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Abstract- There is two approaches for handling timing 

constraints in a heterogeneous network; conservatives 

and optimistic algorithms. In optimistic algorithms, 

time constraints are allowed to be violated with the 

help of a time wrap algorithm. Global Virtue Time 

(GVT) is a necessary mechanism for implementing 

time wrap algorithm. Mattern [2] has introduced an 

algorithm for GVT based computation using a ring 

structure. which showed high latency. The 

performance of this optimistic algorithm is optimal 

since it gives accurate GVT approximation. However, 

this accurate GVT approximation comes at the 

expense of high GVT latency. Since this resultant GVT 

latency is not only high but may vary, the multiple 

processors involve in communication remain idle 

during that period of time. Consequently, the overall 

throughput of a parallel and distributed simulation 

system degrades significantly In this paper, we discuss 

the potential use of trees and (or) butterflies structures 

instead of the ring structure. We present our analysis 

to show the effect of these new mechanisms on the 

latency of the system.  

I. INTRODUCTION  

Many GVT algorithms were introduced in the 

literature. In [1] Chen at. al., provided a 

comparison between 15 GVT algorithms. Table 1 

[1] shows a detailed comparison between the 
different algorithms. 

Mattern’s GVT algorithm [2] proposed a 2-cut 

algorithm to avoid synchronizing all processors at 

the same wall clock. The two cuts define a past 

and a future point. In a consistent cut, no transient 

jobs can travel from the future to the past. 

Messages crossing the second cut from the future 

to the past do not need to be taken into account 

because these messages are guaranteed to have a 

timestamp larger than the GVT value. 

Mattern’s GVT algorithm uses a token passing 
to construct the two cuts. It uses two cuts C1 and 

C2. C1 is intended to inform each processor to 

begin recording the smallest time stamp where as 

C2 guarantees that no message generated prior to 

the first cut is in transient.  A vector clock passed 

between processors monitors the number of 

transient messages sent to every processor. The 

token can leave the current processor only after all 

 
 

 
Fig.1. Tree barrier mechanism for synchronization among 

the logical processes, Green font arrow lines represent the 
LBTS computation and the new GVT announcement  
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Fig. 2.  Butterfly barrier mechanism between 8 LPS. Three steps 
are needed to complete the synchronization. The red font 
represents the synchronization for LP3 
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messages destined to it have been received. The 

second cut can be built with only one round of 

token passing. The creation of the second cut may 

incur a delay on each processor. 

II. RELATED WORK  

In [3], a tree structure is used to implement a 

barrier mechanism blocking and releasing for 

Logical Process (LP) as shown in Figure 1. The 

tree barrier mechanism requires 2 log2 N steps and 

2 (N-1) messages for N processors. 

A butterfly mechanism is discussed in [3] to 

eliminate the need for broadcasting as shown in 

Figure 2. The butterfly mechanism requires log N 

steps to complete and N * Log N messages for N 

processors.  

 

 

III. ANALYTICAL MODEL 

In comparing centralized barriers, it is noticed 

that the butterfly mechanism has a better 

performance when comparing the required time as 

it needs half the number of steps (Figure 3). 

Butterfly barrier has the butterfly mechanism in 

terms of the required exchanged messages (Figure 

4). It should be clearly noted in Fig. 3 that the 

performance of the tree barrier is much better than 

Table 1: Comparison between Different GVT Algorithms [1]

 



the butterfly barrier for all values of N. This is due 

to the fact that the time complexity of the tree 

barrier is much lower than the butterfly barrier.

 

IV. USING TREE AND BUTTERFLIES 
 

By analyzing the ring structure used in 

Mattern’s we notice that the ring works as follows: 

 

1. C1 is constructed by sending a control 

message around the ring. Once the control 

message is received, the color of the 

processor changes from white to red then 

passes the message. This step of the algorithm 

will take (N-1) steps. 

2. C2 is constructed by sending the control 

message around the ring. This step of the 
algorithm will take (N-1) steps. 

 

We assume that initially all processors (nodes) 

and their neighbors that are organized in a 

minimal tree (i.e.., no cycles) based structure are 

colored white. In addition, we also assume that 

there should be one initiator of GVT computation 

that may also be considered as a root of the tree 

(i.e.., the node where message transmission starts). 

The moment initiator processor initiates GVT 

computation, it becomes red from white. At the 
same time, it starts a broadcast scheme to 

indirectly (i.e.., from node to edges) send control 

messages to all connected processors. Thus, this 

first transmission (the process of making red) of 

broadcast from root (i.e.., the initiator processor) 

to all its connected nodes is intended for the first 

cut C1. 

According to our initial assumptions, Mattern’s 

algorithm does not require acknowledgement 
messages but it does require the construction of 

the second cut C2. We assume that, in order to 

construct the second cut C2, we need the same 

number of messages that will propagate from 

processors (i.e.., the edges of the tree) to the 

initiator (i.e.., the root of the tree). Therefore, this 

implies that any processor in the given design 

which is the part of a balanced minimal tree must 

process two messages; one for constructing the 

first cut C1 and the other for constructing the 

second cut C2. The total number of steps in 
implementing the ring is 2 * (N-1). 

Instead of using a ring structure, we can use a 

tree structure. The number of steps using the tree 

structure to implement Mattern algorithm is 2 * 

log2 (N) as per our discussion in section III. One 

can clearly observe in Fig. 4 that the number of 

messages transmitted with the tree barrier is much 

lower than the number of messages required for 

the butterfly barrier. This is especially true for a 

large number of processors. In other words, as we 

start increasing the number of processors in the 

system, the performance differences between the 
tree and the butterfly barrier is obvious. For 

instance, the number of messages transmitted for 

the tree barrier do not exceed to 2000 messages 

for even a large value of processors (typically 

1000 processors) as shown in Fig. 4. Furthermore, 

if we use butterflies, the numbers of steps is log2 

N. Figure 5 shows a comparison between using a 

ring and a butterfly in implementing the Mattern 

GVT algorithm. Fig. 6 represents the 

implementation of the butterfly barrier where four 

processors are organized and sending/receiving 
messages to each other. When compare the 

 

 
Fig. 3: Time Comparison between the Tree and the Butterfly 
Barriers with a random number of message transmissions 
with a large number of processors  
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Figure 4: Communication Messages Comparison between 
the Tree and the Butterfly barriers for a large number of 
processors 
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performance of butterfly barrier with the tree 

barrier, one can clearly observe that the 

performance of butterfly is overlapping the tree 

barrier for a small number of processors (typically 

for 150 processors) as shown in Fig. 4. However, 

as we start increasing the number of processors 

(LPs > 150) in the system, the performance of 

butterfly degrades significantly than the tree 

barrier. This is due to the fact that the time 

complexity of the butterfly barrier is slightly 
higher than the tree barrier. On the other hand, 

when the performance of butterfly barrier is 

compared with the ring structure, the simulation 

results of Fig 5 suggest that the butterfly is clearly 

a better choice for using as a synchronization 

mechanism with the Mattern’s GVT algorithm. 

Although the actual number of steps has 

decreased significantly by using a butterfly 

compared to a ring in implementing Mattern’s 

GVT algorithm, a large number of messages have 

been created. In the original ring implantation, 
there are only two control messages that are 

circulating in the ring. For a butterfly 

implementation, the number of messages is N * 

Log N.  

To make it more clear, this barrier requires 

steps with the transmission of   messages, since 

each processor must send and receive one message 
in each step of the algorithm. Thus, the asymptotic 

complexity of this barrier is clearly higher than the 

tree or ring structures which in turn give a higher 

value of latency. 

It is worth mentioning that the asymptotic 

latency of butterfly is exactly the same as the 

merge algorithm where the total of N number of 

comparisons are analogous to the total number of 

N messages transmitted in one direction. From 

message complexity point of view, it is obvious 

that the latency of butterfly barrier for Mattern’s 

GVT algorithm exists in a logarithmic region with 
a constant N. 

In addition, our analysis demonstrates that one 

can achieve the same latency for Mattern’s 

algorithm if we assume that two rounds of 

messages propagate from initiator to all processors 

(i.e.., intended for C1) and from all processors to 

the root (i.e.., intended for C2) in a tree barrier. 

However, the latency can be improved if parallel 

traversal of connected processors is allowed. The 

above discussion can be extended for a tree 

structure where the left and the right sub trees 
have different length. 

V. CONCLUSION 

In this paper, we have investigated on the 

possibility of using Trees and Butterfly barriers 

with the Mattern GVT algorithm. The simulation 

results have verified that the use of butterfly 

barriers is inappropriate with an asynchronous 

type of algorithm when the target is to improve the 

latency of the system. Since the latency is directly 

related to how many number of messages each 

 
Figure 5: Comparison of using a ring and a butterfly in 
implementing Mattern GVT algorithm 
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Fig. 6: Butterfly Barrier Organization: Arrows in the figure show that the node is arriving/reaching barrier to other 
processors. Once the LBTS computation is initiated by all processors, the execution of the messages will be halt 

unless all the processors achieve synchronization by knowing a Global minimum value 
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processor is sending, butterfly barrier may not be a 

good candidate to improve the latency of the GVT 

computation. However, we have shown that the 

latency of the GVT computation can be improved 

if the tree based structure is organized in a way 

that allows parallel traversing of each left and the 
right sub trees. The improvement in the latency 

has a higher cost of communications.  
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