler 1.0
Total reads	228241
Mapped reads	228241 (100.00\%)
Average read length	$143 n t$
Coverage	$7315 n t$ (98.55\%)
Average depth	4248 reads/site

P2-PRE-RBV Consensus sequence

NCAGACCACG TATGTGGTCG ATGCCATGGA GGCCCATCAG TTCATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAC TCTGCCTTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTAT CTCGTGTGCA AACTGAGATC CTTATCAATC TAATGCAACC CCGGCAACTG GTTTTCCGAC CTGAAGTGCT CTGGAATCAT CCTATCCAAC GGGTTATCCA CAATGAACTA GAACAGTACT GCCGGGCTCG GGCTGGTCGT TGTCTGGAAG TTGGGGCCCA CCCAAGATCT ATCAATGACA ACCCGAATGT TTTGCATCGG TGTTTTCTAC GACCAGTTGG GAGAGATGTT CAGCGTTGGT ATTCTGCTCC CACCCGTGGC CCTGCAGCTA ATTGTCGCCG CTCCGCCTTA CGCGGCCTCC CCCCCGTTGA TCGTACCTAT TGCTTTGATG GATTCTCCCG CTGCTCGTTT GCTGCGGAAA CTGGTATTGC CCTTTATTCT TTGCATGACC TCTGGCCGGC CGATGTTGCG GAGGCCATGG CCCGACACGG GATGACACGC CTATATGCTG TACTACATCT CCCCCCTGAA GTACTACTAC CACCTGGTAC CTACCACACA ACCTCATACC TTCTGATTCA CGACGGCGAT CGTGCTGTTG TGACCTACGA AGGTGACACT AGTGCAGGTT ACAATCATGA TGTTTCCATA CTCCGAGCAT GGATCCGCAC AACTAAAATA GTAGGCGATC ATCCGCTGGT GATAGAACGT GTGCGGGCCA TTGGTTGCCA CTTTGTGTTG CTGCTTACTG CGGCCCCTGA GCCGTCACCA ATGCCCTATG TCCCGTATCC CCGGTCGACA GAGGTCTATG TCCGTTCTAT ATTCGGCCCA GGTGGGTCCC CATCTCTCTT TCCATCAGCT TGCTCTACAA AATCCACATT TCATGCTGTC CCGGTCCACA TCTGGGACCG GCTCATGCTC TTCGGCGCCA CCCTCGATGA TCAGGCGTTT TGCTGTTCAC GCCTTATGAC
TTATCTCCGT GGGATTAGCT ACAAGGTCAC CGTTGGTGCC GAGGACGCTC TTACCGCTGT TATTACTGCG GCATACCTGA AAGCTATATC CAAGGGCATG CGTCGACTGG AGGTTGAACA CTGGCTGTTT GAGAAGTCTG GCCGTGACTA CATTCCCGGC CGCTGGTTAT CTGCAGGTTT TCACCTTGAC CCAAGAGTGC GCAGGACGTT TCTTAAGAAG GCTGCCGGCA AGTTCTGCTG CTGTTTTTTG GAACCAGCGG AGGGCCTGGT TGGTGATCAT GAGGTCGACC AGGCTGAGCC TGCCTATCTT GATGTTTCTG AGGCCCTGTA TAGGGCGCTT AATATCCCGC AAGACATTGT CGAGCTCGTT GCAGGTCCAG ATCGCTTGGA GTGCCGTACT GTGGCTGATG GCGCCCATCT TGAGGCTAAC GGCCCTGAGC AGTCTATGGG GGCTGGATCG CATAATCTTA CCTATGAGCT ATCTAATGGC TTAGATTGCA CTGCAACATT CCCCCCGGGC GCAGCTTTCT GCAGTGCCCT TTACAGGTAT AACAGGTTCA GGTTGCATCC CGAGGGGTTG CTGGGTATCT TCCCCCCCTT TCCTTTCTGT GGGGAAGGAA CGTTATACAC CCGGACCTGG CCCCCAGAGG CGGCTGTCGC TGCGCCGGCT GCTGCCCCGG ATATTCGGGT GCTACCGTCA CTCTCTGAAG AATCTCAGGT GCCCGCTCAA CCGCCCAGCC TTGCTGGGCC AAAGACCCCC NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN CTGAAGAATC TCAGGTTGGT GCAACGCCAG CCATCCCTGC TGGGTCAAAG ACCCCCGTGC GTAAGCCATC AACACCACCA TATCCGGACG GGGCAAAGGT GTACGCGGGG TCGTTGTTTG CGAACCCTGG CCATCGTCCT GGGGGTGGCC TTTGCCATGC CTCAACTGAG TTCATCATGC GCGACGGTCT CGCCGCATAT GTGGCCCCTG ACTACCGAGT CGAGCAAAAC CCAAAGAGGC GCCGCGGTAC CGCCGCTTGT CCGCTTCTCG GCTCAGGTAT TGCTTGGGAG CGTAATCACC GCCCTGGGGA CGAGCTGTAC GCCAATAAGC CGACACAGCC GGCCCTCACA ATAACTGAGG AGATCGATGC TGCCACGGAG GTTGGCAGGG CTTGTGCCGG TCAATTCACT GCCGGGGTTC CAGGTTCAGG AAAGTCCCGG GTTGTCCCCA CCCGGGAGCT TCGGAATAGT TGGCGTCGCC CGGCCCGTGT CGCTGCGGGC CGCCGTGTTG TGATTGATGA ACTGCACATG CAGCGGGCTT CGTCGGTCCA TCTCCTTGGC GAGCATGCCG GCCTCGTTCC CGCAATACGC CCCGAGCTTG GCTGCCCCGC TGATGTGTGC GAGCTTATAC GTGGGGCTTA GCGGTCTCTA TTCTGGAATG AGCCTGCCAT TGGCCAGAAG AACCCTGGTG CGATTACTGT TCACGAGGCC CAGGGCGCCA

CTCGTTGCCA ATGAGGGGTG GAACGCTTCA CTATCTGCCA TCAGCGTTAC CTCCGCACTC CGCTCAAAAA TTTATCACAA GACTTTACAG CGTCAGCTCC AGTTCTATGC ACAGTGCCGC TTGTCTTCGA TGAGTCTGTA CCCTGCCGCT CTTTATGAAA TGGTTGGGGC AGGAATGCAC GGCCACGATA ACGAAGCCTA TGAGGGTTCT GGACTTATGC CGTCCATGGG CGTCAGCTTG TGCTCGAGCC TCTCGTCTAA CCGCCACTGT GTGCTCGGGA ATAAGACCTT TCGGACAACG AATACGTCCT CTCGTTTGAT GCCTCCCGCC TACCCCTGCT GGCCTACAGG TTAAGATCTC GGCGCTCCTA GCGCTGCTCC GGAGGAGGTG CCCAGCGACA CTCGCTTACA GGCGGCCTGT CTCCCCCGGT CATATTTGGG AGTCCGCCAA TCAACATCTG GTTTTTCTAG CGACTTTTCC GGCTGCCCCA CCCCACACCC CCTGTTAGTG TGATGCAACG CCAGCCATCC CTGCCCCTGA GTGCGTAAGC NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNT CCCTGAGCCC GCTCAACCGC CCAGCCTTGC CCCCCGCGCA CCCGCCGCCT CCTTTATACT AGTCTGACTG TGACTGGCTG GTCAATGCAT CTTTTACCAA CGCTATCCCG AGTCTTTCTA ACTTTAACTC CCCGGCCCAT TATCCATGCA TTGAGGCAGC ATATCGAGAG ACCTGCTCTC ATATCAAGTC CCCGTCAGCC TCAGCTTTGA CTTACCGACC TTGCCGCTGC CTGGTTTGAG ACACAGCCCG TACGGCTAAC CTAGCACTAG CTGTACAGTT AGACCTGGGG TTGTGCATTA TCTATACAGC AGGGGGATGT TGATGTGGTG GAGGTTTTGC AGCTTTTACA CCTCATACGG GGCCCCGTCC CTCCCACCGC ACTTGTTGTT GACCCAAATC AGATCCCTGC CATAGACTTC CGCCAACCAG CTGGTGGCAT GTAACCCATC CCCCAAAATC CAGACCACTA GTCGCGTGTT TTGGTTTTTA CACAGGCCGC TAAGGCCGCT CCTTTACGGA AACCACAGTT ATAGCCACAG

P2-PRE-RBV Consensus sequence

3710	CTGATGCTAG	GGGACTTATC	CAATCTTCTC	GGGCTCATGC	CATAGTTGCA	CTCACCCGCC	ACACAGAAAA
3780	ATGCGTCATT	CTTGACGCCC	CTGGCCTGTT	ACGTGAGGTC	GGTATATCGG	ATGTGATTGT	TAACAATTTC
3850	TTCCTTGCTG	GTGGGGAAGT	GGGCCATCAC	CGCCCCTCTG	TGATACCTCG	TGGTAGTCCT	GACCAAAATC
3920	TCGCGACGTT	ACAGGCCTTC	CCACCTTCCT	GTCAGATTAG	TGCCTACCAT	CAGCTGGCCG	AGGAACTAGG
3990	TCACCGCCCA	GCCCCTGTCG	CCGCTGTCCT	GCCCCCTTGC	CCCGAACTTG	AGCAGGGCTT	GTTATATATG
4060	CCCCAGGAGC	TCACGGTGTC	TGACAGTGTG	CTGGTCTTTG	AACTTACGGA	CATAGTCCAC	TGCCGGATGG
4130	CTGCCCCTAG	TCAGCGGAAG	GCCGTCCTGT	CGACGCTTGT	AGGTAGGTAC	GGCCGTAGAA	CGAAGCTGTT
4200	TGAGGCGGCC	CATTCTGACG	TCCGTGAGTC	CCTGGCTAGA	TTCATCCCCA	CCATTGGGCC	TGTTCAGGCC
4270	ACCACGTGTG	AGCTATACGA	GCTGGTTGAG	GCCATGGTGG	AGAAGGGTCA	GGATGGCTCG	GCCGTACTTG
4340	AGCTCGACCT	TTGCAATCGT	GATGTGTCGC	GCATCACATT	CTTCCAGAAA	GATTGCAATA	AGTTCACTAC
4410	AGGGGAGACC	ATTGCTCACG	GTAAGGTCGG	TCAGGGCATT	TCAGCTTGGA	GTAAGACCTT	TTGTGCCCTG
4480	TTCGGCCCGT	GGTTTCGCGC	TATTGAAAAG	GAAATATTGT	CCCTGCTCCC	GCCTAATATT	TTCTACGGCG
4550	ATGCATATGA	GGAGTCTGTG	TTTGCCGCCG	CTGTTTCTGG	TGCAGGTTCA	TGCATGGTGT	TTGAGAATGA
4620	TTTTTCCGAG	TTTGATAGCA	CTCAGAACAA	CTTCTCCCTA	GGTCTCGAGT	GTGTAATTAT	GGAGGAATGT
4690	GGCATGCCCC	AGTGGCTAAT	ACGGTTGTAC	CACTTAGTTC	GGTCGGCCTG	gatactacag	GCGCCGAAGG
4760	AGTCTCTTAA	AGGATTCTGG	AAGAAGCACT	CTGGTGAGCC	CGGCACCCTT	CTCTGGAACA	CCGTCTGGAA
4830	CATGGCGATC	ATAGCGCACT	GCTATGAATT	TCGTGATCTT	AGGGTTGCCG	CCTTCAAGGG	AGATGACTCC
4900	GTAGTCCTCT	GTAGCGACTA	CCGCCAAAGC	CGCAATGCGG	CTGCCCTAAT	TGCGGGCTGT	GGGCTCAAAT
4970	TGAAGGTTGA	TTATCGCCCT	ATTGGATTGT	ATGCTGGTGT	CGTGGTGGCC	CCCGGCCTGG	GGACGCTACC
5040	CGATGTAGTG	CGCTTTGCCG	GCCGGCTGTC	CGAGAAGAAC	TGGGGCCCTG	GGCCGGAGCG	GGCTGAGCAG
5110	CTGCGCCTTG	CTGTCTGTGA	TTTCCTTCGA	GGGTTGACGA	ATGTTGCGCA	GGTATGTGTT	GATGTTGTGT
5180	CCCGAGTTTA	TGGAGTTAGC	CCTGGGCTGG	TACATAACCT	TATTGGCATG	CTTCAGACCA	TTGCTGATGG
5250	CAAAGCCCAC	TTTACAGAGA	CTGTTAAACC	TGTGCTTGAC	CTCACAAATT	CTATTATACA	GCGGGTGGAA
5320	TGAATAACAT	GTTTTGTGCA	TCGCCCATGG	GATCACCATG	CGCCCTCGGG	CTGTTCTGTT	GTTGTTCCTC
5390	GTGCTTCTGC	CTATGCTGCC	CGCGCCACCG	GCCGGCCAGC	CGTCTGGCCG	CCGTCGTGGG	CGGCGCAGCG
5460	GCGGTTCCGG	CGGTGGTTTC	TGGGGTGACA	GGGTTGATTC	TCAGCCCTTC	GCCCTCCCCT	ATATTCATCC
5530	AACCAACCCC	TTTGCCGCCG	ATGTCGTTTC	GCAACCCGGG	GCTGGAGCTC	GCCCTCGACA	GCCACCCCGC
5600	CCCCTCGGTT	CCTCTTGGCG	TGACCAGTCC	CAGCGCCCCT	CCGCTCCCTC	ACGCCGTCGA	TCTGCCCCAA
5670	CTGGGGCTGC	GCCGCTGACA	GCTATATCAC	CCGCTCCTGA	TACAGCCCCT	GTGCCTGATG	TTGATTCGCG
5740	TGGCGCTATA	CTGCGGCGAC	AGTATAATCT	ATCTACATCC	CCACTTACAT	CATCTGTCGC	TTCGGGTACT
5810	AATCTTGTCC	TTTATGCCGC	CCCGCTAAAC	CCTCTGTTGC	CCCTCCAGGA	TGGCACTAAC	ACCCACATTA
5880	TGGCCACTGA	GGCATCTAAT	TATGCCCAGT	ATCGGGTTGT	CCGAGCCACG	ATCCGTTATA	GGCCACTGGT
5950	GCCAAATGCT	GTTGGTGGTT	ATGCAATATC	TATTTCATTC	TGGCCCCAAA	CTACTACTAC	CCCTACGTCT
6020	GTCGATATGA	ACTCTATTAC	CTCTACTGAT	GTTAGGATTC	TGGTTCAGCC	TGGTATTGCT	TCCGAGCTGG
6090	TCATTCCCAG	TGAGCGTCTC	CATTATCGCA	ACCAGGGCTG	GCGTTCCGTA	gagaccticag	GTGTGGCTGA
6160	AGAGGAGGCT	ACTTCTGGTT	TGGTGATGCT	TTGTATTCAT	GGTTCCCCTG	TTAATTCTTA	CACTAATACC
6230	CCCTATACTG	GGGCGCTCGG	GCTTCTTGAT	TTTGCTTTAG	AGCTTGAGTT	TAGGAACTTG	ACACCCGGGA
6300	ACACTAACAC	TCGTGTCTCC	CGGTACACAA	GTACAGCCCG	CCATCGGCTG	CGTCGCGGTG	CTGACGGCAC
6370	CGCCGAGCTC	ACCACTACAG	CGGCCACGCG	TTTCATGAAA	GACTTGCACT	TCACCGGAAC	GAATGGGGTC
6440	GGTGAGGTGG	GCCGTGGTAT	AGCTCTCACT	CTCTTTAATC	TTGCTGATAC	GCTTCTTGGT	GGTCTGCCGA
6510	CAGAATTAAT	TTCGTCGGCT	GGGGGACAGT	TGTTCTATTC	CCGCCCCGTC	GTCTCAGCCA	ATGGCGAGCC
6580	GGCTGTCAAG	CTATATACAT	CTGTAGAGAA	TGCGCAGCAG	GATAAAGGGA	TCGCCATCCC	ACATGATATA
6650	GACCTGGGTG	ACTCTCGTGT	CGTCATTCAG	GATTATGATA	ATCAGCATGA	GCAGGATCGG	CCCACCCCTT
6720	CGCCTGCCCC	ATCTCGCCCT	TTTTCGGTTC	TTCGTGCTAA	TGATGTTTTA	TGGCTCTCTC	TCACCGCTGC
6790	TGAGTATGAC	CAGACTACAT	ATGGGTCGTC	CACCAACCCG	ATGTATGTCT	CGGATACTGT	CACGTTTGTC
6860	AATGTGGCTA	CAGGGGCTCA	GGCTGTCGCC	CGCTCCCTTG	ACTGGTCCAA	AGTTACCCTG	GATGGTCGCC
6930	CCCTTACTAC	TATTCAGCAG	TACTCTAAAA	TATTTTATGT	TCTCCCGCTT	CGAGGTAAGC	TGTCCTTCTG
7000	GGAGGCCGGG	ACGACTAAGG	CCGGATACCC	CTATAATTAC	AATACAACTG	CTAGTGATCA	GATTTTGATT
7070	GAAAATGCGG	CCGGTCACCG	TGTTGCTATT	TCTACCTATA	CCACTAGTTT	GAGTGCCGGC	CCTGTATCAA
7140	TCTCTGCAGT	CGGTGTATTG	GCCCCGGCATT	CGGCTCTTGC	AGTTCTTGAG	GATACTATTG	ATTACCCCGC
7210	CCGCGCCCAT	ACTTTTGATG	ATTTCTGCCC	GGAGTGTCGC	ACCCTTGGCT	TACAGGGGTG	TGCCTTCCAA
7280	TCCACTATCG	CTGAGCTTCA	GCGTCTTAAA	GTGAAGGTAG	GCAAAACCCG	GGAGTCTTAA	TTAATTCCAT
7350	CTGTGCCCCC	TTCANAGGTC	TTGGTTTATT	TCTTTCTTCT	GCGTTTCGCG	CTCCCNNNNN	NNNNNNNNNN
7420	NNN						

Q1-PRE-RBV1

File name	Q1-PRE-RBV1.sam
Ref name	FJ705359.1
Ref length	7237 nt
Program used	Tanoti Assembler 1.0
Total reads	1486849
Mapped reads	$1486849(100.00 \%)$
Average read length	$144 n t$
Coverage	$7224 n t$ (99.82\%)
Average depth	29223 reads/site

Q1-PRE-RBV1 Consensus sequence

GCAGACCACG TATGTGGTCG ATGCCATGGA GGCCCACCAG TTCATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAT TCTGCCCTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTAT CTCGTGTGCA AACTGAGATT CTCATTAATT TGATGCAACC CCGGCAGTTG GTTTTTCGAC CTGAAGTGCT CTGGAATCAT CCTATCCAAC GAGTTATCCA TAATGAACTT GAACAGTACT GTCGGGCCCG GGCTGGTCGT TGTCTAGAGG TTGGGGCCCA CCCAAGATCC ATTAATGACA ACCCAAATGT TCTGCACCGG TGCTTTCTAC GACCAGTTGG GAGAGATGTT CAGCGCTGGT ACTCTGCTCC TACCCGCGGC CCTGCAGCTA ACTGCCGCCG TTCTGCCTTG CGTGGCCTCC CCCCCGCTGA TCGTACCTAT TGTTTTGATG GATTCTCCCG CTGCTCATTT GCCGCAGAAA CTGGGGTTGC CCTCTATTCC CTGCATGACC TCTGGCCGGC CGATGTTGCG GAGGCTATGG CCCGACACGG GATGACACGC TTGTATGCTG CACTACATCT CCCCCCTGAA GTACTACTAC CACCCGGTAC TTACCATACA ACTTCATACC TTCTGATCCA CGACGGTGAT CGTGCTGTTG TGACCTATGA AGGTGATACT AGTGCAGGCT ACAACCATGA CGTCTCCATA CTTCGTGCAT GGATCCGCAC AACCAAGATA ACCGGCGACC ATCCGCTGGT GATAGAGCGT GTGCGGGCCA TTGGCTGCCA TTTTGTGCTG CTGCTTACTG CAGCCCCTGA GCCGTCACCA ATGCCTTATG TCCCATATCC CCGGTCGACA GAGGTGTATG TCCGCTCTAT ATTCGGTCCT GGCGGGTCCC CATCCCTATT CCCATCAGCT TGCTCTACGA AATCTACATT CCACGCTGTC CCGGTTCATA TTTGGGACCG GCTCATGCTT TTTGGCGCTA CTCTGGATGA TCAGGCGTTT TGCTGTTCAC GGCTTATGAC CTACCTCCGC GGGATTAGTT ACAAAGTCAC TGTTGGCGCC CTTGTCGCTA ATGAGGGGTG GAATGCTTCG GAGGACGCTC TTACCGCTGT TATTACTGCA GCGTATTTGA CCATCTGCCA TCAGCGTTAC CTCCGTACCC AAGCTATATC CAAGGGTATG CGCCGACTGG AGGTTGAGCA TGCCCAAAAA TTCATTACAA GACTTTATAG TTGGCTGTTC GAGAAGTCCG GCCGTGACTA TATCCCCGGC CGCCAGCTCC AGTTCTATGC ACAGTGCCGC CGCTGGTTAT CGGCGGGTTT CCATCTCGAC CCAAGGGTGC TTGTTTTCGA TGAGTCTGTG CCCTGCCGTT GTAGGACATT TCTTAAGAAG GCTGTGGGTA AGTTCTGTTG TTTTATGAAG TGGTTGGGAC AGGAGTGCAC CTGCTTTTTG GAACCAGCAG AGGGTCTAGT TGGCGACCAT GGCCACGATA ATGAAGCCTA TGAGGGCTCT GAGGTCGATC AGGCCGAGCC CGCCCATCTT GATGTTTCTG GGACCTATGC CGTCCACGGC CGCCAACTTG AGGCCCTGTA TAGGGCGCTT AACATCCCGC ATGACATCGC CGCCCGAGCC TCCCGTCTGA CTGCCACCGT CGAACTTGTT GCAGGTCCAG ACCGCTTGGA GTGCCGCACT GTGCTCGGGA ATAAGACTTT CCGGACGACG GTGGTTGATG GCGCCCATCT TGAGGCGAAC GGCCCCGAGC AGTACGTTCT TTCGTTTGAC GCCTCTCGCC AGTCTATGGG GGCCGGACCG CATAGTCTCA CCTACGAGCT CACTCCTGCC GGTCTGCAGA TCAAGATTTC ATCTAATGGC CTGGATTGCA CTGCAACATT CCCCCCGGGC GGGGCCCCTA GCGCTGCTCC GGGGGAGGTA GCAGCCTTTT GCAGTGCTCT TTATAGATAC AACAGGTTCA CTCAGCGCCA TTCGCTTATA GGTGGCTTGT GGCTGCACCC TGAGGGGTTG TTGGGCATCT TCCCCCCTTT CTCTCCCGGG CACCTTTGGG AGTCCGCTAA CCCTTTTTGT GGGGAGGGAA CCCTGTACAC CCGGACATGG TCAACATCTG GTTTTTCTAG TGACTTTTCC CCCCCTGAGG CAGCCGTTGT AGCGCCGGCT GCTACTCCGG GGTTACGCTA CCCTACACCT CCTGTTAGTG ACATTTGGGT GTTACCGCCA CCTTCTGAAG AATTTCAGGT TGACACAGCG CCCGCTCCTC CTGCCCCTGA GCCTGCTCAA CCATCTAGCT CCGCTGGGCC AAAGGCTCCC GTGCGTAAGC CGCCAACGCC ACCATCCCCG CGCACCCGCC GCCTTCTTTA TACCTATCCG GATGGGGCAA AGGTGTATGC GGGGTCACTG TTTGAGTCTG ACTGTGATTG GCTGGTTAAT GCGTCGAATC CCGGCCATCG TCCTGGCGGC GGCCTTTGCC ATGCCTTCTA TCAACGCTAC CCCGAGTCTT TCCACCCAAC TGAGTTCATT ATGCGCGACG GTCTTGCCGC ATATACTTTA ACCCCCCGGC CTATTATTCA TGCAGTGGCC CCTGATTATA GGGTTGAGCA TAACCCAAAG AGGCTTGAGG CGGCATACCG AGAGACTTGT TCTCGCCGCG GTACCGCCGC CTACCCACTC CTTGGCTCGG GCATATACCA AGTTCCCGTC AGCCTCAGCT TTGACGCTTG GGAGCGTAAT CATCGCCCCG GGGACGAGCT CTACTTAACC GACCTCGCCG CCACCTGGTT CGAAGCTAAT AAGCCAACAC AGCCGGCCCT TACAATAACT GAGGATGCGG CCCGTACAGC CAACCTAGCA CTGGAGATCG ATGCTGCCAC GGAGGTCGGC CGGGCTTGTG CCGGCTGTGC AGTTAGTCCT GGGGTTGTGC ACTATCAGTT TACTGCTGGG GTCCCAGGTT CGGGGAAGTC GCGTTCTATA CAGCAGGGGG ATGTTGATGT AGTGGTTGTT CCTACTCGGG AGCTCCGGAA TAGTTGGCGC CGCCGGGGTT TCGCAGCTTT TACACCTCAT ACGGCGGCCC GCGTCACCAC AGGCCGTCGT GTTGTGATTG ATGAGGCCCC ATCCCTCCCA CCGCATTTGT TGCTATTACA TATGCAGCGG GCCTCGTCGG TCCACCTTCT TGGCGACCCA AATCAGATCC CTGCTATAGA CTTCGAGCAC GCCGGCCTGG TCCCCGCAAT ACGCCCTGAG CTCGCGCCCA CCAGTTGGTG GCATGTCACC CACCGCTGCC CCGCTGATGT GTGCGAGCTT ATTCGCGGGG CTTATCCCAA GATCCAAACC ACCAGCCGTG TGCTGCGGTC TTTATTCTGG AATGAGCCTG CCATTGGCCA GAAGTTAGTT TTCACTCAGG CTGCTAAGGC CGCTAACCCC GGTGCGATTA CAGTCCATGA GGCTCAGGGC GCCACTTTCA CGGAAACTAC AATTATAGCC ACAGCTGATG CTAGGGGGCT CATCCAATCT TCCCGAGCAC ACGCCATAGT TGCACTTACC CGCCACACAG AGAAGTGCGT TATTCTTGAC GCCCCCGGCT TGTTACGTGA GGTTGGTATA TCAGATGTGA TTGTTAACAA TTTTTTCCTT GCCGGCGGGG AGGTGGGCCA CCATCGCCCT TCTGTGATAC

Q1-PRE-RBV1 Consensus sequence

3710	CTCGCGGTAA TCCTGACCAG	AATCTCGCGA	CACTTCAGGC	CTTCCCACCC	TCTTGCCAGA	TTAGTGCTTA
3780	CCACCAGTTA	GCTGAGGAAC	TCGGCCACCG	TCCAGCTCCC	GTCGCTGCTG	TCCTGCCCCC

Q2-ON-RBV1

File name	Q2-ON-RBV1.sam
Ref name	FJ705359.1
Ref length	$\mathbf{7} 237$ nt
Program used	Tanoti Assembler 1.0
Total reads	159325
Mapped reads	$159325(100.00 \%)$
Average read length	$139 n t$
Coverage	7 186nt (99.30\%)
Average depth	3031 reads/site

Q2-ON-RBV1 Consensus sequence

1	NNNNNNNNCG TATGTGGTCG	atgccatgga	gGcccaccag	ttcattaigg	CTCCTGGCAT	cc
70	ATTGAGCAAG CTGCTCTGGC	TGCGGCCAAT	TCTGCCCTGG	CGAATGCTGT	GGTGGTTCGG	CCGTttttat
140	CTCGTGTGCA AACTGAGATT	CTCATCAATT	tgatgcalcc	CCGGCAGCTG	gTttticgac	CTGAAGTGCT
210	CTGGAATCAT CCTATTCAAC	GAGTTATCCA	TAATGAACTT	GAACAGTACT	GTCGGGCCCG	GGCTGGTCGT
280	TGTCTAGAGG TTGGGGCCCA	CCCAAGATCC	ATTAATGACA	ACCCAAATGT	TCTGCACCGG	TGCTTCCTTC
350	GCCCGGTCGG GAGAGATGTA	CAGCGTTGGT	ATTCCGCCCC	GACTCGCGGC	CCAGCTGCCA	ACTGCCGGCG
420	TTCCGCATTA CGTGGCCTGC	CCCCTGTCGA	CCGTACTTAC	TGTtTCGACG	GGTtCTCCCG	CTGTGCTTTT
490	GCTGCTGAGA CTGGAATTGC	tttgtattca	Ctacatgacc	TCTGGCCTGC	CGATGTtGCG	GAGGCCATGG
560	CCCGACACGG GATGACACGC	CTATATGCTG	tactacatct	TCCCCCTGAA	gtactactac	CACCTGGTAC
630	CTACCACACA ACCTCATACC	TTCTGATTCA	CGACGGTGAT	CGTGCTGTTG	TGACCTACGA	AGGTGACACT
700	AGTGCAGGTT ACAATCATGA	tgTtTCCATA	CTTCGCGCAT	GGATCCGCAC	AACTAAGATA	GTTGGCGATC
77	ATCCGCTGGT GATAGAGCGT	GTGCGGGCCA	TTGGTTGCCA	CTTTGTGTTG	CTGCTTACTG	CGGCCCCTGA
840	GCCGTCACCA ATGCCCTATG	TCCCGTATCC	CCGGTCGACA	GAGGTCTATG	tCCGttctat	ATTCGGCCCA
910	GGTGGGTCCC CATCTCTTTT	TCCATCAGCC	tgctctacta	AATCCACATT	tCACGCCGTC	ccgettcata
980	TTTGGGATCG GCTCATGCTT	TTTGGCGCCA	CTCTGGATGA	TCAGGCGTTT	tGCtGttcac	GGCTTATGAC
1050	CTACCTCCGC GGGAtTAGTT	ACAAAGTCAC	TGTTGGCGCC	CTTGTCGCTA	ATGAGGGGTG	GAATGCTTCG
1120	GAGGACGCTC Ttaccgctat	tattactgca	GCgtattiga	ccatctacca	gcagcgctac	ctccgtacci
1190	AAGCTATATC TAAGGGCATG	CGCCGACTG	AGGTTGAACA	TGCTCAGAAA	ttcatcacaa	gactctatag
1260	TTGGTTGTTT GAGAAGTCCG	GCCGCGACTA	CATCCCCGGC	CGTCAGCTCC	AGttttatg	ACAGTGCCGC
1330	CGTTGGCTGT CGGCAGGTTT	tCATCTTGAC	CCAAGAGTGC	TTGTCTTCGA	tGagtctata	CCCTGCCGCT
1400	GCAGGACGTT TCTTAAGAAG	GCTGCCGGCA	AGTTCTGCTG	CTTTATGAAG	TGGCTGGGGC	AGGAGTGCAC
1470	TTGCTTTCTG GAGCCGGCAG	AGGGTCTAGT	tGGCGACCAT	GGCCACGATA	ATGAAGCCTA	TGAGGGCTCT
1540	GAGGTCGATC AGGCCGAGCC	CGCCCATCTT	GATGTTTCTG	GGACTTATGC	TGTCCATGGG	CGCCAGCTTG
1610	AGGCCTTGTA CAGGGCGCTC	AACATCCCAC	ATGACATNNN	NNN	NNNNNNNNNN	NNGCCACTGT
1680	CGAGCTCGTT GCAGGTCCAG	ATCGCTTGGA	gTGCCGTACA	GTGCTCGGAA	ATAAGACCTT	ccgcacatcg
1750	ATAATGGATG GCGCTCACCT	CGAGGCTAAC	GGCCCTGAGC	AGTATGTTTT	AACATTTGAC	GACTCCCGCC
1820	AAGCGATGGG GGCTGGGCCG	CATAGTCTTA	CATATGAGCT	CACTCCTGCT	GGTTTGCAGG	tcaAgattic
1890	ATCTAATGGC CTGGATTGCA	CTGCAACATT	CCCTCCGGGT	GGGGCCCCTA	GCGCTGCTCC	GGGGgagatg
1960	GCAGCCTTTT GCAGTGCTCT	ttatagatac	AACAGGTTCA	CTCAGCGCCA	ttcgcttata	GGTGGCTTGT
2030	GGCTGCACCC TGAGGGGTTG	TTGGGCATCT	TCCCCCCTTT	CTCTCCCGGG	CACCTTTGGG	agtccgcta
2100	CCCTTTTTGT GGGGAGGGAA	cCCtGtacac	CCGGACATGG	tCAACATCTG	gtttttctag	TGACTTTTCC
2170	CCCCCTGAGG CAGCCGTTGT	AGCGCCGGCT	GCTACTCCGG	GGTtACGCT	CCCTACACCT	CCTGTTAGTG
2240	ACATTCGGGT GTTACCGCCA	CCTTCTGAAG	AATtTCAGGT	TGACACAGCG	CCCGCTCTTC	CTGCCCCTGA
2310	GCCTGCTCAA CCATCTAGCT	CCGCTGGTCC	AAAGGCTCCC	GTGCGTAAGC	CGCCAACGCC	ACCATCCCCG
2380	CGCACCCGCC GCCTTCTTTA	CACCTATCCG	GATGGGGCAA	AGGTGTATGC	GGGGTCACTG	tttgagtcta
2450	ACTGTGATTG GCTGGTTAAT	gCGTCAAATC	CTGGCCATCG	TCCTGGCGGC	GGCCTTTGCC	atGccttcta
2520	CAACGCTAC CCCGAGTCTT	TCCATCATAC	TGGTtTTGTC	ATGCGTGAGG	GCCTCGCTGC	GTACACTTTA
2590	ACCCCCCGGC CTATTATTCA	TGCAGTGGCC	CCTGATtata	GGGTTGAACA	taACCCAAAG	AGGCTTGAGG
2660	CGGCATACCG AGAGGCTTGT	tctcgccgce	gtaccgccge	Ctacccactc	CTTGGCTCGG	gcatatacca
2730	AGTCCCCGTC AGCCTCAGCT	TTGACGCTTG	GGAGCGTAAT	CATCGCCCCG	GGGACGAGCT	CTACTTAACC
2800	GACCTCGCCG CCACCTGGTT	CGAAGCTAAT	AAGCCAACAC	AGCCGGCCCT	TACAATAACT	GAGGATGCGG
2870	CCCGTACAGC CAACCTAGCA	CTGGAGATCG	ATGCTGCCAC	GGAGGTCGGC	CGGGCTTGTG	CCGGCTGTGC
2940	AGTTAGTCCT GGGGTtGTGC	ACTATCAGTT	TACTGCTGGG	GTCCCAGGTT	CGGGGAAGTC	GCGTTCTATA
3010	CAGCAGGGGG ATGTCGATGT	TGTGGTTGTT	CCTACCCGGG	AGCTCCGGAA	TAGTTGGCGC	CGCCGGGGTT
3080	TTGCAGCTTT TACACCTCAT	ACGGCGGCCC	GCGTCGCTGC	CGGCCGCCGT	GTTGTGATTG	ATGAGGCCCC
3150	GTCCCTCCCA CCGCACTTGT	tGCtactgca	CATGCAGCGG	GCTTCGTCGG	TCCACCTTCT	CGGCGACCCC
3220	AACCAGATTC CCGCCATTGA	CTTCGAGCAT	GCCGGCCTCG	ttcccecait	ACGCCCCGAG	CTTGCCCCAA
3290	CCAGTTGGTG GCATGTCACC	CACCGCTGCC	CCGCTGATGT	GTGCGAGCTT	ATTCGCGGGG	CtTATCCCAA
3360	GATCCAAACC ACCAGCCGTG	TGCTGCGGTC	TTTATTCTGG	AATGAGCCTG	CCATTGGCCA	GAAGTTAGTT
3430	TTCACTCAGG CTGCTAAGGC	cgCtalccle	GGTGCGATTA	CAGTCCATGA	GGCTCAGGGC	gCCACTTTCA
3500	CGGAAACTAC AATTATAGCC	ACAGCTGATG	CTAGGGGGCT	CATCCAATCT	tCCCGAGCAC	ACGCCATAGT
3570	TGCACTTACC CGCCACACAG	AAAAATGCGT	CATTCTTGAC	GCCCCTGGCT	TGTTACGTGA	GGTTGGTATA
3640	tCAGATGTGA TTGTTAACAA	tTttticcti	GCCGGCGGGG	AGGTGGGCCA	CCATCG	TCT

Q2-ON-RBV1 Consensus sequence

3710	CTCGCGGTAA	TCCTGACCAG	AATCTCGCGA	CACTTCAGGC	CTTCCCACCC	TCTTGCCAGA	TTAGTGCCTA
3780	TCACCAGTTA	GCTGAGGAAC	TTGGCCACCG	CCCAGCCCCC	GTCGCCGCTG	TCTTGCCCCC	tTGCCCTGAA
3850	CTTGAGCAAG	GCTTGTTATA	tatgcccica	GAGCTCACAC	TGTCCGACAG	CGTtttagtc	tTCGAGCTCA
3920	CGGACATAGT	CCACTGCCGG	ATGGCCGCCC	CTAGCCAGCG	GAAGGCCGTC	CTATCGACGC	ttgTGGGCAG
3990	GTACGGCCGC	CGGACTAAGC	TGTACGAAGC	AGCCCACTCT	GACGTCCGCG	AGTCCCTGGC	GAGGTtTATC
4060	CCTACCATCG	GACCAGTTCA	GGCCACCACA	TGTGAGTTGT	ACGAGTTGGT	AGAGGCTATG	GTTGAGAAGG
4130	GTCAGGACGG	tTCCGCTGTG	ttagagctig	ATCTCTGTAG	CCGTGATGTC	tCGCGTATCA	CATttttcca
4200	GAAGGACTGT	AATAAGTTTA	CAACAGGTGA	GACTATTGCT	CATGGCAAGG	TGGGCCAGGG	CATtTCGGCC
4270	TGGAGCAAGA	CCTTTTGTGC	CCTGTTCGGC	CCATGGTTCC	GAGCCATCGA	AAAAGAAATA	TTGGCCTTGC
4340	TCCCACCTAA	catcttttac	GGCGACGCCT	ATGAGGAGTC	AGTGTtTGCT	GCCGCCGTGT	CCGGGGCAGG
4410	tTCTAGTATG	GTtTtTGAGA	ATGATtTCTC	TGAGTTTGAC	AGTACCCAAA	ACAATTTCTC	CCTCGGCCTT
4480	GAGTGTGTTA	TTATGGAGGA	GTGTGGCATG	CCCCAGTGGC	TAATACGGTT	GTACCACTTA	GTTCGGTCGG
4550	CCTGGATCCT	ACAGGCGCCG	AAGGAGTCTC	TTAAGGGATT	TTGGAAGAAG	CATTCTGGTG	AGCCCGGCAC
4620	CCTCCTCTGG	AACACTGTTT	GGAATATGGC	GATCATAGCG	CACTGCTATG	AATTCCGTGA	TCTTAGG
4690	GCCGCCTTCA	AGGGAGATGA	CTCCGTAGTC	CTCTGTAGCG	ACTACCGCCA	AAGCCGCAAT	GCGGCTGCCC
4760	TAATTGCGGG	TTGCGGGCTC	AAACTGAAGG	tTGATTATCG	CCCTATTGG	TTGTATGCTG	GTGTGGTGGT
4830	GGCCCCTGGT	CTGGGGACGC	TACCTGATGT	GGTGCGCTTT	GCCGGCCGGT	TGTCTGAGAA	GAATTGGGGC
4900	CCGAGTCCCG	AGCGCGCCGA	GCAGTTACGC	TTGGCTGTTT	GTGACTTCCT	TCGAAAGTTA	ACGAATGTTG
4970	CGCAGGTTTG	TGTTGATGTT	GTGTCCCGTG	TTTATGGGGT	TAGTCCTGGG	CTGGTACATA	ACCTTATTGG
5040	CATGTTGCAG	ACCATAGCTG	ATGGCAAGGC	CCACTTTACA	GAGACTGTTA	AACCTGTGCT	tGACCTCACA
5110	AACTCTATTA	TACAGCGGTT	GGAATGAATA	ACATGTTGTG	TGCATCGCCC	ATGGGTTCAC	CATGTGCCCT
5180	CGGGCTGTTC	TGTTGTTGTT	CCTCGTGCTT	TTGCCTATGC	TGCCCGCGCC	ACCGGCCAGC	CAGCCGTCTG
5250	GCCGCCGTCG	TGGGCGGCGC	AGCGGCAGTG	CCGGCAGTGG	TTTCTGGGGT	GACAGGGTTG	ATTCTCAGCC
5320	CTTTGCCCTC	CCCTATATTC	ATCCAACCAA	CCCCTTTGCC	ACCGATGTCG	TACCACAAGC	CGGGGCTGGA
5390	GCTCGCCCTC	GACAGCCACC	CCGCCCCCTC	GGCTCCTCTT	GGCGTGATCA	GTCCCAGCGC	CCCTCCGCTG
5460	CCCCACGTCG	TCGACTTGCC	CCAGCTGGGG	CTGCGCCGCT	GACCGCTATA	TCACCTGCTC	CTGATACAGC
5530	CCCTGTGCCT	GATGTTGATT	CGCGCGGTGC	TATATTGCGG	CGCCAGTATA	ATTTGTCTAC	ATCCCCTCTG
5600	ACTTCTTCTG	TCGCTTCGGG	tactaatctc	GTTCTTTATG	CTGCCCCGCT	AAACCCTCTG	tTGCCCCTCC
5670	AGGATGGCAC	CaAtactcat	ATCATGGCGA	CTGAGGCGTC	taActatgct	CAATATCGGG	tTGTCCGAGC
5740	CACAATCCGT	TATCGCCCTT	TGGTGCCGAA	TGCTGTTGGA	GGCTATGCAA	TTTCTATTTC	CTTTTGGCCC
5810	CAGACTACAA	CTACTCCCAC	CTCTGTTGAT	ATGAATTCTA	tTACCTCTAC	TGATGTTAGG	ATtttagttc
5880	AGCCTGGCAT	AGCCTCCGAG	TTGGTTATTC	CAAGCGAGCG	CCTCCATTAT	CGCAACCAGG	GCTGGCGTTC
5950	TGTTGAGACC	TCGGGTGTGG	CCGAGGAGGA	GGCGACTTCT	GGTTTGGTGA	TGCTCTGCAT	TCATGGCTCC
6020	CCTGTTAACT	CTTACACCAA	CACCCCCTAN	NNNGGGGCGC	TCGGGCTTCT	TGATtTTGCT	tTAGAGCTtG
6090	AGTTTAGGAA	CCTGACACCC	GGGAACACTA	ACACTCGTGT	CTCCCGGTAC	ACCAGCACAG	CCCGCCACCG
6160	CCTGCGCCGC	GGTGCTGATG	GCACTGCCGA	gctcaccacc	ACGGCGGCCA	CGCGTtTCAT	GAAGGACCTG
6230	CATTTCACCG	GGACGAATGG	GGTCGGTGAG	GTGGGTCGTG	GTATTGCCCT	TACACTCTTT	AATCTTGCTG
6300	ACACACTTCT	TGGTGGTTTG	CCGACAGAAT	TAATtTCGTC	GGCCGGAGGT	CAACTCTTTT	ACTCCCGTCC
6370	AGTTGTCTCG	GCCAATGGCG	AGCCGACTGT	taAattatac	ACCTCCGTCG	AGAATGCGCA	gCaggatalg
6440	GGCATCACCA	TCCCGCACGA	tatagacctt	GGTGACTCCC	GTGTGGTTAT	CCAGGACTAT	gacalccaac
6510	ATGAGCAGGA	TCGGCCTACC	CCGTCACCTG	CCCCTTCTCG	CCCCTTCTCG	GTTCTTCGCG	CTAACGACGT
6580	TCTGTGGCTC	TCCCTCACTG	CTGCCGAATA	TGATCAAACT	ACTTATGGGT	CGTCCACCAA	CCCTATGTAT
6650	GTCTCGGATA	CTGTCACATT	tGTCAACGTG	GCAACGGGAG	CCCAGGCTGT	CGCCCGCTCT	CTTGACTGGT
6720	CTAAAGTTAC	TCTGGATGGT	CGCCCTCTTA	CTACTATTCA	GCAGTACTCT	AAAACATTTT	ATGTTCTCCC
6790	GCTTCGCGGG	AAGCTGTCCT	TCTGGGAGGC	CGGGACGACT	AAGGCCGGAT	aCcCctataa	ttataataca
6860	ACTGCTAGTG	ATCAGATTCT	GATTGAAAAT	GCAGCCGGCC	ACCGTGTTGC	tatatctacc	tacactacta
6930	GCCTTGGTGC	TGGTCCTGTG	TCTGTCTCTG	CGGTAGGTGT	ACTTGCCCCC	CATTCTGCTT	tagctatact
7000	TGAGGATACT	ATTGATTACC	CCGCTCGTGC	CCATACTTTT	GATGATTTCT	GCCCTGAGTG	CCGTAATCTC
7070	GGCCTACAGG	GCTGTGCTTT	TCAATCCACT	ATCGCTGAGC	TTCAGCGTCT	taAAGTGAAG	GTAGGCAAAA
7140	CCCGGGAGTC	tTAATTAATT	CCATCTGTGC	CCCCTTCAAG	GTCTTGGTTT	ATTTCTTNTC	ctt
7210	GG	GGANNNNNN	NNNNNNN				

Q3-POST-RBV1

File name	Q3-POST-RBV1.sam
Ref name	FJ705359.1
Ref length	$7237 n t$
Program used	Tanoti Assembler 1.0
Total reads	17337
Mapped reads	17337 (100.00\%)
Average read length	$150 n t$
Coverage	6861 nt (94.80\%)
Average depth	358 reads/site

Q3-POST-RBV1 Consensus sequence

NNNNNNNNCG TATGTGGTCG ATGCCATGGA GGCCCATCAG TTTATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAGG CTGCTCTGGC TGCGGCTAAC TCCGCCTTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTGT CCCGTGTTCA GACTGACATT CTCATCAATT TGATGCAACC CCGGCAGCTC GTTTTCCGAC CTGAAGTGCT CTGGAATCAC CCGATCCAAC GGGTTATACA CAATGAGCTT GAGCAGTACT GCCGTGCCCG CGCCGGTCGC TGCCTGGAGG TCGGGGCTCA TCCGAGATCC ATTAATGACA ACCCTAACGT CCTGCACCGG TGTTTCCTTC GCCCGGTCGG GAGAGATGTA CAGCGTTGGT ATTCCGCCCC GACTCGCGGC CCAGCTGCCA ACTGCCGGCG TTCCGCATTA CGTGGCCTGC CCCCTGTCGA CCGTACTTAC TGTTTCGACG GGTTCTCCCG CTGTGCTTTT GCTGCTGAGA CTGGAATTGC TTTGTATTCA CTACATGACC TCTGGCCTGC CGATGTTGCG GAGGCCATGG CCCGACACGG GATGACACGC CTATATGCTG TACTACATCT TCCCCCTGAA GTACTACTAC CACCTGGTAC CTACCACACA ACCTCATACT TGTTGATTCA TGACGGCAAC CGCGCCGTCG TAACTTATGA GGGGGATACT AGTGCGGGTT ACAACCATGA TGTGTCCATT CTTCGCGCAT GGATCCGCAC AACTAAGATA GTTGGCGATC ATCCGCTGGT GATAGAGCGT GTGCGGGCTA TTGGCTGCCA TTTTGTGTTG CTGCTTACTG CTGCCCCTGA GCCGTCCCCT ATGCCTTATG TCCCATACCC CCGGTCGACG GAGGTGTATG TCAGGTCCAT ATTTGGCCCC GGCGGCTCCC CATCTCTGTT CCCATCAGCT TGCTCTACGA AATCCACATT TCACGCCGTC CCGGTTCATA TTTGGGATCG GCTCATGCTT TTTGGCGCCA CTCTGGATGA TCAGGCGTTT TGCTGTTCAC GGCTTATGAC CTACCTCCGC GGGATTAGTT ACAAGGTCAC TGTTGGCGCC CTTGTCGCTA ATGAGGGCTG GAACGCCTCA GAGGATGCGC TTACTGCTGT GATCACTGCA GCCTACTTGA CCATCTGTCA CCAGCGCTAC CTCCGTACCC AAGCTATATC TAAGGGCATG CGCCGACTGG AGGTTGAACA TGCTCAGAAA TTCATCACAA GACTCTATAG TTGGTTGTTT GAGAAGTCCG GCCGCGACTA CATCCCCGGC CGTCAGCTCC AGTTTTATGC ACAGTGCCGC CGTTGGCTGT CGGCAGGTTT TCATCTTGAC CCAAGAGTGC TTGTCTTCGA TGAGTCTGTA CCCTGCCGCT GCAGGACGTT TCTTAAGAAG GCTGCCGGCA AGTTCTGCTG TTTTATGAAG TGGTTAGGAC AGGAGTGCAC CTGTTTTTTG GAACCAGCAG AGGGCCTGGT TGGCGACCAT GGTCATGATA ATGAGGCCTA TGAGGGCTCT GAGGTCGACC AGGCTGAGCC CGCCCACCTA GATGTTTCTG GGACTTATGC TGTCCATGGG CGCCAGCTTG AGGCCTTGTA CAGGGCGCTC AACATCCCAC ATGACATCGC TGCCCGAGCN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NTGCCGTACA GTGCTCGGAA ATAAGACCTT CCGCACGTCG GTGGTGGATG GCGCTCACCT CGAGGCTAAC GGCCCTGAGC AGTATGTTTT AACATTTGAC GACTCCCGCC AAGCGATGGG GGCTGGGCCG CATAGTCTCA CCTACGAGCT CACTCCTGCT GGTTTGCAGG TCAAGATTTC ATCTAATGGC CTGGATTGCA CTGCAACATT CCCTCCGGGT GGGGCCCCTA GCGCTGCTCC GGGGGAGGTG GCAGCCTTTT GCAGTGCCCT CTACAGGTAC AACAGGTTCA CTCAGCNNNN NNNNNNNNNN NNNNNGGGAA CCCTGTACAC CCGGACATGG TCAACATCTG GTTTTTCTAG TGACTTTTCC CCCCCTGAGG CAGCCGTTGT AGCGCCGGCT GCTACTCCGG GGTTACGCTA CCCTACACCT CCTGTTAGTG ACATTCGGGT GTTACCGCCA CCTTCTGAAG AATTTCAGGT TGACACAGCG CCCGCTCCTC CTGCCCCTGA GCCTGCTCAA CCATCTAGCT CCGCTGGGCC AAAGGCTCCC GTGCGTAAGC CGCCAACGCC ACCATCCCCG CGCACCCGCC GCCTTCTTTA CACCTATCCG GATGGGGCAA AGGTGTATGC GGGGTCACTG TTTGAGTCTG ACTGTGATTG GCTGGTTAAT GCGTCAAATC CTGGCCATCG TCCTGGCGGC GGCCTTTGCC ATGCCTTCTA TCAACGCTAC CCCGAGTCTT TCCATCCGAC TGACTTCATC ATGCGCGACG GCCTCGCCGC ATACACTCTG ACTCCCCGGC CCATCATCCA CGCTGTCGCC CCTGACTATA GGGTCGAGCA GAACCCCAAG AGGCTGGAGG CGGCGTACCG CGAGACTTGC TCTCGCCTCG GTACCGCCGC CTATCCACTC CTCGGCTCGG GTATATACCA AGTTCCCGTC AGCCTCAGCT TTGACGCTTG GGAGCGTAAC CATCGCCCCG GAGACGAGCT TTACCTAACC GACCTCGCAG CTACCTGGTT CGAGGCTAAC AAACCAACAC AGCCGGCCCT CACAATAACT GAGGACACAG CCCGTACGGC TAACCTAGCA CTAGAGATCG ATGCTGCCAC GGAGGTTGGC AGGGCTTGTG CCGGCTGTAC AGTTAGACCT GGGGTTGTGC ATTATCAATT CACTGCCGGG GTCCCAGGTT CGGGGAAGTC GCGGTCTATA CAGCAGGGGG ATGTCGATGT TGTGGTTGTT CCTACCCGGG AGCTCCGGAA TAGTTGGCGC CGCCGGGGTT TTGCAGCNNN NNNNNNNNNN NNNGCGGCCC GCGTCACTGC CGGCCGACGT GTTGTGATTG ATGAGGCGCC TTCGCTTCCA CCACATTTGC TGCTGCTTCA TATGCAGCGA GCTTCGTCAG TCCACCTTCT CGGCGACCCC AACCAGATTC CCGCCATTGA TTTCGAGCAT GCAGGCCTAG TGCCAGCGAT CCGCCCTGAG CTTGCCCCAA CCAGTTGGTG GCATGTCACC CACCGCTGCC CCGCTGATGT GTGCGAGCTT ATTCGCGGGG CTTATCCCAA GATCCAAACC ACCAGCCGTG TGCTGCGGTC TTTATTCTGG AATGAGCCTG CCATTGGCCA GAAGTTAGTT TTCACGCAGG CAGCTAAGGC CGCTAACCCC GGTGCGATTA CAGTCCATGA GGCTCAGGGC GCCACTTTCA CGGAAACTAC AATTATAGCC ACAGCTGATG CTAGGGGGCT CATCCAATCT TCCCGAGCTC ATGCCATAGT TGCACTTACC CGCCACACAG AAAAATGCGT CATTCTTGAC GCCCCTGGCC TGTTACGTGA GGTTGGTATC TCGGATACAA TTGTTAACAA TTTTTTCCTC GCTGGTGGGG AGGTGGGCCA CCATCGCCCC TCCGTGATAC

Q3-POST-RBV1 Consensus sequence

CCCGAGGTAA TCCTGACCAG AACCTCGCGA CACTACAGGC CTTTCCGCCT TCTTGCCAGA TTAGTGNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NTGCCCTGAG CTTGAGCAGG GTTTACTTTA CATGCCGCAA GAGCTCACAG TGTCCGACAG CGTTTTAGTC TTCGAGCTCA CGGACATAGT CCACTGCCGG ATGGCCGCCC CTAGCCAGCG GAAGGCCGTC CTTTCGACGC TTGTGGGCAG GTACGGCCGC CGGACTAAGC TGTACGAAGC AGCCCACTCT GACGTCCGCG AGTCCCTGGC GAGGTTTATC CCTACCATCG GACCAGTTCA GGCCACCACA TGTGAGTTGT ACGAGTTGGT AGAGGCTATG GTTGAGAAGG GTCAGGACGG TTCCGCTGTG TTAGAGCTTG ATCTCTGTAG CCGTGATGTC TCGCGTATCA CATTTTTCCA GAAGGACTGT AATAAGTTTA CAACAGGTGA GACTATTGCT CATGGCAAGG TGGGCCAGGG CATTTCGGCC TGGAGCAAGA CCTTTTGTGC CCTATTCGGA CCGTGGTTCC GTGCCATTGA GAAGGAGATC TTAGCCCTAC TCCCACCTAA TATCTTCTAN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNGCAGG TTCTAGTATG GTTTTTGAGA ATGATTTCTC TGAGTTTGAC AGTACCCAAA ACAATTTCTC CCTCGGCCTT GAGTGTGTTA TTATGGAGGA GTGTGGCATG CCCCAGTGGC TAATACGGTT GTACCACTTA GTTCGGTCGG CCTGGATACT ACAGGCGCCG AAGGAGTCTC TTAAAGGATT CTGGAAGAAG CACTCTGGTG AGCCCGGCAC CCTTCTCTGG AACACCGTCT GGAACATGGC GATCATAGCG CACTGCTATG AATTCCGTGA TCTTAGGGTT GCCGCCTTCA AGGGAGATGA CTCCGTGGTC CTCTGTAGCG ACTACCGTCA GAGTCGCAAT GCAGCGGCCC TGATTGCAGG TTGCGGGCTC AAACTGAAGG TTGATTATCG CCCTATTGGG CTGTATGCTG GTGTGGTGGT GGCCCCTGGT CTGGGGACGC TACCCGATGT GGTGCGCTTT GCCGGCCGGC TGTCTGAGAA GAACTGGGGC CCTGGGCCGG AGCGGGCTGA GCAGTTGCGC CTAGCTGTTT GTGATTTCCT TCGAAGGTTA ACGAATGTTG CGCAGGTTTG TGTTGATGTT GTGTCCCGTG TTTATGGGGT TAGTCCTGGG CTGGTACATA ACCTTATTGG CATGTTNNNN ACCATAGCCG ATGGGAAGGC CCATTTTACT GAGACTGTTA AACCTGTACT GGATCTTACA AATTCTGTCA TACAAAGGTT GGAATGAATA ACATGTTGTG TGCATCGCCC ATGGGTTCAC CATGTGCCCT CGGGCTGTTC TGTTGTTGTT CCTCGTGCTT TTGCCTATGC TGCCCGCGCC ACCGGCCAGC CAGCCGTCTG GCCGCCGTCG TGGGCGGCGC AGCGGCAGTG CCGGCAGTGG TTTCTGGGGT GACAGGGTTG ATTCTCAGCC CTTTGCCCTC CCCTATATTC ATCCAACCAA CCCCTTTGCC ACCGATGTCG TACCACAAGC CGGGGCTGGA GCTCGCCCTC GACAGCCACC CCGCCCCCTC GGCTCCTCTT GGCGTGATCA GTCCCAGCGC CCCTCCGCTG CCCCACGTCG TCGACTTGCC CCAGCTGGGG CTGCGCCGCT GACCGCTATA TCACCTGCGC CTGATACTGC CCCAGTCCCC GATGTTGATT CTCGCGGTGC TATTTTGCGC CGCCAGTATA ATTTGTCTAC TTCCCCTCTG ACTTCTTCTG TCGCCTCGGG CACTAATCTC GTTCTGTATG CTGCCCCGNN NNNNNNNNNN NNNNNNNNNC AGGATGGCAC CAATACTCAT ATCATGGCGA CTGAGGCGTC TAACTATGCT CAATATCGGG TTGTCCGAGC CACAATCCGT TATCGCCCTT TGGTGCCGAA TGCTGTTGGA GGCTATGCAA TTTCCATCTC CTTCTGGCCC CAGACTACTA CTACCCCCAC CTCTGTTGCT ATGACCTCTA TTACCTCCAC TGATGTTAGG CTTTTAGTTC AGCCTGGCAT TGCTTCCGAG TTGGTTATTC CTAGTGAGCG CCTCCATTAT CGTAACCAGG GTTGGCGCTC TGTTGAGACC TCGGGTGTGG CCGAGGAGGA GGCTACCTCG GGTTTGGTTA TGCTCTGTAT CCATGGCTCC CCTGTTAATT CCTATACTAA TACGCCCTAC ACCGGGGCGC TCGGACTTCT TGACTTTGCT TTAGAGCTTG AGTTTAGGAA CTTGACACCC GGGAACACTA ACACCCGTGT GTCCCGGTAC ACCAGCACAG CCCGCCACCG CCTGCGCCGC GGCGCCGATG GCACCGCCGA GCTCACCACC ACTGCGGCCA CGCGCTTCAT GAAGGACCTG CATTTTACCG GGATGAATGG CGTCGGCGAG GTGGGCCGTG GNNNNNNNNN NNNNNNNNNN AATCTCGCTG ATACACTTCT TGGTGGTTTG CCGACAGAAT TGATTTCGTC GGCCGGAGGT CAACTCTTTT ACTCCCGTCC AGTTGTCTCG GCCAATGGCG AGCCGACTGT TAAATTATAC ACCTCCGTCG AGAATGCACA GCAGGACAAG GGTATTGCCA TACCACATGA CATAGATCTG GGAGATTCCC GTGTGGTCAT CCAGGACTAT GACAATCAGC ATGAGCAGGA TAGACCNNNN NNNNNNNNNN CCCCGTCTCG CCCCTTCTCG GTTCTTCGCG CTAACGACGT TCTGTGGCTC TCCCTCACTG CTGCCGAATA TGATCAAACT ACTTATGGTT CGTCGACCAA CCCTATGTAT GTTTCAGATA CTGTCACATT TGTCAACGTG GCAACGGGAG CCCAGGCTGT CGCCCGCTCT CTTGATTGGT CTAAGGTCAC TCTAGATGGT CGCCCTCTCA CTACTATTCA GCAGTACTCT AAGACATTTT ATGTTCTCCC ACTCCGCGGG AAGCTGTCCT TCTGGGAGGC CGGGACGACT AAGGCCGGAT ACCCCTATAA TTATAATACA ACTGNNNNNN NNCAGATATT GATTGAAAAT GCAGCCGGAC ATCGTGTTGC TATTTCCACC TATACCACCA GCCTGGGCGC TGGCCCTGTG TCTGTTTCCG CAGTTGGTGT CTTAGCCCCA CATTCGGCCC TCGCAGTCCT TGAAGACACG ATTGATTACC CTGCCCGTGC CCACACTTTT GATGATTTCT GCCCGGAGTG CCGCGCTCGC GGCCTGCAGG GCTGTGCTTT TCAATCCACT ATCGCTGAGC TTCAGCGTCT TAAAGTGAAG GTAGGCAAAA CCCGGGAGTC TTAATTAATT CCATCTGTGC CCCCTTCAAG GTCTTGGTTT ATTTCTTNTC TTCTGCGTTT CGCGCTCCCT GGANNNNNNN NNNNNNN

Q4-ON-RBV2

File name
Ref name Q4-ON-RBV2.sam \quad FJ705359.1

Q4-ON-RBV2 Consensus sequence

1	GCAGACCACG TATGTGGTCG	ATGCCATGGA GGCCCACCAG	TTCATTAAGG	CTCCTGGCAT	TACTACTGCC
70	ATTGAGCAAG CTGCTCTGGC	TGCGGCCAAT TCTGCCCTGG	CGAATGCTGT	GGTGGTTCGG	CCGTTTTTAT
140	CTCGTGTGCA AACTGAGATT	CTCATTAATT TGATGCAACC	CCGGCAGTTG	GTTTTTCGAC	CTGAAGTACT
210	CTGGAATCAT CCTATCCAAC	GAGTTATCCA TAATGAACTT	GAACAATACT	GTCGGGCCCG	GGCTGGTCGT
280	TGTCTAGAGG TTGGGGCCCA	CCCAAGATCC ATTAATGACA	ACCCAAATGT	TCTGCACCGG	TGCTTTCTAC
350	GACCAGTTGG GAGAGATGTT	CAGCGCTGGT ACTCTGCTCC	TACCCGCGGC	CCTGCAGCTA	ACTGCCGCCG
420	TTCTGCTTTG CGTGGCCTTC	CCCCCGCTGA TCGTACTTAT	TGTTTTGATG	GGTTCTCCCG	CTGTGCTTTT
490	GCCGCAGAAA CTGGGGTTGC	TCTCTATTCC CTGCATGACC	TCTGGCCGGC	CGATGTTGCG	GAGGCTATGG
560	CCCGACACGG GATGACACGC	TTGTATGCTG CACTACATCT	CCCCCCTGAA	GTACTACTAC	CACCCGGTAC
630	TTACCATACA ACTTCATACC	TTCTGATCCA CGACGGTGAT	CGTGCTGTTG	TGACCTATGA	AGGTGATACT
700	AGTGCAGGCT ACAACCATGA	CGTCTCCATA CTTCGTGCAT	GGATCCGCAC	AACCAAGATA	ACCGGCGACC
770	ATCCGCTGGT GATAGAGCGT	GTGCGGGCCA TTGGCTGCCA	TTTTGTGCTG	CTGCTTACTG	CAGCCCCTGA
840	GCCGTCACCA ATGCCTTATG	TCCCATATCC CCGGTCGACA	GAGGTGTATG	TCCGCTCTAT	ATTCGGTCCT
910	GGCGGGTCCC CATCCCTATT	CCCATCAGCT TGCTCTACGA	AATCTACATT	CCACGCTGTC	CCGGTTCATA
980	TTTGGGACCG GCTCATGCTT	TTTGGCGCTA CTCTGGATGA	TCAGGCGTTT	TGCTGTTCAC	GGCTTATGAC
1050	CTACCTCCGC GGGATTAGTT	ACAAAGTCAC TGTTGGCGCC	CTTGTCGCTA	ATGAGGGGTG	GAATGCTTCG
1120	GAGGACGCTC TTACCGCTGT	tattactgca gcgtatttga	CCATCTGCCA	TCAGCGTTAC	CTCCGTACCC
1190	AAGCTATATC CAAAGGCATG	CGCCGACTGG AGGTTGAGCA	TGCCCAAAAA	TTCATTACAA	GACTCTATAG
1260	TTGGTTGTTT GAGAAGTCTG	GCCGCGACTA TATCCCCGGC	CGCCAGCTTC	AGTTCTATGC	ACAGTGTCGC
1330	CGCTGGTTAT CGGCGGGTTT	CCATCTCGAC CCAAGAGTGC	TTGTTTTCGA	TGAGTCTGTG	CCCTGCCGTT
1400	GTAGGACATT TCTTAAGAAG	ACTGTGGGTA AGTTCTGTTG	TTTTATGAAG	TGGTTGGGAC	AGGAGTGCAC
1470	CTGCTTTTTG GAACCAGCAG	AGGGCCTGGT TGGCGACCAT	GGCCACGATA	ATGAAGCCTA	TGAGGGCTCT
1540	GAGGTTGATC AGGCCGAGCC	CGCCCATCTT GATGTTTCTG	GGACCTATGC	CGTCCACGGC	CGCCAACTTG
1610	AGGCCCTGTA TAGGGCGCTT	AACATCCCAC ATGACATCGC	CGCCCGAGCC	TCCCGTCTGA	CTGCCACCGT
1680	CGAACTTGTT GCAGGTCCAG	ACCGCTTGGA GTGCCGCACT	GTGCTCGGGA	ATAAGACTTT	CCGGACGACG
1750	GTGGTTGATG GCGCCCATCT	TGAGGCGAAC GGCCCCGAGC	AGTATGTTCT	TTCGTTTGAC	GCCTCTCGCC
1820	AGTCTATGGG GGCCGGACCG	CATAGTCTCA CCTACGAGCT	CACTCCTGCC	GGTCTGCAGA	TTAAGATTTC
1890	ATCTAATGGC CTGGATTGTA	CTGCAACATT CCCCCCGGGC	GGGGCCCCTA	GCGCTGCTCC	GGGGGAGGTA
1960	ACAGCCTTTT GCAGTGCTCT	TTATAGATAC AACAGGTTCA	CTCAGCGCCA	TTCGCTTATA	GGTGGCTTAT
2030	GGTTGCACCC TGAGGGGTTG	TTGGGCATCT TCCCCCCTTT	CTCTCCCGGG	CACCTTTGGG	AGTCTGCTAA
2100	CCCTTTTTGT GGGGAGGGAA	CCCTGTACAC CCGGACATGG	TCAACATCTG	GTTTTTCTAG	TGACTTTTCC
2170	CCCCCTGAGG CAGCCATTGT	AGCGCCGGCT GCTACTCCGG	GGTTACGCTA	CCCTACACCT	CCTGTTAGTG
2240	ACATTCGAGT GTTACCGCCA	CCTTCTGAAN NNNNNNNGGT	TGACACAGCG	CTCGCTCCTC	CTGCCCCTGA
2310	GTCTGCTCAA CCATCTCGCT	CCGTTGGGCC AAAGGCTCCC	GTGCGTAAGT	CGCCAACGCC	ACCATCCCCG
2380	CGCACCCGTC ACCTTCTTTA	TACCTATCCG GATGGGGCAA	AGGTGTATGC	GGGGTCACTG	TTTGAGTCTG
2450	ACTGTGATTG GCTGGTTAAT	GCATCGAATC CCGGCCATCG	TCCTGGTGGC	GGCCTTTGTC	ATGCCTTCTA
2520	TCAACGCTAC CCCGAGTCTT	TCCACCCAAC TGAGTTCATT	ATGCGCGACG	GTCTTGCCGC	ATATACTTTA
2590	ACTCCCCGGC CTATTATTCA	TGCAGTGGCC CCTGATTATA	GGGTTGAGCA	TAACCCAAAG	AGGCTTGAGG
2660	CGGCATACCG AGAGACTTGT	TCTCGCCGCG GTACCGCCGC	CTACCCACTC	CTTGGCTCGG	GCATATACCA
2730	AGTCCCCGTC AGCCTCAGCT	TTGACGCTTG GGAGCGTAAT	CATCGCCCCG	GGGACGAGCT	CTACTTAACC
2800	GACCTCGCCG CCACCTGGTT	CGAAGCTAAT AAGCCAACAC	AGCCGGTCCT	TACAATAACT	GAGGATGCGG
2870	CCCGTACAGC CAACCTAGCA	CTGGAGATCG ATGCTGCCAC	GGAGGTCGGC	CGGGCTTGTG	CCGGCTGTGC
2940	AGTTAGTCCT GGGGTTGTGC	ACTATCAGTT TACTGCTGGG	GTCCCAGGTT	CAGGGAAGTC	GCGTTCTATA
3010	CAGCAGGGGG ATGTTGATGT	AGTGGTTGTT CCTACTCGGG	AGCTCCGGAA	TAGTTGGCGC	CGCCGGGGTT
3080	TCGCAGCTTT TACACCTCAT	ACGGCAGCCC GCGTCACCAC	AGGCCGTCGT	GTTGTGATTG	ATGAGGCCCC
3150	ATCCCTCCCA CCGCATTTGT	TGCTATTACA TATGCAGCGG	GCCTCGTCGG	TCCACCTTCT	TGGTGACCCA
3220	AATCAGATCC CTGCTATAGA	CTTCGAGCAC GCCGGCCTGG	TCCCCGCAAT	ACGCCCTGAG	CTCGCGCCCA
3290	CCAGTTGGTG GCATGTCACC	CACCGCTGCC CCGCTGATGT	GTGCGAGCTT	ATTCGCGGGG	CTTATCCCAA
3360	GATCCAAACC ACCAGCCGTG	TGCTGCGGTC TTTATTCTGG	AATGAGCCTG	CCATTGGCCA	GAAGTTAGTT
3430	TTCACTCAGG CTGCTAAGGC	CGCTAACCCC GGTGCGATTA	CAGTCCATGA	GGCTCAGGGC	GCCACTTTCA
3500	CGGAAACTAC AATTATAGCC	ACAGCTGATG CTAGGGGACT	TATCCAATCT	TCTCGGGCTC	ATGCCATAGT
3570	TGCACTCACC CGCCACACAG	AAAAATGCGT CATTCTTGAC	GCCCCTGGCC	TGTTACGTGA	GGTTGGTATA
3640	TCAGATGTGA TTGTTAACAA	TTTTTTCCTT GCCGGTGGGG	AGATGGGCCA	CCATCGCCCT	TCTGTGATAC

Q4-ON-RBV2 Consensus sequence

3710 3780 3850 3920 3990 4060 4130 4200 4270 4340 4410
4480
4550 4620 4690 4760 4830 4900 4970 5040 5110 5180 5250 5320 5390 5460 5530 5600 5670 5740 5810 5880 5950 6020 6090 6160 6230 6300 6370 6440

CTCGCGGTAA TCCTGACCAG AATTTCGCGA CACTTCAGGC CTTTCCACCC TCTTGCCAGA TTAGTGCTTA CCACCAGTTA GCTGAGGAAC TTGGCCACCG TCCAGCTCCC GTCGCTGCTG TCCTGCCCCC TTGCCCTGAA CTTGAGCAGG GCTTATTATA TATGCCGCAG GAGCTTACGG TGTCTGACAG TGTGCTGGTC TTCGAGCTCA CGGACATAGT CCACTGCCGG ATGGCCGCCC CTAGCCAGCG GAAGGCCGTC CTATCGACGC TTGTGGGCAG GTACGGCCGC CGGACTAAGC TGTACGAAGC AGCCCACTCT GACGTCCGCG AGTCCCTGGC TAGATTTATC CCCACCATTG GGCCCGTTCA GGCTACTACG TGTGAGTTAT ATGAGCTGGT TGAGGCCATG GTGGAGAAAG GTCAAGATGG CTCTGCCGTG CTTGAGCTCG ACCTCTGCAA TCGTGATGTA TCGCGTATCA CATTTTTCCA GAATGGCTGT AATAAATTCA CCACAGGGGA GACCATTGCC CACGGTAAGG TCGGCCAGGG CATCTCGGCC TGGAGTAAGA CCTTCTGTGC CCTGTTTGGC CCGTGGTTTC TCCCGCCTAA TATCTTCTAC GGCGACGCAT ACGAGGAGTC TTCAAGCATG GTATTTGAGA ATGACTTTTC AGAGTTTGAT GAGTGTGTAG TTATGGAGGA ATGTGGAATG CCCCAGTGGC TTTGGATCCT ACAGGCGCCG AAGGAGTCTC TTAAGGGATT CCTCCTCTGG AACACTGTTT GGAATATGGC GATCATAGCA GCCGCTTTCA AGGGAGATGA CTCTGTGGTC CTCTGTAGCG TGATTGCAGG TTGCGGGCTC AAACTGAAGG TTGATTATCG GGCCCCTGGT CTGGGGACGC TACCCGATGT GGTGCGCTTT G CCGAGTCCCG AGCGCGCCGA GCAGTTGCGC CTAGCTGTTT CGCAGGTATG TGTCGATGTT GTATCCCGAG TTTACGGAGT CATGCTGCAA GCCATAGCTG ATGGCAAAGC CCACTTTACA AACTCCATCA TACAGCGGGT GGAATGAATA ACATGTTCTG AGGGCTGTTC TGTTGCTGTT CTTCGTGTTT CTGCCTATGC GCCGCCGTCG TGGGCGGCGC AGCGGCAGTG CCGGCAGTGG CTTTGCCCTC CCCTATATTC ATCCAACCAA CCCCTTTGCC GCACGCCCTC GACAGCCACC CCGCCCCCTT GGCTCCTCTT TCCCACGTCG TCGATCTGCC CCAGTTGGGG CTGCACCGTT TCCTGTGCCT GATGTTGACT CTCGCGGTGC CATATTGCGG ACATCATCTG TTGCTTCGGG TACTAATCTG GTTCTTTATG AAGATGGCAC TAATACTCAC ATCATGGCCA CTGAGGCGTC TACAATCCGC TATCGCCCTC TGGTGCCAAA TGCTGTCGGC CAGACTACTA CTACCCCCAC GTCTGTTGAT ATGAACTCTA AGCCCGGCAT TGCTTCTGAG CTGGTTATCC CTAGTGAGCG TGTAGAGACC TCTGGTGTGG CTGAAGAGGA GGCTACTTCT CNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NCCGGGGCGC AGTTTAGGAA CCTGACACCC GGGAACACCA ACACCCGTGT GCTGCGCCGC GGTGCTGATG GCACTGCGGA ACTTACCACC CACTTCACCG GTACGAATGG GGTCGGTGAG GTGGGTCGTG ACACACTTCT TGGTGGTTTG CCGACAGAAT TAATTTCGTC CGTCGTCTCA GCCAATGGCG AGCCGACTGT CAAGTTATAC GGGATCGCTA TCCCACATGA CATAGATCTG GGTGATTCCC ATGAGCAGGA TCGACCCACC CCCTCGCCTG CCCCTTCTCG TTTATGGCTT TCTCTTACAG CCGCCGAGTA TGACCAGACT GTCTCGGATA CTGTCACATT TGTCAACGTG GCTACAGGAG CTAAAGTTAC TCTCGACGGC CGCCCTCTTA CTACTATCCA GCAGTACTCC AAAACATTTT ATGTTCTCCC GCTTCGCGGG AAGTTATCTT TCTGGGAGGC TGGGACGACT AAGGCCGGCT ACCCCTATAA TTACAACACA ACTGCAAGTG ATCAGATTCT GATTGAAAAT GCGGCTGGTC ATCGTGTTGC TATTTCCACG TATACCACCA GCTTGGGCGC TGGCCCTGTG TCTGTTTCCG CAGTTGGTGA TGAAGACACA ATTGATTACC CTGCCCGTGC CCACACATTT GGTTTGCAGG GGTGTGCCTT CCAGTCTACT ATTGCTGAGC GATGATTTCT GCCCGGAGTG TCGTGCTCTT TTCAGCGTCT TAAAATGAAG GTAGGTAAAA CCCGGGAGTT TTAATCAATT TCCTCTGTGC CCCCTTCATA GCTTTGCTTT ATTTTCTCTT TTCTGCGGTT CGCGCTCCCT GGANNNNNNN NNNNNNN

Q5-ON-RBV3

File name	Q5-ON-RBV3.sam
Ref name	FJ705359.1
Ref length	$\mathbf{7 2 3 7 n t}$
Program used	Tanoti Assembler 1.0
Total reads	$\mathbf{9 8 1 1 3 8 5}$
Mapped reads	$\mathbf{9 8 1 1} 385$ (100.00\%)
Average read length	141 nt
Coverage	$\mathbf{7 2 2 4 n t}$ (99.82\%)
Average depth	$\mathbf{1 8 8 6 3 6}$ reads/site

Q5-ON-RBV3 Consensus sequence

1	NCAGACCACG TATGTGGTCG	ATGCCATGGA GGCCCACCAG	TTCATTAAGG	CTCCTGGCAT	TACTACTGCC
70	ATTGAGCAAG CTGCTCTGGC	TGCGGCCAAT TCTGCCCTGG	CGAATGCTGT	GGTGGTTCGG	CCGTTTTTAT
140	CTCGTGTGCA AACTGAGATT	CTCATTAATT TGATGCAACC	CCGACAGTTG	GTTTTTCGAC	CTGAAGTGCT
210	CTGGAATCAT CCTATCCAAC	GAGTTATCCA TAATGAACTT	GAACAGTACT	GTCGGGCCCG	GGCTGGTCGT
280	TGTCTAGAGG TTGGGGCCCA	CCCAAGATCC ATTAATGACA	ACCCAAATGT	TCTGCACCGG	tGCTtTCTAC
350	GACCAGTTGG GAGAGATGTT	CAGCGCTGGT ACTCTGCTCC	TACCCGCGGC	CCTGCAGCTA	ACTGCCGCCG
420	TTCTGCCTTG CGTGGCCTCC	CCCCCCGCTGA TCGTACCTAT	TGTTTTGATG	GATTCTCCCG	CTGCTCATTT
490	GCCGCAGAAA CTGGGGTTGC	CCTCTATTCC CTGCATGACC	TCTGGCCGGC	CGATGTTGCG	GAGGCTATGG
560	CCCGACACGG GATGACACGC	TTGTATGCTG CACTACATCT	CCCCCCTGAA	GTACTACTAC	CACCCGGTAC
630	TTACCATACA ACTTCATACC	TTCTGATCCA CGACGGTGAT	CGTGCTGTTG	TGACCTATGA	AGGTGATACT
700	AGTGCAGGCT ACAACCATGA	CGTCTCCATA CTTCGTGCAT	GGATCCGCAC	AACCAAGATA	ACCGGCGACC
770	ATCCGCTGGT GATAGAGCGT	GTGCGGGCCA TTGGCTGCCA	TTTTGTGCTG	CTGCTTACTG	CAGCCCCTGA
840	GCCGTCACCA ATGCCTTATG	TCCCATATCC CCGGTCGACA	GAGGTGTATG	TCCGCTCTAT	ATTCGGTCCT
910	GGCGGGTCCC CATCCCTATT	CCCATCAGCT TGCTCTACGA	AATCTACATT	CCACGCTGTC	CCGGTTCATA
980	TTTGGGACCG GCTCATGCTT	TTTGGCGCTA CTCTGGATGA	TCAGGCGTTT	TGCTGTTCAC	GGCTTATGAC
1050	CTACCTCCGC GGGATTAGTT	ACAAAGTCAC TGTTGGCGCC	CTTGTCGCTA	ATGAGGGGTG	GAATGCTTCG
1120	GAGGACGCTC TTACCGCTGT	tattactgca gcgtatttga	CCATCTGCCA	TCAGCGTTAC	CTCCGTACCC
1190	AAGCTATATC CAAGGGTATG	CGCCGACTGG AGGTTGAGCA	TGCCCAAAAA	TTCATTACAA	GACTTTATAG
1260	TTGGCTGTTC GAGAAGTCCG	GCCGTGACTA TATCCCCGGC	CGCCAGCTCC	AGTTCTATGC	ACAGTGCCGC
1330	CGCTGGTTAT CGGCGGGTTT	CCATCTCGAC CCAAGGGTGC	TTGTTTTCGA	TGAGTCTGTG	CCCTGCCGTT
1400	GTAGGACATT TCTTAAGAAG	GCTGTGGGTA AGTTCTGTTG	TTTTATGAAG	TGGTTGGGAC	AGGAGTGCAC
1470	CTGCTTTTTG GAACCAGCAG	AGGGTCTAGT TGGCGACCAT	GGCCACGATA	ATGAAGCCTA	TGAGGGCTCT
1540	GAGGTCGATC AGGCCGAGCC	CGCCCATCTT GATGTTTCTG	GGACCTATGC	CGTCCACGGC	CGCCAACTTG
1610	AGGCCCTGTA TAGGGCGCTT	AACATCCCGC ATGACATCGC	CGCCCGAGCC	TCCCGTCTGA	CTGCCACCGT
1680	CGAACTTGTT GCAGGTCCAG	ACCGCTTGGA GTGCCGCACT	GTGCTCGGGA	ATAAGACTTT	CCGGACGACG
1750	GTGGTTGATG GCGCCCATCT	TGAGGCGAAC GGCCCCGAGC	AGTACGTTCT	TTCGTTTGAC	GCCTCTCGCC
1820	AGTCTATGGG GGCCGGACCG	CATAGTCTCA CCTACGAGCT	CACTCCTGCC	GGTCTGCAGA	TCAAGATTTC
1890	ATCTAATGGC CTGGATTGCA	CTGCAACATT CCCCCCCGGGC	GGGGCCCCTA	GCGCTGCTCC	GGGGGAGGTA
1960	GCAGCCTTTT GCAGTGCTCT	TTATAGATAC AACAGGTTCA	CTCAGCACCA	TTCGCTTGTA	GGTGGCTTGT
2030	GGCTGCACCC TGAGGGGTTG	TTGGGTATCT TCCCCCCTTT	CTCTCCCGGG	CACCTTTGGG	AGTCTGCTAA
2100	CCCTTTTTGT GGGGAGGGAA	CCTTGTACAC CCGGACATGG	TCAACATCTG	GTTTTTCTAG	TGACTTTTCC
2170	CCCCCCTGAGG CAGCCGTTGT	AGCGCCGGCT GCTACTCCGG	GGTTACGCTA	CCCTACACCT	CCTGTTAGTG
2240	ACATTCGGGT GTTACCGCCA	CCTTCTGAAG AATTTCAGGT	TGACACAGCG	CCCGCTCCTC	CTGCCCCTGA
2310	GCCTGCTCAA CCATCTAGCT	CCGCTGGGCC AAAGGCTCCC	GTGCGTAAGC	CGCCAACGCC	ACCATCCCCG
2380	CGCACCCGCC GCCTTCTTTA	TACCTATCCG GATGGGGCAA	AGGTGTATGC	GGGGTCACTG	TTTGAGTCTG
2450	ACTGTGATTG GCTGGTTAAT	GCGTCGAATC CCGGCCATCG	TCCTGGCGGC	GGCCTTTGCC	ATGCCTTCTA
2520	TCAACGCTAC CCCGAGTCTT	TCCACCCAAC TGAGTTCATT	ATGCGCGACG	GTCTTGCCGC	ATATACTTTA
2590	ACCCCCCGGC CTATTATTCA	TGCAGTGGCC CCTGATTATA	GGGTTGAGCA	TAACCCAAAG	AGGCTTGAGG
2660	CGGCATACCG AGAGACTTGT	TCTCGCCGCG GTACCGCCGC	CTACCCACTC	CTTGGCTCGG	GCATATACCA
2730	AGTCCCCGTC AGCCTCAGCT	TTGACGCTTG GGAGCGTAAT	CATCGCCCCG	GGGACGAGCT	CTACTTAACC
2800	GACCTCGCCG CCACCTGGTT	CGAAGCTAAT AAGCCAACAC	AGCCGGCCCT	TACAATAACT	GAGGATGCGG
2870	CCCGTACAGC CAACCTAGCA	CTGGAGATCG ATGCTGCCAC	GGAGGTCGGC	CGGGCTTGTG	CCGGCTGTGC
2940	AGTTAGTCCT GGGGTTGTGC	ACTATCAGTT TACTGCTGGG	GTCCCAGGTT	CGGGGAAGTC	GCGTTCTATA
3010	CAGCAGGGGG ATGTTGATGT	AGTGGTTGTT CCTACTCGGG	AGCTCCGGAA	TAGTTGGCGC	CGCCGGGGTT
3080	TCGCAGCTTT TACACCTCAT	ACGGCGGCCC GCGTCACCAC	AGGCCGTCGT	GTTGTGATTG	ATGAGGCCCC
3150	ATCCCTCCCA CCGCATTTGT	TGCTATTACA TATGCAGCGG	GCCTCGTCGG	TCCACCTTCT	TGGCGACCCA
3220	AATCAGATCC CTGCTATAGA	CTTCGAGCAC GCCGGCCTGG	TCCCCGCAAT	ACGCCCTGAG	CTCGCGCCCA
3290	CCAGTTGGTG GCATGTCACC	CACCGCTGCC CCGCTGATGT	GTGCGAGCTT	ATTCGCGGGG	CTTATCCCAA
3360	GATCCAAACC ACCAGCCGTG	TGCTGCGGTC TTTATTCTGG	AATGAGCCTG	CCATTGGCCA	GAAGTTAGTT
3430	TTCACTCAGG CTGCTAAGGC	CGCTAACCCC GGTGCGATTA	CAGTCCATGA	GGCTCAGGGC	GCCACTTTCA
3500	CGGAAACTAC AATTATAGCC	ACAGCTGATG CTAGGGGGCT	CATCCAATCT	TCCCGAGCAC	ACGCCATAGT
3570	TGCACTTACC CGCCACACAG	AGAAGTGCGT TATTCTTGAC	GCCCCCGGCT	TGTTACGTGA	GGTTGGTATA
3640	TCAGATGTGA TTGTTAACAA	TTTTTTCCTT GCCGGTGGGG	AGATGGGCCA	CCATCGCCCT	TCTGTGATAC

Q5-ON-RBV3 Consensus sequence

3710
3780
3850
3920
3990
4060
4130
4200
4270
4340
4410
4480
4550
4620
4690
4760
4830
4900
4970
5040
5110
5180
5250
5320
5390
5460
5530
5600
5670
5740
5810
5880
5950
6020
6090
6160
6230
6300
6370
6440
6510
6580
6650
6720
6790
6860
6930
7000
7070
7140
7210

CTCGCGGTAA TCCTGACCAG AATCTCGCGA CACTTCAGGC CTTCCCACCC TCTTGCCAGA TTAGTGCTTA CCACCAGTTA GCTGAGGAAC TTGGCCACCG TCCAGCTCCC CTTGAGCAGG GCTTATTATA TATGCCGCAG GAGCTTACGG CGGACATAGT CCACTGCCGT ATGGCTGCCC CTAGTCAGCG GTACGGCCGT CGGACGAAGC TGTATGAAGC AGCTCACTCT CCCACCATTG GGCCCGTTCA GGCTACTACG TGTGAGTTAT GTCAAGATGG CTCTGCCGTG CTTGAGCTCG ACCTCTGCAA GAATGGCTGT AATAAATTCA CCACAGGGGA GACCATTGCC TGGAGTAAGA CCTTCTGTGC CCTGTTTGGC CCGTGGTTTC TCCCGCCTAA TATCTTCTAC GGCGACGCAT ACGAGGAGTC TTCAAGCATG GTATTTGAGA ATGACTTTTC AGAGTTTGAT GAGTGTGTAG TTATGGAGGA ATGTGGAATG CCCCAGTGGC TTTGGATCCT ACAGGCGCCG AAGGAGTCTC TTAAGGGATT CCTCCTCTGG AACACTGTTT GGAATATGGC GATCATAGCA GCCGCTTTCA AGGGAGATGA CTCCGTGGTC CTCTGTAGCG TGATTGCAGG TTGCGGGCTC AAACTGAAGG TTGATTATCG GGCCCCTGGT CTGGGGACGC TACCCGATGT GGTGCGCTTT CCTGGGCCGG AGCGGGCTGA GCAGTTGCGC CTAGCTGTTT CGCAGGTATG TGTCGATGTT GTATCCCGAG TTTACGGAGT CATGCTGCAA GCCATAGCTG ATGGCAAAGC CCACTTTACA AACTCCATCA TACAGCGGGT GGAATGAATA ACATGTTCTG AGGGCTGTTC TGTTGCTGTT CTTCGTGCTT CTGCCTATGC GCCGCCGTCG TGGGCGGCGC AGCGGCGGTG CCGGCAGTGG CTTCGCCCTC CCCTATATTC ATCCAACCAA CCCCTTTGCC GCACGCCCTC GACAGCCACC CCGCCCCCTC GGCTCCTCTT TCCCACGTCG TCGATCTGCC CCAGTTGGGG CTGCGCCGTT TCCTGTGCCT GATGTTGACT CTCGCGGTGC CATATTGCGG ACATCATCTG TTGCTTCGGG TACTAATCTG GTTCTTTATG AGGATGGCAC TAATACTCAC ATCATGGCCA CTGAGGCGTC TACGATCCGT TACAGGCCAT TGGTGCCAAA TGCTGTCGGC CAGACTACTA CTACCCCCAC GTCTGTTGAT ATGAACTCTA AGCCCGGCAT TGCTTCTGAG CTGGTTATCC CTAGTGAGCG TGTAGAGACC TCTGGTGTGG CTGAAGAGGA GGCTACTTCT CCTGTTAATT CCTACACCAA TACCCCCTAC ACCGGGGCGC AGTTTAGGAA CCTGACACCC GGGAACACCA ACACCCGTGT GCTGCGCCGC GGTGCTGATG GCACCGCGGA ACTTACCACC CACTTCACCG GTACGAATGG GGTCGGTGAG GTGGGTCGTG ACACACTTCT TGGTGGTTTG CCGACAGAAT TAATTTCGTC CGTCGTCTCA GCCAATGGCG AGCCGACTGT CAAGTTATAC GGGATCGCTA TCCCACATGA CATAGATCTG GGTGATTCCC ATGAGCAGGA TCGACCCACC CCCTCGCCTG CCCCTTCTCG TTTATGGCTT TCTCTTACAG CCGCCGAGTA TGACCAGACT GTCTCGGATA CTGTCACATT TGTCAACGTG GCTACAGGAG CTAAAGTTAC TCTCGACGGC CGCCCTCTTA CTACTATCCA GCTTCGCGGG AAGTTATCTT TCTGGGAGGC TGGGACGACT ACTGCGAGTG ATCAGATTCT GATTGAAAAT GCGGCTGGTC GCTTGGGCGC TGGCCCTGTG TCTGTTTCCG CAGTTGGTGT TGAAGACACG ATTGATTACC CTGCCCGTGC CCACACATTT GGTTTGCAGG GGTGTGCCTT CCAGTCTACT ATTGCTGAGC CCCGGGAGTT TTAATCAATT TCCTCTGTGC CCCCTTCATA CGCGCTCCCT GGAAANNNNN NNNNNNN
$\begin{array}{lll}\text { CTTCCCACCC } & \text { TCTTGCCAGA } & \text { TTAGTGCTTA } \\ \text { GTCGCTGCTG } & \text { TCCTGCCCCC } & \text { TTGCCCTGAA }\end{array}$ TGTCTGACAG TGTGCTGGTC TTTGAACTCA GAAGGCCATC CTATCAACGC TCGTGGGTAG GACGTCCGTG AGTCCCTGGC CAGATTTATC ATGAGCTGGT TGAGGCCATG GTGGAGAAAG TCGTGATGTA TCGCGTATCA CATTTTTCCA CACGGTAAGG TCGGCCAGGG CATCTCGGCC GTGCTATTGA AAAAGAAATA CTAGCCCTGC TGTGTTTGCC GCCGCTGTGT CGGGGGCAGG AGCACCCAAA ATAACTTCTC CCTTGGCCTC TAATCCGGTT GTACCATTTG GTTCGGTCGG TTGGAAGAAG CATTCTGGTG AGCCCGGCAC CACTGCTATG AATTTCGTGA TTTTAAGGTC ACTACCGTCA GAGCCGCAAT GCAGCGGCCC CCCTATTGGG CTGTATGCTG GTGTGGTGGT GCCGGCCGGC TGTCTGAGAA GAACTGGGGC GTGATTTCCT TCGAAGGTTA ACGAATGTTG TAGCCCTGGA TTGGTACATA ACCTTATTGG GAGACTGTTA AACCTGTGCT TGACCTCACG TGCATTGCCC ATGGGATCAC CATGCGCCCT TGCCCGCGCC ACCGGCCGGC CAGCCGTCTG TTTCTGGGGT GACAGGGTTG ATTCTCAGCC GCCGACGTCG TACCGCAATC CGGGGCTGGA GGCGTGATCA GTCCCAGCGC CCCTCCGCTG GACTGCCATA TCACCTGCCC CCGATACAGC CGCCAGTACA ATTTGTCCAC ATCCCCGCTC CTGCCCCGCT AAACCCTTTG CTGCCCCTTC TAATTATGCC CAGTATCGGG TTGTCCGAGC GGTTATGCAA TTTCCATCTC ATTTTGGCCT TTACTTCCAC TGATGTTAGG ATTTTAGTTC CCTCCATTAT CGTAACCAGG GCTGGCGCTC GGTTTGGTAA TGCTTTGTAT CCATGGCTCT TTGGACTCCT TGACTTTGCT TTAGAGCTTG GTCCCGGTAT ACAAGTACAG CCCGTCATCG ACAGCAGCCA CGCGCTTCAT GAAGGACTTG GTATTGCCCT TACACTCTTT AATCTTGCTG GGCTGGGGGA CAGCTATTCT ACTCCCGCCC ACATCTGTAG AGAATGCACA GCAGGATAAA GTGTGGTCAT CCAAGACTAT GACAACCAGC CCCTTTCTCG GTTCTTCGCG CTAATGATGT ACATATGGGT CGTCCACCAA CCCGATGTAT CCCAGGCTGT TGCCCGTTCC CTTGACTGGT GCAGTACTCC AAAACATTTT ATGTTCTCCC AAGGCCGGCT ACCCCTATAA TTACAACACA ATCGTGTTGC TATTTCCACG TATACCACCA CTTAGCCCCA CATTCGGCCC TCGCAGTCCT GATGATTTCT GCCCGGAGTG TCGTGCTCTT TTCAGCGTCT TAAAATGAAG GTAGGTAAAA GCTTTGCTTT ATTTTCTCTT TTCTGCGGTT ,

R1-PRE-RBV

File name	R1-PRE-RBV.sam
Ref name	FJ705359.1
Ref length	$\mathbf{7 2 3 7 n t}$
Programused	Tanoti Assembler 1.0
Total reads	$\mathbf{2 5 8 ~ 0 3 5}$
Mapped reads	$\mathbf{2 5 8 ~ 0 3 5}(\mathbf{1 0 0 . 0 0 \%})$
Average read length	$\mathbf{1 4 5 n t}$
Coverage	$\mathbf{7 1 7 5 n t}(\mathbf{9 9 . 1 4 \%})$
Average depth	$\mathbf{5 0 9 8}$ reads/site

R1-PRE-RBV Consensus sequence

NNNNNNNNG TATGTGGTCG ATGCCATGGA GGCCCATCAG TTCATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAC TCTGCCTTGG CGAATGCTGT GGTGGTTCGG CCGTTTTTGT CTCGTGTGCA AACTGAGATT CTTATTAATT TGATGCAACC CCGGCAGTTG GTTTTTCGGC CTGAAGTGCT CTGGAATCAT CCTATCCAAC GGGTTATCCA TAATGAACTT GAACAGTACT GTCGGGCCCG GGCTGGCCGT TGTCTAGAGG TTGGGGCCCA TCCAAGATCC ATTAATGACA ACCCAAATGT TCTGCACCGG TGCTTTCTAC GACCAGTTGG GAGAGATGTT CAGCGCTGGT ACTCTGCTCC TACCCGCGGC CCTGCGGCTA ACTGCCGCCG TTCTGCCTTG CGTGGCCTCC CCCCCGTTGA TCGTACTTAC TGTTTTGATG GATTCTCTCG CTGCTCATTT GCTGCAGAAA CTGGGGTTGC CCTTTATTCT CTACATGACC TCTGGCCGGC CGATGTTGCG GAGGCTATGG CTCGGCACGG GATGACACGC CTGTATGCTG CACTACATCT CCCCCCTGAA GTACTACTAC CACCCGGTAC TTACCATACA ACTTCATACC TTCTGATCCA CGACGGTAAC CGTGCTGTTG TGACCTATGA AGGTGATACT AGTGCAGGTT ACAACCATGA TGTCTCCATA CTTCGTGCAT GGATCCGCAC AACTAAGATA GTTGGCGATC ATCCGCTGGT GATAGAGCGT GTGCGGGCTA TTGGCTGCCA TTTTGTGTTG CTGCTTACTG CAGCCCCTGA GCCGTCACCT ATGCCTTATG TTCCATACCC CCGGTCGACA GAGGTGTATG TCCGCTCTAT ATTCGGCCCT GGCGGGTCCC CATCCTTATT CCCATCTGCT TGCTCTACGA AATCCACATT TCACGCCGTC CCGGTTCATA TTTGGGATCG GCTCATGCTT TTTGGCGCCA CTCTGGATGA TCAGGCGTTT TGCTGTTCAC GGCTTATGAC CTACCTCCGC GGGATTAGTT ACAAGGTCAC TGTTGGCGCC CTTGTCGCTA ATGAGGGATG GAATGCTTCG GAGGACGCTC TGACCGCTGT TATTACTGCA GCGTATTTGA CCATTTGTCA TCAGCGTTAC CTCCGTACCC AAGCTATATC CAAGGGTATG CGCCGACTGG AGGTTGAGCA TGCCCAAAAA TTTATTACAA GACTCTATAG TTGGCTGTTT GAGAAGTCCG GCCGTGACTA TATCCCCGGC CGCCAGCTCC AGTTCTATGC ACAGTGCCGC CGTTGGTTAT CGGCAGGTTT CCATCTTGAT CCAAGGGTGC TTGTATTTGA TGAGTCCGTG CCCTGCCGCT GTAGGACGTT TCTTAAGAAG GCTGTGGGTA AGTTCTGCTG TTTTATGAAG TGGTTAGGAC AGGAGTGCAC CTGTTTTTTG GAACCAGCAG AGGGTCTAGT TGGCGACCAT GGCCACGATA ATGAGGCCTA TGAAGGCTCT GAGGTCGATC AGGCTGAGCC CGCCCATCTC GATGTTTCCG GGACTTATGC CGTCCATGGC CGCCAACTTG AGGCCCTGTA TAGGGCGCTT AACATCCCGC ATGACATCGC TGCCCGAGCC TCCCGTTTGA CTGCCACCGT CGAACTCGTT GCAGGTCCAG ACCGCTTAGA GTGCCGCACT GTGCTTGGGA ATAAGACTTT CCGGACGACG GTGGTTGATG GCGCCCATCT TGAGGCGAAC GGCCCCGAGC AGTACGTCCT TTCGTTTGAC GCCTCTCGCC AGTCTATGGG GGCCGGGCCG CATAGTCTCT CCTACGAGCT CACTCCTGCT GGTTTGCAGG TCAAGATTTC ATCTAATGGC CTGGATTGCA CTGCAACATT CCCCCCGGGC GGGGCCCCTA GCGCTGCTCC GGGGGAGGTA GCAGCCTTTT GCAGTGCTCT TTACAGGTAC AACAGGTTCA CTCAGCGCCA TTCGCTTATA GGTGGCTTGT GGCTGCACCC TGAGGGGTTG TTGGGCATCT TCCCCCCTTT CTCTCCCGGG CACCTTTGGG AGTCCGCTAA CCCTTTTTGT GGGGAGGGAA CTTTGTATAC CCGGACTTGG TCAACATCTG GTTTTTCTAG TGACTTTTCC CCCCCTGAGG CGGCCGTCGC AGTGCCGGCT GCTACCCCGG GGTTACGCCA CCCTACACCT CCTGTTAGTG ATATCTGGGT GCTACCGCCG CCTTCTGAAG AACTTCAGGT TGACACAGCG CCCGCTCCCC CTGCCCCTGG GCCCGCTCAA CCATCCAGCC CTGTTGGGCC GAAGGCTCCC GTGCGTAAGC CGCCAACGCC ACCATCCCCG CGCACCCGCC GCCTTCTTTA CACCTATCCG GATGGGGCAA AGGTGTATGC GGGGTCACTG TTTGAATCTG ACTGTGATTG GCTGGTTAAT GCGTCAAATC CTGGCCATCG TCCTGGCGGC GGCCTTTGCC ATGCCTTCTA TCAACGCTAC CCCGAGTCTT TCCANNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNACTTTA ACTCCCCGGC CTATTATTCA TGCAGTGGCT CCTGATTATA GGGTTGAGCA TAACCCAAAG AGGCTTGAGG CAGCATACCG AGAGACTTGC TCCCGCCGCG GTACCGCCGC CTATCCACTC CTCGGCTCGG GTATATACCA AGTTCCCGTC AGCCTCAGCT TTGACGCTTG GGAGCGTAAC CATCGCCCCG GAGACGAGCT TTACCTAACC GACCTCGCAG CTACCTGGTT CGAGGCTAAC AAACCAACAC AGCCGGCCCT TACAATAACT GAGGATGCAG CCCGCACAGC CAACCTAGCA CTGGAGATCG ATGCTGCTAC GGAGGTCGGC CGGGCTTGTG CCGGCTGTGC AGTTAGTCCT GGGGTTGTGC ACTATCAGTT TACTGCTGGG GTCCCAGGTT CGGGGAAGTC ACGTTCTATA CAGCAGGGGG ATGTTGACGT AGTGGTTGTT CCCACTCGGG AGCTCCGGAA TAGTTGGCGT CGCCGGGGTT TTGCAGCTTT TACACCCCAT ACGGCGGCCC GTGTCACTAC GGGCCGTCGT GTTGTGATTG ATGAGGCCCC ATCTCTCCCA CCGCATTTGC TGCTACTACA CATGCAGCGG GCCTCGTCGG TCCACCTTCT TGGCGACCCG AACCAGATCC CTGCCATAGA CTTCGAGCAT GCCGGCCTGG TCCCCGCAAT ACGCCCTGAG CTTGCGCCCA CCAGTTGGTG GCATGTCACT CATCGCTGCC CCGCTGACGT GTGTGAGCTT ATACGCGGGG CTTATCCCAA AATCCAAACC ACTAGCCGCG TGCTGCGGTC CTTGTTCTGG AATGAGCCTG CCATTGGCCA GAAGTTAGTT TTCACCCAGG CTGCTAAGGC CGCCAACCCC GGTGCAATTA CAGTCCACGA GGCCCAGGGT GCCACTTTCA CGGAAACTAC AATCATAGCC ACGGCTGATG CCAGGGGGCT CATCCAATCT TCCCGAGCTC ATGCCATAGT CGCACTTACC CGCCACACAG AGAAGTGCGT CATATTTGAC GCTCCCGGCC TGTTACGTGA GGTTGGTATA TCGGATGTGA TTGTCAACAA TTTTTTCCTT GCCGGCGGGG AGGTGGGTCA CCATCGCCCC TCCGTGATAC

R1-PRE-RBV Consensus sequence

3710	CTCGCGGTAA TCCTGACCAG	AACCTCGCGA	CACTACAGGC	CTTTCCGCCT	TCTTGCCAGA	TTAGTGCCTA
3780	TCACCAGTTA	GCTGAGGAAC	TTGGCCACCG	CCCAGCCCCC	GTCGCCGCTG	TCTTGCCCCC
3850	CTTGAGCAAG	TCTTGTTATA	TATGCCGCAA	GAGCTTACGG	TGTCTGATAG	CGTGCTGGTC

R2-PRE-RBV

File name	R2-PRE-RBV.sam
Ref name	FJ705359.1
Ref length	$\mathbf{7} 237$ nt
Program used	Tanoti Assembler 1.0
Total reads	1675576
Mapped reads	1675576 (100.00\%)
Average read length	$145 n t$
Coverage	$7215 n t$ (99.70\%)
Average depth	33269 reads/site

R2-PRE-RBV Consensus sequence

NNNNNNNNCG TATGTGGTCG ATGCCATGGA GGCCCATCAG TTCATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAT TCTGCCCTGG CGAATGCTGT GGTGGTCCGG CCGTTTTTAT CTCGTGTGCA AACTGAGATT CTTATTAATT TGATGCAACC CCGGCAGTTG GTTTTTCGGC CTGAAGTGCT CTGGAATCAT CCTATCCAAC GGGTTATCCA TAATGAACTT GAACAGTACT GTCGGGCCCG GGCTGGCCGT TGTCTAGAGG TTGGGGCCCA TCCAAGATCC ATTAATGACA ACCCAAATGT TCTGCACCGG TGCTTTCTAC GACCAGTTGG GAGAGATGTT CAGCGCTGGT ACTCTGCTCC TACCCGCGGC CCTGCGGCTA ACTGCCGCCG TTCTGCCTTG CGTGGCCTCC CCCCCGTTGA TCGTACTTAC TGTTTTGATG GATTCTCTCG CTGCTCATTT GCTGCAGAAA CTGGGGTTGC CCTTTATTCT CTACATGACC TCTGGCCGGC CGATGTTGCG GAGGCTATGG CTCGGCACGG GATGACACGC CTGTATGCTG CACTACATCT CCCCCCTGAA GTACTACTAC CACCCGGTAC TTACCATACA ACTTCATACC TTCTGATCCA CGACGGTAAC CGTGCTGTTG TGACCTATGA AGGTGATACT AGTGCAGGTT ACAACCATGA TGTCTCCATA CTTCGTGCAT GGATCCGCAC AACTAAGATA GTTGGCGATC ATCCGCTGGT GATAGAGCGT GTGCGGGCTA TTGGCTGCCA TTTTGTGTTG CTGCTTACTG CAGCCCCTGA GCCGTCACCA ATGCCTTATG TTCCATACCC CCGGTCGACA GAGGTGTATG TCCGCTCTAT ATTCGGCCCT GGCGGGTCCC CATCCCTATT CCCATCTGCT TGCTCTACGA AATCCACATT TCACGCCGTC CCGGTTCATA TTTGGGATCG GCTCATGCTT TTTGGCGCCA CTCTGGATGA TCAGGCGTTT TGCTGTTCAC GGCTTATGAC CTACCTCCGC GGGATTAGTT ACAAGGTCAC TGTTGGCGCC CTTGTCGCTA ATGAGGGGTG GAATGCTTCG GAGGACGCTC TGACCGCTGT TATTACTGCA GCGTATTTGA CCATTTGTCA TCAGCGTTAC CTCCGTACCC AAGCTATATC CAAGGGTATG CGCCGACTGG AGGTTGAGCA TGCCCAAAAA TTTATTACAA GACTCTATAG TTGGCTGTTT GAAAAGTCCG GCCGTGACTA TATCCCCGGC CGCCAGCTCC AGTTCTATGC ACAGTGCCGC CGTTGGTTAT CGGCAGGTTT CCATCTTGAT CCAAGGGTGC TTGTATTTGA TGAGTCCGTG CCCTGCCGCT GTAGGACATT TCTTAAGAAG GCTGTGGGTA AGTTCTGCTG TTTTATGAAG TGGTTAGGAC AGGAGTGCAC CTGTTTTTTG GAACCAGCAG AGGGTCTAGT TGGCGACCAT GGCCACGATA ATGAGGCCTA TGAAGGCTCT GAGGTCGATC AGGCCGAGCC CGCCCATCTC GATGTTTCCG GGACTTATGC CGTCCATGGC CGCCAACTTG AGGCCCTGTA TAGGGCGCTT AACATCCCGC ATGACATCGC TGCCCGAGCC TCCCGTTTGA CTGCCACCGT CGAACTCGTT GCAGGTCCAG ACCGCTTAGA GTGCCGCACT GTGCTTGGGA ATAAGACTTT CCGGACGACG GTGGTTGATG GCGCCCATCT TGAGGCGAAC GGCCCCGAGC AGTACGTCCT TTCGTTTGAC GCCTCTCGCC AGTCTATGGG GGCCGGGCCG CATAGTCTCT CCTACGAGCT CACTCCTGCT GGTTTGCAGG TCAAGATTTC ATCTAATGGC CTGGATTGCA CTGCAACATT CCCTCCGGGT GGGGCCCCTA GCGCTGCTCC GGGGGAGGTG GCAGCCTTTT GCAGTGCCCT CTACAGGTAC AACAGGTTCA CTCAGCGCCA TTCGCTTATA GGTGGCTTGT GGCTGCACCC TGAGGGGTTG TTGGGCATCT TCCCCCCTTT CTCTCCCGGG CACCTTTGGG AGTCCGCTAA CCCTTTTTGT GGGGAGGGAA CTTTGTATAC CCGGACATGG TCAACATCTG GTTTTTCTAG TGACTTTTCC CCCCCTGAGG CAGCCGTCGC AGTGCCGGCT GCTACCCCGG GGTTACGCCA CCCTACACCT CCTGTTAGTG ATATCCGGGT GCTACCGCCG CCTTCTGAAG AACTTCAGGT TGACACAGCG CCCGCTCCCC CTGCCCCTGG GCCCGCTCAA CCATCCAGCC CTGTTGGGCC GAAGGCTCCC GTGCGTAAGC CGCCAACGCC ACCATCCCCG CGCACCCGCC GCCTTCTTTA CACCTATCCG GATGGGGCAA AGGTGTATGC GGGGTCACTG TTTGAATCTG ACTGTGATTG GCTGGTTAAT GCATCGAACC CCGGCCATCG TCCTGGAGGC GGCCTTTGCC ATGCCTTCTA CCAACGTTAC CCCGAGTCTT TCCATCCAAC TGAGTTCATT ATGCGCGACG GTCTTGCCGC GTATACTTTA ACTCCCCGGC CTATTATTCA TGCAGTGGCT CCTGATTATA GGGTTGAGCA TAACCCAAAG AGGCTTGAGG CAGCATACCG AGAGACTTGC TCCCGCCGCG GTACCGCCGC CTATCCACTC CTCGGCTCGG GTATATACCA AGTTCCCGTC AGCCTCAGCT TTGACGCTTG GGAGCGTAAC CATCGCCCCG GAGACGAGCT TTACCTAACC GACCTCGCAG CTACCTGGTT CGAGGCTAAC AAACCAACAC AGCCGGCCCT TACAATAACT GAGGATGCAG CCCGCACAGC CAACCTAGCA CTGGAGATCG ATGCTGCTAC GGAGGTCGGC CGGGCTTGTG CCGGCTGTGC AGTTAGTCCT GGGGTTGTGC ACTATCAGTT TACTGCTGGG GTCCCAGGTT CGGGGAAGTC ACGTTCTATA CAGCAGGGGG ATGTTGACGT AGTGGTTGTT CCCACTCGGG AGCTCCGGAA TAGTTGGCGT CGCCGGGGTT TTGCAGCTTT TACACCCCAT ACGGCGGCCC GTGTCACTAC GGGCCGTCGT GTTGTGATTG ATGAGGCCCC ATCTCTCCCA CCGCATTTGC TGCTACTACA CATGCAGCGG GCCTCGTCGG TCCACCTTCT TGGCGACCCG AACCAGATCC CTGCCATAGA CTTCGAGCAT GCCGGCCTGG TCCCCGCAAT ACGCCCTGAG CTTGCGCCCA CCAGTTGGTG GCATGTCACT CATCGCTGCC CCGCTGACGT GTGTGAGCTT ATACGCGGGG CTTATCCCAA AATCCAAACC ACTAGCCGCG TGCTGCGGTC CTTGTTCTGG AATGAGCCTG CCATTGGCCA GAAGTTAGTT TTCACCCAGG CTGCTAAGGC CGCCAACCCC GGTGCAATTA CAGTCCACGA GGCCCAGGGT GCCACTTTCA CGGAAACTAC AATCATAGCC ACGGCTGATG CTAGGGGGCT CATCCAATCT TCCCGAGCTC ATGCCATAGT CGCACTTACC CGCCACACAG AGAAGTGCGT CATATTTGAC GCTCCCGGCC TGTTACGTGA GGTTGGTATA TCGGATGTGA TTGTCAACAA TTTTTTCCTT GCCGGCGGGG AGGTGGGTCA CCATCGCCCC TCCGTGATAC

R2-PRE-RBV Consensus sequence

3710 3780 3850 3920 3990 4060 4130 4200 4270
4340
4410
4480
4550
4620
4690
4760
4830
4900
4970
5040
5110
5180
5250
5320
5390
5460
5530
5600
5670
5740
5810
5880
5950
6020
6090

6160

6230

6300
6370
6440
6510
6580
6650

6720

6790
6860
6930
7000
7070
7140
7210

CTCGCGGTAA TCCTGACCAG AACCTCGCGA CACTACAGGC CTTTCCGCCT TCTTGCCAGA TTAGTGCCTA TCACCAGTTA GCTGAGGAAC TTGGCCACCG CCCGGCCCCC GTCGCCGCTG TCTTGCCCCC TTGCCCTGAA CTTGAGCAAG GCTTGTTATA TATGCCGCAA GAGCTTACGG TGTCTGATAG CGTGCTGGTC TTTGAACTCA CGGACATAGT CCACTGCCGG ATGGCCGCTC CTAGCCAGCG GAAGGCCGTC CTATCGACAC TCGTGGGTAG GTACGGCCGT CGGACGAAGC TGTATGAAGC AGCTCATTCT GACGTCCGTG AGTCCCTGGC TAGGTTCATC CCCACCATTG GGCCCGTTCA GGCTACTACG TGTGAGTTAT ATGAGCTGGT TGAGGCCATG GTAGAGAAGG GTCAGGATGG CTCTGCCGTG CTTGAGCTCG ACCTCTGCAA TCGTGATGTA TCGCGTATCA CATTTTTCCA GAAAGATTGT AATAAATTCA CCACAGGGGA GACCATCGCC CACGGCAAGG TCGGCCAGGG CATCTCGGCC TGGAGTAAGA CCTTTTGTGC CCTGTTTGGT CCGTGGTTTC GTGCTATTGA AAAAGAAATA TTAGCCCTGC TCTCGCCTAA TATTTTCTAC GGCGACGCAT ACGAGGAGTC TGTGTTTGCC GCCGCTGTGT CAGGGGCAGG TTCAAGCATG GTATTTGAGA ATGATTTTTC AGAGTTTGAT AGCACCCAAA ATAACTTCTC CCTTGGTCTC GAGTGTGTGA TCATGGAGGA ATGCGGCATG CCCCAGTGGC CCTGGATTCT ACAGGCGCCG AAGGAGTCTC TCAAGGGATT CCTTCTCTGG AACACTGTCT GGAATATGGC GATCATAGCA GCCGCTTTCA AGGGAGATGA TTCCGTGGTC CTCTGTAGCG TGATTGCAGG CTGCGGACTC AAACTGAAGG TTGATTATCG GGCTCCTGGT TTGGGGACGC TACCCGATGT TGTGCGCTTT CCTGGGCCGG AGCGGGCTGA GCAATTGCGC CTGGCTGTTT CGCAGGTTTG TGTCGATGTT GTATCCCGTG TTTATGGAGT CATGTTGCAA ACCATAGCTG ATGGTAAAGC CCATTTTACA AACTCTATCA TACAGCGGGT GGAATGAATA ACATGTTTTG AGGGCTGTTC TGTTGCTGTT CTTCGTGCTT CTGCCTATGC GCCGCCGTCG TGGGCGGCGC AGCGGCGGTG CCGGCAGTGG CTTCGCCCTC CCCTATATTC ATCCAACCAA CCCCTTTGCC GCTCGCCCTC GACAGCCACC CCGCCCCCTC GGCTCCTCTT CCCCACGTCG TCGACTTGCC CCAGCTGGGG CTGCGCCGCT TCCTGTACCT GATGTTGACT CGCGCGGTGC CATATTGCGA ACATCATCTG TTGCTTCGGG CACTAATCTG GTTCTTTATG AGGATGGCAC TAATACTCAC ATCATGGCCA CTGAGGCATC CACGATCCGT TATAGGCCAT TGGTGCCAAA TGCTGTCGGC CAGACTACTA CTACCCCCAC GTCTGTTGAT ATGAACTCTA AGCCTGGCAT TGCTTCTGAG TTAGTTATCC CTAGTGAGCG TGTGGAGACC TCGGGTGTGG CTGAGGAGGA GGCTACCTCT CCTGTTAATT CCTACACTAA TACCCCTTAT ACCGGGGCGC AGTTTAGGAA CTTGACACCC GGGAACACCA ACACCCGTGT GTTGCGCCGC GGTGCTGATG GCACCGCTGA GCTTACTACC CACTTCACCG GCACAAATGG GGTCGGTGAG GTGGGTCGTG ACACGCTTCT CGGTGGTTTG CCGACAGAAT TAATTTCGTC CGTCGTCTCA GCCAATGGCG AGCCGACTGT CAAGTTATAC GGGATCGCTA TTCCACACGA CATAGATCTG GGTGACTCCC ATGAGCAGGA TCGACCCACC CCCTCGCCTG CCCCCTCTCG TTTATGGCTT TCTCTTACTG CCGCCGAGTA CGACCAGACT GTCTCGGATA CTGTCACATT TGTCAACGTG GCTACAGGAG CTAAAGTTAC TCTGGACGGC CGTCCACTTA CTACCATCCA GCTTCGTGGG AAGCTATCTT TCTGGGAGGC CGGGACGACT GCTTGGGCGC TGGCCCTGTG TCTGTTTCTG CAGTCGGTGT CGAAGACACT ATTGACTATC CTGCCCGTGC CCACACTTTT GGTTTGCAGG GGTGTGCTTT CCAGTCTACT ATTGCTGAGC CCCGGGAGTT TTAATCAATT TCCTCTGTGC CCCCTTCATA CGCGCTCCCT GGANNNNNNN NNNNNNN

R3-PRE-RBV

File name
Ref name
Ref length
Program used
Total reads
Mapped reads
Average read length
Coverage
Average depth

R3-PRE-RBV.sam
FJ705359.1
7 237nt
Tanoti Assembler 1.0
1084297
1084297 (100.00\%)
138nt
7 232nt (99.93\%)
20499 reads/site

R3-PRE-RBV Consensus sequence

NNNNNCCACG TATGTGGTCG ATGCCATGGA GGCCCATCAG TTCATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAT TCTGCCCTGG CGAATGCTGT GGTGGTCCGG CCGTTTTTAT CTCGTGTGCA AACTGAGATT CTTATTAATT TGATGCAACC CCGGCAGTTG GTTTTTCGGC CTGAAGTGCT CTGGAATCAT CCTATCCAAC GGGTTATCCA TAATGAACTT GAACAGTACT GTCGGGCCCG GGCTGGCCGT tGTCTAGAGG TTGGGGCCCA TCCAAGATCC ATTAATGACA ACCCAAATGT TCTGCACCGG TGCTTTCTAC GACCAGTTGG GAGAGATGTT CAGCGCTGGT ACTCTGCTCC TACCCGCGGC CCTGCGGCTA ACTGCCGCCG TTCTGCCTTG CGTGGCCTCC CCCCCGTTGA TCGTACTTAC TGTTTTGATG GATTCTCTCG CTGCTCATTT GCTGCAGAAA CTGGGGTTGC CCTTTATTCT CTACATGACC TCTGGCCGGC CGATGTTGCG GAGGCTATGG CTCGGCACGG GATGACACGC CTGTATGCTG CACTACATCT CCCCCCTGAA GTACTACTAC CACCCGGTAC tTACCATACA ACTTCATACC TTCTGATCCA CGACGGTAAC CGTGCTGTTG TGACCTATGA AGGTGATACT AGTGCAGGTT ACAACCATGA TGTCTCCATA CTTCGTGCAT GGATCCGCAC AACTAAGATA GTTGGCGATC ATCCGCTGGT GATAGAGCGT GTGCGGGCTA TTGGCTGCCA TTTTGTGTTG CTGCTTACTG CAGCCCCTGA GCCGTCACCA ATGCCTTATG TTCCATACCC CCGGTCGACA GAGGTGTATG TCCGCTCTAT ATTCGGCCCT GGCGGGTCCC CATCCCTATT CCCATCTGCT TGCTCTACGA AATCCACATT TCACGCCGTC CCGGTTCATA TTTGGGATCG GCTCATGCTT TTTGGCGCCA CTCTGGATGA TCAGGCGTTT TGCTGTTCAC GGCTTATGAC CTACCTCCGC GGGATTAGTT ACAAGGTCAC TGTTGGCGCC CTTGTCGCTA ATGAGGGGTG GAATGCTTCG GAGGACGCTC TGACCGCTGT TATTACTGCA GCGTATTTGA CCATTTGTCA TCAGCGTTAC CTCCGTACCC aAGCTATATC CAAGGGTATG CGCCGACTGG AGGTTGAGCA TGCCCAAAAA TTTATTACAA GACTCTATAG TTGGCTGTTC GAAAAGTCCG GCCGTGACTA TATCCCCGGC CGCCAGCTCC AGTTCTATGC ACAGTGCCGC CGTTGGTTAT CGGCAGGTTT CCATCTTGAT CCAAGGGTGC TTGTATTTGA TGAGTCCGTG CCCTGCCGCT GTAGGACATT TCTTAAGAAG GCTGTGGGTA AGTTCTGCTG TTTTATGAAG TGGTTAGGAC AGGAGTGCAC CTGTTTTTTG GAACCAGCAG AGGGTCTAGT TGGCGACCAT GGCCACGATA ATGAGGCCTA TGAAGGCTCT GAGGTCGATC AGGCCGAGCC CGCCCATCTC GATGTTTCCG GGACTTATGC CGTCCATGGC CGCCAACTTG AGGCCCTGTA TAGGGCGCTT AACATCCCGC ATGACATCGC TGCCCGAGCC TCCCGTTTGA CTGCCACCGT CGAACTCGTT GCAGGTCCAG ACCGCTTAGA GTGCCGCACT GTGCTTGGGA ATAAGACTTT CCGGACGACG GTGGTTGATG GCGCCCATCT TGAGGCGAAC GGCCCCGAGC AGTACGTCCT TTCGTTTGAC GCCTCTCGCC AGTCTATGGG GGCCGGGCCG CATAGTCTCT CCTACGAGCT CACTCCTGCT GGTTTGCAGG TCAAGATTTC ATCTAATGGC CTGGATTGCA CTGCAACATT CCCTCCGGGT GGGGCCCCTA GCGCTGCTCC GGGGGAGGTG GCAGCCTTTT GCAGTGCCCT CTACAGGTAC AACAGGTTCA CTCAGCGCCA TTCGCTTATA GGTGGCTTGT GGCTGCACCC TGAGGGGTTG TTGGGCATCT TCCCCCCTTT CTCTCCCGGG CACCTTTGGG AGTCCGCTAA CCCTTTTTGT GGGGAGGGAA CTTTGTATAC CCGGACATGG TCAACATCTG GTTTTTCTAG TGACTTTTCC CCCCCTGAGG CAGCCGTCGC AGTGCCGGCT GCTACCCCGG GGTTACGCCA CCCTACACCT CCTGTTAGTG ATATCCGGGT GCTACCGCCG CCTTCTGAAG AACTTCAGGT TGACACAGCG CCCGCTCCCC CTGCCCCTGG GCCCGCTCAA CCATCCAGCC CTGTTGGGCC GAAGGCTCCC GTGCGTAAGC CGCCAACGCC ACCATCCCCG CGCACCCGCC GCCTTCTTTA CACCTATCCG GATGGGGCAA AGGTGTATGC GGGGTCACTG TTTGAATCTG ACTGTGATTG GCTGGTTAAT GCATCGAACC CCGGCCATCG TCCTGGAGGC GGCCTTTGCC ATGCCTTCTA CCAACGTTAC CCCGAGTCTT TCCATCCAAC TGAGTTCATT ATGCGCGACG GTCTTGCCGC GTATACTTTA ACTCCCCGGC CTATTATTCA TGCAGTGGCT CCTGATTATA GGGTTGAGCA TAACCCAAAG AGGCTTGAGG CAGCATACCG AGAGACTTGC TCCCGCCGCG GTACCGCCGC CTATCCACTC CTCGGCTCGG GTATATACCA AGTTCCCGTC AGCCTCAGCT TTGACGCTTG GGAGCGTAAC CATCGCCCCG GAGACGAGCT TTACCTAACC GACCTCGCAG CTACCTGGTT CGAGGCTAAC AAACCAACAC AGCCGGCCCT TACAATAACT GAGGATGCAG CCCGCACAGC CAACCTAGCA CTGGAGATCG ATGCTGCTAC GGAGGTCGGC CGGGCTTGTG CCGGCTGTGC AGTTAGTCCT GGGGTTGTGC ACTATCAGTT TACTGCTGGG GTCCCAGGTT CGGGGAAGTC ACGTTCTATA CAGCAGGGGG ATGTTGACGT AGTGGTTGTT CCCACTCGGG AGCTCCGGAA TAGTTGGCGT CGCCGGGGTT TTGCAGCTTT TACACCCCAT ACGGCGGCCC GTGTCACTAC GGGCCGTCGT GTTGTGATTG ATGAGGCCCC ATCTCTCCCA CCGCATTTGC TGCTACTACA CATGCAGCGG GCCTCGTCGG TCCACCTTCT TGGCGACCCG AACCAGATCC CTGCCATAGA CTTCGAGCAT GCCGGCCTGG TCCCCGCAAT ACGCCCTGAG CTTGCGCCCA CCAGTTGGTG GCATGTCACT CATCGCTGCC CCGCTGACGT GTGTGAGCTT ATACGCGGGG CTTATCCCAA AATCCAAACC ACTAGCCGCG TGCTGCGGTC CTTGTTCTGG AATGAGCCTG CCATTGGCCA GAAGTTAGTT TTCACCCAGG CTGCTAAGGC CGCCAACCCC GGTGCAATTA CAGTCCACGA GGCCCAGGGT GCCACTTTCA CGGAAACTAC AATCATAGCC ACGGCTGATG CTAGGGGGCT CATCCAATCT TCCCGAGCTC ATGCCATAGT CGCACTTACC CGCCACACAG AGAAGTGCGT CATATTTGAC GCTCCCGGCC TGTTACGTGA GGTTGGTATA tCGGATGTGA TTGTCAACAA TTTTTTCCTT GCCGGCGGGG AGGTGGGTCA CCATCGCCCC TCCGTGATAC

R3-PRE-RBV Consensus sequence

3710	CTCGCGGTAA TCCTGACCAG	AACCTCGCGA	CACTACAGGC	CTTTCCGCCT	TCTTGCCAGA	TTAGTGCCTA
3780	TCACCAGTTA GCTGAGGAAC	TTGGCCACCG	CCCGGCCCCCC	GTCGCCGCTG	TCTTGCCCCC	tTGCCCTGAA
3850	CTTGAGCAAG GCTTGTTATA	TATGCCGCAA	GAGCTTACGG	TGTCTGATAG	CGTGCTGGTC	TTTGAACTCA
3920	CGGACATAGT CCACTGCCGG	ATGGCCGCTC	CTAGCCAGCG	GAAGGCCGTC	CTATCGACAC	TCGTGGGTAG
3990	GTACGGCCGT CGGACGAAGC	TGTATGAAGC	AGCTCATTCT	GACGTCCGTG	AGTCCCTGGC	TAGGTTCATC
4060	CCCACCATTG GGCCCGTTCA	GGCTACTACG	TGTGAGTTAT	ATGAGCTGGT	TGAGGCCATG	GTAGAGAAGG
4130	GTCAGGATGG CTCTGCCGTG	CTTGAGCTCG	ACCTCTGCAA	TCGTGATGTA	TCGCGTATCA	CATTTTTCCA
4200	GAAAGATTGT AATAAATTCA	CCACAGGGGA	GACCATCGCC	CACGGCAAGG	TCGGCCAGGG	CATCTCGGCC
4270	TGGAGTAAGA CCTTTTGTGC	CCTGTTTGGT	CCGTGGTTTC	GTGCTATTGA	AAAAGAAATA	TTAGCCCTGC
4340	TCTCGCCTAA TATTTTCTAC	GGCGACGCAT	ACGAGGAGTC	TGTGTTTGCC	GCCGCTGTGT	CAGGGGCAGG
4410	TTCAAGCATG GTATTTGAGA	ATGATTTTTC	AGAGTTTGAT	AGCACCCAAA	ATAACTTCTC	CCTTGGTCTC
4480	GAGTGTGTGA TCATGGAGGA	ATGCGGCATG	CCCCAGTGGC	TAATTCGGCT	GTACCATTTG	GTTCGGTCGG
4550	CCTGGATTCT ACAGGCGCCG	AAGGAGTCTC	TCAAGGGATT	TTGGAAGAAG	CATTCTGGTG	AGCCTGGCAC
4620	CCTTCTCTGG AACACTGTCT	GGAATATGGC	GATCATAGCA	CACTGCTATG	AATTCCGTGA	TTTTAGGGTT
4690	GCCGCTTTCA AGGGAGATGA	TTCCGTGGTC	CTCTGTAGCG	ACTACCGTCA	GAGCCGCAAT	GCAGCGGCCC
4760	TGATTGCAGG CTGCGGACTC	AAACTGAAGG	TTGATTATCG	CCCTATTGGG	TTGTATGCTG	GTGTGGTGGT
4830	GGCTCCTGGT TTGGGGACGC	TACCCGATGT	TGTGCGCTTT	GCCGGCCGGC	TGTCTGAGAA	GAACTGGGGC
4900	CCTGGGCCGG AGCGGGCTGA	GCAATTGCGC	CTGGCTGTTT	GTGACTTCCT	TCGAGGGTTA	ACGAATGTTG
4970	CGCAGGTTTG TGTCGATGTT	GTATCCCGTG	TTTATGGAGT	TAGCCCTGGG	TTGGTACATA	ACCTTATTGG
5040	CATGTTGCAA ACCATAGCTG	ATGGTAAAGC	CCATTTTACA	GAGACTGTTA	AACCTGTGCT	TGACCTCACG
5110	AACTCTATCA TACAGCGGGT	GGAATGAATA	ACATGTTTTG	TGCATTGCCC	ATGGGATCAT	CATGCGCCCT
5180	AGGGCTGTTC TGTTGCTGTT	CTTCGTGCTT	CTGCCTATGC	TGCCCGCGCC	ACCGGCCGGC	CAGCCGTCTG
5250	GCCGCCGTCG TGGGCGGCGC	AGCGGCGGTG	CCGGCAGTGG	TTTCTGGGGT	GACAGGGTTG	ATTCTCAGCC
5320	CTTCGCCCTC CCCTATATTC	ATCCAACCAA	CCCCTTTGCC	GCCGATGTCG	TACCACAATC	CGGGGCTGGA
5390	GCTCGCCCTC GACAGCCACC	CCGCCCCCTC	GGCTCCTCTT	GGCGTGATCA	GTCCCAGCGC	CCCTCCGCTG
5460	CCCCACGTCG TCGACTTGCC	CCAGCTGGGG	CTGCGCCGCT	GACCGCTATA	TCACCTGCTC	CTGATACAGC
5530	TCCTGTACCT GATGTTGACT	CGCGCGGTGC	CATATTGCGA	CGTCAGTACA	ATTTATCCAC	ATCTCCGCTC
5600	ACATCATCTG TTGCTTCGGG	CACTAATCTG	GTTCTTTATG	CTGCCCCGTT	AAACCCTCTG	CTGCCCCTTC
5670	AGGATGGCAC TAATACTCAC	ATCATGGCCA	CTGAGGCATC	TAATTATGCC	CAGTATCGGG	TTGTCCGAGC
5740	CACGATCCGT TATAGGCCAT	TGGTGCCAAA	TGCTGTCGGC	GGTTATGCGA	TATCCATCTC	ATTCTGGCCT
5810	CAGACTACTA CTACCCCCAC	GTCTGTTGAT	ATGAACTCTA	TTACTTCCAC	TGATGTTAGG	ATTTTAGTTC
5880	AGCCTGGCAT TGCTTCTGAG	TTAGTTATCC	CTAGTGAGCG	CCTCCATTAT	CGTAACCAGG	GTTGGCGCTC
5950	TGTGGAGACC TCGGGTGTGG	CTGAGGAGGA	GGCTACCTCT	GGTTTAGTAA	TGCTTTGCAT	CCATGGCTCT
6020	CCTGTTAATT CCTACACTAA	TACCCCTTAT	ACCGGGGCGC	TTGGACTCCT	TGATTTCGCT	TTAGAGCTTG
6090	AGTTTAGGAA CTTGACACCC	GGGAACACCA	ACACCCGTGT	GTCCCGGTAT	ACAAGCACAG	CCCGTCATCG
6160	GTTGCGCCGC GGTGCTGATG	GCACCGCTGA	GCTTACTACC	ACGGCAGCCA	CGCGCTTCAT	GAAGGACCTG
6230	CACTTCACCG GCACAAATGG	GGTCGGTGAG	GTGGGTCGTG	GTATTGCTCT	CACACTCTTT	AATCTTGCTG
6300	ACACGCTTCT CGGTGGTCTG	CCGACAGAAT	TAATTTCGTC	GGCCGGGGGG	CAGTTATTCT	ACTCCCGTCC
6370	CGTCGTCTCA GCCAATGGCG	AGCCGACTGT	CAAGTTATAC	ACATCTGTAG	AGAATGCGCA	GCAGGATAAA
6440	GGGATCGCTA TTCCACACGA	CATAGATCTG	GGTGACTCCC	GTGTGGTCAT	CCAAGACTAT	GACAATCAGC
6510	ATGAGCAGGA TCGACCCACC	CCCTCGCCTG	CCCCCTCTCG	CCCTTTTTCG	GTTCTTCGCG	CTAATGATGT
6580	TTTATGGCTT TCTCTTACTG	CCGCCGAGTA	CGACCAGACT	ACATATGGGT	CGTCCACCAA	CCCGATGTAT
6650	GTCTCGGATA CTGTCACATT	TGTCAACGTG	GCTACAGGAG	CCCAGGCTGT	CGCCCGTTCC	CTCGACTGGT
6720	CTAAAGTTAC TCTGGACGGC	CGTCCACTTA	CTACCATCCA	GCAGTATTCC	AAAACATTTT	ATGTTCTCCC
6790	GCTTCGTGGG AAGCTATCTT	TCTGGGAGGC	CGGGACGACT	AAGGCCGGCT	ACCCCTACAA	TTACAACACA
6860	ACTGCTAGTG ATCAGATTCT	GATTGAAAAT	GCTGCTGGTC	ATCGTGTTGC	TATCTCCACC	TATACTACCA
6930	GCTTGGGCGC TGGCCCTGTG	TCTGTTTCTG	CAGTCGGTGT	TCTAGCTCCA	CATTCGGCTC	TTGCGGTCCT
7000	CGAAGACACT ATTGACTATC	CTGCCCGTGC	CCACACTTTT	GATGATTTTT	GCCCGGAGTG	TCGCGCTCTT
7070	GGTTTGCAGG GGTGTGCTTT	CCAGTCTACT	ATTGCTGAGC	TTCAGCGCCT	TAAAATGAAG	GTAGGTAAAA
7140	CCCGGGAGTT TTAATCAATT	TCCTCTGTGC	CCCCTTCATA	GCTTTGTTTT	ATTTCTTTTT	TTCTGCGTTC
7210	CGCGCTCCCT GGAAAAAAAA	AAAAAAA				

R4-PRE-RBV

File name	R4-PRE-RBV.sam
Ref name	FJ705359.1
Ref length	7237 nt
Program used	Tanoti Assembler 1.0
Total reads	1293526
Mapped reads	$1293526(100.00 \%)$
Average read length	$143 n t$
Coverage	$7216 n t$ (99.71\%)
Average depth	25411 reads/site

R4-PRE-RBV Consensus sequence

NNNNNNNNCG TATGTGGTCG ATGCCATGGA GGCCCATCAG TTCATTAAGG CTCCTGGCAT TACTACTGCC ATTGAGCAAG CTGCTCTGGC TGCGGCCAAT TCTGCCCTGG CGAATGCTGT GGTGGTCCGG CCGTTTTTAT CTCGTGTGCA AACTGAGATT CTTATTAATT TGATGCAACC CCGGCAGTTG GTTTTTCGGC CTGAAGTGCT CTGGAATCAT CCTATCCAAC GGGTTATCCA TAATGAACTT GAACAGTACT GTCGGGCCCG GGCTGGCCGT TGTCTAGAGG TTGGGGCCCA TCCAAGATCC ATTAATGACA ACCCAAATGT TCTGCACCGG TGCTTTCTAC GACCAGTTGG GAGAGATGTT CAGCGCTGGT ACTCTGCTCC TACCCGCGGC CCTGCGGCTA ACTGCCGCCG TTCTGCCTTG CGTGGCCTCC CCCCCGTTGA TCGTACTTAC TGTTTTGATG GATTCTCTCG CTGCTCATTT GCTGCAGAAA CTGGGGTTGC CCTTTATTCT CTACATGACC TCTGGCCGGC CGATGTTGCG GAGGCTATGG CTCGGCACGG GATGACACGC CTGTATGCTG CACTACATCT CCCCCCTGAA GTACTACTAC CACCCGGTAC TTACCATACA ACTTCATACC TTCTGATCCA CGACGGTAAC CGTGCTGTTG TGACCTATGA AGGTGATACT AGTGCAGGTT ACAACCATGA TGTCTCCATA CTTCGTGCAT GGATCCGCAC AACTAAGATA GTTGGCGATC ATCCGCTGGT GATAGAGCGT GTGCGGGCTA TTGGCTGCCA TTTTGTGTTG CTGCTTACTG CAGCCCCTGA GCCGTCACCA ATGCCTTATG TTCCATACCC CCGGTCGACA GAGGTGTATG TCCGCTCTAT ATTCGGCCCT GGCGGGTCCC CATCCCTATT CCCATCTGCT TGCTCTACGA AATCCACATT TCACGCCGTC CCGGTTCATA tTTGGGATCG GCTCATGCTT TTTGGCGCCA CTCTGGATGA TCAGGCGTTT TGCTGTTCAC GGCTTATGAC CTACCTCCGC GGGATTAGTT ACAAGGTCAC TGTTGGCGCC CTTGTCGCTA ATGAGGGGTG GAATGCTTCG GAGGACGCTC TGACCGCTGT TATTACTGCA GCGTATTTGA CCATTTGTCA TCAGCGTTAC CTCCGTACCC AAGCTATATC CAAGGGTATG CGCCGACTGG AGGTTGAGCA TGCCCAAAAA TTTATTACAA GACTCTATAG TTGGCTGTTC GAAAAGTCCG GCCGTGACTA TATCCCCGGC CGCCAGCTCC AGTTCTATGC ACAGTGCCGC CGTTGGTTAT CGGCAGGTTT CCATCTTGAT CCAAGGGTGC TTGTATTTGA TGAGTCCGTG CCCTGCCGCT GTAGGACATT TCTTAAGAAG GCTGTGGGTA AGTTCTGCTG TTTTATGAAG TGGTTAGGAC AGGAGTGCAC CTGTtTtTTG GAACCAGCAG AGGGTCTAGT TGGCGACCAT GGCCACGATA ATGAGGCCTA TGAAGGCTCT GAGGTCGATC AGGCCGAGCC CGCCCATCTC GATGTTTCCG GGACTTATGC CGTCCATGGC CGCCAACTTG AGGCCCTGTA TAGGGCGCTT AACATCCCGC ATGACATCGC TGCCCGAGCC TCCCGTTTGA CTGCCACCGT CGAACTCGTT GCAGGTCCAG ACCGCTTAGA GTGCCGCACT GTGCTTGGGA ATAAGACTTT CCGGACGACG GTGGTTGATG GCGCCCATCT TGAGGCGAAC GGCCCCGAGC AGTACGTCCT TTCGTTTGAC GCCTCTCGCC AGTCTATGGG GGCCGGGCCG CATAGTCTCT CCTACGAGCT CACTCCTGCT GGTTTGCAGG TCAAGATTTC ATCTAATGGC CTGGATTGCA CTGCAACATT CCCTCCGGGT GGGGCCCCTA GCGCTGCTCC GGGGGAGGTG GCAGCCTTTT GCAGTGCCCT CTACAGGTAC AACAGGTTCA CTCAGCGCCA TTCGCTTATA GGTGGCTTGT GGCTGCACCC TGAGGGGTTG TTGGGCATCT TCCCCCCTTT CTCTCCCGGG CACCTTTGGG AGTCCGCTAA CCCTTTTTGT GGGGAGGGAA CTTTGTATAC CCGGACATGG TCAACATCTG GTTTTTCTAG TGACTTTTCC CCCCCTGAGG CAGCCGTCGC AGTGCCGGCT GCTACCCCGG GGTTACGCCA CCCTACACCT CCTGTTAGTG ATATCCGGGT GCTACCGCCG CCTTCTGGAG AACTTCAGGT TGACACAGCG CCCGCTCCCC CTGCCCCTGG GCCCGCTCAA CCATCCAGCC CTGTTGGGCC GAAGGCTCCC GTGCGTAAGC CGCCAACGCC ACCATCCCCG CGCACCCGCC GCCTTCTTTA CACCTATCCG GATGGGGCAA AGGTGTATGC GGGGTCACTG TTTGAATCTG ACTGTGATTG GCTGGTTAAT GCATCGAACC CCGGCCATCG TCCTGGAGGC GGCATTTGCC ATGCCTTCTA CCAACGTTAC CCCGAGTCTT TCTATTCAAC TGAGTTCATT ATGCGCGACG GTCTTGCCGC GTATACTTTA ACTCCCCGGC CTATTATTCA TGCAGTGGCT CCTGATTATA GGGTTGAGCA TAACCCAAAG AGGCTTGAGG CAGCATACCG AGAGACTTGC TCCCGCCGCG GTACCGCCGC CTATCCACTC CTCGGCTCGG GTATATACCA AGTTCCCGTC AGCCTCAGCT TTGACGCTTG GGAGCGTAAC CATCGCCCCG GAGACGAGCT TTACCTAACC GACCTCGCAG CTACCTGGTT CGAGGCTAAC AAACCAACAC AGCCGGCCCT TACAATAACT GAGGATGCAG CCCGCACAGC CAACCTAGCA CTGGAGATCG ATGCTGCTAC GGAGGTCGGC CGGGCTTGTG CCGGCTGTGC AGTTAGTCCT GGGGTTGTGC ACTATCAGTT TACTGCTGGG GTCCCAGGTT CGGGGAAGTC ACGTTCTATA CAGCAGGGGG ATGTTGACGT AGTGGTTGTT CCCACTCGGG AGCTCCGGAA TAGTTGGCGT CGCCGGGGTT TTGCAGCTTT TACACCCCAT ACGGCGGCCC GTGTCACTAC GGGCCGTCGT GTTGTGATTG ATGAGGCCCC ATCTCTCCCA CCGCATTTGC TGCTACTACA CATGCAGCGG GCCTCGTCGG TCCACCTTCT TGGCGACCCG AACCAGATCC CTGCCATAGA CTTCGAGCAT GCCGGCCTGG TCCCCGCAAT ACGCCCTGAG CTTGCGCCCA CCAGTTGGTG GCATGTCACT CATCGCTGCC CCGCTGACGT GTGTGAGCTT ATACGCGGGG CTTATCCCAA AATCCAAACC ACTAGCCGCG TGCTGCGGTC CTTGTTCTGG AATGAGCCTG CCATTGGCCA GAAGTTAGTT TTCACCCAGG CTGCTAAGGC CGCCAACCCC GGTGCAATTA CAGTCCACGA GGCCCAGGGT GCCACTTTCA CGGAAACTAC AATCATAGCC ACGGCTGATG CTAGGGGGCT CATCCAATCT TCCCGAGCTC ATGCCATAGT CGCACTTACC CGCCACACAG AGAAGTGCGT CATATTTGAC GCTCCCGGCC TGTTACGTGA GGTTGGTATA TCGGATGTGA TTGTCAACAA TTTTTTCCTT GCCGGCGGGG AGGTGGGTCA CCATCGCCCC TCCGTGATAC

R4-PRE-RBV Consensus sequence

3710
3780
3850
3920
3990
4060
4130
4200
4270
4340
4410
4480
4550
4620
4690
4760
4830
4900
4970
5040
5110
5180
5250
5320
5390
5460
5530
5600
5670
5740
5810
5880
5950
6020
6090
6160
6230
6300
6370
6440
6510
6580
6650
6720
6790
6860
6930
7000
7070
7140
7210

CTCGCGGTAA TCCTGACCAG AACCTCGCGA CACTACAGGC CTTTCCGCCT TCTTGCCAGA TTAGTGCCTA TCACCAGTTA GCTGAGGAAC TTGGCCACCG CCCGGCCCCC GTCGCCGCTG TCTTGCCCCC TTGCCCTGAA CTTGAGCAAG GCTTGTTATA TATGCCGCAA GAGCTTACGG TGTCTGATAG CGTGCTGGTC TTTGAACTCA CGGACATAGT CCACTGCCGG ATGGCCGCCC CTAGCCAGCG GAAGGCCGTC CTATCGACAC TCGTGGGTAG GTACGGCCGT CGGACGAAGC TGTATGAAGC AGCTCATTCT GACGTCCGTG AGTCCCTGGC TAGGTTCATC CCCACCATTG GGCCCGTTCA GGCTACTACG TGTGAGTTAT ATGAGCTGGT TGAGGCCATG GTAGAGAAGG GTCAGGATGG CTCTGCCGTG CTTGAGCTCG ACCTCTGCAA TCGTGATGTA TCGCGTATCA CATTTTTCCA GAAAGATTGT AATAAATTCA CCACAGGGGA GACCATCGCC CACGGCAAGG TCGGCCAGGG CATCTCGGCC TGGAGTAAGA CCTTTTGTGC CCTGTTTGGT CCGTGGTTTC GTGCTATTGA AAAAGAAATA TTAGCCCTGC TCTCGCCTAA TATTTTCTAC GGCGACGCAT ACGAGGAGTC TGTGTTTGCC GCCGCTGTGT CAGGGGCAGG TTCAAGCATG GTATTTGAGA ATGATTTTTC AGAGTTTGAT AGCACCCAAA ATAACTTCTC CCTTGGTCTC GAGTGTGTGA TCATGGAGGA ATGCGGCATG CCCCAGTGGC TAATTCGGCT GTACCATCTG GTTCGGTCGG CCTGGATTCT ACAGGCGCCG AAGGAGTCTC TCAAGGGATT TTGGAAGAAG CATTCTGGTG AGCCCGGCAC CCTTCTCTGG AACACCGTCT GGAACATGGC GATCATAGCG CACTGCTATG AATTCCGTGA TTTTAGGGTT GCCGCTTTCA AGGGAGATGA TTCCGTGGTC CTCTGTAGCG ACTACCGTCA GAGCCGCAAT GCAGCGGCCC TGATTGCAGG CTGCGGACTC AAACTGAAGG TTGATTATCG CCCTATTGGG TTGTATGCTG GTGTGGTGGT GGCTCCTGGT TTGGGGACGC TACCCGATGT TGTGCGCTTT GCCGGCCGGC TGTCTGAGAA GAACTGGGGC CCTGGGCCGG AGCGGGCTGA GCAATTGCGC CTGGCTGTTT GTGACTTCCT TCGAGGGTTA ACGAATGTTG CGCAGGTTTG TGTCGATGTT GTATCCCGTG TTTATGGAGT TAGCCCTGGG TTGGTACATA ACCTTATTGG CATGTTGCAA ACCATAGCTG ATGGTAAAGC CCATTTTACA GAGACTGTTA AACCTGTGCT TGACCTCACG AACTCTATCA TACAGCGGGT GGAATGAATA ACATGTTTTG TGCATTGCCC ATGGGATCAT CATGCGCCCT AGGGCTGTTC TGTTGCTGTT CTTCGTGCTT CTGCCTATGC TGCCCGCGCC ACCGGCCGGC CAGCCGTCTG GCCGCCGTCG TGGGCGGCGC AGCGGCGGTG CCGGCAGTGG TTTCTGGGGT GACAGGGTTG ATTCTCAGCC CTTCGCCCTC CCCTATATTC ATCCAACCAA CCCCTTTGCC GCCGATGTCG TACCACAATC CGGGGCTGGA GCTCGCCCTC GACAGCCACC CCGCCCCCTC GGCTCCTCTT GGCGTGATCA GTCCCAGCGC CCCTCCGCTG CCCCACGTCG TCGACTTGCC CCAGCTGGGG CTGCGCCGCT GACCGCTATA TCACCTGCTC CTGATACAGC TCCTGTACCT GATGTTGACT CGCGCGGTGC CATATTGCGA CGTCAGTACA ATTTATCCAC ATCTCCGCTC ACATCATCTG TTGCTTCGGG CACTAATCTG GTTCTTTATG CTGCCCCGTT AAACCCTCTG CTGCCCCTTC AGGATGGCAC TAATACTCAC ATCATGGCCA CTGAGGCATC TAATTATGCC CAGTATCGGG TTGTCCGAGC CACGATCCGT TATAGGCCAT TGGTGCCAAA TGCTGTCGGC GGTTATGCGA TATCCATCTC ATTCTGGCCT CAGACTACTA CTACCCCCAC GTCTGTTGAT ATGAACTCTA TTACTTCCAC TGATGTTAGG ATTTTAGTTC AGCCTGGCAT TGCTTCTGAG TTAGTTATCC CTAGTGAGCG TGTGGAGACC TCGGGTGTGG CTGAGGAGGA GGCTACCTCT CCTGTTAATT CCTACACTAA TACCCCTTAT ACCGGGGCGC AGTTTAGGAA CTTGACACCC GGGAACACCA ACACCCGTGT GTTGCGCCGC GGTGCTGATG GCACCGCTGA GCTTACTACC CACTTCACCG GCACAAATGG GGTCGGTGAG GTGGGTCGTG ACACGCTTCT CGGTGGTCTG CCGACAGAAT TAATTTCGTC CGTCGTCTCA GCCAATGGCG AGCCGACTGT CAAGTTATAC GGGATCGCTA TTCCACACGA CATAGATCTG GGTGACTCCC ATGAGCAGGA TCGACCCACC CCCTCGCCTG CCCCCTCTCG TTTATGGCTT TCTCTTACTG CCGCCGAGTA CGACCAGACT GTCTCGGATA CTGTCACATT TGTCAACGTG GCTACAGGAG CTAAAGTTAC TCTGGACGGC CGTCCACTTA CTACCATCCA GCTTCGTGGG AAGCTATCTT TCTGGGAGGC CGGGACGACT A ACTGCTAGTG ATCAGATTCT GATTGAAAAT GCTGCTGGTC GCTTGGGCGC TGGCCCTGTG TCTGTTTCTG CAGTCGGTGT CGAAGACACT ATTGACTATC CTGCCCGTGC CCACACTTTT GGTTTGCAGG GGTGTGCTTT CCAGTCCACT ATCGCTGAGC CCCGGGAGTT TTAATCAATT TCCTCTGTGC CCCCTTCATA CGCGCTCCCT GGAANNNNNN NNNNNNN

[^0]: WGS, whole genome sequencing; y, years.

[^1]: Amino acid polymorphisms in RdRp consensus sequences of patient samples.
 ${ }^{\text {a }}$ Reported only if polymorphism was dominant amino-acid and depth was >10 at site.

[^2]: ribavirin; RdRp, RNA-dependent RNA-polymerase.

