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Abstract: Perinatal hypoxia ischaemia (PHI), acute and chronic, may be associated with considerable
adverse outcomes in the foetus and neonate. The molecular and cellular mechanisms of injury and
repair associated with PHI in the perinate are not completely understood. Increasing evidence is
mounting for the role of nutrients and bioactive food components in immune development, function
and repair in PHI. In this review, we explore current concepts around the neonatal immune response
to PHI with a specific emphasis on the impact of nutrition in the mother, foetus and neonate.

Keywords: nutrition; immunity; newborn; IUGR (intrauterine growth restriction); hypoxia;
ischaemia; nutritional immunology; nutrition immune axis

1. Introduction

Immune function in the foetus and newborn baby is continually evolving and influ-
enced by a host of nutritional, cellular metabolic and immune–microbiome interactions.
This review describes these influences and the impact of hypoxia and ischaemia on these
interactions in the perinatal period. Hypoxia refers to a decrease in oxygen and ischaemia,
due to a decrease in blood flow. If these happen in the perinatal period, i.e., in utero, or
in a baby at birth or in the first few weeks after birth, it is referred to as perinatal hypoxic
ischaemic injury (PHI).

In utero, this hypoxic ischaemic injury may be slowly progressive or chronic. It
is usually the result of placental insufficiency (also known as placental dysfunction) in
delivery of blood and therefore oxygen and nutrients to the foetus. This can result in
foetal growth being suboptimal or restricted, commonly referred to as intrauterine growth
restriction (IUGR). Common causes for placental insufficiency in utero include maternal
pregnancy induced hypertension, diabetes, smoking and vascular malformations involving
the placenta.

Both acute and chronic hypoxic-ischaemic injury have the potential to influence the
inter-relationship between nutrition and immunity in the developing foetus and baby.

Hypoxic ischaemic injury in the perinatal period may also be acute. It may, for example,
be due to placental inflammation (chorioamnionitis), placental abruption, uterine rupture,
cord prolapse, or be associated with complicated deliveries such as cephalopelvic dispro-
portion and with postnatal events such as hypoxia in respiratory failure from pneumonia
or meconium aspiration [1].
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2. Evolution of Immune Function in the Foetus and Perinatal Period

Immune function progressively remodels from foetal life in utero, after birth and
throughout early childhood though remains limited in the perinatal period [2]. Devel-
opment of immunity begins as early as 5 weeks in the embryo with the emergence of
macrophages, followed by thymocytes, pre-β cells in liver and spleen, follicular dendritic
cells and T and B cell development [3]. Concurrent tissue immune repertoires in the gas-
trointestinal tract, skin and respiratory tract (such as mucosal associated invariant T cells;
innate lymphoid cells, langerhans cells and dendritic cells) also develop.

The foetus remains relatively immunologically tolerant as the parts of the immune
system evolve [4,5]. Immune tolerance is important for three principal reasons: (a) to
prevent rejection of the foetus, (b) to promote microbial colonisation after birth and (c) to
prevent tissue damage from over-activation due to stress, injury and infection. Passive
immunity from the mother is a critical component of immune protection both in utero and
after birth (Figure 1, [6–18]). In these apparent quiescent phases, the immune system has
the capacity to activate and respond to stressors that the foetus and neonate is exposed to
in both specific and non-specific manners [6]. Examples of these can be seen in cytotoxic
T cell immune responses to in utero infections such as with Human Immunodeficiency
Virus [19], priming by in utero exposure to bacterial pathogens such as Staphylococcus and
Lactobacillus [20], development of memory B cells in utero and in adaptations to physiologic
and pathological hypoxia [21,22]. There is a fine balance between immune tolerance and the
ability to mount a response to stressors such as infection and hypoxia and in this, nutrition
plays an important multidirectional role (Figure 2, [18,23–27]).
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Figure 1. The perinatal immune repertoire: examples of differences in defence and immunity in the 
perinatal period compared to older children and adults. Image created using Biorender.com (ac-
cessed on 29 May 2022). 

Figure 1. The perinatal immune repertoire: examples of differences in defence and immunity in the
perinatal period compared to older children and adults. Image created using Biorender.com (accessed
on 29 May 2022).
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Figure 2. The nutrition–microbiome–immune axis in perinatal hypoxia-ischaemia (PHI): the inter-
relationship between perinatal nutrition, the maternal, placental and neonatal microbiome, and 
immunity (altered inflammatory response: injury, protection and repair) in the perinatal (foetal and 
neonatal) period is illustrated. Image created using Biorender.com (accessed on 29 May 2022). 

3. Nutrition–Immunity Interdependence 
3.1. Immunometabolism 

Once an immune cell is activated, effector functions such as proliferation, cytokine 
production and chemotaxis are set in motion. There are at least six major metabolic 
pathways within immune cells that are important during immune activation [28]. These 
include glycolysis, the citric acid/Krebs/tricarboxylic acid (TCA) cycle, the pentose 
phosphate pathway, fatty acid oxidation, fatty acid synthesis and amino acid metabo-
lism. The metabolic pathways used by different immune subsets differ; for example, 
under aerobic conditions, neutrophils utilise glucose and glycolysis as their source for 
ATP production, whereas T cells, B cells and monocytes principally use oxidative phos-
phorylation [29]. 

Any disruption of cellular metabolism can potentially have an impact on the effector 
function of the evolving immune system through changes in the availability of adequate 
substrate for high energy-requiring immuno-metabolic pathways. There is no transla-
tional neonatal research to consolidate this hypothesis but limited evidence from animal 
studies, suggests that the ketone body beta-hydroxybutyrate (βHB) can influence activa-
tion of the innate inflammatory response (NOD-like receptor protein 3 NLRP3) [30]. This 
in turn has the potential to influence release of pro-inflammatory cytokines. ẞHB is a 
fatty acid substrate which is transported to the liver and converted to Acetyl coenzyme A 
(coA). Acetyl coA then enters the TCA cycle and is used for ATP synthesis. Correlates for 

Figure 2. The nutrition–microbiome–immune axis in perinatal hypoxia-ischaemia (PHI): the interrela-
tionship between perinatal nutrition, the maternal, placental and neonatal microbiome, and immunity
(altered inflammatory response: injury, protection and repair) in the perinatal (foetal and neonatal)
period is illustrated. Image created using Biorender.com (accessed on 29 May 2022).

3. Nutrition–Immunity Interdependence
3.1. Immunometabolism

Once an immune cell is activated, effector functions such as proliferation, cytokine
production and chemotaxis are set in motion. There are at least six major metabolic path-
ways within immune cells that are important during immune activation [28]. These include
glycolysis, the citric acid/Krebs/tricarboxylic acid (TCA) cycle, the pentose phosphate path-
way, fatty acid oxidation, fatty acid synthesis and amino acid metabolism. The metabolic
pathways used by different immune subsets differ; for example, under aerobic conditions,
neutrophils utilise glucose and glycolysis as their source for ATP production, whereas T
cells, B cells and monocytes principally use oxidative phosphorylation [29].

Any disruption of cellular metabolism can potentially have an impact on the effector
function of the evolving immune system through changes in the availability of adequate
substrate for high energy-requiring immuno-metabolic pathways. There is no translational
neonatal research to consolidate this hypothesis but limited evidence from animal studies,
suggests that the ketone body beta-hydroxybutyrate (βHB) can influence activation of the
innate inflammatory response (NOD-like receptor protein 3 NLRP3) [30]. This in turn
has the potential to influence release of pro-inflammatory cytokines. βHB is a fatty acid
substrate which is transported to the liver and converted to Acetyl coenzyme A (coA).
Acetyl coA then enters the TCA cycle and is used for ATP synthesis. Correlates for this
in human studies do not yet exist but in theory in the context of perinatal events, this
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may promote activation of inflammation in the placenta and in foetal cellular tissue with
subsequent hypoxia and its clinical consequences.

βHB may also have an antioxidative effect, which contributes to reduced oxidative
stress damage through the oxidative pathway and suppresses inflammatory responses [30].
In animal studies an epigenetic effect in suckling rats has been demonstrated through
its action as a histone deacetylase inhibitor [31]. This inhibitory action upregulates gene
expression of brain derived neurotrophic factor thus promoting neuronal regeneration.

There are no robust explorative human foetal and neonatal studies on how nutritional
deficiencies linked to the immuno-metabolic pathway may correlate with short- and long-
term clinical manifestations of perinatal hypoxia-ischaemia (PHI) and on the potential
ability of substrates to power up or quiesce immunological pathways. However, useful
correlates from other mammalian foetal and neonatal research have been described [32].

3.2. Nutritional Immunology: Macro and Micronutrients and Immune Function

In an extensive review, Maggini explores the inter-relationship between immune
function and nutrition across the ages [33]. In order to function, the immune system
in humans is co-dependent on adequate macronutrient and micronutrient support from
the earliest phases of immune development. Table 1 [34–57] outlines the most studied
micronutrients and selected macronutrients that are essential for immunocompetence. In
the perinatal period foetal nutrition is influenced by maternal nutrition and the transport
and transfer of this across the placenta–foetal barrier. There are no extensive human studies
of the dynamics of placenta–foetal transfer of macro and micronutrients or of the impact of
their supplementation on foetal and neonatal immune function but, as outlined in Table 1,
correlates of research in animal and cord blood studies exist.
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Table 1. Micronutrients and macronutrients: contribution to immune function, and potential impact of supplementation on perinatal immunity.

Nutritional Component Contribution to Immune Function
[23,33] Potential Impact of Supplementation on Perinatal Immunity

MICRONUTRIENTS Innate Adaptive

Vitamin A [34]

Structural and functional integrity of mucosal
cells in innate barriers (e.g., skin, respiratory
tract).
Function of innate immune cells (e.g., natural
killer (NK) cells, macrophages, neutrophils)

Important in T and B lymphocytes function.
Involved in development and differentiation
of Th1 and Th2 cells. Supports Th2
anti-inflammatory response

Adjuvant vitamin A in neonatal pneumonia increases IgM and IgG
levels and shortens duration of infection
Al-trans-retinoic acid supplementation in rat pups resulted in
significantly higher levels of intestinal superoxide dismutase and
glutathione peroxidase with reduced tissue tumour necrosis
factor-α levels. These suggest a protective effect

Vitamin B [35–38]

Various B Vitamins impact function and
activity of innate immune cells including
dendritic cells (B6), NK cells (B6, B9/Folate,
B12) and phagocytes (B2). B6 has a role in
production of cytokine.

Important in synthesis and modulation of
lymphocytes and activation of antibody
production (B6, B9/Folate, B12)

Role in supporting antibody response to
antigens and Th1 response (B6, B9/Folate).

Maternal vitamin B12 supplementation may cause a slower
decline in H1N1-IgG levels in neonates
Antenatal supplementation with B9 in sheep was associated with
increased levels of IgM and IgA in the offspring
Maternal folic acid supplementation is associated with persistence
of protective anti hepatitis B surface antigen five years after
primary vaccination in the infant.
Few other B vitamins have been studied in terms of their impact
on immunity. Those that have shown little to no effect.

Vitamin C [39,40]

Antioxidant properties
Promotes epithelial integrity
Increases complement
Promotes structure, function and movement
of neutrophils, phagocytes and lymphocytes
Important in NK cell activity and chemotaxis
Role in apoptosis and clearance of neutrophils
from infection site by macrophages

Increased antibody levels
Increased lymphocyte differentiation and
proliferation

Improved neutrophil chemotaxis in neonates with suspected
sepsis
Maternal vitamin C supplementation influenced cord blood
mononuclear cell function by increasing cytokine (IFN-γ and IL-4)
production, and decreasing IL-10 production

Vitamin D [41,42]

Promotes macrophage differentiation from
monocytes
Immune cell proliferation and cytokine
production
1,25 dihydroxyvitamin D3 regulates defensins
and cathelicidins (antimicrobial proteins that
can directly kill pathogens)

Suppresses antibody production, inhibits T
cell proliferation

Maternal Vit D correlates with leucocyte antigenic responses in
breast feeding infants Newton 2022
High dose maternal vitamin D supplementation enhances
proinflammatory cytokines response in cord blood. IL-17 A
production increased (important in defence against respiratory
pathogens)
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Table 1. Cont.

Nutritional Component Contribution to Immune Function
[23,33] Potential Impact of Supplementation on Perinatal Immunity

MICRONUTRIENTS Innate Adaptive

Vitamin E [43] Protects against free radical damage
Enhances IL-2 and NK cell cytotoxic activity

Enhances T cell mediated function, promotes
Th1 and suppresses Th2

Maternal peripartum supplement in calves improved phagocytic
activity of neutrophils

Zinc [44]

Protects against free radical damage
Modulates cytokines enhancing CD8+
proliferation
Maintains physical immune barriers

Important in immune cell growth and
differentiation
Essential for T cell development and
activation
Supports Th1 response

Maternal supplementation improved IL-6 production and reduced
number of episodes of diarrhoea in infants at 6 months of age

Iron [45]

Regulates cytokine production and function
Supports killing of bacteria by
neutrophilsImportant in the generation of free
radicals

Supports differentiation and proliferation of T
cells
Component of enzymes essential for function
of immune cells

Supplementation in neonates linked to increased Gram-negative
infection. In vitro studies have shown overgrowth of pathogens
that are implicated in neonatal sepsis in neonatal blood

Copper [46]

Free-radical scavenger
Antimicrobial properties
Important for IL-2 production and
inflammatory response

Role in T cell proliferation, antibody
production and cellular immunity

Perinatal supplementation in maternal cows increased antibody
response and a reduction in respiratory infection in their calves

Selenium [47]
Essential for enzyme function (selenoproteins)
counteracting free radicals
Affects function of NK cells and leukocytes

Supports T cell proliferation
Role in antibody mediated immunity

Systematic review identified a 12% reduction in incidence of late
onset sepsis in very low birthweight neonates when supplemented
postnatally with selenium

MACRONUTRIENTS Innate Adaptive

Glucose/Oligosaccharide
[48,49]

Metabolites are used as immune cell
substrates.
Type 2 innate lymphoid cells require glucose
to proliferate
Required for the effector functions of human
NK cells, such as GLUT1, CD98 and CD71
Required for the activation of dendritic cells to
express HLA-DR, CD80, CD86 and IFN-α

Role in class switch recombination in B cells
Role in IFN-γ production from GAPDH.Helps
express of Th2 cytokines (IL-4, IL-13)
Supports proliferation of CD8+ T cells
Role in activation of T reg cells

Innate: Increased cord blood cytokines (IL-6, IL-8 and TNF- α)
when exposed to high glucose concentration post staphylococcal
infection
Inhibition of mTORC1 in murine NK cells prevents glycolysis
required for granzyme b and IFN-γ production.Adaptive:
required to drive proliferation and differentiation of CD4+ T cells
in adult studies.
Oligosaccharide diet may contribute to regulating Th1 cells in
mice.
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Table 1. Cont.

Nutritional Component Contribution to Immune Function
[23,33] Potential Impact of Supplementation on Perinatal Immunity

MICRONUTRIENTS Innate Adaptive

Amino acids [50,51]

Reduces TNF-α production by macrophages
reducing the signalling to T-Lymphocytes
High levels of adenosine increase cAMP,
affecting neutrophil response and reduced
expression of TNF-α. May also affect NK
regulation.
Glutamine: can affect eosinophil metabolic
plasticity, required for T-cell function related
to myeloid derived suppressor cells Arginine:
required for T-cell function related to
myeloid-derived suppressor cellsAlanine: a
significant energy substrate for leucocytes
Glycine: required in proliferation and
antioxidative defence of leucocytesHistidine:
required for the production of histamine
required for macrophages and dendritic cell
function

Glutamine: required for earliest stages of
T-cell activation
Asparagine: may modulate lymphocyte
blastogenesis
Aspartate is required lymphocyte proliferation
Histidine: required for production of
histamine required for T lymphocyte
differentiation and function
Lysine: required for proliferation of
lymphocytes
Tyrosine: the immediate precursor for
catecholamine hormones, therefore important
in the activation of T and B cells Serine:
utilised for structural components and
signalling in T and B cells.

Oral supplementation of glutamine enhances mucin synthesis in
the small intestine of piglets.
In rat pups and young piglets, dietary deprivation of glutamine
has been associated with diminished intestinal integrity;
supplementation improved growth, barrier function and protected
against pathogen damage
Arginine, glycine and histidine supplementation can improve
immunological response.
Lysine, tryptophan and tyrosine deficiency limits proliferation of
lymphocytes and impairs response in chickens.
Threonine improved outcome for immune responses in piglets
challenged with E-Coli

Dietary Nucleotides
[52,53]

Role in innate immunity
Required for initial leukocytes stimulation Required for initial lymphocyte activation

IUGR piglets have lower serum cytokine (IgA, IL-1β and IL-10),
peripheral leucocyte levels and down regulation of innate
immunity-related genes TOLLIP, TLR-9 and TLR-2.
Dietary nucleotide supplementation improved peripheral
leucocyte count, IgA and IL-1B and gene expression of TOLLIP,
TLR-4 and TLR-9 in ileum
A nucleotide free diet was associated with an increase in delayed
cutaneous hypersensitivity, reduced NK cell and macrophage
activity and spleen cell production of IL-2 in rodent studies

Glycoproteins [48,54] Improved bactericidal properties of cells such
as MDSC, e.g., with lactoferrin

Glutamine supplementation in low-birth-weight infants was
associated with less translocated bacteria across the intestinal
mucosa. This corresponded to a dampened immune response
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Table 1. Cont.

Nutritional Component Contribution to Immune Function
[23,33] Potential Impact of Supplementation on Perinatal Immunity

MICRONUTRIENTS Innate Adaptive

Short chain Fatty acids
(SCFA) (for example, Beta
hydroxybutyrate) [35,55]

Ketone bodies: neutrophil effector function
Fatty acid oxidation: expansion and cytokine
production by Type 2 innate lymphoid cells

Differentiation of CD8+ t cells into T cytotoxic
cells.
Promotes CD4+ T cells IL-4 production in
response to allergens.
Promotes nitric oxide, IL-6 and TNF-α release
Beta-hydroxybutyrate reduces B cell function

SCFA boosts the inflammatory process in murine studies.
Maternal supplementation can reverse viral-induced islet
inflammatory processes and therefore type 1 diabetes via
modification of the microbiota in rat pups

Long chain
Polyunsaturated Fatty
Acids (LCPUFAs)
[35,56,57]

LCPUFAs are used in cP450 pathway and
produce Prostaglandins (PGs).
PGs have multiple effects on dendritic cells,
basophils, eosinophils, mast cells and
macrophages

LCPUFAs such as eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA) are utilised
in pathways to produce specialised
pro-resolving mediators

DHA and arachidonic acid modulate Th1 and
Th2 cell generation

Can support tolerance and priming of the
immune system (through suppressive IL-10
and transforming growth factor B)

Utilised in cP450 pathway and important in
production of PGs.
PGs have effects on Th1, Th2 cells, B cells,
cytotoxic T cells, NK cells and on cytokine
production such as interleukins and IFN
gamma

Mice pups showed better responses to infections and vaccination
in mothers supplemented with PUFAs during pregnancy

LCPUFA formula fed infants were more likely to produce
cytokines and lymphocyte populations similar to breast fed infants



Nutrients 2022, 14, 2747 10 of 19

3.3. The Nutrition–Microbiome–Immune Axis in the Foetus and Baby

Most human and animal studies have focused on a diet (nutrition)–microbiome–
immune axis, or gut–immune axis [58,59]. In the foetus and newborn, the potential impor-
tance of the maternal microbiome is being understood, including the role of the microbiome
in early human immunity [60–62]. Whilst existing studies do not show conclusive mech-
anisms of changes in the maternal microbiome or the impact of these changes, there is
general agreement that there are changes in the maternal microbiome in the third trimester
and these generally reflect a change in the microbial diversity [63]. The consequences of
these changes are not yet fully understood.

The placenta has a natural non-pathogenic microbiome which may affect immune
pathways during pregnancy and early foetal development [64]. The composition of these
commensal communities reflects the composition of the microbiome of maternal diet and
the oral cavity and may represent haematological spread. Neonates develop a complex
microbiome within the first week of life and the composition of this fluctuates through the
first few years. Exactly when the neonate is first exposed to bacteria is not known, but it is
possible that first exposure comes from placental bacterial communities.

Creation of a healthy microbiome in the foetus and neonate that has a dynamic
interaction with the host gastrointestinal metabolism establishes an adequate barrier and
promotes absorption of nutrients, effective innate and adaptive immunity [65]. The presence
of lactobacilli in the gut is known to alter the secretion of both interleukin-10 and interleukin-
12 by macrophages which, in the presence of pathogens, results in an altered function of
these cells and changed signalling to other components of the immune system. Antibody
production by B cells can be influenced by the exposure to a wide diversity of appropriate
gut microbiota and this may increase the efficacy of some aspects of the immune system.

Additional mechanisms, such as through epigenetic influences (nutri-epigenomics)
assist the microbiome in contributing to healthy immune development [66]. Examples
include transplacental passage of short chain fatty acids (SCFA) such as butyrate, that
are produced through both diet and the maternal microbiome and which can influence
epigenetics of the foetal immune repertoire. This potential effect of the maternal diet may
also be reflected in the presence of these SCFA in breast milk, thus possibly providing
further evidence of the link between the maternal microbiome and early immunity [66].

4. Immunological Changes in Perinatal Hypoxic Ischaemic Injury

In perinatal hypoxic ischaemic injury (PHI), decreased blood flow results in oxygen
and nutrient depletion in the foetus and neonate. The brain is the most studied organ
in relation to neonatal hypoxic ischaemic injuries (hypoxic ischaemic encephalopathy),
together with studies of the impact of hypoxia and ischaemia on the neonatal gut [67,68].
Ischaemia triggers an inflammatory cascade and systemic, local and cellular immune medi-
ated responses are activated. These cascades involve neutrophils, leucocytes, microglia,
dendritic cells, macrophages, and lymphocytes, as well as the release of proinflammatory
cytokines such as tumour necrosis factor alpha (TNF-α), interleukins (e.g., IL-1β and IL-6)
and the antioxidant defence system [69,70]. In the brain, this results in the breakdown
of the blood–brain barrier and infiltration of immune cells into the cerebral parenchyma
leading to oedema and tissue damage. Immune cells release inducible nitric oxide synthase
(iNOS), and this contributes to a negative effect of nitric oxide on cerebral ischaemia.

Following PHI, there is a brief recovery period if blood flow and oxygen are restored,
followed by a secondary reperfusion injury 6 to 48 h after the initial injury that can last for
days. This secondary injury appears to be related to oxidative stress damage, excitotoxicity
and inflammation [71]. This may manifest in seizures, further cytotoxic oedema, excitotoxin
release, impaired cerebral oxidative energy metabolism and eventually neuronal cell death.

The transcription factors hypoxia-induced factors (HIF), which enable tissues to adapt
to hypoxia, have been studied in the context of PHI [72]. A potential relationship exists
between HIF and amino acid metabolism in this situation.
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4.1. Intrauterine Growth Restriction, Chronic Placental Insufficiency and Development of
Immune Functions

In piglets, restriction of nutritional supply while inducing foetal hypoxia-ischaemia
through obstruction of blood flow to the placenta results in foetal growth restriction with
concomitant impaired immune development. This has been shown by altered plasma
concentrations of interleukin 1β, immunoglobulin A, circulating lymphocytes, mRNA
abundance of Toll-like receptor 9 and Toll-interacting protein in the ileum [73]. Similarly,
in rat pups, T lymphocyte number and dual specificity protein phosphatase 1 (DUSP1), a
CD4+ and CD8+ differentiating factor, were decreased in those born through artificially
induced foetal hypoxia-ischaemia. These findings imply that foetal nutrition is critically
important in optimal immune development in the baby.

There are no clinical human immunological studies in severely IUGR babies in
whom an absolute hypoxic-ischaemic insult is known. However, animal correlates for
altered immune function in the presence of foetal growth restriction (which may include
hypoxia-ischaemia in placental inflammation) exist [24]. Further study is needed into
the inter-relationship between maternal dietary deficiencies, microbiome variation and
placental transfer or active transport of essential nutrients and microbiota in foetal and
neonatal compromise.

Babies born growth restricted are at a higher risk for overall morbidity and mortality
and this may in part be due to inter-related immunological factors. Interestingly, a detailed
review has failed to show an independent association between IUGR and necrotising
enterocolitis, unless in the presence of formula feed [74]. In a longitudinal study of Kenyan
infants, there was a reduction in total lymphocyte counts at birth which persisted to 1 year
in children with a birth weight below 2.5 kg [75]. Cell mediated immunity, as measured
by response to tuberculin skin test, correlated significantly with birthweight, blood levels
of iron and thiamin at birth, together with folate, pyridoxine and riboflavin levels at 6
and 12 months. This suggests an interrelationship between nutrition and immunity in
IUGR babies.

4.2. Intrauterine Growth Restriction, Chronic Placental Insufficiency, Nutrition and
Nutritional-Epigenetics

The impact of IUGR on the epigenetics of immune development and control has
been studied. Key epigenetic mechanisms involved in gene expression such as histone
modifications, DNA methylation, and non-coding RNAs may be affected by nutritional
depletion [66]. Nutrients and bioactive food components that influence gene expression
through DNA methylation at the time of immune differentiation include folic acid, choline,
betaine, dietary fibres and carbohydrates. Vitamins and ethanol exert an influence through
both DNA methylation and microRNA production and butyrate produced from gut mi-
crobiota can result in histone modifications. Thus, dietary factors, vitamins, ethanol and
butyrate all have the ability to influence immune cellular development through the influ-
ence on gene expression of immune cells.

4.3. Intrauterine Growth Restriction and Autophagy

Autophagy is cellular autonomous immunity and is well defined in our knowledge
of immunity. The intracellular nutrient environment and intracellular nutrient sensors
mediate a link between autophagy and nutritional status. Autophagy increases in starvation
and may in part be a protective mechanism although its role and contribution in chronic
hypoxia and IUGR in humans is unknown. Recent studies in piglets demonstrate that
maternal food restriction produced IUGR foetuses with intestinal injury associated with
changes in cellular autonomous immunity via mTOR signalling pathways [76]. Similarly,
in small intestines of IUGR neonatal piglets, autophagosomes, fewer epithelial goblet
cells and lymphocytes, reduced levels of the cytokines TNF-α and IFN-γ and decreased
gene expression of cytokines were seen, again suggesting an association between immune
function and nutrition [77]. The correlates for this in the human foetus and neonate are
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unclear. Autophagy may be a protective response in trimming down resources to meet the
available supply of nutrition and blood flow.

5. Acute Hypoxia-Ischaemia, Immunity, Nutrients and Trace Elements

In a well-grown baby with acute peri or postpartum PHI, the interplay of nutrition on
immune function is not clearly defined [78]. Some evidence for the importance of appro-
priate nutritional support, directly and indirectly through creating the most appropriate
microbiome for the baby is described below.

5.1. Glucose

The mechanisms for hypoxic ischaemic encephalopathy (HIE), one of the clinical
consequences of PHI, include immune modulated cellular damage and inflammatory re-
sponses [70]. The brain is capable of utilising alternate energy sources such as ketone bodies,
lactate and other fatty acids. In the presence of HIE and its associated impaired metabolic
functions this ability to use alternate energy sources could be suboptimal as hypoglycaemia
and hyperglycaemia are less well tolerated [32,79]. Short term hypoglycaemia and hyper-
glycaemia can have an effect on innate immune function [80–82]. Hyperglycaemia can
aggravate injury to the thalamus, basal ganglia and brainstem more significantly than
in hypoglycaemia [80,81]. Hyperglycaemia has also been shown to have an important
association with developmental delay at 24 months of life, in preterm infants [83].

5.2. Amino Acids and Fatty Acids

Glucose and amino acids in early parenteral nutrition may also have an impact on
immunity in the compromised neonate through augmentation of a hyperinflammatory
response [84].

Experimental studies have demonstrated a role of omega 3 polyunsaturated fatty
acids in counteracting neuroinflammation through limitation of immune cellular infiltra-
tion, release of proinflammatory mediators and excitatory glutamate and by restoration
of mitochondrial function [25,85]. Post ischaemic administration of triglyceride emul-
sions containing docosahexaenoic acid has been shown to be neuroprotective in neonatal
mice [25].

5.3. Micronutrients and Trace Elements

Term babies with HIE may have a lower selenium level independent of maternal
levels [86]. Selenium supplementation ameliorates hypoxia-ischaemia induced neuronal
death in vitro and in vivo. Studies on selenium pre-treatment in adult rats exposed to is-
chaemia showed a reduction in glutamate-induced reactive oxygen species production and
preservation of mitochondrial membrane potential in the hippocampus with improvement
in cellular respiration and complex motor and cognitive activities [87–89].

Iron is abundant in human cells, and microbes use this to flourish. This is closely
linked to immune function through effects on the innate and adaptive immune system’s
control of infection in the body. Low iron levels within the first few hours of birth decrease
the risks for neonatal infection, and early supplemental iron increases risks for mortality
and infection in the neonate [90].

Zinc is a key part of many cellular functions including integrity of the newborn skin,
gastrointestinal and respiratory tract mucosa with supplementation in pregnancy in some
groups having been shown to improve infant morbidity from diarrhoeal diseases in the first
6 months of life [44,91]. It is also believed to be required for normal growth of the foetus
and through to puberty [92]. Zinc deficiency at important periods of brain development
may significantly impact regulation of apoptosis and may play a role in non-specific and
acquired immunity together with the function of key mediators of postnatal immune
function [91,93].
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6. Early Enteral Nutritional Support and Immunity in Perinatal Hypoxia-Ischaemia
6.1. Breast Milk and Colostrum

Colostrum and breast milk have immunoprotective and modulating factors including
immunoglobulins, lactoferrin, oligosaccharides, growth factor peptides and cells. These
all have the potential to influence innate and adaptive immune development and function
in immature newborns [94,95]. In mothers infected with SARS-CoV-2 in the peripartum
period, immune complexes in breastmilk have been shown to activate a mucosal immune
response and develop the neonatal immune system beyond passive immunity [96].

Colostrum is rich in immune-regulating factors and may enhance immune defence
locally and systemically if given into the oropharyngeal space (buccal colostrum) and enter-
ally [97–99]. From studies in piglets, colostrum is known to have epigenetic programming
properties and also reduces the risk for necrotising enterocolitis [100]. This effect is also
seen in preterm babies, where the risks for necrotising enterocolitis (NEC) are highest in
the preterm and especially in those with evidence of compromised growth due to placen-
tal insufficiency [101,102]. In IUGR preterm piglets, the incidence of NEC was higher in
formula fed animals than in breast milk fed ones, and this trend is also seen in preterm
human babies. This effect appears to be related to formula feed rather than presence of
IUGR alone [103].

Both preterm and term babies with PHI are commonly managed with early parenteral
nutrition and are often kept nil by mouth in the initial stabilisation period after birth. How-
ever, enteral nutrition with mothers’ breast milk and colostrum stimulates development of
the gastrointestinal mucosa and enzyme systems. Delayed initiation of enteral feeds means
that components in enteral feeds which promote mucosal growth and the evolution of an
appropriate gut-microbiome axis are missing [104]. This could potentially affect immune
development at gut trophic and systemic levels [104].

One of the key concerns in PHI is hypoxia ischaemia of the gastrointestinal tract, and a
risk of developing necrotising enterocolitis (NEC). Recent studies have not shown a higher
clinical correlation of NEC with PHI in those babies that required total body cooling, where
feeds were started early or delayed [26]. In this population-based cohort UK study 31%
of 6030 babies who had therapeutic hypothermia were fed during treatment [26]. Enteral
feeding was associated with a lower pragmatic late onset sepsis rate, higher survival to
discharge and a higher proportion of being breastfed at discharge when compared with the
unfed group. The mechanisms of this are not clear but a nutrition–immune–microbiome
interplay could be responsible via the passive immunity offered by maternal breast milk
feeds and colostrum and the microbiome that establishes following early enteral breast
milk and colostrum feeds [105].

6.2. Prebiotics and Probiotics

Probiotics have a protective role in immune mediation by modification of the cellular
immune response. Probiotic therapy is used in the management of extreme preterm infants
to optimise development of the neonatal gut microbiome and reduce the risk of necrotising
enterocolitis in the neonatal period [106]. Studies in mice showed that Lactobacillus reuteri
reduces the incidence and severity of experimentally induced NEC, potentially via the
action of Toll-like receptor 2 (TLR2) which is an important component of innate immunity
against bacterial pathogens [107]. Pre and probiotics have not been extensively studied in
the context of PHI. However, early work supports the potential prebiotics and probiotics in
relation to PHI, with evidence of a link between activation of pre-myelinating oligodendro-
cytes and the reduction in inflammation reducing secondary neuronal injury thus helping
improve neurodevelopmental outcomes [108]. Human recombinant lactoferrin (rhLF) is a
potential prebiotic. Data from studies where rhLF was injected during gestation or lactation
into rat dams suggested a protective effect for cognitive development of the pups exposed
to PHI [109]. The mechanism of this in relation to an immune association is unclear.
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6.3. Neuroprotection

Therapeutic hypothermia aims to reduce secondary damage caused by PHI by reduc-
ing the brain metabolic demand and inhibiting the excito-oxidative cascade. It does not
however, reduce susceptibility to the initial injury, or prevent brain injury from an initial
hypoxic ischaemic event. Newer neuroprotective strategies for reversing or preventing
the sequelae of neonatal HI are urgently required, along with research into the factors that
drive brain plasticity and improved recovery. In adults with stroke, an advanced neuropro-
tective strategy includes neuroprotective diets which include bioactive components with
antioxidant or anti-inflammatory properties [110]. Adequate nutrition during neonatal
therapy from PHI is recognised as being potentially crucial in neuroprotection.

6.4. Prophylactic Nutraceuticals

Prophylactic nutraceuticals, specifically those dietary compounds with antioxidant,
anti-inflammatory or anti-apoptotic properties are being studied now in the context of
PHI [27]. This is a difficult area for research as acute HIE cannot be predicted, so most
of the work in this area is being undertaken in rodent models. Pre-clinical studies in
which HI was induced in rodent pups include utility of polyphenols, vitamins, omega-3
fatty acids, plant-derived compounds (such as capsaicin, tanshinones and sulforaphane)
and endogenous compounds (such as carnitine, lactate and melatonin). Some of these
are associated with decreased inflammation in areas such as the hippocampus, decreased
apoptosis, decreased Toll-like receptor 4 (TLR4) and nuclear factor kB signalling. These are
critical components of the innate immune response involved after a HI stress.

Immunomodulatory agents such as minocycline, IL-1 receptor antagonists, nuclear fac-
tor kB, Toll-like receptor agonists and stem cells [111], including those with anti-excitatory
and anti- apoptotic function such as inter-alpha inhibitory proteins (IAIPs [112]), are being
studied as adjuncts to cooling in treatment of HI but the clinical applicability and impact of
such strategies has yet to be shown.

6.5. Placental Nutrient Sensing Maternal—Foetal Resource Allocation

The placenta has an important role to play in resource allocation between the mother
and foetus. Hypoxia changes how the placenta supplies oxygen and nutrients. Amino acids
play a crucial role in effector functions that are associated with pregnancy outcomes [113].
There are no major studies addressing the inter relationship between nutrient sensing in
the placenta, hypoxia and interaction of the immune system.

7. Conclusions

From limited mammalian studies, a nutrition–immunity interrelationship in perina-
tal hypoxic ischaemic injury appears to exist with evidence of multifaceted interactions.
Intrinsic nutritional components appear to drive alterations in the immune repertoire,
interactions and function in utero and after birth together with the contribution of the ma-
ternal microbiome. Post-natal nutrient components can additionally modify the subsequent
immune responses.

Further avenues of research are required to explore the contribution of nutrients to
PHI and repair after injury. A better understanding of the role of the evolving microbiome–
nutrition–immune relationship in newborn babies following PHI will facilitate the develop-
ment of strategies to optimise support for effective immune function in PHI, to minimise
injury in PHI and promote repair.
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