
Logical Control for Mobile Robots

Tarek M. Sobh, Mohamed Dekhil, Alyosha A. Efros and Raul Mihali

Computer Science Department

University of Utah

Salt Lake City, Utah 84112, USA

Abstract

In this work we present a distributed sensor-based control strategy for mobile robot

navigation. We investigate a server-client model, where the clients are executing their

tasks in parallel. The logical sensor approach is used as a hybrid framework to model and

implement the sensory system for control of the mobile robot. The framework allows for

a hierarchical data representation scheme, where sensory data and uncertainty is modeled

and used at di�erent levels, depending on the nature of the requested control command.

Keywords: Mobile Robots, Uncertainty Modeling, Distributed Control, Sensing.

1 Introduction

In any closed-loop control system, sensors are used to provide the feedback information that

represents the current status of the system and the environmental uncertainties. The main

component in such systems is the transformation of sensor outputs to the decision space, then

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UB ScholarWorks

https://core.ac.uk/display/52955726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Update commands

information

Environemnt

System output

system
Physical

commands

Joint-level

commands
to joint-level

Transformation

commands Signal

ErrorTask-level

Sensor outputTransformation
to decision

space

Figure 1: Closed loop control system.

the computation of the error signals and the joint-level commands (see Figure 1). For example,

the sensor readings might be the current tool position, the error signal the di�erence between

the desired and current position at this moment, and �nally, the joint-level command will be

the required actuator torque/force.

The sensors used in the control scheme shown in Figure 1 are considered to be passive

elements that provide raw data to a central controller. The central controller computes the next

command based on the required task and the sensor readings. The disadvantage of this scheme

is that the central controller may become a bottleneck when the number of sensors increases

which may lead to longer response time. By response time we mean the time between two

consecutive commands. In some applications the required response time may vary according

to the required task and the environment status. For example, in autonomous mobile robot

with the task of reaching a destination position while avoiding unknown obstacles, the time to

reach to the required position may not be important, however, the response time for avoiding

obstacles is critical and requires fast response.

Fast response can be achieved by allowing sensors to send commands directly to the physical

system when quick attention is required. This is analogous to human reactions to some events.

In the normal cases, the sensory systems in humans (e.g., eye, ear, nerves, etc.) sends perceived

2

data to the brain (the central controller) which analyze this data and decides the next action

to be taken based on the result of the analysis and the required task to be done. However,

humans have a very fast contracting reaction when touching hot surfaces for example. In such

cases, this reaction behavior is due to commands sent directly from the nerves at the skin spot

where the touch occurred to the muscles, bypassing the brain. This particular type of feedback

control and response needs to be encapsulated in sensing controllers.

In this work, several controllers (clients) are working in parallel, competing for the server.

The server selects the command to be executed based on a dynamically con�gured priority

scheme. Each of these clients has a certain task, and can use the sensor readings to achieve its

goal. A special client with the task of avoiding obstacles is assigned the highest priority. The

clients needs to know the current state of the system and the command history to update their

control strategy. Therefore, the server has to broadcast the selected command and the current

state of the system. Commands with lower priorities will be discarded and their sender sensors

noti�ed. Tasks with the same priorities will be randomly sampled, unless a strictly ordered

priority function is being considered.

Another aspect of this work is incorporating tolerance analysis and measures into the

used sensory system. This provides quantitative measures for the accuracy of the location

of measured points. It also serves as the basis for devising sensing strategies to enhance the

measured data for localization and map construction.

The logical sensor approach, which we used to model the sensory system in our mobile

robot, allows exible and modular design of the controllers. It also provides several levels of

data abstraction and tolerance analysis based on the sensor type and the required task. The

3

initial work on this project is described in [1]. This approach is used to build high-level requests

which may be used by the application program. These requests include measuring data points

within a speci�c tolerance or within a certain time limit.

A brief background and related work in sensor-based control and mobile robots is presented

in Section 2. The proposed control scheme is described in Section 3. Some experiments and

simulation results are presented in Section 4. Finally, our conclusions about this work are

presented in Section 5.

2 Related Work

There has been a tremendous amount of research in the area of sensor-based control including

sensor modeling, multisensor integration, and distributed control schemes for robotic applica-

tions in general and mobile robots in particular.

A sensor-based control using a general learning algorithm was suggested by Miller [2]. This

approach uses a learning controller that learns to reproduce the relationship between the sensor

outputs and the system command variables. Another technique for sensor-based obstruction

avoidance for mobile robots was proposed by Ahluwalia and Hsu [3]. In their technique, the

robot is able to move through an unknown environment while avoiding obstacles. Simulations

were carried out assuming the robot had eight tactile sensors and the world is modeled as a two-

dimensional occupancy matrix with 0's representing empty cells and 1's representing occupied

cells. Another method for sensor-based obstruction avoidance was proposed by Gourley and

Trivedi [4] using a quick and eÆcient algorithm for obstacle avoidance.

Hagar proposed a novel approach for sensor-based decision making system [5]. His approach

4

is based on formulating and solving large systems of parametric constraints. These constraints

describe both the sensor data model and the criteria for correct decisions about the data.

There has been a fair amount of research in developing languages for sensor-based control

for robot manipulators. The goal of such languages is to provide an easy tool for writing

adaptive robotic controller. Some of these languages are described in [6]. Several research

activities for sensor-based control for robotic applications can be found in [7].

Lin and Tummala [8] described an adaptive sensor integration mechanism for mobile robot

navigation. They divided the navigation process into three phases:

Sensing: �ring di�erent sensors then sending the perceived data to the data processor.

Integration: interpreting sensory data of di�erent types into a uniform representation.

Decision: Deciding the action plan based on the current workspace representation.

Luo and Kay [9] conducted a survey on multisensor-based mobile robots. In their survey,

the presented a number of control strategies that has been used in this area.

A distributed decentralized control scheme is proposed by Mutambara and Durrant-Whyte

[10]. This scheme provides exible, modular and scalable robot control network. This scheme

uses a non-fully connected control components, which reduces the number of interconnections

and thus reducing the number of required communication channels.

The idea of smart sensing was investigated by several researchers. Yakovle� et al. [11]

represented a dual purpose interpretation for sensory information; one for collision avoidance

(reactive control), and the other for path planning (navigation). The selection between the

two interpretation is dynamic depending on the positions and velocities of the objects in the

5

environment. Budenske and Gini [12] addressed the problem of navigating a robot through an

unknown environment, and the need for multiple algorithms and multiple sensing strategies

for di�erent situations.

Discrete Event Systems (DES) is used as a platform for modeling the robot behaviors

and tasks, and to represent the possible events and the actions to be taken for each event.

A framework for modeling robotic behaviors and tasks using DES formalism was proposed

by Ko�seck�a et al. [13]. In this framework, there are two kinds of scenarios. In the �rst one,

reactive behaviors directly connects observations (sensor readings) with actions. In the second,

observations are implicitly connected with actions through an observer.

In our proposed control scheme, the sensory system can be viewed as passive or dumb

element which provides raw data. It can be viewed as an intelligent element which returns

some \analyzed" information. Finally it can be vised as a commanding element which sends

commands to the physical system. Each of these views is used in di�erent situations and

for di�erent tasks. A detailed description of the proposed control scheme is presented in the

following section.

3 The Proposed Control Scheme

The robot behavior can be described as a function F that maps a set of events E to a set of

actions A. This can be expressed as:

F : E �! A

The task of the robot controller is to realize this behavior. In general we can de�ne the

6

controller as a set of pairs:

f(e1; a1); (e2; a2); : : : ; (en; an)g

where ei 2 E , and ai 2 A

The events can be de�ned as the interpretation of the raw data perceived by the sensors.

Let's de�ne the function T which maps raw data R to events E :

T : R �! E

The functions T and F can be closed form equations, lookup tables, or inference engine

of an expert system. This depends on the kind of application and the complexity of each

transformation.

3.1 Abstract Sensor Model

We can view the sensory system using three di�erent levels of abstractions (see Figure 2.)

1. Dumb sensor: which returns raw data without any interpretation. For example, a

range sensor might return a real number representing the distance to an object in inches,

and a camera may return an integer matrix representing the intensity levels of each pixel

in the image.

2. Intelligent sensor: which interprets the raw data into an event using the function T .

For example, the sensor might return something like \will hit an object," or \a can of

Coke is found."

3. Controlling sensor: which can issue commands based on the received events. for

example, the sensor may issue the command \stop" or \turn left" when it �nds an

7

Controlling Sensor

Intelligent Sensor

direction
Change

Interpretation
Raw Data

Distance = 1.3 in

ActionsInformation
High-level

will hit an
obstacle

Behavior

Selection

Dumb Sensor

T F

Figure 2: Three levels to view a sensor module.

obstacle ahead. In this case, the functions F and T should be included in the abstract

model of the sensor.

The dumb sensor can be used as a source for the feedback information required by the

control system. It can be also used to gather measurements to construct a map for the sur-

rounding environment. The process that uses a dumb sensor as a source of information needs

to know the type of that sensor, the format of the data the sensor returns, and the location

of the sensor, to be able to interpret the perceived data. The intelligent sensor may be used

for monitoring activities. The process that uses an intelligent sensor. needs to know only the

event domain and maybe the location of the sensor. On the other hand, the commanding

sensor is considered to be a \client" process that issues commands to the system.

3.2 A Distributed Control Architecture

Several sensors can be grouped together representing a logical sensor [14, 15]. We will assume

that each logical sensor is represented as a client process which sends commands through a

chanel to a multiplexer (the server process) which decides the command to be executed �rst.

Besides these logical sensors, we might have other processes (general controllers) that send

8

ER
T

Intellegent Sensor

E A

Commanding Sensor

FMonitor

Commands

Dumb Sensor

Raw Data

Sensor Space

R
Emergency

Exit

Actuator Actuator Actuator

Multiplexer

Low-level Controller

General Controllers

Events

Figure 3: The proposed control scheme.

commands to the server process to carry out some global goals. Figure 3 shows a schematic

diagram for the proposed control scheme.

Let's call any process that issues commands to the server a client process. In this �gure,

there are three types of clients:

1. Commanding sensors, that are usually used for reaction control and collision avoidance.

2. General Controllers, that carry out a general goal to be achieved (e.g., navigating from

one position to another.)

3. Emergency exits, which bypass the multiplexer in case of emergencies (e.g., emergency

stop when hitting an obstacle.)

9

In most cases, the general controllers require feedback information to update their control

parameters. This information is supplied by dumb sensors in form of raw data, or by intelligent

sensors in form of events. On the other hand, a monitoring process might use only intelligent

sensors as a source of \high-level" events instead of raw data. All clients (except for the

emergency exists) send the commands to a multiplexer. The multiplexer selects the command

to be executed based on a priority scheme which depends on the current state of the system and

the type of operation the client is performing. Once a command is selected, all other commands

can be ignored, since the state of the system will change after executing the selected command.

The low-level controller, shown in Figure 3, translates the high-level commands into low-

level instructions which drive the system's actuators. The low-level controller receives its

commands either form the multiplexer or from an emergency exit. After the command is

executed, the system state is updated, and the sensor space is changed. New sensor readings

are received and the cycle is repeated.

3.3 Communication Protocols

In the proposed control scheme, there are several clients sending commands asynchronously to

the server. Therefore, we need to de�ne a communication protocol to organize these commands,

and to set a priority scheme for selecting the command to be executed �rst. In most cases,

the clients need to know the current state of the system and the command history to update

their control strategy. Therefore, the server has to broadcast the selected command and the

current state of the system.

Each client may send commands to the server (through multiplexer) at any time. Each

10

command is associated with the signature of the sender. This signature includes the name

and type of the sender, and the priority value. In most cases, the reaction commands (usually

from a commanding sensor to avoid collision) has a higher priority than any other client. The

priority among the client may be speci�ed by the user and/or by the current state of the system.

Emergency exits should always bypass the multiplexer and sends its commands directly to the

low-level controller.

The message passing paradigm is used for process communication. This allows processes to

be running on di�erent platforms without the need for shared memory. In our implementation,

MPI, Message-Passing Interface [16] was used because of its portability and to workstation

clusters and heterogenous networks of workstations. It also provides an easy-to-use library

functions to carry out the required communication protocols.

3.4 Time vs. Accuracy

The most important criteria in any sensory system are time and accuracy. Time is the time

elapsed between issuing a read request to the logical sensor and the reply to that request.

This time depends on the physical aspects of the sensory system, and on the sensing strategy

implemented in the logical sensor. Tolerance is de�ned in this scheme as the region in which

the measurement resides.

The following are some variables that will be used in the tolerance analysis for our experi-

ment.

� vs : sound velocity.

� ymax : maximum distance in our indoor environment.

11

� ymin : minimum distance in our indoor environment.

� tm : the maximum time to get a measurement by the physical sonar sensor.

tm = 2ymax=vs

� vr : the linear velocity of the robot in meter/sec.

� !r : the angular velocity of the robot in rad/sec.

� td : decision time; the time to decide the next action based on the current reading.

In most cases, we cannot satisfy both requirement at the same time. Since the physical

sensor has its accuracy limitations, therefore, we might need to get several readings

regarding the same measured point to increase the accuracy. This of course with increase

the time of measurement. In case of multisensor system, the accuracy can be increased

by considering the readings from more than one sensor. In such cases, we should consider

the time of the data fusion algorithms used.

4 Experiments and Simulation Results

A simulator called XSim has been developed to examine the applicability of the proposed

control scheme. This simulator is based on a mobile robot called \LABMATE" designed

by Transitions Research Corporation [17]. This simulator displays the robot on the screen

and accepts actual LABMATE commands like go, turn, read-sonars, etc. In this environment,

moving from the simulation to the real robot is simply a matter of compiling the driver program

with the LABMATE library rather than the simulation library.

12

Figure 4: The LABMATE robot with its equipments.

Figure 5: A graphical simulator for the LABMATE.

The LABMATE was used for several experiments at the Department of Computer Science,

University of Utah. It also entered the 1994 AAAI Robot Competition [18]. For that purpose,

the LABMATE was equipped with 24 sonar sensors, eight infrared sensors, a camera and

a speaker. 1 Figure 4 shows the LABMATE with its equipment, and Figure 5 shows the

graphical simulator for the LABMATE.

In all previous experiments, the LABMATE was controlled using a conventional control

1The LABMATE preparations, the sensory equipments, and the software and hardware controllers were done

by L. Schenkat and L. Veigel at the Department of Computer Science, University of Utah.

13

strategy in which there is a central process (the controller) that does everything. This controller

receives raw data from the \dumb" sensors, interprets the data, plans for the next move based

on these readings and on the global goal it has to achieve, Tries to avoid obstacles, and �nally

issues the required commands. Beside that, the central controller may also produce an output

for monitoring purposes. The following are some drawbacks for this scheme:

� The central controller has to know the type and location of each sensor.

� It also needs to know the data format for each sensor type.

� It may take long time to issue the required command. This time depends on the inter-

pretation procedure for the data received from each sensor, and on the time to select the

next command.

� Adding or removing any sensor requires modifying the central controller.

4.1 Modeling the System

The sensors in the old scheme are used only as dumb sensors, while in the proposed scheme,

sensors are used in three di�erent levels. They are used as dumb sensors to provide feed-

back information for a general navigator. They are also used as intelligent sensors providing

information to a monitoring process (e.g., a speaker as an output device.) Finally they are

used as commanding sensors (clients) for collision avoidance. The emergency exits are hard-

ware bumpers that command the robot to stop if it touch any object. There is also a general

controller for navigation and map construction. The commands that can be issued are:

14

� GO-FRWD d: move forward distance d inches, where d is a non-negative real number.

When d = 0, the robot will keep moving forward until other command is issued.

� GO-BKWD d: move backward distance d inches, where d is a non-negative real number.

When d = 0, the robot will keep moving backward until other command is issued.

� TURN-RIGHT �: turn right � degrees, where � is a positive real number.

� TURN-LEFT �: turn left � degrees, where � is a positive real number.

� STOP: stop moving (or turning).

� RESET: restart operation after a fault.

� READ-SONAR: read the sonar data.

� GET-POSITION: get the current position of the robot.

The system can be in any of the following states:

� IDLE: the robot is not moving.

� FORWARD: the robot is moving forward.

� BACKWARD: the robot is moving backward.

� RIGHT: the robot is turning right.

� LEFT: the robot is turning left.

� FAULT: the robot hit an obstacle.

15

FORWARD

FAULT

RIGHT LEFT BACKWARD

Collision Collision

CollisionCollision

RIGHT
TURN

LEFT
TURN

FORWARD BACKWARD
GO GO

GO
BACKWARDFORWARD

GO

LEFT
TURN

RIGHT
TURN

STOP STOP STOP STOP

RESET

IDLE

GET-POSITION

Figure 6: The relation between the system states and the commands.

Figure 6 shows a state diagram for the system. This �gure shows that the robot has to go to

the idle state when the command is changed. For example, if the command GO-FORWARD

is issued, the system will go to the FORWARD state and will remain there as long as the

following commands are GO-FORWARD. Once the next command is di�erent, the system will

go to the IDLE state �rst, then it will go to the state corresponding to the current command.

This is analogous to what happens in controlling the LABMATE. The LABMATE has to stop

�rst before changing direction. Notice that the command READ-SONAR is not present in

that �gure since it can be executed at any state.

4.2 Commanding Sensors and Reaction Control

To simplify our model, the 24 sonar sensors are divided into four logical sensors as shown in

Figure 7.

1. LS-FRWD consists of the front 6 sensors.

2. LS-BKWD consists of the rear 6 sensors.

16

LS-FRWD

LS-BKWD

LS-

LEFT

LS-

RIGHT
d_rightd_left

d_bkwd

d_frwd

Figure 7: Dividing the sonar sensors into four logical sensors.

3. LS-RIGHT consists of the right 6 sensors.

4. LS-LEFT consists of the left 6 sensors.

These logical sensors communicate with each other to decide the command to be issued.

This makes the job of the multiplexer easier, since it will deal with the four logical sensors as

one client. The goal of the reactive control in this experiment is two fold:

1. Avoid obstacles.

2. Keep the robot in the middle of hallways, specially when moving through narrow corri-

dors.

We will de�ne two abstract values: close (c) and far (f). These two values represent the

distance between the robot and the closest object at any of the four sides. The range for c and

f are usually user de�ned values. The command to be issued as a reaction control depends on

the current state of the system and the distance value at each side. There are several ways to

de�ne a command function f to achieve the required goal. The assumption here is that there

17

is always enough space for the robot to rotate left of right, therefore there is no need to de�ne

any reaction control when the robot is rotating. One such function is shown in Table 1.

In this table, TURN-L/R means the command can be either TURN-LEFT or TURN-

RIGHT, and a dash \|" means no command is issued. Notice that, in case of d left and

d right have di�erent values, the values for d frwd and d bkwd are not important. This is

because we need to balance the distance to the left and to the right of the robot, and if, for

example, the distance in front (d frwd) is c, and the robot state is FORWARD, then moving

to the left (or to the right) will serve both; avoiding the object in front, and balancing the

distance on both sides. In the �rst case of the table, when the distance is c in all sides, the

robot will not be able to move anywhere, and the sensor readings will not change. This will

result in a deadlock which requires external help by moving at least one of the obstacles for the

robot to be able to move. Figure 8 shows graphically the di�erent cases when the system state

is FORWARD, and Figure 9 shows the same cases when the system state is BACKWARD.

4.3 The Priority Scheme

In this system, there are several clients for the server. Beside these clients, there are two

emergency exits represented by two bumpers, one on the front and one on the back. As

mentioned before, emergency exits do not compete for the server, rather it sends its commands

directly to the low-level controller.

The priority scheme in our application is set by each client as a number from 1 to 10, with

1 as the highest priority. Normally, 1 is reserved for the collision avoidance client. The server

checks for the priority associated with each command, and executes the command with the

18

GO-BKWDSTOP

TURN-RIGHT TURN-LEFT

TURN-L/RTURN-L/R

Figure 8: The reaction control when the system state = FORWARD.

STOP

GO-FRWD

TURN-L/R

TURN-L/R

TURN-LEFT TURN-RIGHT

Figure 9: The reaction control when the system state = BACKWARD.

19

highest priority while notifying the \losers" which command was executed. If two commands

with the same priority arrive at the same time, the server arbitrarily selects one of them and

ignores the other.

Commands that were not selected are cleared since the state of the robot has been changed

after executing the command with the highest priority.

4.4 Simulation Results

Several experiments were performed on the simulator to check the applicability and validity

of the proposed control scheme, and the results were very encouraging. The following is a

description of three of these experiments along with the output of the simulation showing

the portion of the commands that were selected and the trajectory of the robot during each

experiment.

Experiment (1)

This was the �rst experiment performed to demonstrated the applicability of this control

scheme. In this experiment, two clients were running simultaneously; the collision avoidance

client, and a simple navigator which always sends the command GO-FRWD. The collision

avoidance has priority 1, which is the highest priority, and the navigation client has priority

9. The following shows part of the output printed during this experiment which shows the

commands that has been executed by the server and some other information about the server

activities.

20

Collision Avoidance: client #1.

Simple Navigation: client #2.

Server Starts as process #0.

* Accepted RESET from 1 *

- Rejected RESET from 1 *

* Accepted GO-FRWD from 2 *

* Accepted GO-FRWD from 2 *

* Accepted GO-FRWD from 2 *

* Accepted GO-FRWD from 2 *

* Accepted GO-FRWD from 2 *

* Accepted GO-FRWD from 2 *

* Accepted TURN-LEFT from 1 *

- Rejected GO-FRWD from 2 -

* Accepted TURN-LEFT from 1 *

- Rejected GO-FRWD from 2 -

* Accepted GO-FRWD from 2 *

* Accepted GO-FRWD from 2 *

. . .

Two indoor con�gurations where used for these experiments; one representing a lab with

21

Figure 10: The trajectory of the robot in the lab environment.

tables and chairs, while the other represents long halls with doors and some obstacles. Figure 10

shows the trajectory of the robot in the lab environment, and Figure 11 shows the trajectory

of the robot under the same experiment in the hallway environment.

Experiment (2)

In the second experiment, we added another goal-directed client which tries to move the

robot to a certain goal location. This client has priority 5 which is higher than the simple

navigator process. This new client sends commands to the server to update the direction of

the robot such that it moves towards the goal location. In this experiment, the initial and the

�nal points were chosen such that there are some obstacles between them. Figure 12 shows

the robot trajectory for this experiment from the initial location to the goal location. Notice

that at several points, the collision avoidance client took over and moved the robot away from

the obstacles, then the new client updates the direction towards the goal point.

22

Figure 11: The trajectory of the robot in the hallway environment.

Figure 12: The trajectory of the robot from the initial to the goal point.

23

Figure 13: The trajectory of the robot while moving through open doors.

Experiment (3)

In the third experiment, we replaced the goal-directed client with a door-�nding client. This

new client tries to �nd open doors and direct the robot to go through these doors. Finding

doors using sonar sensor is very hard and problematic, and there is a lot of research in this

area. For this experiment we used a very crude algorithm and a simple hallway structures just

to demonstrate the capabilities of the proposed control scheme. Figure 13 shows the robot

trajectory while moving in a hallway environment with two open doors at di�erent places.

5 Conclusions

In this paper, a distributed sensor-based control scheme was proposed. In this scheme, each

sensor can be viewed with three di�erent levels of abstraction; dumb sensors which provide

raw data, intelligent sensors which provides high level information in a form of events, and

24

�nally, commanding sensors which can issue commands representing a reaction behavior for the

system. Commands can be issued by di�erent processes called clients. Each client may issue

commands at any time, and a multiplexer (the server) selects the command to be executed. A

priority scheme has to be de�ned as a bases for selection. An example for applying this control

scheme to a mobile robot was described along with the positive simulation results. The logical

sensor approach built on the dumb sensory system of our mobile robot allows a good exibility

and design modularity of controllers. By allowing for several levels of data abstraction and

tolerance analysis based on the sensor type and required tasks, there is signi�cant space for

expansions. The need for multiple algorithms and sensing strategies based on situations and

requirements it is reasonably lowered by using a distributed /logic control strategy. While

other existing techniques are mainly evolving on speci�c sensing and control applications, the

server/client parallel intelligent sensing approach proves a suÆcient generic basis to allow divers

and eÆcient controllers, and possibly nesting of various controllers. As immediate future steps

would be a more detailed decision function for logical sensors, an explicit de�nition of the

sonar sensors inter-communication protocols, and possibly higher level functions for increasing

the accuracy of the measured point locations based on the di�erent approaches discussed in

the paper. The data noise could be also considered and modeled. We believe that this control

scheme provides more exible and robust control systems, and allows more modular design for

the control systems. It also provides fast response for reaction behavior which is an essential

requirement in real-time systems.

25

References

[1] M. Dekhil, G. Gopalakrishnan, and T. C. Henderson. Modeling and veri�cation of dis-

tributed control scheme for mobile robots. Technical Report UUCS-95-004, University of

Utah, April 1995.

[2] W. T. Miller. Sensor-based control of robotic manipulators using a general learing algo-

rithm. IEEE Journal of Robotics and Automation, pages pp. 157{165, November 1987.

[3] R. S. Ahluwalia and E. Y. Hsu. Sensor-based obstruction avoidance technique for a mobile

robot. Journal of Robotic Systems, 1(4):pp. 331{350, Winter 1984.

[4] C. Gourley and M. Trivedi. Sensor-based obstacle avoidance and mapping for fast mobile

robots. In IEEE Int. Conf. Robotics and Automation, 1994.

[5] G. D. Hagar. Task-directed computation of qualitative decisions from sensor data. IEEE

Trans. Robotics and Automation, 10(4):pp. 415{429, August 1994.

[6] U. Rembold and K. Hormann. Languages for Sensor-Based Control in Robotics. Springer-

Verlag, 1987.

[7] C. S. George Lee. Sensor-based robots: algorithms and architecture. Springer-Verlag, 1991.

[8] C. C. Lin and R. L. Tummala. Adaptive sensor integration for mobile robot navigation.

In IEEE International Conference on Multisensor Fusion and Integration, October 1994.

[9] R. C. Luo and M. G. Kay. Multisensor integration and fusion for intelligent machines

and systems. Ablex Publishing Corporation, 1995.

26

[10] A. G. O. Mutambara and H. F. Durrant-Whyte. Modular scalable robot control. In IEEE

International Conference on Multisensor Fusion and Integration, October 1994.

[11] A. Yakovle�, X. T. Nguyen, A. Bouzerdoum, A. Moini, R. E. Bogner, and K. Eshraghian.

Dual-purpose interpretation of sensory information. In IEEE Int. Conf. Robotics and

Automation, 1994.

[12] J. Budenske and M. Gini. Why is it diÆcult for a robot to pass through a doorway using

altrasonic sensors? In IEEE Int. Conf. Robotics and Automation, pages 3124{3129, May

1994.

[13] J. Ko�seck�a and L. Bogoni. Application of discrete event systems for modeling and con-

trolling robotic agents. In IEEE Int. Conf. Robotics and Automation, pages 2557{2562,

May 1994.

[14] T. C. Henderson and E. Shilcrat. Logical sensor systems. Journal of Robotic Systems,

pages pp. 169{193, March 1984.

[15] E. D. Shilcrat. Logical sensor systems. Master's thesis, University of Utah, August 1984.

[16] University of Tennessee, Knoxville. MPI: a message-passing interface standard., May

1994.

[17] TRC Transition Research Corporation. LABMATE user manual, version 5.21L-f., 1991.

[18] L. Schenkat, L. Veigel, and T. C. Henderson. Egor: Design, development, implementa-

tion { an entry in the 1994 AAAI robot competition. Technical Report UUCS-94-034,

University of Utah, December 1994.

27

d right d left d frwd d bkwd FORWARD BACKWARD

c c c c STOP STOP

c c c f GO-BKWD |

c c f c | GO-FRWD

c c f f | |

c f c c TURN-RIGHT TURN-LEFT

c f c f TURN-RIGHT TURN-LEFT

c f f c TURN-RIGHT TURN-LEFT

c f f f TURN-RIGHT TURN-LEFT

f c c c TURN-LEFT TURN-RIGHT

f c c f TURN-LEFT TURN-RIGHT

f c f c TURN-LEFT TURN-RIGHT

f c f f TURN-LEFT TURN-RIGHT

f f c c TURN-L/R TURN-L/R

f f c f TURN-L/R |

f f f c | TURN-L/R

f f f f | |

Table 1: An example of a decision function for reaction control.

28

