
Investigating the Effects of Trees and Butterfly

Barriers on the Performance of Optimistic GVT

Algorithm

Abdelrahman Elleithy, Syed S. Rizvi, and Khaled M. Elleithy
Computer Science and Engineering Department, University of Bridgeport, Bridgeport, CT USA

{aelleithy, srizvi, elleithy}@bridgeport.edu

Abstract- There is two approaches for handling timing

constraints in a heterogeneous network; conservatives

and optimistic algorithms. In optimistic algorithms,

time constraints are allowed to be violated with the

help of a time wrap algorithm. Global Virtue Time

(GVT) is a necessary mechanism for implementing

time wrap algorithm. Mattern [2] has introduced an

algorithm for GVT based computation using a ring

structure. which showed high latency. The

performance of this optimistic algorithm is optimal

since it gives accurate GVT approximation. However,

this accurate GVT approximation comes at the

expense of high GVT latency. Since this resultant GVT

latency is not only high but may vary, the multiple

processors involve in communication remain idle

during that period of time. Consequently, the overall

throughput of a parallel and distributed simulation

system degrades significantly In this paper, we discuss

the potential use of trees and (or) butterflies structures

instead of the ring structure. We present our analysis

to show the effect of these new mechanisms on the

latency of the system.

I. INTRODUCTION

Many GVT algorithms were introduced in the

literature. In [1] Chen at. al., provided a

comparison between 15 GVT algorithms. Table 1

[1] shows a detailed comparison between the
different algorithms.

Mattern’s GVT algorithm [2] proposed a 2-cut

algorithm to avoid synchronizing all processors at

the same wall clock. The two cuts define a past

and a future point. In a consistent cut, no transient

jobs can travel from the future to the past.

Messages crossing the second cut from the future

to the past do not need to be taken into account

because these messages are guaranteed to have a

timestamp larger than the GVT value.

Mattern’s GVT algorithm uses a token passing
to construct the two cuts. It uses two cuts C1 and

C2. C1 is intended to inform each processor to

begin recording the smallest time stamp where as

C2 guarantees that no message generated prior to

the first cut is in transient. A vector clock passed

between processors monitors the number of

transient messages sent to every processor. The

token can leave the current processor only after all

Fig.1. Tree barrier mechanism for synchronization among

the logical processes, Green font arrow lines represent the
LBTS computation and the new GVT announcement

3

8 7

4

19

5

11

6

1

1 2

0

Fig. 2. Butterfly barrier mechanism between 8 LPS. Three steps
are needed to complete the synchronization. The red font
represents the synchronization for LP3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

step 1

step 2

step 3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UB ScholarWorks

https://core.ac.uk/display/52955725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

messages destined to it have been received. The

second cut can be built with only one round of

token passing. The creation of the second cut may

incur a delay on each processor.

II. RELATED WORK

In [3], a tree structure is used to implement a

barrier mechanism blocking and releasing for

Logical Process (LP) as shown in Figure 1. The

tree barrier mechanism requires 2 log2 N steps and

2 (N-1) messages for N processors.

A butterfly mechanism is discussed in [3] to

eliminate the need for broadcasting as shown in

Figure 2. The butterfly mechanism requires log N

steps to complete and N * Log N messages for N

processors.

III. ANALYTICAL MODEL

In comparing centralized barriers, it is noticed

that the butterfly mechanism has a better

performance when comparing the required time as

it needs half the number of steps (Figure 3).

Butterfly barrier has the butterfly mechanism in

terms of the required exchanged messages (Figure

4). It should be clearly noted in Fig. 3 that the

performance of the tree barrier is much better than

Table 1: Comparison between Different GVT Algorithms [1]

the butterfly barrier for all values of N. This is due

to the fact that the time complexity of the tree

barrier is much lower than the butterfly barrier.

IV. USING TREE AND BUTTERFLIES

By analyzing the ring structure used in

Mattern’s we notice that the ring works as follows:

1. C1 is constructed by sending a control

message around the ring. Once the control

message is received, the color of the

processor changes from white to red then

passes the message. This step of the algorithm

will take (N-1) steps.

2. C2 is constructed by sending the control

message around the ring. This step of the
algorithm will take (N-1) steps.

We assume that initially all processors (nodes)

and their neighbors that are organized in a

minimal tree (i.e.., no cycles) based structure are

colored white. In addition, we also assume that

there should be one initiator of GVT computation

that may also be considered as a root of the tree

(i.e.., the node where message transmission starts).

The moment initiator processor initiates GVT

computation, it becomes red from white. At the
same time, it starts a broadcast scheme to

indirectly (i.e.., from node to edges) send control

messages to all connected processors. Thus, this

first transmission (the process of making red) of

broadcast from root (i.e.., the initiator processor)

to all its connected nodes is intended for the first

cut C1.

According to our initial assumptions, Mattern’s

algorithm does not require acknowledgement
messages but it does require the construction of

the second cut C2. We assume that, in order to

construct the second cut C2, we need the same

number of messages that will propagate from

processors (i.e.., the edges of the tree) to the

initiator (i.e.., the root of the tree). Therefore, this

implies that any processor in the given design

which is the part of a balanced minimal tree must

process two messages; one for constructing the

first cut C1 and the other for constructing the

second cut C2. The total number of steps in
implementing the ring is 2 * (N-1).

Instead of using a ring structure, we can use a

tree structure. The number of steps using the tree

structure to implement Mattern algorithm is 2 *

log2 (N) as per our discussion in section III. One

can clearly observe in Fig. 4 that the number of

messages transmitted with the tree barrier is much

lower than the number of messages required for

the butterfly barrier. This is especially true for a

large number of processors. In other words, as we

start increasing the number of processors in the

system, the performance differences between the
tree and the butterfly barrier is obvious. For

instance, the number of messages transmitted for

the tree barrier do not exceed to 2000 messages

for even a large value of processors (typically

1000 processors) as shown in Fig. 4. Furthermore,

if we use butterflies, the numbers of steps is log2

N. Figure 5 shows a comparison between using a

ring and a butterfly in implementing the Mattern

GVT algorithm. Fig. 6 represents the

implementation of the butterfly barrier where four

processors are organized and sending/receiving
messages to each other. When compare the

Fig. 3: Time Comparison between the Tree and the Butterfly
Barriers with a random number of message transmissions
with a large number of processors

Tree and Butterfly Barriers

0

5

10

15

20

25

4 8 16 32 64 128 256 512 1024

Number of proce ssors

N
u

m
b

e
r

o
f

s
te

p
s

Tree

Butterfly

Figure 4: Communication Messages Comparison between
the Tree and the Butterfly barriers for a large number of
processors

Tree and Butterfly Barriers

0

2000

4000

6000

8000

10000

12000

4 8 16 32 64 128 256 512 1024

Number of processors

N
u

m
b

e
r

o
f

M
e

s
s

a
g

e
s

Tree

Butterfly

performance of butterfly barrier with the tree

barrier, one can clearly observe that the

performance of butterfly is overlapping the tree

barrier for a small number of processors (typically

for 150 processors) as shown in Fig. 4. However,

as we start increasing the number of processors

(LPs > 150) in the system, the performance of

butterfly degrades significantly than the tree

barrier. This is due to the fact that the time

complexity of the butterfly barrier is slightly
higher than the tree barrier. On the other hand,

when the performance of butterfly barrier is

compared with the ring structure, the simulation

results of Fig 5 suggest that the butterfly is clearly

a better choice for using as a synchronization

mechanism with the Mattern’s GVT algorithm.

Although the actual number of steps has

decreased significantly by using a butterfly

compared to a ring in implementing Mattern’s

GVT algorithm, a large number of messages have

been created. In the original ring implantation,
there are only two control messages that are

circulating in the ring. For a butterfly

implementation, the number of messages is N *

Log N.

To make it more clear, this barrier requires

steps with the transmission of messages, since

each processor must send and receive one message
in each step of the algorithm. Thus, the asymptotic

complexity of this barrier is clearly higher than the

tree or ring structures which in turn give a higher

value of latency.

It is worth mentioning that the asymptotic

latency of butterfly is exactly the same as the

merge algorithm where the total of N number of

comparisons are analogous to the total number of

N messages transmitted in one direction. From

message complexity point of view, it is obvious

that the latency of butterfly barrier for Mattern’s

GVT algorithm exists in a logarithmic region with
a constant N.

In addition, our analysis demonstrates that one

can achieve the same latency for Mattern’s

algorithm if we assume that two rounds of

messages propagate from initiator to all processors

(i.e.., intended for C1) and from all processors to

the root (i.e.., intended for C2) in a tree barrier.

However, the latency can be improved if parallel

traversal of connected processors is allowed. The

above discussion can be extended for a tree

structure where the left and the right sub trees
have different length.

V. CONCLUSION

In this paper, we have investigated on the

possibility of using Trees and Butterfly barriers

with the Mattern GVT algorithm. The simulation

results have verified that the use of butterfly

barriers is inappropriate with an asynchronous

type of algorithm when the target is to improve the

latency of the system. Since the latency is directly

related to how many number of messages each

Figure 5: Comparison of using a ring and a butterfly in
implementing Mattern GVT algorithm

Comparing Ring versus Butterfly Implementation of Mattern

GVT Algorithm

0

20

40

60

80

100

120

140

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of processors

N
u

m
b

e
r

o
f

s
te

p
s

Ring

Butterfly

Simulation Time

Fig. 6: Butterfly Barrier Organization: Arrows in the figure show that the node is arriving/reaching barrier to other
processors. Once the LBTS computation is initiated by all processors, the execution of the messages will be halt

unless all the processors achieve synchronization by knowing a Global minimum value

 N1

N2

N3

N4

processor is sending, butterfly barrier may not be a

good candidate to improve the latency of the GVT

computation. However, we have shown that the

latency of the GVT computation can be improved

if the tree based structure is organized in a way

that allows parallel traversing of each left and the
right sub trees. The improvement in the latency

has a higher cost of communications.

REFERENCES

1. Gilbert G. Chen and Boleslaw K. Szymanski, Time

Quantum GVT: A Scalable Computation of the
Global Virtual Time in Parallel Discrete Event
Simulations, Scientific International Journal for
Parallel and Distributed Computing, pages 423–
435, Volume 8, no. 4, December 2007.

2. F. Mattern, Efficient algorithms for distributed
snapshots and global virtual time approximation, J.

Parallel and Distributed, Computing 18(4) (1993)
pp. 423–434.

3. Fujimoto, R., Parallel and Distributed Simulation
Systems, Willey Series on Parallel Distributed
Computing, 2000.

Authors Biographies

Abdelrahman Elleithy has
received his BS in Computer

Science in 2007 from the
Department of Computer
Science and Engineering at
the University of Bridgeport,
Connecticut, USA .
Abdelrahman is currently a
MS student and expected to
receive his MS in Computer

Science in December 2008. Abdelrahman has research

interests in wireless communications and parallel
processing where he published his research results
papers in national and international conferences.

SYED S. RIZVI is a Ph.D.
student of Computer
Engineering at University
of Bridgeport. He received
a B.S. in Computer
Engineering from Sir Syed

University of Engineering
and Technology and an
M.S. in Computer
Engineering from Old
Dominion University in

2001 and 2005 respectively. In the past, he has done
research on bioinformatics projects where he
investigated the use of Linux based cluster search
engines for finding the desired proteins in input and

outputs sequences from multiple databases. For last one

year, his research focused primarily on the modeling
and simulation of wide range parallel/distributed
systems and the web based training applications. Syed
Rizvi is the author of 45 scholarly publications in
various areas. His current research focuses on the

design, implementation and comparisons of algorithms
in the areas of multiuser communications, multipath
signals detection, multi-access interference estimation,
computational complexity and combinatorial
optimization of multiuser receivers, peer-to-peer
networking, and reconfigurable coprocessor and FPGA
based architectures.

DR. KHALED
ELLEITHY received the
B.Sc. degree in computer
science and automatic
control from Alexandria

University in 1983, the MS
Degree in computer
networks from the same
university in 1986, and the
MS and Ph.D. degrees in

computer science from The Center for Advanced
Computer Studies at the University of Louisiana at
Lafayette in 1988 and 1990, respectively. From 1983 to

1986, he was with the Computer Science Department,
Alexandria University, Egypt, as a lecturer. From
September 1990 to May 1995 he worked as an assistant
professor at the Department of Computer Engineering,
King Fahd University of Petroleum and Minerals,
Dhahran, Saudi Arabia. From May 1995 to December
2000, he has worked as an Associate Professor in the
same department. In January 2000, Dr. Elleithy has
joined the Department of Computer Science and

Engineering in University of Bridgeport as an associate
professor. Dr. Elleithy published more than seventy
research papers in international journals and
conferences. He has research interests are in the areas of
computer networks, network security, mobile
communications, and formal approaches for design and
verification.

