T

Compressed Transmission Mode: An Optimizing Decision Tool

Tarek M. Sobh

Department of Computer Science, University of Utah

Salt Lake City, Utah 84112, U.S.A.
E-mail: sobh@cs.utah.edu

AND

Tarek K. Alameldin

Computer Visualization Laboratory, Graduate School of Architecture
Texas A & M University, College Station, Texas, U.S.A.

E-mail: tarek@viz.tamu.edu

Keywords: Communication, Compression, Optimization, Tools

Edited by: Rudi Murn
Received: March 1, 1994

Revised: June 14, 1904

Accepted: September 20, 1994

In this paper we address the problem of host to host communication. In particular, we
discuss the issue of efficient and adaptive transmission mechanisis over possible physical
links. We develop a tool for making decisions regarding the flow of control sequences
and data from and to a host. The issue of compression is discussed in details, a decision
box and an optimizing tool for finding the appropriate thresholds for a decision are
developed. Physical parameters like the data rate, bandwidth of the communication
medium, distance between the hosts, baud rate, levels of discretization, signal to noise
ratio and propagation speed of the signal are taken into consideration while developing
our decision system. Theoretical analysis is performed to develop mathematical models
for the optimization algorithm. Simulation models are also developed for testing both

the optimization and the decision tool box.

1 Introduction

Data which is transmitted over a communication
medium between two computers contains some
form of redundancy. This redundancy can be ex-
ploited to make economical use of the storage me-
dia or to rednce the cost of transferring the data
and commands over the communication network.
One of the basic issues in the design of the pre-
sentation layer is to decide whether data is to be
compressed before transmission or not. Many flac-
tors may affect making Lhis decision, one of the
most important ones is the cost factor. Compress-
ing data before sending it will help reduce cost.

Some other factors may affect the decision of
compression. The time factor may be the influ-
encing one, in fact, one should not forget that
there is the overhead of the compression and de-
compression algorithms at the sender and at the
receiver hosts. This overhead is both in time and

money, as the CPU is used for running the algo-
rithms. Thus, the designer always faces the prob-
lem of when shounld one compress the data. The
parameters which may affect this decision might
be the parameters of the physical communication
medinm, they might also be the parameters of the
compression algorithm used or both.

The decision that the design engineer will have
to make might be a decision to compress or not
given a certain fixed compression and physical
medium parameters, or it might be a decision to
compress depending on the value of one or more
of the parameters (i.e., to compress if a certain
threshold is met). In our work, we try to develop
a tool for making such a decision, we choose the
time to be the criteria for making compression
decision, where the time is both for the compres-
sion overhead and for transmission. We develop
a yes/no decision box given some lixed parame-
ters and an oplimizing decision box for finding the

https://core.ac.uk/display/52955712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

348 lnformatica 18 (1004) 347-356

threshold for one varying parameter while fixing
the others. Theoretical analysis is performed and
also simulations for different sets of data and a
decision (or a threshold) is output for each kind
of analysis,

2 Physical and Compression
Parameters

The parameters of the communication medinm
between two hosts will affect the decision regard-
ing compression. Whether the medium be a coax-
ial cable, a fiber optic cable or air (in the case of
radio transmissions) it can always be completely
specified by parameterizing it. The parameters
that may help in determining the transmission
time can be listed as follows :

— The data rate in bits per second. {D bps}

— The band width of the medium in hertz. {B
Hz)

— The distance between the two hosts under
consideration in meters. {L m}

= The levels of discretization. {!}
= The baud rate in changes per second. {b}
~ The signal to noise ratio in decibels. {S dB)

— The propagation speed of the signal in the
medium, in meters per second. {P m/s)

It should be noticed that there is redundancy
i expressing Lhe time for transmission using all
those parameters and the number of bits sent. For
example, it is sufficient to use the number of bits
and the data rate to express the time. However, if
the data rate is not available we can use the baud
rate, the levels of discretization and the data size,
or alternatively we can use Shanon’s maximum
data rate bound, thus using the band width, the
signal to noise ratio and the data size to find an
expression for the minimum time for transmission.

The other set of parameters that is involved
with the computation of the time for transmit-
ting a certain amount of data is the set of the
compression algorithm parameters. The CPU run
time as a function of the size of data input to the
algorithm is one of those parameters. The ex-
pected compression ratio, which actually depends

T. Sobh

on what type of data to be transmitted is the sec-
ond compression parameter of concern.

3 Mathematical Formulation

The problem can be mathematically formulated
by trying to find the cost of sending a certain
number of bits from a host to another. The cost
will be assumed to be the time through which the
channel will be kept busy sending the data plus
the time that will take the CPU to perform the
compression and decompression on the data that
are required to be transmitted. One can use a
weight in Lhe cost expression to denote that, for
example, the cost for utilizing the network cable
for one second is X times the cost for utilizing the
CPU for one second. Thus, the expression for the
cost function may be written as ;

Transmission time + X x CPU computation
time

where X is the ratio between the cost of using
the network for one unit time and the cost of one
unit CPU time.

3.1 The Transmission Time

If we make the assumption that we only have
two hosts connected directly and ignore the other
overheads of the protocol to be used, the time
nesded to transmit N bits from a host to another
can be written as a mathematical expression in
terms of the physical medium parameters. For our
implementation we are going to develop Lhe trans-
mission expression in four different ways, using
four different sets of physical parameters, where
each set individually is sufficient to specily the
transmission time T']1 completely.

3.1.1 Formulation Using the Data rate

The time required for transmitting N bits can be
formulated as follows :

. N L
PI—E-I-T,'

where D is the data rate in bits per second, L
is the distance between the two hosts and P is
the signal propagation speed. The first term is
for the emission of N bits from the sender and the
second term is the time for the last bit to reach
the recaiver,

COMPRESSED TRANSMISSION MODE

'\\.

3.1.2 Formulation Using the baud rate

The time required for transmitting N bits can be
formulated as follows :
N L
Ti= bl_ong : P

where b is the baud rate in changes per second,
| is the number of levels of discretization, L is
the distance between the two hosts and P is the
signal propagation speed. The first term is for
the emission of N bits from the sender and the
second term is the time for the last bit to reach
the receiver.

3.1.8 Formulation Using the band width

The time required for transmitting N bits can be
formulated as follows :

Fow
1= gl T P

where B is the band width in Hertz, [is the
unmber of levels of discretization, L is the dis
tance between the two hosts and P is the signal
propagation speed. The first term is for the emis-
sion of N hits from the sender and the second term
is the time for the last bit 1o reach the receiver. In
this case, there is assumed to be no noise whatso-
ever, we are assuming the maximum possible data
rale,

3.1.4 Formulation Using the Signal to
Noise Ratio

The time required for transmitling N bils can be
formulated as follows :
N L

= =
Blogs(1+10m) P

where B is the band width in Hertz, § is the
signal to noise ratio in decibels, L is the distance
between the two hosts and P is the signal prop-
agation speed. The first term is for the emission
of N bits from the sender and the second term is
the time for the last bit to reach the receiver, In
this case Shanon’s maximum data rate of a noisy
channel is assumed.

Informatica 18 (1094) 347-356 348

3.2 The Compression and
Decompression Times

The run times of the algorithm for compression
and decompression can be expressed as a function
of the size of the input in terms of machine cycles.
That is, the compression time can be expressed as
T2(M) where M is the size of data thal is input
to the compression algorithm.

3.3 Total Cost Without Using
Compression

The total time to send N bits without using com-
pression would then simply be equal to the trans-
mission time, thus it equals one of the four ex-
pressions discussed previously, The total cost is
considered to be ouly the time during which the
commuuication channel is utilized.

3.4 Total Cost Using Compression

The total cost for transmitting a seqnence of
bits using compression will be assumed to be a
weighted combination of the times for transmis-
sion and the times for compression and decom-
pression. Thus, il we assnmne the compression ra-
tio of the algorithm to be equal to R, and X is
the ratio between the cost of using the network
for one unit time and the cost of one unit CPU
time and if we also assume a variable page size,
i, compression is to he performed before each
transmission of a block of size M of duta, the
total cost to be incurred (when we express the
transmission time in terms of the data rate) can
be writben as @

iM L 1
S, 2 T
C= + =+ X(A(M) 4 £2(= M)

where 1 and f2 are the compression and de-
compression runtime functions (in terms of the
input size).

Similarly, the total cost can be written for the
other physical medium sets of parameters as :

: i:M L
€= g +P+X(ﬁ(M)+ﬂ(RM))

or

_L

oar

350 luformatica 18 (1094) 347366

..__ﬂ_ L X(fuUM
C-fs‘lng,(l--r1(1v1’lr)+Jl"'+ (M)

2z M)

4 Compression Algorithms

The methods to compress data have been stud-
ied for many years. However, several prob-
lems have prevented the widespread integration
of compression methods into computer systems
for automatic data compression. These prob-
lems include poor runtime execution preventing
high data rates, lack of flexibility in the compres-
sion procedures to deal with most types of re-
dundancies and storage management problems in
dealing with storage of blocks of data of unpre-
dictable length. In most cases a method presents
some subset of these problems and therefore is re-
stricted to applications where its inherent weak-
nesses do not result in critical inefficiencies. In
this section we shall review the different forms
of redundancies that can be taken advantage of
for compression and then look at some of the ap-
proaches taken towards this end. Then we shall
present a method due to Welch [3] which avoids
many of the drawbacks of most of the methods,

4.1 Kinds of Redundancies

There are four major types of redundancies Lhat
we shall mention here. The forms of redundancies
discussed are not independent of each other but
averlap to some extent. ‘There are some olher
forms of redundancies too, but the ones we are
going to discuss are the major ones.

In different types of data, some of the charac-
ters are used more frequently than others, For ex-
ample, in English text we see space and "o’ more
frequent than any other character and special
characters are used a lot less frequently. Gener-
ally speaking, all of the string combinations might
not be used in a specific data set, resulting in
the possibility of reducing the number of bits per
combination. This kind of redundancy is due to
character distribution.

The repetition of string patterns is another
form of redundancy found in some of the cases.

T. Sobh

For example, the sequence of blank spaces is very
common in some kind of data liles. In such cases
the message can usually be encoded more com-
pactly rather than by repeating the string pat-
tern.

In a certain type of data set, certain sequences
of characters might appear very frequently. Some
pairs may be used with higher frequency than
the individual probabilities of the letters in these
pairs would imply. Therefore, these pairs could
be encoded using fewer bits than the combined
combinations of the two characters formed by
joining together the individual combinations for
the two characters. Likewise, the unusual pairs,
can be encoded using very long bit patterns to
achieve better utilization.In some data sets, cer-
tain strings or numbers consistently appear at a
predictable position. This is called Positional re-
dundancy. It is a form of partial redundancy that
can be exploited in encoding.

4.2 Methods of Compression

Using the discussion on redundancy types as our
basis, we shall discuss several practical compres-
sion methods, and then choose one of them and
use it for our simulation.

4.2.1 Huffman Encoding

This is the most popular compression method. It
translates the fixed-size pieces of input data into
variable-length symbols. The standard Huffman
encoding procedure prescribes a way Lo assign
codes to input symbols such that each code length
in bits is approximately log,(Symbol Probability).
Wlhere symbol probability is the relative fre-
quency of occurrence of a given symbol (expressed
as a probability). Huffman encoding has certain
problems. The first problem is that the size of in-
put symbols is restricted by the size of the transla-
tion table. If a symbol is one eight-bit byte, then
a table of 256 entries is sufficient. However, such
a table limits the degree of compression that can
be achieved. If the size of the input symboaols is
increased to two bytes each, the compression de-
aree would be increased. However, such encoding
would require a table of 64K entries which may
be a high cost.

COMPRESSED TRANSMISSION MODE

The second problem with Huffman encoding is
the complexity of the decompression process. The
translation table is essentially a binary tree, in
that, the interpretation of each code proceeds bit
by bit and a translation subtable is chosen de-
pending on whether the bit is zero or one. This
basically means a logic decision on every bit which
can create a system bottle neck.

The third problem with Huffman encoding is
the need to know the frequency distribution of
characters in the input data which is not well
known for all kinds of data. A common solution
is to do two passes on the data, one to find the
frequency distribution ordering and the other is
to to do the encoding. This process may be done
block wise Lo adapt to the changes in data. This is
not very efficient although it might be acceptable.

4.2.2 Run-length encoding

Repeated sequences of identical characters can
be encoded as a count field along with the re-
peated character. However, the count fields have
to be distinguished from the normal character
fields which might have the same bit pattern as
the count fields. A possible solution is to use a
special character to mark the count field. This
might be suitable for ASCII text, but not when
there are arbitrary bit patterns such as in the case
of binary integers. Typically, three characters are
required to mark a sequence of an identical char-
acter. So, this will not be useful for sequences of
length three or less.

4.2.3 Programmed Compression

In formatted data files, several lechniques are
used to do compression. Unused blank or zero
spaces are eliminated by making fields variable
in length and using an index structure with
pointers to each field position. Predicted fields
are compactly encoded by a code table. Pro-
grammed compression cannot eflectively handle
character distribution redundancy and is there-
fore a nice complement of Huffman encoding. The
programmed compression has several drawbacks.
First it is usually done by the application pro-
grammers adding to the software development
cost. The type of decompression used requires a
knowledge of the record structure and the code ta-
bles. The choice of field sizes and code tables may

Informatica 18 (1004) 347-356 351

complicate or inhibit later changes to the data
structure making the software more expensive to
maintain.

4.2.4 Adaptive Compression

The Lempel-Ziv [4,5] and related methods fall
into this category. Fixed length codes are used
for variable-length strings such that the proba-
bility of occurrence of all selected strings is al-
most equal. This implies that the strings com-
prising of more frequently oceurring symbols will
contain more symbols than those strings having
more of the infrequent symbols. This type of al-
gorithm exploits character frequency redundancy,
character repetitions, and high-usage pattern re-
dundancy although it is usually not effective on
positional redundancy. The algorithm is adaptive
in the sense that it starts with an empty trans-
lation table and builds the table as the compres-
sion proceeds. This type of algorithm is a one
pass procedure and usually requires no prior in-
formation of the type of data. Such algorithm,
gives poor compression results in the initial part
of the data sel; as a result the data set should
be long enough for the procedure to establish
enough symbol frequency experience to achieve
a good compression degree over the whole data
set. On the other hand, most finite implemen-
tations of an adaptive algorithm loose the ability
to adapt after certain length of the input which
means that if the input’s redundancy characteris-
tics vary over its length, the compression degree
declines il the input length signilicantly exceeds
the adaptive range of the compression implemen-
tation.

We have chosen a variation of the Lempel-Ziv
procedure which is called LZW due to Welch [3].
This method retains the adaptive characteristics
of the Lempel-Ziv procedure but is distinguished
by its very simple logic which yields relatively in-
expensive implementations and a potential of very
fast execution.

4.3 The LZW Algorithm

The LZW algorithm is organized around a trans-
lation table, referred Lo here as a string table,
that maps strings of input characters into fixed
length codes. The use of 12-bit codes is common.

352 Informatica 18 (1994) 3473566

The LZW table has the prefix property that if
wK is a string in the table and wis a string and
K is a character, then w is also in the table. K is
called the extension character on the prefix string
w. The string table may be initialized to contain
all single-character strings.

The LZW table, at any time in the compression
process, contains strings that have been encoun-
tered previously in the message being compressed.
In other words, it contains the running sample of
strings in the message, so the available strings re-
flect the statistics of the message. The strings
added to the table are determined by this pars-
ing: each parsed input string extended by its next
input character forms a new string added to the
string table. Each such string is assigned a unique
identifier, namely its code value.

The algorithm is quite simple and can have
a very fast implementation. The main concern
in the implementation is storing the siring table
which can be very large. llowever, it can be made
tractable by representing each string by its prefix
identifier and extension character. This will give
a table of fixed length entries.

The decompressor logically uses Lthe same string
table as the compressor and similarly constructs it
as the message is translated. Each received code
value is translated by way of the string table into
a prefix string and extension character. The ex-
tension character is pulled off and the prefix string
15 decomposed into its preflix and extension. This
operation is recursive until the prefix string is a
single character, which completes decompression
of that code. Each update to the string table
is made for each code received (except the first
one). When a code hias been translated , its final
character is used as the extension character, com-
bined with the prior string, to add a new string
to the string table. This new string is assigned
a unique code value, which is the same code Lhat
the compression assigned to that string. In this
way, the decompressor incrementally reconstructs
the same string table that the compressor used.

5 Comparing the Models

The goal of our mathematical formulations and
modeling is to perform one of two basic tasks, the

T. Sobh

first one is to decide whether to use compression
or not given a certain set of fixed parameters {
for compression, decompression and the physical
medium) , the other is to decide the threshold
for a specific varying parameter before which we
should perform compression and after which we
ghould not perform compression.

Two independent situations can arise in our for-
mulation, in the first one, we can consider the pro-
tocol in which the communication to take place is
a one of varying page length. In this case, the
compression is performed for one “chunk” of data
at a time and is immediately sent after that. In
the other case, the protocol may have a fixed page
size and thus the compression is performed for
large files and the compressed data is sent one
page at a time. Thus comparing the two mod-
els for decision making and optimizing parameters
can be performed for each one of these sitnations
separately. It should also be noticed that there
might exist hypothetical bounds and average val-
ues for the run times and compression ratios for
the compression and decompression algorithms.

The way we construct our mathematical mod-
els and optimization problems depends entirely on
the set of parameters described in section 2. We
construct the timing models as a function in one
parameter to be determined (in the case of solving
an optimization problem), given all the valnes for
the other communication medium and data pa-
rameters and solve the inequality to find the re-
quired range for the unknown parameter. In the
case of decision problems, we solve the inequal-
ity given all the values of the different parameters
and check to see il the inequality holds or not
(the greater than or less than relation). The deci-
sion algorithm would provide an answer (whether
to do compression or not) depending on the cost
(time) it takes to compress with respect to Lthe
transmission time without doing compression.

5.1 Using a Varying-Length Page

The problem in this case is to either make a de-
cision regarding compression or to optimize a pa-
rameter, the four different representations for the
transmission time can each be used to formulate
and express the total cost incurred in the com-
pression and uncompression modes. In the deci-
sion problem, we choose the scheme to have the

COMPRESSED TRANSMISSION MODE

less cost. In the optimization problems we find
the range for a certain parameter such that, for
example, compression is a better technique, by
solving the inequality.

Assuming that we use the LZW algorithm,
characters are 8 bits each, the machine's cycle
rate is w cycles per second, the data size to be
compressed is M bits and the compression ratio is
R. The algorithm runtime can be formulated as :

M
TEaeY

The following inequality can be formed for the
model using the data rate as the physical param-
eter, for cost of the compressed mode to be less
than the cost of the uncompressed mode .

-‘—+ +X(L "‘M)

P Bu
1 S+ll.‘i l.S+ll."'
3 Ak
= P

For the model using the baud rate

ML M M

b:‘i l+P+X(T+ :)

0, 154R-T 154R-
ML
=S i T P

For the model using the band width

=M L M - M
= B e e
2Blog,I+P+X(TR —TT)

THETT ST
N
*Blgi TP

For the model using the signal to noise ratio

M L
+
B log,(1+ 10%)

LM
+x(L)
1

S+R-T 1.54+R1

M L
< =
Blogy(1 + 10)

Informatica 18 (1994) 347-356 353

5.2 Using a Fixed-Length Page

In this model we assume that the protocol has a
fixed length page and that the compression and
decompression is done for a large chunk of data
M, in this situation another parameter should
be taken into consideration, which is the page
size m and the expression for the transmission
time should now include the number of com-
pressed pages that are sent over the communi-
cation medium. Thus the above inequalities can
now be expressed as :

1
ﬂ(m+5)+x(_“‘_+_z”_)
m \D P TEHET | e
M/m L
S BiH)
For the model using the baud rate
E‘M(m +£)
+x(ﬂ

15+R-T

LM
+ _L)
Bu
15+R-7

blog, 1 * P

For the model using the band width

*M(" L)
“m \TPhgg T BIE

+ B
1.5+R— 1.6+R-T

<£l_(m +L)
~ m \2Blog,! P

For the model using the signal to noise ratio

ir_M(m +£)
™\ Blogy(1+10%) = P

+x(fi *M)
TR+R=T TH¢R=T

M(m L)
S— T -+ —
™ \ Blogy(1 + 1055) P

354 Informatica 18 (1094) 347-356

6 The Experiment

In our experiment towards the goal of establish-
ing a reasonable tool for the design engineer, we
offer the choice for either making a decision to
nse a compression /decompression scheme given a
certain situation, i.e, a fixed set of physical layer
parameters and a certain size of a chunk of data,
or choosing to optimize { obtain the threshold of}
a certain parameter, such that we can use com-
pression for all values of the parameter that are
less than this threshold, as it gives a less total cost
than the techinigue that does not use compression.
The user is given the choice of choosing any one
of the four different ways of modeling the cost
function, to maximize the number of parameters
that one can deal with. Thresholds are found by
solving the above inequalities for the parameters
that are to be optimized for minimizing the total
communication cost.

The results of running the experiment are dis-
played both theoretically and realistically. In the
theoretic solution, the input file to be transmit-
ted is assumed to be a plain text, thus assuming
no prior information about the kind of data that
are transferred in the network, then, a more re-
alistic { either a decision or a value } solution is
given by calculating the actual compression and
decompression runtimes by running the LZW al-
gorithm on them and observing the times and the
compression ratio.

In the first two examples the algorithm is run
on image data. The first one contains a lot of de-
tails, the second is mainly a few number of dots in
a planar surface, it is not surprising then to know
that the compression ratio in the second example
turned to be equal to 48 !!, especially when we re-
member the adaptive characteristics of the LZW
algorithm. The compression ratio in the first one
was equal to 5, This fact contributed to the dif-
ference in the thresholds and decisions between
the “theoretic” and the “realistic” approaches to
finding the required limits and decisions. The fol-
lowing are snap shots of three different runs for
the system, the first two are for the complex im-
age, the third is for the simple one :

>> project.e
Enter various input values

T. Sobh

prompted for.
Decision or Optimization? [d/e]:o

Desired Model?

[1=using data rate, 2=baud rate,
3=bandwidth, 4=using sig-noise
ratio]:3

Data Size? 8389192

Cycle Rata? 14286000

Network/CPU time cost ratio? §
Theoretical Compression Ratio? 1.8
Observed Compression Ratio? 5.156
Ubserved Compression Time? 1.3
Observed Decompression Time? 1.2
Lavels of Discretization? 2

Theoretical Results: If band width
< 16588559.073369 Hz then compress.
Simulation Results: If band width
< 270484.731978 Hz then compress.

>

>> project.e

Enter various input values
prompted for.

Decision or Optimization? [d/c]:d

Desired Model?

[1=using data rate, 2=baud rate,
3=bandwidth, 4=using sig-noise
ratio] :4

Data Size? B389192

Cycle Rate? 14286000

Network/CPU time cost ratio? 5
Theoretical Compression Ratio? &
Observed Compression Ratio? 5.156
Observed Compression Time? 1.3
Observed Decompression Time? 1.2
Signal to Noise Ratio in decibsels? 5
Medium Bandwidth? 1000000

Theoretical Results:
Compression would cost less.
Simulation Results:
Compression would cost more.

COMPRESSED TRANSMISSION MODE

>>

>> project.e

Enter various input values
prompted for.

Decision or Optimization? [d/o]:o

Desgired Model?

[t=using data rate, 2=baud rate,
3=bandwidth, 4=using sig-noise
ratio] :1

Data Size? 1966640

Cycle Rate? 14286000

Network/CPU time cost ratio? 5
Theoretical Compression Ratio? 1.8
Observed Compression Ratio? 48.468
Observed Compression Time? 0.4
Observed Decompression Time? 0.2

Theoretical Results: If data rate
< 3177118.146718 bps then compress.
Simulation Results: If data rate
< 642021.316608 bps then compress.

>>

We then proceed in the experiment to try dil-
ferent kind of data, we try executable files and
observe the results of running our toolbox. The
following is a sample run for the system on a file
of executable commands.,

>> project.e
Enter various input values
prompted for.

Decision or Optimization? [d/o]:d

Desired Model?

[1=using data rata, 2=baud rate,
3=bandwidth, 4=using sig-noise
ratio] :4

Data Size? 745472

Cycle Rate? 14286000

Network/CPUl time cost ratio? 5
Theoretical Compression Ratio? 1.8
Observed Compression Ratio? 1,526
Dbserved Compression Time? 0.5
Observed Decompression Time? 0.3

Informatica 18 (1994) 347-356 355

Signal to Noise Ratio
in decibels? 30
Medium Bandwidth? 3000

Theoretical Results:
Compression would cost more.
Simulation Results:
Compression would cost more.

2>

It is noticed that for a “nice” collection of in-
formation, which includes a lot of repetitiveness,
the compression ratio is maximum, while it de-
creases for other types. The fact that there is
sometimes a discrepancy between the realistic and
the theoretic values is because the theoretic ap-
proach assumes a “perfect” media when it calcu-
lates the runtime for compression, however, this is
not the case when performing the actual compres-
sion in software on a down-to-earth Vax worksta-
tion. Also Lhe wide variations in the compression
ratios should be taken into consideration.

7 Conclusions

We discussed the issue of efficient and adaptive
transmission mechanisms over possible physical
links between hosts. A tool was developed for
making decisions regarding the flow of control se-
quences and data from and Lo a host. The decision
of compressing data and commands is discussed
in details, a yes/no decision box and an optimiz-
ing tool for [inding the appropriate thresholds for
a decision were implemented. Physical parame-
ters are taken into consideration while develop-
ing onr decision system. Also, the compression
parameters relationships and different compres-
sion techniques suited for the task are developed,
with an emphasis on adaptive ones that accom-
modate various data and control patterns. The-
oretical analysis is performed to develop math-
ematical models for the optimization algorithm.
Simulation models are also developed for testing
both the optimization and the decision tool box.
Qur system is tested through a series of simula-
tions and a comparison is performed against the
theoretical results for some data and control se
quences.

356 Informatica 18 (1094) 347-356

References

(1] V. Cappellini, Data Compression and Error
Control Techniques with Applications, 1985.

[2] W.K. Pratt, Image Transmission Techniques,
1979.

[3] T.A. Welch, * A Technique for High Perfor-
mance Data Compression”, IEEE Computer,
June 1984, pp. 8-19.

[4] J. Ziv and A. Lempel, “A Universal Algo-
rithm for Sequential Data Compression”, I[EEE
Trans. Information Theory, Vol. IT-23, No.3,
May 1977, pp. 337-343.

[5] J. Ziv and A. Lempel, “Compression of In-
dividual Sequences via Variable-Rate Coding™,
IEEE Trans. Information Theory, Vol. I'T-24,
No.5, Sept. 1978, pp. 5306.

[6] H. K. Reghbati, “An Overview of Compres-
sion Techniques”, IEEE Computer, Vol.14, No.
5, April 1981, pp. 7T1-76.

'T'. Sobh

