
AbstractAbstract

Bank ATM Machine SimulationBank ATM Machine Simulation
Using Multiple Inheritance and Polymorphism Using Multiple Inheritance and Polymorphism

in C++in C++
AkramAkram AlhinnawiAlhinnawi, , HaiyangHaiyang WangWang

Advisor: Advisor: AbhilashaAbhilasha TibrewalTibrewal
Department of Computer ScienceDepartment of Computer Science

University of Bridgeport, Bridgeport, CT University of Bridgeport, Bridgeport, CT

Main ComponentsMain Components

Solving Diamond ProblemSolving Diamond Problem

ATM is one of the main sources of withdrawal and/or

deposit of money nowadays. In this project, a simulation

of a location with multiple ATM Machines (say ATM

booth outside the banks) is attempted. The ATM Machine

must be capable of servicing different types of account

holders (customers) depending on account type and

transaction type.

A customer can perform four transactions i.e. Withdrawal,

Deposit, Transfer and Balance Inquiry. Also, a customer

can have two types of Accounts, namely, Personal and

Business accounts with four possible subtypes of each.

Thus, a three level inheritance model is used. The

important technique is to find similar data members

among them and use multiple level inheritance to

maximize code reuse as well as to use method overriding

to implement polymorphism. Multiple inheritance creates

a diamond problem, with which, the UML diagram looks

like a diamond and the derived class will inherent

indirectly multiple copies from the first base class it’s

protected data members and public methods making them

ambiguous, so, they will not get past the compiler; while

using overriding technique in polymorphism to use two

accessor methods for the hierarchy creates a problem of

accessing many Data Types using only these two

methods. This project will show the solution of how to

solve diamond problem and overriding accessor methods

as well as the important components used.

Multiple inheritance hierarchies can be complex, which may lead

to the situation in which a derived class inherits multiple times

from the same indirect base class. This would lead to an issue

called Diamond problem in programming. In the presented

project, two classes, CheckingAcc and SavingAcc inherits from

two parents i.e. PersonalAcc and BusinessACC classes; also,

inherits indirectly from the main base class namely, BankAcc.

Thus CheckingAcc and SavingAcc inherits two versions of the

public and protected data members of BankAcc.

To solve this problem, virtual inheritance is needed. So, a change

into virtual base classes has been implemented on the

PreronalAcc and BusinessAcc classes. This has corrected the

problem by sending a single copy of the data members of the

BankAcc class to be inherited by the CheckingAcc and

SavingAcc. The following code excerpt illustrate the solution:
class BankAcc // Main Base class for the whole hierarchy

{

public: // Get() and Set() accessor methods

protected: // Data members

Timing Wheel object and its components in action.

Although this could work, but it is not maximizing the reuse

of the code, on the first hand, and not utilizing the

polymorphism technique that could effectively reduce the

code dramatically, in the second hand.

The solution presented in this project is using two

techniques. The first one, of which without it the solution

could not be implemented, is the polymorphism technique.

So, for each accessor method, in each class in the hierarchy,

the visibility is public and, of course, to override the

inherited method, a virtual keyword in C++ is being used.

The second one, is using void pointers, which has no data

type, to pass the values as parameters and return them. The

second technique requires an additional step which is static

casting the void pointer’s stored value into the needed data

type again. The following code excerpts shows this for the

Set() method:
virtual void Set(void *pValue, string ClassName, string varName)

{

if (varName=="SSN" && ClassName ==typeid(*this).name())

SSN = *static_cast<string*>(pValue);

else if (varName=="AccID" && ClassName ==typeid(*this).name())

AccID = *static_cast<unsigned*>(pValue);

else if (varName=="Balance" && ClassName ==typeid(*this).name())

Balance = *static_cast<float*>(pValue);

// The rest of the code….

}

Calling Set() method:

Get() method:

43-G : __ __ __

Main ComponentsMain Components
1. Bank Class

The central unit to which all ATMs will report. It

generates the customers and populates them in the Big

customer Queue, keep tracking of statistics about

transactions performed in each ATM and generates the

customer traffic to do transaction on ATMs. Also, it

controls the system using TimingWheel class.

2. ATM Class

Every ATM would include multiple customers waiting in

the customer queue of the ATM. A person would join the

shortest queue on arrival but might want to change queues

if another booth becomes available earlier. A process()

method is called to fetch the next customer from the

front() of the customer Queue. For Withdraw() method, a

check of the ATM machine is being done to make sure it

has enough cash as well as the customer has a valid

amount of cash in his account. Also, a check on the “From

account” in Transaction() method to transfer money from

one account into another is done to validate that it has

sufficient amount otherwise a decline transaction message

will be displayed. Other methods, i.e. Deposit() and

BalanceInquiry() is being conducted also by the process()

method. A pointer to BankPolicy object is being used to

check the constraints and limitations that any bank

enforce in its every daily transactions. At this phase, the

statistics is being collected through time.

3. BankPolicy Class

This class gathers all the policy variables enforced in the

bank whether it is for customers accounts or ATM. If the

bank changes some of its policy, then only the specific

variable(s) is/are changed. This will affect all the methods

in the Bank as well as ATM Classes.

4. Transactions Class

Only four methods i.e. Withdrawal(), Deposit(), Transfer()

and BalanceInquiry() have been used by the ATM Class.

5. Timing_Wheel Class

It has many slots, each of them contains many partitions

(as many as the number of ATMs that will become

available). A time slot also represents concurrent activity

at that point in time. A method, insert(), will insert a

partition in the timing wheel with the appropriate delay

i.e. the time spent by a customer from the current time. A

traffic_generator() method is used to distribute customers

fairly to the available ATM where the customer will move

to the less queue.

protected: // Data members

};

// Virtual Base classes

class PersonalAcc : virtual public BankAcc

{};

class BusinessAcc : virtual public BankAcc

{};

// Multiple inheritance classes

class SavingAcc : public PersonalAcc, public BusinessAcc

{};

class CheckingAcc : public PersonalAcc, public BusinessAcc

{};

UML diagram that shows the whole hierarchy as well as all the

components of the project.

Solving Two Accessor MethodsSolving Two Accessor Methods
To Deal with multiple Data Types To Deal with multiple Data Types
When designing an inheritance hierarchy, the best technique to

resort to is using Polymorphism to maximize reusing the same

code for methods and data members. The purpose of

polymorphism is to use the same method with the same signature

in multiple classes which can only exist in the hierarchy. The

problem stems when trying to use accessor methods that have the

same signature i.e. Get() to fetch the values of the data members

and/or Set() to assign a new value to the data members of all the

classes of the hierarchy. Because these two accessor methods are

needed to exist in all the classes of the hierarchy, the problem

becomes more clearer. How to deal with various data types,

passing them through parameters and returning their various data

types values. There are several solution for this problem. One of

them is to overload the method, each for a different data type.

Calling Get() method:

CONCLUSIONCONCLUSION
With this project , we conclude that using virtual inheritance

will solve the diamond problem and by utilizing polymorphism

along with void pointers we provided a solution to use

accessor methods in a multiple in heritance hierarchy to deal

with multiple data types.

The project simulated the whole procedure of ATM Banking

system, where proper transaction was dealt based on

corresponding bank account specifics. Also, it imitated the real

world time and customer queue by using timing wheel system,

and queue structure . All in all, the project achieved the

communication of Bank Customers and ATMs.

Parts of screen shots taken upon running the simulation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UB ScholarWorks

https://core.ac.uk/display/52955792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

