
This is the pre-peer reviewed version of the following article: Mihali, R., Sobh, T. and Vamoser, D.

(2004), SKED: A course scheduling and advising software. Comput. Appl. Eng. Educ., 12: 1–19.

doi: 10.1002/cae.10054, which has been published in final form at

http://onlinelibrary.wiley.com/doi/10.1002/cae.10054/abstract.

SKED: A Course Scheduling and Advising Software

RAUL MIHALI, TAREK SOBH and DAMIR VAMOSER

Department of Computer Science and Engineering, University of Bridgeport,

Bridgeport, CT 06601, USA

May 2000

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UB ScholarWorks

https://core.ac.uk/display/52955713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://onlinelibrary.wiley.com/doi/10.1002/cae.10054/abstract

SKED: A Course Scheduling and Advising Software

RAUL MIHALI, TAREK SOBH and DAMIR VAMOSER
Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT 06601, USA

May 2000

Abstract:

Each year at the beginning of a new academic
semester, most advisors face a very common and particularly
tedious and time consuming problem: deciding for each student
what course schedule would be ideal for the following semester
so that the student would graduate in the fastest possible time
and also have his / her specific preferences and pre-requisites
satisfied.

The factors that have to be considered vary from
school specific requirements such as course pre-requisites, co-
requisites, spring and fall offerings, to student specific ones,
such as transferred credits or the subjective desire to choose or
not a given choice. While some advisors might be able to derive
reasonable solutions in reasonable amount of time, the process
takes most of the advising time. The student will have to "trust"
the advisor that the given schedule is the best choice, and in
many cases the results will later on prove that the student could
have actually graduated faster, or that specific school
requirements have been violated or simply that the student’s
load and preference could have been balanced better.

This paper presents a software application that can
completely solve the presented problem. Once the school
specific data and requirements have been set, for any specific
student information, the application will search and output the
schedules that will allow the student to graduate in the fastest
number of semesters / quarters possible. Depending on the
factors and data considered, the execution time varies from few
seconds to few minutes. Currently, we have successfully tested
and implemented the application at the University of
Bridgeport, CT, USA.

1. Introduction

Post secondary education is usually being categorized in fields
of studies defined as majors. Each major has its unique class
curriculum and requirements, usually preset for years and
undergoing limited infrastructure changes. Since usually a
student can choose one or very few majors to study, the problem
is considered at the major level.
The completion of a major usually implies that a student goes
through a given number of courses, following department and
inter-department requirements, spring/fall restrictions, maximal
number of credits per semester as well as any particular
requirements that may apply to him/her as a result of an advisor
suggestion. Most of the majors would typically require around
eight semesters for completion and depending on the number of
credits taken at a time the student would be considered
freshman, sophomore, junior or senior. The courses that are to

be taken are mainly directly relevant to the major, while others
are general requirements for all the majors, or particular pre or
co requisites for various relevant courses.
A pre-requisite of a course A is defined as a course that a
student needs to have taken already in order to be able to take
course A. A course can have none or many pre-requisites and all
of them need to be satisfied.
A co-requisite of a course A is a defined as a course that a
student needs to have taken in order to be able to take course A,
but can also be taken in the same semester with course A.
An academic year is composed of a fall semester and a spring
semester (or a 3-4 quarters in a quarter based system - please
note that the application can be easily adjusted to suit custom
academic schedules). While usually most of the general
requirement courses are offered in both semesters, major
specific or particular courses are often offered once a year.
The maximum number of credits per semester is the number of
credits that limit the total credits that a student can take during
any given semester.
The maximum number of semesters represents the maximum
number of semesters in which a student should try to graduate.
As an example, as of now, the Bachelors of Computer Science
degree at University of Bridgeport, requires the completion of 8
semesters at an average load of 18 credits per semester and a
total of 131 credits. Most of the courses are directly related to
the Computer Science field and general requirements consist of
courses of math, physics, English composition, etc. (for a clearer
view, please note that through the paper we will elaborate on the
above example)

2. The Algorithm

The goal of the algorithm is to provide the course schedules that
would allow a student to graduate in the fastest possible time,
from any semester that he/she currently might be in. The major
specific information described in section 1 is being used as data
and guidance rules for the search process, together with various
student dependent information [1].
The idea of an exhaustive search is not really a suitable solution.
In the cases we have tested, it resulted in searching times
ranging from few seconds to few days [2]. To overcome this
search time problem, we have formulated and implemented a
goal-seeking algorithm tailored to our specific problem (similar
algorithms can be found in [3]).
Each course is being given a requirement cost. The requirement
cost of a course is being defined as the longest possible chain of
pre requisites that contains the respective course. For example,
if course D has as pre requisite course C, and course C has as
pre requisite course B, and course B has as prerequisite course

SKED: A COURSE SCHEDULING AND ADVISING SOFTWARE 2

A, this would make a chain of pre requisites of requirement-cost
3 for course A. The longest chain that can be found for course A
will be its associated requirement-cost. To reflect a worst case
scenario, for this cost, the co-requisites are being treated as pre-
requisites.
Based on the requirement cost, the algorithm will try to schedule
the courses with the highest cost first, thus minimizing the
number of semesters a student needs to take [4].
A course is also being associated an availability cost. The
availability cost of a course is the number of semesters that one
has to go through before one would be able to take that course.
The cost depends on pre requisites, co requisites and spring/fall
offerings. For example, a course with an availability cost of 3
can be taken 3 semesters away from now, this as a result of its co
and pre requisites combined with the spring/fall offerings. A
course with the availability cost 0 reflects a course for which all
the pre and co requirements have been satisfied and the course is
also offered in the current semester (Fall or Spring).
Having defined the above two costs, a general scheme of the
algorithm can be formulated:

1) If the student has already taken (transferred) any courses,
update the co and pre requisites, as well as the list of to be
taken courses.

2) For all the to be taken courses, calculate the availability
cost.

3) From all the to be taken courses with the availability cost 0,
calculate the requirement cost.

4) From all the to be taken courses with the availability cost 0,
pick up those that have the highest requirement cost, until
the maximum number of credits per semester has not been
exceeded. Let us call this a closed list of courses [5].

5) If there was a closed list of courses, then if the lowest
requirement cost in this list coincides with the highest
requirement cost of the rest of the courses selected at 3,
remove ("put back") all courses with this cost from the
closed list.

6) From the courses with the availability cost 0 that are not in
the closed list and have the highest requirement cost, form
combinations [6] and keep only those that when added with
the closet list credits do not exceed the maximum number of
credits per semester. Let us call the results open lists,
representing lists of possible semesters.

7) For each of the lists from the open lists, repeat from step 1)
until all the courses have been successfully scheduled, and
record for future display the schedules with the quickest
completion time.

Example:
Based on the taken courses and the semester for which the
algorithm is scheduling, the following courses prove to have an
availability cost of zero: AD101, CPE286, CPE471, ENGL204,
HUMC202, MATH214, MATH301, MATH314, ME223,
SSCC201 (please see Appendix for a description of the courses,
these being part of a set of courses on which it will be worked
throughout the paper). Basically these would be all the courses
that a student could theoretically attend the following semester.
The courses, sorted descending by the maximum requirement
cost, have the following information (Table1):

Course Credits Cost
ME223 3 4
CPE286 3 3
ENGL204 1 2
MATH301 3 2
SSCC201 3 2
AD101 3 1
HUMC202 3 1
MATH314 3 1
CPE471 3 0
MATH214 3 0

Table 1.

Having the maximum number of credits per semester set to 18,
the algorithm will pick up for the close list the following courses
ME223, CPE286, ENGL204, MATH301, SSCC201, AD101
(see step 4). According to step 5, the closed list will omit course
AD101 and remain ME223, CPE286, ENGL204, MATH301
and SSCC201.
Based on step 6, the following three open lists will be created:
ME223, CPE286, ENGL204, MATH301, SSCC201, AD101;
ME223, CPE286, ENGL204, MATH301, SSCC201, HUMC202;
ME223, CPE286, ENGL204, MATH301, SSCC201, MATH314;

Each of them will be recursively explored further, as step 7
indicates.

3. The Software Package

In its current stage, the software package has been developed
using Microsoft Visual Basic and is composed of 4 distinct
parts. The Data Manager part, allows for the managing of the
necessary data and rules that mainly pertain to the major as a
whole and that typically do not need to be modified for each
student. The Profiler allows for the managing of student specific
information that changes from student to student. The Schedules
is the part where the results of the algorithm will be output, and
Others is a part that contains various global settings, as well as a
mini web server mode that allows application to be used over a
web browser. By having this structure, various personnel can
modify and work with specific information. For example the
registrar would normally use the Data Manager to add / remove
/ edit courses. The advisors would use the Profiler to adjust
student specific information, while the students would use the
Schedules to select their desired schedule of study.

3.1. The Data Manager

Figure 1. The Data Manager

SKED: A COURSE SCHEDULING AND ADVISING SOFTWARE 3

The Data Manager tab (Figure 1) was designed to facilitate the
input and managing of all the data and rules (course
requirements, school preferences etc) that would pertain
specifically to a major, and would normally not need adjustment
over short periods of time. The idea is to have this data loaded
and verified one time, and then used as a shared database by the
advisers of a certain major.
For more convenient handling of the information, the data
managing has been divided into 5 different options:
Courses, Requirements, Spring/Fall Offerings, Special Courses
and Special Requirements.

Courses

The courses window allow for the direct input, editing or
removal of the course specific information (Figure 2).

Figure 2. The course managing window

For a course, the software will store a unique KEY, made as a
combination of letters and digits and used internally throughout
the algorithm functions when referring the courses. CREDITS,
represents the number of credits of a course, numeric value that
is used internally. FULL NAME and DESCRIPTION are simply
informative fields and have significance solely for the user. All
the necessary courses should be added here. The courses visible
in Figure 2 and the following figures are part of the courses that
are needed at University of Bridgeport for the Bachelor of
Computer Engineering.

Requirements

The requirements window allows for the managing of the
requirements between classes (Figure 3).

Figure 3. Requirements

The left most list of courses contains all the courses introduced
through the Courses option. For each course, various requisite
courses can be chosen. Note on the right list, courses such as
FRESHMAN, SOPHOMORE, JUNIOR and SENIOR. These
courses are added by default by the software and only have the
role of adding better control on course requirements, in fact
counting for zero credits. By checking the co-requisites check
box, the requisites in the right most list will behave as co-
requisites for the selected course on the left.
Also note that the software will check for redundant or circular
reference requisites and not allow them. A redundant requisite
appears when a pre-requisite of a course A has as pre-requisite
that coincides with another pre-requisite of the course A.
For example, if CPE449A requires CPE387 and CPE449B
requires CPE449A, it would be redundant to have CPE449B
require CPE387 as well and the software will detect and notify
of any such case.
A circular reference appears when a requisite for a course
happens to have that course as a requisite as well, directly or
indirectly. For example, if CPE449B requires CPE449A and
CPE449A requires CPE387, there would be a circular reference
if CPE387 would require CPE449B. The software will detect
and warn accordingly of such problems.

Fall / Spring Offerings

The Fall / Spring Offerings window allow to select which course
is being offered in which semester (Figure 4). Courses from the
left most list can be selected and added to any of the two right
lists representing the fall or the spring semesters.

SKED: A COURSE SCHEDULING AND ADVISING SOFTWARE 4

Figure 4. Fall / Spring Offerings

For example, the course AD101 is being offered both fall and
spring semesters, while ENGL204 is only offered in Spring.
The software will warn if any of the courses are not offered at
all.

Special Courses / Groups

In many cases, it can happen that out of a group of various
courses only a few need to be taken, whichever the student
chooses. For example, out of CPE410, CPE460, CPE471 and
CPE473, only two courses need to be taken, whichever the
student prefer (Figure 5).

Figure 5. Special Courses / Groups

Through this window, such groups of classes can be specified.
From the list of all the courses (left most), the desired courses
need to be added to the middle list by using the >>add courses
command, and once the desired number to be taken has been
chosen from Count, the group can be added. Note that each
course has its own requisites and from the way they are selected,
this can facilitate or not a faster completion of the major. The
algorithm takes this fact into account when searching.

Special Requirements

The Special Requirements window was added as a means of
"enforcing" a student to take a certain class no later than a
certain semester, as to provide a better control for advising
(Figure 6).

Figure 6. Special Requirements

For example, MATH227 does not have a high requirement cost,
and normally the algorithm will try to place it in a later semester,
first dealing with the "urgent" courses. This fact might not be
appropriate when the course in case might be an easy one and
should not be left for junior or senior years, despite that it does
not have an explicit chain of pre / co requisites to fill.
Through the special Requirements window, a user can control
such issues. By forcing a requirement cost of 6 for MATH227,
this will oblige the algorithm to place this course at least 6
semesters before the completion of the degree, or in the case the
degree of the student has less than 6 semesters remaining to
completion, to assign it immediately in the first semester if
possible.
From the left most list of course, the user would choose a
course, assign it a cost through the latest semester value and add
it.

3.2. The Profiler

The profiler allows to control the information that is specific to a
student, such as the courses that he / she has taken, or that the
advisor might want to adjust on a case to case basis to obtain
better results (Figure 7).

Figure 7. The Profiler

SKED: A COURSE SCHEDULING AND ADVISING SOFTWARE 5

The profiler is structured as follows:
Taken Courses list, allows the advisor to select the course that
the student has taken so far.
Status Definition, allows the advisor to adjust the total number
of credits that would define any of the sophomore, junior or
senior statuses. While normally they would be defined at once
for all the students, it proves to be convenient when trying to
enforce various advisor preferences. In the example from Figure
7, if the student has taken more than 37 credits and less than 71,
he / she has a SOPHOMORE status. Anything less than 37
credits is considered FRESHMAN, and anything more than 105
credits is considered SENIOR.
The Maximum number of semesters, Maximum number of
credits per semester and Starting semester are being defined in
the profiler as well.
The advisor also has the choice to ignore some of the
restrictions, such as Special Courses, Special Requirements or
fall / spring restrictions. Such options prove to be powerful
especially when advising junior/senior students who would go
for independent studies instead of the normal courses or have a
difficult schedule that would allow exceptions from the
department.
Ignore substitutes display has just a formatting result in the
output solutions. When the option is not checked, the courses
that are members of a Special Group will be displayed as a
group, allowing for a more compact view (see Section 4 for
details).
The Search Criteria allows changing the searching algorithm
being used. The Full Heuristic (recommended) option, or the
default one, will use the search algorithm as described in this
paper, and should be the only one needed. For testing purposes,
for evaluating speed difference and performance, there is the
Light Heuristic search choice and the Exhaustive search one.
The Light Heuristic method is very similar to the full heuristic
(default) choice, except that it does not expand the closed list to
various open lists. Note that this can often result in no solutions
for the problem. The Exhaustive Search algorithm, will not
create a Closed list based on requirement costs, instead it will
apply full combinations on the list of course that are available to
be taken at a certain time. Note that this option can be extremely
slow and does not assure optimal solutions. Again, the search
choice option has only been implemented for testing and
debugging purposes. The same applies for the Show Costs
option, which will display the requirement cost for all the
courses.
A profile can also be saved or loaded, thus maintaining easily
the records of each student for future reference.

3.3. The Schedules

Once the profiler has been adjusted for a particular scenario, and
preferentially saved, by switching to the Schedules tab and
clicking go the software will start searching for the optimal
course schedules (Figure 8). A progress report is displayed and
the process can be cancelled at any time if the solutions already
found are sufficient.

Figure 8. The Schedules

The solutions found are being displayed as a tree, each leaf
representing the set of courses for a semester. For example
CS101*ENGLC101*ENGR111*MATH110*PHYS111 is the
only optimal choice for a first semester, while the fifth semester
can be either
AD101*CPE315*CPE387*EE360*ENGR300*SSCC201 or
CPE315*CPE387*EE360*ENGR300*HUMC202*SSCC201.
Once one of the two semester has been chosen, the semesters
from its sub-tree should be considered for continuation.
The Special Groups of courses defined through the Data
Manager, are normally being displayed in parentheses, to note
the fact that any of the courses from the parentheses enclosed set
can be chosen. For example,
(CPE410/CPE460/CPE471/CPE473) would suggest to the
student to choose any of the four courses and only one of them.
Multiple such parentheses can occur through a semester, case in
which the student should choose accordingly for each of them. If
the Ignore substitutes display in the Profiler is being checked,
these groups of courses will be expanded in multiple solutions
with single choices.
A text file with all the solutions is being output as well.

3.4. Other Features

In its current form, the application can also be run as an HTTP
server, allowing access to the profiler through a web browser,
thus a more flexible way of sharing the database among
advisors. A minimal level of security is implemented as well,
allowing for IP filtering and user/password based access. Future
work and directions will be detailed in the next section.5

4. A Complete Example. Design and Implementation
History

By presenting a complete example on which the application was
fully tested and built, this section should provide a good
understanding of the current design of the application, what
limitations and problems have been encountered and how were
they corrected.

SKED: A COURSE SCHEDULING AND ADVISING SOFTWARE 6
KEY NAME CREDITS

AD101 Fine Arts 3
CAPS390 Capstone Seminar 3
CHEM103 General Chemistry I 4
CPE210 Digital Design I 3
CPE286 Introduction to Microprocessors 3
CPE312 Computer Organization 3
CPE315 Digital Design II with Laboratory 4
CPE387 Embedded System Design 3
CPE408 Operating Systems 3
CPE410 Introduction to Computer Architecture 3
CPE447 FPGA Design 3
CPE448 Introduction to VLSI Design 3
CPE449A Senior Project part A 1
CPE449B Senior Project part B 3
CPE460 Introduction to Robotics 3
CPE471 Computer Comm. I: System Analysis 3
CPE473 Local Area Networks 3
CPE489 Software Engineering 3
CS101 Introduction to Computing I 3
CS102 Introduction to Computing II 3
EE233 Network Analysis I 3
EE234 Network Analysis II 2
EE235 Network Analysis I Lab 1
EE236 Network Analysis II Lab 1
EE348 Electronic Circuits I 3
EE360 Controls 3
EE443 Applied Digital Signal Processing 3
ENGL100 Basic Composition 3
ENGL204 Technical Writing for Comp. Sci. & Eng. 1
ENGLC101 Composition and Rhetoric I 3
ENGR111 Introduction to Engineering I 3
ENGR300 Economics and Management of Eng. 1
ETHICS Integrated Studies In Comp (INSTC101) 3
FREELEC1 Free Elective One 3
HUMC201 Introduction to Humanities I 3
HUMC202 Introduction to Humanities II 3
MATH109 Precalculus Mathematics 4
MATH110 Calculus and Analytic Geometry I 4
MATH112 Calculus and Analytic Geometry II 4
MATH214 Linear Algebra 3
MATH215 Calculus and Analytic Geometry III 4
MATH227 Discrete Structures 3
MATH301 Differential Equations 3
MATH314 Numerical Methods 3
MATH323 Probability and Statistics 3
ME223 Materials Science for Engineers 3
PHYS111 Principles of Physics I 4
PHYS112 Principles of Physics II 4
SSCC201 Introduction to the Social Sciences I 3
SSCC202 Introduction to the Social Sciences II 3
TELEC1 Technical Elective 1 3

Table 2. List of courses for the Computer Engineering Major

At University of Bridgeport, a student that has just been
admitted as an undergraduate freshman in Computer
Engineering field, will have to complete a total of 131 credits,
through a schedule of 8 semesters at an average of 18-19 credits
per semester. The courses that are to be taken are highlighted in
Table 2, where the key is the short form of the name, commonly
used when referring to courses.
For the given scenario, there are three groups of courses out of
which only a few need to be taken: out of CPE 410, CPE471,
CPE473 and CPE460, only two (any) need to be taken; out of
MATH214 and MATH314, only one (any), and also only one
out of CPE447 and CPE448.

Also note that MATH109 and ENGL100 can be usually
replaced by placement exams, thus bringing the total to 131
credits.
The following courses (given in alphabetical order here) are
being offered in the fall semester:

AD101, CAPS390, CHEM103, CPE210, CPE315, CPE387,
CPE410, CPE447, CPE448, CPE449A, CPE449B, CPE460,
CPE471, CPE473, CPE489, CS101, CS102, EE233, EE235,
EE360, EE443, ENGL100, ENGLC101, ENGR111, ENGR300,
FREELEC1, HUMC201, HUMC202, MATH109, MATH110,
MATH112, MATH215, MATH227, MATH323, PHYS111,
PHYS112, SSCC201, SSCC202, TELEC1

And the following are offered in the spring semester:

AD101, CAPS390, CHEM103, CPE210, CPE286, CPE312,
CPE408, CPE449A, CPE449B, CPE471, CS101, CS102,
EE234, EE236, EE348, ENGL100, ENGL204, ENGLC101,
ETHICS, FREELEC1, HUMC201, HUMC202, MATH109,
MATH110, MATH112, MATH214, MATH215, MATH227,
MATH301, MATH314, ME223, PHYS111, PHYS112,
SSCC201, SSCC202, TELEC1.

The following courses are considered core requirements:
CHEM103, CPE210, CPE286, CS101, EE233/235, ENGR111,
ENGR300, MATH215, MATH301, MATH323, ME223.

The following courses are considered program requirements:
CPE312, CPE315, CPE387, CPE408, CPE447/448, CPE449,
CPE489, CS102, CS227, EE234, EE348, EE360, EE443,
MATH214/314.

Note that most of the courses that are being offered both
semesters are core requirements and courses that are usually
general requirements for many majors (i.e. ENGLC101,
ENGL100, MATH109).
The final and most important constraint exists in the set of
requisites and pre-requisites that exists between courses, shown
in figures 15 and 16. Figures 11, 12, 13, 14 and 15 show
respectively the Design Sequence, the Software Sequence, the
Integrated Software / Hardware Design Sequence, the Hardware
Sequence and the Electrical Engineering Sequence of courses.
Based on the presented data, the university came up with a
suggested course schedule shown in figure 22. The schedule has
been designed manually, by student advisors / professors. While
the schedule certainly meets the requirements imposed for the
Computer Engineering degree, any change or customization for
a student’s needs (especially the case of a transfer student) would
be questionable.
The first goal of the application was to find a suitable, fairly
normalized and scalable data structure that could contain the
given information. While a trivial Microsoft Access database
seemed a sufficient start in the beginning, after few months of
testing and debugging we have reached the currently presented
Data Manager. It is essential to have various filters that can
guarantee the integrity and quality of the data input by a user.
As a next step, we designed quickly a brute force
(combinatorial) algorithm, mainly as an immediate way of
exercising the versatility of our data structure and to get an idea
regarding the execution time (see Section 3.2, Search Options).

SKED: A COURSE SCHEDULING AND ADVISING SOFTWARE 7

Some of the problems appeared already: unacceptable execution
time (a first solution was output after more than 24 hours of
execution time); performing the various data manipulation
routines directly on the Access table was a significant slowdown
as well.
At this stage, we started to implement the suggested algorithm.
The skeleton idea was primarily derived from the sequence of
requisites and pre-requisites that suggest a certain "order of
importance" for courses.
The data has been copied into memory and all the data
manipulation routines were simplified and changed to work
completely from the memory.
For a faster implementation and result, the co-requisites have
been considered pre-requisites and the groups of special courses
have been ignored.
The execution time has been reduced significantly and the
algorithm started to promising outputs.
However, due to the incomplete implementation and
consideration of the problem, the application was not outputting
completely realistic solutions. We then adjusted the algorithm to
be able to work with groups of courses (note that while a student
has the choice to choose which to take, each has its own list of
requirements and some choices could improve the overall
output). Co-requisites have also been added and handled
properly. The concepts of SOPHOMORE, JUNIOR and
SENIOR have also been implemented.
The new results were more promising and closer to viable
solutions, however, it became obvious that many of the courses
happen to have very few or no pre-requisites and also a low
requirement cost, a fact that would make the algorithm consider
them primarily for the later semesters.
The following is an example of such a problem:
CHEM103,CPE210,CS101,MATH110,PHYS111
MATH314,CS102,ENGLC101,MATH112,PHYS112
CPE315,EE233,EE235,ENGR111,HUMC201,MATH215
CPE286,CPE312,EE234,EE236,ENGL204,ETHICS,MATH301
AD101,CPE387,EE360,ENGR300,HUMC202,SSCC201
CPE410,CPE408,EE348,FREELEC1,MATH227,SSCC202
CPE471,CPE448,CPE449A,CPE489,EE443,MATH323
CAPS390,CPE449B,ME223,TELEC1.

Each row represents a different semester, the first one being
Fall, freshman year, then succeeding spring, fall and so on.
While the course dependency rules are met, it was not
acceptable to have a course such as MATH227 in the JUNIOR
year, such a course should be taken much earlier due to its
relative light content and other program specific reasons. More
difficult courses that have been scheduled to be taken earlier
should be placed instead of MATH227. Because there were no
rules that could facilitate such a choice, we introduced the
concept of special requirements, through which a user can
assign a certain requirement cost and so force the algorithm to
schedule various courses no later than specified semesters.
In addition, the application did not specify if any of the grouped
courses can be swapped or not, in other words, in a semester
sequence such as
CPE471,CPE448,CPE449A,CPE489,EE443,MATH323, can a
student take CPE410, or CPE460 or CPE473 instead of
CPE471?

Another problem was that the application was sometimes
outputting hundreds of solutions all in a sequential text file,
making it very hard to read and choose for a simple and optimal
choice.
At this point the algorithm has been adjusted to solve the above
problems, and also optimized again in various parts. We have
decided to build a tree of solutions, each semester being a node
level, thus converting the relatively discouraging number of
solutions into a fairly simple choice, that can easily derive from
the student’s preference (figure 9).

Figure 9. Sample output schedule

The example through figure 12, shows the case of a student that
has taken (possibly placement exams suggested) MATH109 and
ENGL100, starts in the fall semester, has a restriction of 18
credits per semester, and the following credit limitations:
SOPHOMORE, 37, JUNIOR, 71, SENIOR, 105 (Figure 10).

Figure 10. Profiler Scenario

The application was run on a Pentium III 600 computer with
256Mb of RAM, and the output was completed in 73 seconds (a
text file containing the solutions in a serial order is also being
output).
Although there are almost 300 schedules that would all be
acceptable from an advisor’s point of view, the student can now
easily choose for each semester his / her preferred choice, and
continue to expand for the next semesters of his / her choice,
while still meeting the constraints of the program and still
finishing in the fastest number of semesters possible. Note that
there are no possibilities of graduating in less than 8 semesters,
and any possibilities that would take longer are being omitted

SKED: A COURSE SCHEDULING AND ADVISING SOFTWARE 8

through the Maximum Number of Semesters option from the
Profiler.
We have also added a way of displaying properly the groups of
courses, displaying all of those that can be taken at a given
moment, in parenthesis. A progress bar, an option to cancel and
few other small features proved as well very useful.
In the example from figure 13, the application found unique
semester choices for Fall Freshman, Spring Freshman and Fall
Sophomore, after which there are choices.
For the Spring Sophomore semester, the student can either go
for CPE286, EE234, EE236, ENGL204, HUMC201, MATH301,
ME223 or CPE286, EE234, EE236, ENGL204, MATH301, ME223,
SSCC201 or CPE286, EE234, EE236, HUMC201, MATH301,
ME223, SSCC201.
Suppose the student prefers the first choice, he / she can choose
for his / her Fall Junior semester either AD101, CPE315, CPE387,
EE360, ENGR300, SSCC201 or CPE315, CPE387, EE360,
ENGR300, HUMC202, SSCC201.
Suppose the student prefers again the first choice, his / her
options for the Fall Junior semester are
(CPE410/CPE460/CPE471/CPE473), (MATH214/MATH314),
CPE312, EE348, HUMC202, SSCC202 or
(MATH214/MATH314), CPE312, EE348, FREELEC1, HUMC202,
SSCC202.
Note that the student needs to take only one of the courses from
each parenthesis. He / She does not need to check whether he
/she qualifies or not for any of them or whether they are offered
or not, this being taken care of through the algorithm, Suppose
the student prefers the first choice, for his / her Fall Senior year
he / she can choose from (CPE410/CPE460/CPE471/CPE473),
(CPE447/CPE448), CAPS390, CPE449A, CPE489, EE443 or
(CPE410/CPE460/CPE471/CPE473), (CPE447/CPE448),
CPE449A, CPE489, EE443, FREELEC1 or
(CPE410/CPE460/CPE471/CPE473), (CPE447/CPE448),
CPE449A, CPE489, EE443, TELEC1.
Taking the first choice, the only option for the last semester
remains CPE408, CPE449B, FREELEC1, TELEC1.
From this point on, an exhaustive sequence of testing and
possible scenarios have been circulated through the application
by university advisors. Various minor problems have been fixed
and we have finally decided on the exact variables and
categories that a user need to manipulate. The current Data
Manager, Profiler, Schedules and Others has been adopted [7],
with all the previously presented features. The output solutions
are matching closely to the one proposed by the department,
however, the application can find surprisingly more and better
solutions, that show their necessity especially when dealing with
transfer credits or difficult to meet student preferences.

4.1 A Second Example. Typical Scenario

To demonstrate better the advantages of the application, a
second example is given, this time not the case of applicants that
have just been admitted as freshmen, but of a transfer student.
Student X has just been admitted at the University of Bridgeport.
He / she has already attended 4 semesters at another university
and based on the transfer information, the following list of
courses taken are considered taken already: CHEM103,
CPE210, CPE286, CPE315, CPE410, CPE460, CS101, CS102,
EE235, EE360, ENGL100, ENGLC101, ENGR111, ENGR300,

HUMC201, MATH109, MATH110, MATH112, MATH227,
MATH301, MATH314, MATH323, PHYS111, PHYS112,
SSCC201.
The program requirements at the previous university were
different from those of the University of Bridgeport, this making
it even more difficult in sorting out what and when can be taken.
Finally, the student would like to start in the Spring and in
addition, he would hope this time to see few alternatives, as to
balance his / her time load with his / her part time job.
After the Profiler is being adjusted accordingly (Figure 11),

Figure 11. Secondary example profiler

The application outputs a total of 69 different possibilities that
could all get the student graduated in 4 semesters (Figure 12).

Figure 12. Second example scheduling. (A)

After going over few of the offered choices, the student decides
on a schedule that matches closely to his / her needs. He / She
will start by taking
AD101, CPE312, EE348, ENGL204, ETHICS, ME223
In the Spring, then continue with
(CPE447), CPE387, EE233, FREELEC1, HUMC202, SSCC202
in the Fall (note the parenthesis for CPE447 denoting one of the
group courses, but the fact that it is the only choice at the
moment). Next Spring, he / she will take
CAPS390, CPE408, CPE449A, EE234, EE236, MATH215,
TELEC1, and then finish next Fall with CPE449B, CPE489,
EE443.
However, things do not go exactly as planned for student X.
After the first semester, he / she fails course CPE312, and
returns for a new advising solution. Although he / she would

SKED: A COURSE SCHEDULING AND ADVISING SOFTWARE 9

have normally graduated in the next 3 semesters, this can not
happen anymore due to the fact that CPE312 is a requirement
course with a high cost (that is needed by many of the next
courses in order to continue). The algorithm outputs 12 possible
solutions in a fastest time of 4 semesters (Figure 13).

Figure 13. Second example scheduling.(B)

If he / she had failed AD101, EE348 or ME223, he / she would
have still been able to graduate in 3 semesters. A quick look at
the remaining courses reveals this clarity of the problem. For
example, a student can only take CPE449B after he / she took
CPE449A. CPE449A has as requirements CPE312, ETHICS
and ENGL204, and for example CPE312 is not being offered in
fall, which brings up to an obvious minimal of 4 semesters.
Given the situation, the student chooses for the fall CPE447,
CPE387, EE233, EE443, HUMC202, SSCC202, then he / she
plans CAPS390, CPE312, EE234, FREELEC1, MATH215 and
TELEC1 for the spring, CPE449A and CPE489 for the next fall
and finally CPE449B, CPE408 and EE236.
Although in the next semester the student fails course EE443, a
new rescheduling shows that he / she can still graduate in three
more semesters (Figure 14).

Figure 14. Second example scheduling. (C)

The student will continue with his / her previously selected
schedule, but now will add EE443 to his / her first senior
semester.

4.2 A Third Example. Specific Scenario A

Over the next three examples, the emphasis will go on exposing
the usefulness of the application in rather unusual or tedious
(time consuming) situations.
Student X arrives as a transfer student at University of
Bridgeport, and the school from where he transferred simply had
no course dependency requirements in their scheduling, allowing
for the student’s arbitrary schedule at their own risk. After
evaluating his / her transcript, this reveals that he has taken the
following courses so far:

CAPS390, CHEM103, CPE210, CPE286, CPE312, CPE315,
CPE387, CPE408, CPE410, CPE447, CPE448, CPE449A,
CPE449B, CPE460, CPE471, CPE473, CPE489, CS101,
CS102, EE233, EE234, EE235, EE236, EE348, EE360, EE443,
ENGL100, ENGL204, ENGLC101, ENGR111, ENGR300,
ETHICS, FREELEC1, HUMC201, HUMC202, MATH109,
MATH110, MATH112, MATH214, MATH215, MATH227,
MATH301, MATH314.

Overall, 124 credits have been taken. While few courses are left
to be taken, which could suggest a limited amount of choices
and therefore little time spent in solving them, the work becomes
tedious when mapping the course dependency imposed at
University of Bridgeport. Making a mistake becomes a highly
probable case which could result in affecting the quality of the
course curricula at the university. By using the scheduling tool,
this is a trivial task after which will reveal in seconds a correct
solution such as the following:
- first semester: AD101, ME223, PHYS111, SSCC201,

TELEC1
- second (last) semester: MATH323, PHYS112, SSCC202
Also to consider is the fact that the student can actually ask for
explanations on why choose a certain schedule, task that can be
easily tackled with the aid of the package as well.

4.3 A Fourth Example. Specific Scenario B

This time, let us consider the case of transfer students that have
taken very few credits and again, not necessarily adhering to
course dependencies. Student X has taken 16 credits so far as
follows:
CAPS390, CPE387, CPE408, ENGL101, MATH109.
While trying to setup a course schedule, the advisor will notice a
hard time in finding a schedule in less than 8 semesters, which
indeed is not possible in this case. The amount of work
necessary to reach this conclusion can be frustrating and still
leave doubts among the student and the advisor, also leaving the
desire of a software package that could double check these
results. Trying this scenario through this software package will
inspire confidence plus a high choice of possibilities.

4.4 A Fifth Example. Specific Scenario C

And finally a last unusual scenario adding to the critical
advantage of this software package.
Student X is transferring from a university that does respect a
course dependency fairly close to the one of the University of

SKED: A COURSE SCHEDULING AND ADVISING SOFTWARE 10

Bridgeport, but is also more flexible on the number of credits
per semester. As a result, student X has taken a total of 24
credits in one semester, as follows:
CS101, CPE210, ENGL100, ENGR111, MATH109, MATH110
and PHYS111
Due to personal reasons, the student can only attend at
University of Bridgeport if he can be accommodated to graduate
in 6 semesters (e.g. the case of an international student that
comes to study to the United States and has a time limited visa)
Trying to come up with a 6 semester solution in regular
condition will not succeed, plus the task to justify and determine
this will take time. The idea then would be to try to reduce some
of the restrictions: allow more credits per semester? How many?
Each case will require a thorough attention for an advisor and
can be hard to follow. The goal is to just find a solution, and if a
tool could allow to "play" with few parameters and come up
with something, the issue would be set.
By inputting the scenario in the software package, it appears that
the student can actually graduate in 6 semesters if allowed to
take up to 22 courses per semester and would start in Spring,
bellow listed one of the 8 such possible solutions:
- first semester: CHEM103, CS102, ENGLC101, MATH112,
MATH227, PHYS112
- second semester: CPE315, EE233, EE235, HUMC201,
MATH215, MATH323, SSCC201
- third semester: (MATH314), CPE286, CPE312, EE234,
EE236, ENGL204, ETHICS, MATH301, ME223
- fourth semester: (CPE410/CPE460), (CPE447), AD101,
CPE387, EE360, ENGR300, HUMC202, SSCC202
- fifth semester: (CPE410/CPE460/CPE471), CAPS390,
CPE408, CPE449A, EE348, FREELEC1, TELEC1
- and sixth semester: CPE449B, CPE489, EE443

5. Current Limitations and Future Work

Although in its current stage the application has enough features
to be conveniently used for advising, there are still features that
need attention. Students should be able to filter the list of final
solutions for their own preference. The availability cost of a
course should also take in consideration the total number of
students a course can be offered to, and to co-relate this fact
with a global database that keeps track whether a course is still
available from this point of view. Some courses could also
happen to be offered in the same exact time, this being a case
that the algorithm should consider as well.
Besides the relatively immediate changes above, the software
will be probably converted to a completely web based interface
too, which would link and maintain a school database, with all
the courses for all the majors and all the information for a
student stored there as well.
The ultimate goal is to have to student type an ID number from
his / her home computer and no other additional information.
Based on the id, the software will find the major the student
belongs too and what courses did he /she take already.
Consequently, will output immediately the optimal possibilities
and allow him to choose among them and register online. Once
the student confirms the selection, this reply gets appended to
his / her advisor’s profile for double checking (to avoid any
possible application error or invalid result), and if the advisor

agrees with it, the student will be notified by email and the
registration process is complete.

6. Conclusions

In this paper, we present a software model designed to aid the
students and the advisors with the tedious and time consuming
registration tasks that every semester, every student and advisor
need to go through.
The designed application can virtually eliminate the time an
advisor would spend with a student on registration, optimizing
for the quickest graduation and facilitating student’s preferences,
thus allowing time for more specific and important student
related issues.
Currently we have successfully tested and used the application
on the Bachelors of Computer Engineering Major at the
University of Bridgeport. The tool provided excellent results.
We are also in the process of completely revamping the
application to the specifications detailed in Section 5, which
would result in a completely automated advising and registration
system complying with the requirements of a program of study.

SKED: A COURSE SCHEDULING AND ADVISING SOFTWARE 11

Figure 15.Course Dependency Graph categorized by types of courses.

SKED: A COURSE SCHEDULING AND ADVISING SOFTWARE 12

Figure 16.Course Dependency Graph categorized by course sequences.

SKED: A COURSE SCHEDULING AND ADVISING SOFTWARE 13

Figure 17.Design Sequence

Figure 18.Software Sequence.

Figure 19.Integrated SW/HW Design Sequence.

SKED: A COURSE SCHEDULING AND ADVISING SOFTWARE 14

Figure 20. HW Sequence.

Figure 21. EE Sequence.

SKED: A COURSE SCHEDULING AND ADVISING SOFTWARE 15

Figure 22. A suggested Schedule

SKED: A COURSE SCHEDULING AND ADVISING SOFTWARE 16

References

[1] Aarts, E. H. L. , Lenstra, Jan Karel, Aarts, Emile L.,
“Local Search in Combinatorial Optimization”, Wiley-
Interscience Series in Discrete Mathematics and Optimization,
1997

[2] Greene, Daniel H., Knuth, Donald E., “Mathematics for
The Analysis o Algorithms”, Third Edition, Birkhauser, 1990

[3] Dasgupta, Pallab, Chakrabarti, P. P., Desarkar, S. C.,
“Multiobjective Heuristic Search: An Introduction to
Intelligent Search Methods for Multicriteria
OptimizationKaufmann Publishers; , 1999

[4] Patrascoiu, Octavian, Marian, Gheorghe, Mitroi, Nicolae,
“Elements of Graphs and Combinatorial Theory, Methods,
Algorithms and Programs”, B.I.C. All, Romania, 1994

[5] Izvercian, P.N., Cretu, V., Izvercian, M., Resiga, R.,
“Introduction in Graph Theory, The Critical Path Method”,
Editura de Vest, Romania, 1993

[6] Graham, Ronald L., Knuth, Donald E., Patashnik, Oren,
“Concrete Mathematics, A Foundation for Computer
Science”, Addison-Wesley, 1994
Control. Second Edition",1989, Addison Wesley

[7] Markotty, Michael, “Software Implementation (Practical
Software Engineering, Vol 4)”, Prentice-Hall ECS
Professional, 1991

Appendix

AD101, Fine Arts, (3 credits)
CAPS390, Capstone Seminar, (3 credits)
CHEM103, General Chemistry I, (4 credits)
CPE210, Digital Design I, (3 credits)
CPE286, Introduction to Microprocessors, (3 credits)
CPE312, Computer Organization, (3 credits)
CPE315, Digital Design II with Laboratory, (4 credits)
CPE387, Embedded System Design, (3 credits)
CPE408, Operating Systems, (3 credits)
CPE410, Introduction to Computer Architecture, (3 credits)
CPE447, FPGA Design, (3 credits)
CPE448, Introduction to VLSI Design, (3 credits)
CPE449A, Senior Project part A, (1 credits)
CPE449B, Senior Project part B, (3 credits)
CPE460, Introduction to Robotics, (3 credits)
CPE471, Computer Communications I: System Analysis, (3
credits)
CPE473, Local Area Networks, (3 credits)
CPE489, Software Engineering, (3 credits)
CS101, Introduction to Computing I, (3 credits)
CS102, Introduction to Computing II, (3 credits)
EE233, Network Analysis I, (3 credits)
EE234, Network Analysis II, (2 credits)
EE235, Network Analysis I Lab, (1 credits)

EE236, Network Analysis II Lab, (1 credits)
EE348, Electronic Circuits I, (3 credits)
EE360, Controls, (3 credits)
EE443, Applied Digital Signal Processing, (3 credits)
ENGL100, Basic Composition, (3 credits)
ENGL204, Technical Writting for Comp. Sci. & Eng., (1
credits)
ENGLC101, Composition and Rhetoric I, (3 credits)
ENGR111, Introduction to Engineering I, (3 credits)
ENGR300, Economics and Management of Engineering
Projects, (1 credits)
ETHICS, Integrated Studies in Computing (INTSC101), (3
credits)
FREELEC1, Free Elective 1, (3 credits)
HUMC201, Introduction to Humanities I, (3 credits)
HUMC202, Introduction to Humanities II, (3 credits)
MATH109, Precalculus Mathematics, (4 credits)
MATH110, Calculus and Analytic Geometry I, (4 credits)
MATH112, Calculus and Analytic Geometry II, (4 credits)
MATH214, Linear Algebra, (3 credits)
MATH215, Calculus and Analytic Geometry III, (4 credits)
MATH227, Discrete Structures, (3 credits)
MATH301, Differential Equations, (3 credits)
MATH314, Numerical Methods, (3 credits)
MATH323, Probability and Statistics, (3 credits)
ME223, Materials Science for Engineers, (3 credits)
PHYS111, Principles of Physics I, (4 credits)
PHYS112, Principles of Physics II, (4 credits)
SSCC201, Introduction to the Social Sciences I, (3 credits)
SSCC202, Introduction to the Social Sciences II, (3 credits)
TELEC1, Technical Elective 1, (3 credits)

