
UBSwarm: Design of a Software Environment to Deploy Multiple Decentralized Robots

Tamer Abukhalil , Madhav Patil, Advisor: Prof. Tarek Sobh

Robotics, Intelligent Sensing & Control (RISC) Laboratory

School of Engineering, University of Bridgeport

Advisor: Dr. Tarek Sobh

Abstract
This article presents a high-level configuration and task assignment software package

that distributes algorithms on a swarm of robots. The software allows the robots to

operate in a swarm fashion. When the swarm robotic system adopts a decentralized

approach, the desired collective behaviors emerge from local decisions made by the

robots themselves according to their environment. Using its GUI, the proposed system

expects the operator to select between several available robot agents and assign the

swarm of robots a particular task from a set of available tasks.

Introduction
We are developing an environment to utilize robots that have different modular design

and configuration of sensory modules, and actuators. The system will be implemented

as a GUI interface to reduce efforts in controlling swarm robotic systems. The proposed

application offers customization for robotic platforms by simply defining the available

sensing devices, actuation devices, and the required tasks. The main purpose for

designing this framework is to reduce the time and complexity of the development of

robotic software and maintenance costs, and to improve code and component

reusability. Usage of the proposed framework prevents the need to redesign or rewrite

algorithms or applications when there is a change in the robot’s platform, operating

systems, or the introduction of new functionalities. The basic hierarchy of the UBSwarm

deployment platform is shown in figure 1.

Software Architecture

When users make changes to the hardware devices that are plugged onto the robotic

agent, UBSwarm will provide the appropriate software package for these sensory

devices and actuators. This flexibility makes it easy for the end users to add and use

the new devices and consequently task applications.

The system is divided into two main subsystems, a robot deployment system and a

robot control and translation system. Figure 2 shows the two main subsystems. The

robot control system includes a robot control agent in which the user should provide all

the parameters required for all sensors incorporated on robots. The user should also

describe actuation methods used. The robot deployment system encapsulates a

variety of high-level applications module which contains the tasks the platforms

perform such as navigation, area scanning, and obstacle avoidance. A hardware

abstraction layer is used to hide the heterogeneity of lower hardware devices and

provide a component interface for the upper layers call. The deployment system

contains the developer interface (as shown in figure 3), the coordination agent, the

dynamic interpreter, and the knowledge base.

Simultaneous Localization and Mapping (SLAM)

Our platforms as shown in figure 5 is built using Arduino UNO, Arduino Due, and

Digilent PIC boards. The software is uploaded on each robotic agent using

UBSwarm interface running on a windows operating system. For distance sensing,

URM V3.2 and PING ultrasonic sensor were used. However, as experimental

results depict, the sensing capabilities of the platforms can be easily upgraded with

other sensors, e.g., laser range finders. Additionally, the platforms are also

equipped with an Xbee Shield from Maxstream, consisting on a ZigBee

communication module with an antenna attached on top of the Arduino Uno board

as an expansion module. This Xbee Series 2 module is powered at 2mW having a

range between 40m to 120m, for indoor and outdoor operation, respectively.

We ran two SLAM experiments. The

first experiment deploys two robots

with two sensing components

whereas three robots were deployed

each equipped with three sensing

components in the second

experiment. In the first experiments,

the mapping task took 23 minutes

and the second experiments took 10

minutes to complete.

As the mapping task progresses, Figure 6 shows the scanned measurements read

by two robots as hey are compared to the actual wall, objects and obstacles.

Figure 7 shows the results of the second experiment that is when one more

sensing component is added to each of the three robots (Red, green and blue

triangles). Figure 8 shows the map generated by the second experiment.

Human Rescue

Conclusion

The painting method begins by designing the end effecter. The end effecter is the

basic 1-Dof gripper attached to a 2-Dof arm that controls the position of the end

effecter in two movements; up, down, and 360 degree rotation of the gripper around

its own center. Figure 10 shows the movements and the offsets along direct Z axis.

The coating sectors created by the two robots are shown in figure 11. Figure 12

shows the two robots in painting action.

Wall Painting

As shown in figure 9 the swarm of robots generates simple actions based on

observations from its environment. The algorithm was developed for a group of

robots to autonomously cooperate such that the pulled object can be positioned and

oriented in the 2D space. Corporation between robots is achieved by exchanging

messages when additional robots are needed to pull the object. Each individual robot

is programmed to call another one if its wheel/tread on one side rotates in higher

speed than the other side. Table 1 shows the distances achieved by the different

number of robots with respect to different weights for the object being transported.

Fig. 1: System Overview

Figure 2: System

Architecture

Robot Deployment Environment

Robot Control Middleware

User interface

Face
Detecti
on

Obstacle

Avoidance

Navigation

Coordination
Agent

HAL

Knowledg

e base

Device Agent

Polling routine

Hardware Components

Xbee Sonar GPS

Robot N Robot 1

Device Library

Figure 3: operator Interface

The system developer interface provides the human operator command and control

windows. The user can interact with the computer through interaction tools which

provides a list of actions/tasks and the available robotic agents. The coordination

agent processes the available state data and activates high-level behaviors using

rules defined in a schema approach in order to select the appropriate robots and

actions based on the provided tasks. The Runtime interpreter maintains state

information regarding possible and running local services. The host and registry

maps are used in routing communication to the appropriate tasks. The flow of

information managed by the dynamic interpreter is shown in figure 4. The dynamic

interpreter will be the first service created which in turn will wrap the real JVM

Runtime objects.

Implementation

Figure 4: Adding services in

runtime

Another key feature of the UBSwarm

interface is to move the

communication implementation from

the user’s domain to the application

domain. Instead of learning

proprietary protocols for individual

robots, the user can utilize the

UBSwarm scripting language to pass

common commands to any robot

managed by the application.

UBSwarm adds a layer of abstraction

to such tasks, allowing users the

ability to intuitively obtain desired

responses without extensive

knowledge of robot-specific operating

systems and protocols.

Figure 5: The robots prototypes showing
different configurations

Figure 6. Experiment one , the
scanned measurements

Figure 10: The 2-Dof sketch

for the robot arm

Object weight Pulling Distance

1 robot 2 robots 3 robots 4 robots 5 robots

10 Kilograms 0.1 Meters 1.5 4 3 1

20 Kilograms 0 0.5 4 2 1

40 Kilograms 0 0 2 2 1

Table 1: Successful pulling distance according to

different number of robotic agents
Figure 9: Human rescue

using 4 robots

Figure 11: The surface

covered by the painter

Figure 12: the Nozzles

attached to the robots

UBSwarm makes it easier to students to program robotic systems that use the

actually available microcontrollers in the market. UBSwarm environment generates

programs that cope with changes of the robots configurations. Running experiments

has been easier using UBSwarm. Conducting multiple tests will eventually lead to the

optimal configuration of the swarm system that the students are looking for.

One of the experiments we conducted is mapping. Mapping or SLAM is a technique

used by robots to build up a map of an unknown environment . Readings obtained

by the robot will generate two-dimensional values that will be fed to a Matlab

program on a base station which in turn generates a 2-D map of the scanned area.

Each robot will communicate with the base station using Wireless Xbee modules

which provide communication via Wireless Wi-Fi 802.11 b/g/. One Xbee module is

attached to the base computer through USB port.

Figure 7. Experiment one , the
scanned measurements

Figure 8 Map
generated in second
experiment

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UB ScholarWorks

https://core.ac.uk/display/52955741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

