
POINT OF CARE DIAGNOSTICS

FOR

TRAUMATIC BRAIN INJURY

By

CARL BANBURY

A thesis submitted to

the University of Birmingham

for the degree of

DOCTOR OF PHILOSOPHY

Advanced Nano­Materials Structures and Applications Group

School of Chemical Engineering

College of Engineering and Physical Sciences

University of Birmingham

Jul 2020



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third parties. 
The intellectual property rights of the author or third parties in respect of this work 
are as defined by The Copyright Designs and Patents Act 1988 or as modified by 
any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission of 
the copyright holder.  
 
 
 



ABSTRACT

Traumatic brain injury (TBI) is a major burden on healthcare services worldwide, which

currently lacks an effective method for point­of­care (PoC) diagnostics and monitoring. In

this thesis, the prospect of using Raman spectroscopy, as a non­invasive means to mea­

sure chemical changes indicative of TBI from the back of the eye is explored. Through

the development of multivariate analysis methods, self­organising maps are highlighted

as a superior alternative to principal component analysis and are successfully used to in­

troduce a new means of classification. A classification accuracy of > 93 % is demonstrated

over five tissue types applied to anatomical layers of ocular porcine eyes. Subsequently,

in a clinically relevant murine model of TBI, an ability to accurately identify TBI and in­

jury severity from Raman spectra of the retina is demonstrated for the first time. Using

feature extraction, intrinsically linked to the classification result, the findings are associ­

ated with a decrease in cardiolipin linked to metabolic distress, which is a hallmark of TBI.

Finally, in an effort to translate the technology, a (patent pending) handheld system has

been developed. Simultaneously, fundus photography is combined with eye safe Raman

spectroscopy, measuring high wavenumber bands from a three­dimensional printed tissue

phantom of the undilated human eye.
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INTRODUCTION
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Chapter 1

Traumatic brain injury (TBI) is the leading cause of death under the age of 40 and

represents a major burden on healthcare services worldwide [1, 2]. The severity of TBI

ranges from mild concussion to severe and chronic loss of cognitive and motor function,

resulting from sudden impact to the head. Timely initial diagnosis followed by close patient

monitoring (for severe cases) are crucial to favourable patient outcomes. Currently, clin­

ical triaging and monitoring relies heavily on subjective visual assessment of the patient,

which lacks quantitative mechanistic insight [4]. The aim of this work is to develop a de­

vice for real­time, quantitative point­of­care (PoC) diagnostics for TBI by spanning across

traditional scientific boundaries.

By evolutionary ‘design’, the brain is protected from external trauma by the skull, and

isolated from the rest of the body via the blood­brain barrier (BBB). As a result, methods

to study physical and chemical changes to the brain are either highly invasive, or require

radiative sources that are tethered to a location and are highly resource intensive. Central

to our inquiry, is the fact that a small part of the central nervous system (CNS) is visible

at the back of the eye (retina), where photoreceptive cells capture and transmit light from

the world to the brain [3]. Given the optical transparency of the eye, and natural function

of focusing light onto retina, we hypothesise that a form of optical spectroscopy may be

able to measure neurochemical information. Optical spectroscopy is used to measure

properties of light, and how these change through interaction with matter. In much the

same way that it is possible to determine the chemical composition of distant stars and

planets by studying the light that reaches Earth, it may be possible to study brain function.
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Chapter 1

1.1 Thesis Overview

The structure of this thesis begins with an introduction to TBI diagnostics, covering clinically

adopted methods and highlighting novel approaches being pursued in the literature. This

is followed by an introduction to Raman spectroscopy, which forms the basis for our ex­

perimental study. Applications of Raman spectroscopy in neurology and opthalmology are

shown, highlighting recent progress, shortcomings and limitations. The main results are

described by Chapters 4­6, which are self contained articles published during the duration

of study. Together, the results chapters address the following three key questions:

• Chapter 4: How can the analysis of Raman spectroscopy be improved to reliably

measure subtle chemical changes from biological samples?

• Chapter 5: Can Raman spectroscopy of the retina detect biochemical changes in­

dicative of TBI from the retina?

• Chapter 6: How can the technology be effectively translated from a laboratory setting

to a handheld PoC diagnostic device?

Chapter 4 describes the importance and use of machine learning in the analysis of Raman

spectra, developing a new methodology that simultaneously aids presentation, compre­

hension and classification of large hyperdimensional datasets. In Chapter 5, the computa­

tional methods developed in Chapter 4 are used to fundamentally assess whether Raman

spectroscopy of the eye can be used to identify TBI, in a clinically relevant ex­vivo murine

model. Finally, Chapter 6 attempts to bridge the gulf that exists between benchtop Raman

spectroscopy and a portable clinical device for in­vivo diagnostics of TBI from the eye. The

3



Chapter 1

device design in Chapter 6 resulted in a patent application for the simultaneous acquisition

of Raman spectra from the retina and fundus photography, which is of critical importance

for future development. Whilst the format of the thesis results in some natural overlap and

redundancy, each chapter touches on very different scientific fields, which form intercon­

nected dependencies between each other. Thereby, we emphasise the multidisciplinary

nature of the work by bracketing the central healthcare challenge by developments in com­

puter science and optics.

1.2 References

[1] Lawrence, T., Helmy, A., Bouamra, O., Woodford, M., Lecky, F. and Hutchinson, P. J.

[2016], ‘Traumatic brain injury in England and Wales: prospective audit of epidemiol­

ogy, complications and standardised mortality.’, BMJ open 6(11), e012197.

[2] Popescu, C., Anghelescu, A., Daia, C. and Onose, G. [2015], ‘Actual data on epi­

demiological evolution and prevention endeavours regarding traumatic brain injury.’,

Journal of medicine and life 8(3), 272–7.

[3] Purves, D., Augustine, G. J., Fitzpatrick, D., Katz, L. C., LaMantia, A., McNamara,

J. O. and Williams, M. [2001], Neuroscience, 2 edn, Sunderland (MA): Sinauer Asso­

ciates.

[4] Teasdale, G., Maas, A., Lecky, F., Manley, G., Stocchetti, N. and Murray, G. [2014],

‘The Glasgow coma scale at 40 years: standing the test of time’, The Lancet Neurol­

ogy 13(8), 844–854.
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CHAPTER 2

TRAUMATIC BRAIN INJURY
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Chapter 2

TBI is defined as ‘alteration in brain function, or other evidence of brain pathology,

caused by an external force’, but is distinct from the more broad category of head injury,

which includes damage to other areas such as the skull. Alteration in brain function is

further specified as either: a loss of consciousness; loss of memory immediately before

or after injury; neurological deficits (e.g. loss of balance, change in vision); or altered

mental state at the time of injury (e.g. confusion, disorientation) [30]. Common causes

include falls, assault, road traffic accidents, contact sports and military combat [17, 42].

In the absence of external physical damage, TBI is extremely difficult to identify. At the

point of injury, tests such as the Glasgow coma scale (GCS) are routinely used, relying on

downstream changes to visual, motor and verbal response as indicators of damage to the

brain [47]. The GCS is used to stratify TBI according to severity as either mild, moderate or

severe. Mild TBI can be as simple asminor concussion, but the long term damaging effects

of even minor injuries (which have a higher tendency to go undetected) have recently been

highlighted by a number of high profile cases. A major concern is the effect of repetitive

injuries, such as those sustained from contact sports (e.g. boxing) [7, 8]. There are links

between TBI and chronic conditions such as chronic traumatic encephalopathy (CTE), a

degenerative disease, presenting with similar symptoms to Alzheimer’s disease [49].

More generally, TBI has been dubbed the ‘silent epidemic’, with an estimated 69 mil­

lion cases per year worldwide [14]. In the UK, there are over one million incidents of TBI

needing emergency medical treatment every year, placing a major burden on healthcare

services [25]. Importantly, patients often arrive at emergency centres an unknown time af­

ter injury and without witnesses to the event. In these circumstances, diagnosis relies on

self reporting from patients, which is naturally confounded by confusion or disorientation
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Chapter 2

resulting from TBI [30]. This is commonly complicated further by drug or alcohol intoxica­

tion, which also causes a loss of balance and disorientation. In such cases patients can be

referred for a computed tomography (CT) scan as a precaution, however guidelines vary

between regions and countries [53].

2.1 Pathophysiology and Pathobiology

All of the functions in the brain from perception, to conscious thought and motor control

are determined through a complex network of billions of neurons, which communicate by

transmitting electrical signals across synapses to other neurons. The bias inside a neuron

relative to the surrounding interstitial fluid is determined by the relative concentrations of

ions such as potassium and sodium inside and outside the cell. This crucial balance is

controlled by a number of channels within the cell membrane that actively pump ions ac­

cording to its state [51]. Since neurons communicate via electrical signals, this balance of

charge is crucial to maintaining the architectural circuitry in the brain, not dissimilar from

an electronic circuit board. TBI fundamentally disrupts the balance of charge within the

brain, causing immediate damage (primary injury), but additionally results in a cascading

cellular response, which can lead to lasting effects over hours, days or months (secondary

injury) [28].

Neurons are perhaps the most well known cell type in the brain, however, are outnum­

bered by a group of cells known as glial cells, which were originally thought to provide only

structural ‘glue’ for neurons [50]. Glial cells consist of astrocytes, oligodendrocytes and

microglia, which together provide a number of supporting functions to neurons. Astrocytes
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perform some of the most important regulatory roles in the brain: providing skeletal support

for neurons, helping to reset synaptic junctions, and actively controlling movement of large

molecules between the bloodstream and brain (the BBB). Furthermore, astrocytes form

their own network and communicate with each other, but the extent to which this impacts

neurological behaviour is not yet fully understood [40]. Oligodendrocytes produce the insu­

lating myelin sheath, which covers axons and allows electrical impulses to be transmitted

rapidly along the length of the axon. Finally, microglia are immune cells (macrophages) of

the CNS that scavenge, consume and digest debris, damaged cells or foreign bodies [51].

A cartoon illustration of each cell type and their interaction is shown in Fig. 2.1.

2.1.1 Primary Injury

Even in the absence of direct tissue and cellular destruction (present in moderate or severe

injury), TBI causes stretching of cell membranes, leading to a loss of homeostasis. This

forces neurons into a metabolically distressed state as ions are actively pumped across the

cell membrane to restore the resting potential [36]. Furthermore, the axons of each neuron,

which can project over large distances and form the wires between neuronal circuitry can

be sheared; termed diffuse axonal injury (DAI). Neurons that become orphaned from the

rest of the network in this way quickly die, releasing neurotransmitters and other signalling

molecules (cytokines) that causes further damage to neighbouring cells [3]. Macroscop­

ically, under sudden change in momentum, the brain ricochets back and forth along the

direction of the applied force, pivoting about the brainstem and colliding with the skull,

which can lead to bruising on opposing sides of the brain [29]. A small amount of cushion­

ing is provided by a thin layer of cerebrospinal fluid (CSF) which surrounds the brain and
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Figure 2.1: Illustration of the main neuronal cell types and their inter­connections in the
CNS.

consists of mostly water filtered from the bloodstream [39].

2.1.2 Secondary Injury

Secondary injury is described by neurodegeneration in the hours, days and months fol­

lowing TBI, which is often caused by increased intracranial pressure (ICP) that restricts

cerebral blood flow (CBF) [20]. Since the brain occupies a fixed volume, ICP can quickly

become increased to levels that the brain struggles to deal with by the presence of ex­

cessive inflammation or fluid build­up [33]. Common sources of fluid in the brain are ac­
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cumulation of CSF (hydrocephalus) and blood (haematoma). A lack of oxygen to neu­

rons (ischaemia) caused by reduced CBF and ICP leads to further cell loss and continues

the cascade of damage to surrounding neurons (excitotoxicity) [52]. Poor blood flow and

haematoma are caused by breakdown of the BBB, resulting from damage to endothelial

cells in blood vessels and astrocytes, which form tight junctions around blood vessels in

the brain and strictly limits the movement of large molecules from the bloodstream to the

brain [51].

2.2 Diagnostics Methods

In this section, the diagnostic tools that are currently adopted clinically are introduced, out­

lining their advantages and shortcomings alongside the impact this has both clinically and

for future research. We then review recent and novel methods that have been attempted in

the literature, including: blood biomarker tests, ICP monitoring, advances in neuroimaging

and optics.

2.2.1 Established Techniques

2.2.1.1 Glasgow Coma Scale

What is now known as the GCS was first described in 1974 by Sir Graham Teasdale and

Bryan Jennett based on simple assessment of a patient’s visual, verbal and motor re­

sponse [45]. The original definition was updated two years later to include further gran­

ularity in motor response and is the scale most widely used today (however, the original
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article remains the most cited) [46]. Visual response is ranked from 1­4, verbal response,

1­5 and motor response, 1­6. The three areas of assessment are independently routed

in an anatomical basis, with increasing severity being related to deeper and more primal

regions of the brain. Not only does this give a good predictor for which parts of the brain

are damaged, but provides an internal cross check of the assessment (i.e. scores for in­

dependent components should not differ greatly) [34]. In­hospital, the independent scores

can be routinely monitored and recorded on observational charts over time, allowing for

immediate visual identification of patient deterioration and improvement (Fig. 2.2). In addi­

tion to wide clinical adoption, the GCS forms the basis for standardised communication in

scientific research. Retrospectively, this has shown a striking correlation to metabolomics,

neuroimaging, biomarkers and patient outcomes [47]. Although the GCS has been enor­

mously successful, it is not without criticisms. These primarily focus on inter­observer vari­

ability, especially between pre­hospital and in­hospital assessment. A major contributor

to this effect is in­hospital sedation, which prevents meaningful measurements for visual

and verbal response. There are numerous approaches to dealing with this issue, with a

common method being to assign a score of 1 for both verbal and visual response. This has

the effect of automatically exaggerating the severity of patients in hospital, which severely

hampers the quality of clinical research [57].

2.2.1.2 Neuroimaging

Following initial assessment using the GCS, neuroimaging most commonly in the form of

CT is used in moderate and severe cases, to identify abnormalities that require immediate

intervention. CT combines X­ray images over different angles and computational recon­
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Figure 2.2: Illustration of how the GCS can be used visually to represent patient changes
over time based on repeat observations by nurses (based on illustration by Teasdale and
Jennett [46]).

struction to create 2D slices and 3D volumes of the brain, which can be performed quickly

and relatively cheaply [19]. CT is favoured over magnetic resonance imaging (MRI) for

cost, speed and availability, but additionally has better sensitivity to identifying skull frac­

tures. Furthermore, MRI carries an additional risk in cases where metallic debris (e.g.

bullets) may be present in the brain. In paediatric TBI, neuroimaging is less commonly

used as ionising radiation from CT poses a greater risk to children, and MRI often requires

sedation due to the length of time the patient is required to remain still [53].

The main anatomical features identified using CT include skull fractures, excessive

bleeding (haemorrhage and haematoma), bruising (contusion), accumulation of CSF (hy­
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drocephalus) and displacement of brain tissue (herniation) [43]. The interpretation of CT

requires an experienced radiologist, as shown in a study by Laalo et al. [24] who looked at

inter­observer accuracy between on call radiologists and neuroradiologists. Importantly,

only four out of the hundred patients in the study required immediate surgical intervention,

which were all identified correctly. However, on call radiologists had a high false nega­

tive rate for contusions, missing 67 % [24]. Mistakes are often made as a result of imaging

artefacts that occur due to a number of reasons, including: physical properties, reconstruc­

tion errors and incorrect patient placement [2]. Artificial intelligence is increasingly being

looked at as the answer to reducing systematic and user error, by having computational

algorithms automatically highlight regions of interest or perform diagnosis [21]. As previ­

ously mentioned, MRI is not widely used to perform initial diagnostics in acute settings, but

is the primary modality for chronic injury, showing a greater percentage of lesions and DAI

[53].

2.2.1.3 Intracranial Pressure Monitoring

ICP is monitored as a standard of care for patients with severe TBI, either by using an

external ventricular drain (EVD) or an intraparenchymal fiberoptic monitor (IPM), where

EVD is considered the gold standard and has been shown to lead to significantly better

patient outcomes [26]. An EVD is a soft catheter inserted into one of the lateral ventricles

via a small burr hole in the skull. The lateral ventricles are C shaped cavities containing

CSF. A collection chamber and pressure scale measured in millimetres of water pressure

allows ICP to be monitored and excess CSF controlled via a drainage bag (Fig. 2.3) [22].

ICP monitoring and CSF drainage plays a crucial role in intensive care for severe TBI
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Collection
chamber

CSF pressure

Lateral ventricle

CSF drainage bag

Figure 2.3: Illustration of CSF monitoring and drainage using EVD (based on illustration
by Emily Humphrey [22]).

patients, but is a highly invasive procedure. The most common risks are infections and

further damage from incorrect placement of the EVD catheter into the brain, which can

have fatal consequences. The occurrence of complications associated with invasive ICP

is uncertain (ranging from close to 0 % to near 100 %), coupled to a lack of standardisation

and adherence to existing protocols [5, 44]. The use of EVDs clinically is unlikely to be

replaced in intensive care, as CSF drainage provides an effective means for clinicians

to simultaneously monitor and reduce increased ICP. However, given the obvious (but

poorly quantified) risks, it is important that invasivemethods are only usedwhere absolutely

necessary.
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2.2.2 Proposed Methods

Fig. 2.4 gives a visual overview of current diagnostic modalities (GCS, CT/MRI, ICP) along­

side broad categories for novel diagnostic tools (biomarkers, non­invasive ICP, CT/MRI),

grouped according to desirable traits. The ideal technology would be a cheap and portable

device to non­invasively and temporally measure changes to the CNS (indicated by δ in

Fig. 2.4). In this section, these broad themes are expanded in more detail, highlighting

recent progress and fundamental limitations in each category.

Time Resolved Time Independent

CNS Measurements

GCS

CT / MRI

ICP

Non invasive

Cheap / Portable

Severity grading

Biomarkers

   Noninvasive ICP 𝛅

Figure 2.4: Technology landscape for TBI diagnostics.

Technology landscape showing existing diagnostic modalities (GCS, CT/MRI, ICP) and emerging
technologies (biomarkers, non­invasive ICP, CT/MRI), grouped according to diagnostic conditions.
The space occupied by δ where the ideal set of device properties would lie.
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2.2.2.1 Biomarkers

Biomarker assays for diagnostics of TBI are a current hot topic, with several reviews on the

subject [13, 18, 56]. The world health organisation defines a biomarker as ‘any substance,

structure, or process that can be measured in the body or its products and influence or

predict the incidence of outcome or disease’ [54]. For some time, chemical analysis of

CSF has yielded some insight into the cellular processes involved in TBI and the integrity

of the BBB. Levels of albumin in CSF, produced predominantly in the liver provides a good

indicator for BBB integrity [41]. However, the collection of CSF requires highly invasive

procedures such as a lumbar puncture or EVD, which carry their own risks. Instead, blood

and more recently, saliva are targets that can be collected through minimally invasive or

non­invasive means, and so have received much attention [13]. The challenges facing

these approaches are that native quantities of molecules specific to TBI are found in ex­

tremely low concentrations, even with disruption to the BBB. Out of the pool of potential

biomarkers, by far the most well studied to date are S100­B and glial fibrillary acidic protein

(GFAP) [18].

S100­B is a calcium binding protein found abundantly within astrocytes in the CNS

and performs regulatory functions within the cell. As previously mentioned, astrocytes

are integral to the BBB, but more generically act as scaffolding for the CNS and help to

maintain ionic homeostasis of interstitial fluid necessary for neurons to function correctly

[12]. On injury, release of high concentrations of S100­B promotes programmed cell death

(apoptosis) and serum concentrations of S100­B have been used clinically as diagnostic

and prognostic markers of TBI [48]. However, quantitative assessment by Gan et al. [18]
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pooled more than 60,000 observations and showed only modest diagnostic accuracy from

S100­B alone. Although S100­B is found in high concentrations in astrocytes, the protein

is not specific to the CNS, and increased levels of S100­B have been observed in the

absence of brain injury. Since TBI is often accompanied by trauma to other regions of the

body, S100­B as a biomarker cannot confirm the absence of brain trauma, in the presence

of other injuries [1].

Conversely, GFAP is an intermediate filament protein specific to the CNS and plays im­

portant functional and structural roles, however, these are much less well understood. A

review by Brenner [10] shows large discrepancies in the results from different laboratories,

and takes the viewpoint that this may be due to regional roles within the brain. Regardless

of the underlying role, GFAP is consistently observed as upregulated following TBI, and

as a result of having a higher molecular weight (vs S100­B), takes longer to be cleared

from the body [13]. One of the most promising tests builds on the prior success of GFAP

as a biomarker of TBI, but employs a combination of multiple biomarkers to improve pre­

dictive outcomes. Diaz et al. [15] assessed the serum concentrations of GFAP in conjunc­

tion with ubiquitin C­terminal hydrolase ­L1 (UCHL­1), a protein specific to neurons and

that had previously been seen elevated with severe TBI. Moreover, UCHL­1 is associated

with DAI, whereas GFAP is associated more with focal lesions, and so the two provide

complementary information regarding injury and cell types specific to the CNS. Evaluation

of biomarker concentrations was performed by an enzyme linked immunosorbent assay

(ELISA), which provides a colorimetric change upon binding of antibodies specific to the

target biomarker in solution [15]. The work has recently been repeated by Bazarian et al.

[6], who found similar results with a sensitivity and specificity of 0.976 and 0.364 respec­
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tively, similar to that obtained by CT. The authors estimate that such a test could save up

to a third of unnecessary CT scans [6].

Research into TBI biomarkers to provide simple effective triaging has the potential to

streamline diagnostic decisions, particularly in emergency settings where resources such

as CT are overused. To truly leverage this benefit, new methods are required so that test

results can be obtained in a timely fashion at the point of injury, which may be a remote

location (e.g. military combat). However, tests from bodily fluids provides information at a

single point in time, and there exists a narrow window of time following injury where the test

can be conducted [13]. This allows biomarker assays to be integrated into existing work­

flows and augment patient triaging, but cannot completely replace continuous assessment

such as the GCS and ICP monitoring.

2.2.2.2 Magnetic Resonance Spectroscopy

In the field of neuroimaging, there are several proposed variations to improve and extend

the capabilities of existing technologies such as CT and MRI, which will largely be ignored

here as the cost and portability requirements limit the opportunity for diagnostics in pre­

hospital settings and at the PoC [43]. One modality that is noteworthy for its ability to

sensitively and non­invasively detect metabolic species from the CNS in­vivo is magnetic

resonance spectroscopy (MRS). In a conventional MRI scan atomic nuclei are aligned with

a strong magnetic field, and then deflected by a pulse of electromagnetic radiation at the

resonant frequency of the target element (hydrogen nuclei). As the pulse ends, nuclei

relax to align with the magnetic field, emitting electromagnetic radiation, which is detected.

Radio frequency pulses are used to detect hydrogen atoms from fat and water, which are
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abundant in the body, and used to form the images used clinically [9]. The resonance

frequency of the proton varies based on the local environment, and so by varying the

frequency of the external radiation, molecules other than water and fat can be measured.

By suppressing the more dominant contribution from water [16], MRS can be used to non­

invasively measure metabolites within the brain in­vivo [35].

Although metabolic disruption plays a major role in secondary injury and patient out­

comes, a recent meta analysis by Brown et al. [11] shows that there is a great deal of

uncertainty and inconsistency across studies of TBI, with the exception of n­acetyl aspar­

tate (NAA), which is used as a marker of neuronal activity. Specifically, NAA provides:

osmotic regulation (acting as a molecular water pump) for neurons; stimulates astrocytes

(which provide energy in the form of glycogen); and increases local blood flow and oxygen

supply [4]. In response to TBI, a decrease in NAA can be observed via MRS proportional

to injury severity, and correlating to decreased neuronal activity [32]. However, MRS stud­

ies have thus far only shown sensitivity to sub­acute and chronic injury [11]. As a result,

MRS may be useful to further our understanding of the temporal evolution of TBI and pa­

tient outcomes, but is unlikely to offer a replacement diagnostic tool in acute emergency

settings.

2.2.2.3 Non­invasive Intracranial Pressure Monitoring

Methods to non­invasively measure ICP take wildly varying approaches including measur­

ing subtle deformations to the skull, cochlear fluid pressure, near infrared spectroscopy

(NIRS) and a host of approaches that consider physical changes to the eye (such as the

optic nerve sheath diameter (ONSD)) [23]. The number of publications dedicated to devel­
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oping a new non­invasive standard of care illustrate both the importance of ICP monitoring

in neurological intensive care, and difficultly to innovate in this space. Reoccurring issues

amongst several of the most promising approaches are a lack of independent validation

or follow on studies [31, 55]. In several cases, ICP measurements were limited to pre­

screening applications, showing a change in ICP, but without quantification. In the review

by Khan et al. [23], it was concluded that the most promising methods were two ophthalmic

applications: pupillometry and ONSD.

Pupillometry is used to measure the amplitude, percentage and velocity in which the

pupil constricts in response to light stimuli. Mariakakis et al. [27] took a modern approach

by combining a simple smartphone camera and flash, with an artifical neural network (ANN)

to track pupil diameter over time and in response to change in light (camera flash) [27]. By

using ubiquitous technology, the authors hoped to make pupillometry more widely adopted,

with the cost of existing commercial instruments being in excess of 4000 USD. In effect,

pupillometry quantifies and standardises the visual response component of the GCS, but

as a result is subject to the same limitations with sedation and intoxication [57].

Measurements of ONSD can be made using standard neuroimaging (CT, MRI), but

also using bedside techniques such as an ultrasound probe placed over the closed eyelid

of the patient [37]. In a recent clinical study of 100 patients, Robba et al. [38] used ultra­

sonography on admission to measure ONSD, and showed a good correlation to ICP and

mortality. This followed a smaller prospective study by the same author, indicating that

ONSD may be a useful tool in deciding if patients require invasive monitoring, or are at

risk of poor outcomes (but is yet to be independently verified) [37].
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2.2.2.4 Conclusions

In this section, we have shown that TBI results in heterogeneous cellular and tissue dam­

age, making initial pre­hospital diagnostics, in­hospital monitoring and post­hospital care

extremely difficult, but crucial to get right. As a result, the GCS remains the only modality

able to temporally track severity in a non­invasive manor, and therefore span the entire

patient journey. However, this relies on subjective assessment, which has been shown

to vary across pre­hospital and in­hospital settings in particular [57], owing largely to the

low scores for verbal and visual response associated with sedation. From the large pool

of upcoming approaches to provide quantitative non­invasive monitoring for neurological

dynamics, some of the most promising of these are from changes to physical properties of

the eye [27, 38]. This sets a precedence that the effects of TBI can be seen and monitored

from the eye, but an area that currently remains unexplored is to assess these changes

from a chemical viewpoint. Such a device would ideally combine the ease of use and

accessibility of methods such as ONSD with the chemical specificity of MRS, allowing for

continuous real time monitoring of brain chemistry non­invasively.

2.3 References

[1] Anderson, R. E., Hansson, L.­O., Nilsson, O., Dijlai­Merzoug, R. and Settergren, G.

[2001], ‘High serum S100B levels for trauma patients without head injuries’, Neuro­

surgery 48(6), 1255–1260.

[2] Barrett, J. F. and Keat, N. [2004], ‘Artifacts in CT: Recognition and avoidance’, Ra­

21



Chapter 2

dioGraphics 24, 1679–1691.

[3] Barron, K. D. [2004], ‘The axotomy response’, Journal of the Neurological Sciences

220(1­2), 119–121.

[4] Baslow, M. H. [2010], ‘Evidence that the tri­cellular metabolism of N­acetylaspartate

functions as the brain’s “operating system”: how NAA metabolism supports meaning­

ful intercellular frequency­encoded communications’, Amino Acids 39(5), 1139–1145.

[5] Baum, G. R., Hooten, K. G., Lockney, D. T., Fargen, K. M., Turan, N., Pradilla,

G., Murad, G. J. A., Harbaugh, R. E. and Glantz, M. [2017], ‘External ventricular

drain practice variations: results from a nationwide survey’, Journal of Neurosurgery

127(5), 1190–1197.

[6] Bazarian, J. J., Biberthaler, P., Welch, R. D., Lewis, L. M., Barzo, P., Bogner­Flatz, V.,

Gunnar Brolinson, P., Büki, A., Chen, J. Y., Christenson, R. H., Hack, D., Huff, J. S.,

Johar, S., Jordan, J. D., Leidel, B. A., Lindner, T., Ludington, E., Okonkwo, D. O.,

Ornato, J., Peacock, W. F., Schmidt, K., Tyndall, J. A., Vossough, A. and Jagoda, A. S.

[2018], ‘Serum GFAP and UCH­L1 for prediction of absence of intracranial injuries

on head CT (ALERT­TBI): a multicentre observational study’, The Lancet Neurology

17(9), 782–789.

[7] BBC News [2016], ‘Muhammad ali: Boxer’s battle with Parkinson’s’, https://www.

bbc.co.uk/news/health-36455016.

[8] BBC News [2018], ‘Brain injury expert calls for ban on heading in football’, https:

//www.bbc.co.uk/sport/football/45110282.

22



Chapter 2

[9] Berger, A. [2002], ‘How does it work?: Magnetic resonance imaging’, BMJ

324(7328), 35–35.

[10] Brenner, M. [2014], ‘Role of GFAP in CNS injuries’, Neuroscience Letters 565, 7–13.

[11] Brown, M., Baradaran, H., Christos, P. J., Wright, D., Gupta, A. and Tsiouris, A. J.

[2018], ‘Magnetic resonance spectroscopy abnormalities in traumatic brain injury: A

meta­analysis’, Journal of Neuroradiology 45(2), 123–129.

[12] Brozzi, F., Arcuri, C., Giambanco, I. and Donato, R. [2009], ‘S100B protein regulates

astrocyte shape and migration via interaction with src kinase’, Journal of Biological

Chemistry 284(13), 8797–8811.

[13] Dadas, A., Washington, J., Diaz­Arrastia, R. and Janigro, D. [2018], ‘Biomarkers

in traumatic brain injury (TBI): a review’, Neuropsychiatric Disease and Treatment

14, 2989–3000.

[14] Dewan, M. C., Rattani, A., Gupta, S., Baticulon, R. E., Hung, Y. C., Punchak, M.,

Agrawal, A., Adeleye, A. O., Shrime, M. G., Rubiano, A. M., Rosenfeld, J. V. and

Park, K. B. [2019], ‘Estimating the global incidence of traumatic brain injury’, Journal

of Neurosurgery 130(4), 1080–1097.

[15] Diaz­Arrastia, R., Wang, K. K., Papa, L., Sorani, M. D., Yue, J. K., Puccio, A. M.,

McMahon, P. J., Inoue, T., Yuh, E. L., Lingsma, H. F., Maas, A. I., Valadka, A. B.,

Okonkwo, D. O., Geoffrey, T. M., Casey, S. S., Cheong, M., Cooper, S. R., Dams­

O’Connor, K., Gordon, W. A., Hricik, A. J., Menon, D. K., Mukherjee, P., Schnyer,

D. M., Sinha, T. K. and Vassar, M. J. [2014], ‘Acute biomarkers of traumatic brain

23



Chapter 2

injury: Relationship between plasma levels of ubiquitin C­terminal hydrolase­L1 and

glial fibrillary acidic protein’, Journal of Neurotrauma 31(1), 19–25.

[16] Dong, Z. [2015], ‘Proton MRS and MRSI of the brain without water suppression’,

Progress in Nuclear Magnetic Resonance Spectroscopy 86­87, 65–79.

[17] Faul, M., Xu, L., Wald, M. and Coronado, V. [2010], Traumatic brain injury in the United

States: Emergency department visits, hospitalizations and deaths, U.S. Department

of Health and Human Services Centers for Disease Control and Prevention.

[18] Gan, Z. S., Stein, S. C., Swanson, R., Guan, S., Garcia, L., Mehta, D. and Smith,

D. H. [2019], ‘Blood biomarkers for traumatic brain injury: A quantitative assessment

of diagnostic and prognostic accuracy’, Frontiers in Neurology 10, 446.

[19] Goldman, L. W. [2007], ‘Principles of CT and CT technology’, Journal of Nuclear

Medicine Technology 35(3), 115–128.

[20] Greve, M. W. and Zink, B. J. [2009], ‘Pathophysiology of traumatic brain injury’,Mount

Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine

76(2), 97–104.

[21] Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., Aerts, H. J. W. L. and Edu,

H. H. [2018], ‘Artificial intelligence in radiology’, Nat Rev Cancer 18(8), 500–510.

[22] Humphrey, E. [2018], ‘Caring for neurosurgical patients with external ventricular

drains’, Nursing Times [online] 114(4), 52–56.

24



Chapter 2

[23] Khan, M., Shallwani, H., Khan, M. and Shamim, M. [2017], ‘Noninvasive monitoring

intracranial pressure – A review of available modalities’, Surgical Neurology Interna­

tional 8(1), 51.

[24] Laalo, J. P., Kurki, T. J., Sonninen, P. H. and Tenovuo, O. S. [2009], ‘Reliability of di­

agnosis of traumatic brain injury by computed tomography in the acute phase’, Journal

of Neurotrauma 26(12), 2169–2178.

[25] Lawrence, T., Helmy, A., Bouamra, O., Woodford, M., Lecky, F. and Hutchinson, P. J.

[2016], ‘Traumatic brain injury in England and Wales: prospective audit of epidemiol­

ogy, complications and standardised mortality.’, BMJ open 6(11), e012197.

[26] Liu, H., Wang, W., Cheng, F., Yuan, Q., Yang, J., Hu, J. and Ren, G. [2015], ‘External

ventricular drains versus intraparenchymal intracranial pressure monitors in traumatic

brain injury: A prospective observational study’,World Neurosurgery 83(5), 794–800.

[27] Mariakakis, A., Baudin, J., Whitmire, E., Mehta, V., Banks, M. A., Law, A., Mcgrath, L.

and Patel, S. N. [2017], ‘Pupilscreen: Using smartphones to assess traumatic brain in­

jury’, Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Tech­

nologies 1(3), 1–27.

[28] McAllister, T. W. [2011], ‘Neurobiological consequences of traumatic brain injury.’,

Dialogues in clinical neuroscience 13(3), 287–300.

[29] Mckee, A. C. and Daneshvar, D. H. [2015], The neuropathology of traumatic brain

injury, in ‘Handbook of Clinical Neurology’, 1 edn, Vol. 127, Elsevier B.V., pp. 45–66.

25



Chapter 2

[30] Menon, D. K., Schwab, K., Wright, D. W. and Maas, A. I. [2010], ‘Position statement:

Definition of traumatic brain injury’, Archives of Physical Medicine and Rehabilitation

91(11), 1637–1640.

[31] Michaeli, D. and Rappaport, Z. H. [2002], ‘Tissue resonance analysis: a novel

method for noninvasive monitoring of intracranial pressure’, Journal of Neurosurgery

96(6), 1132–1137.

[32] Moffett, J. R., Arun, P., Ariyannur, P. S. and Namboodiri, A. M. A. [2013], ‘N­

acetylaspartate reductions in brain injury: impact on post­injury neuroenergetics, lipid

synthesis, and protein acetylation’, Frontiers in Neuroenergetics 5(DEC).

[33] Mokri, B. [2001], ‘The Monro­Kellie hypothesis: Applications in CSF volume deple­

tion’, Neurology 56(12), 1746–1748.

[34] Munakomi, S. and Kumar, B. M. [n.d.], ‘Neuroanatomical basis of Glasgow coma scale

— a reappraisal’, Neuroscience and Medicine (03), 116–120.

[35] Mutch, C. A., Talbott, J. F. and Gean, A. [2016], ‘Imaging evaluation of acute traumatic

brain injury’, Neurosurgery Clinics of North America 27(4), 409–439.

[36] Prins, M., Greco, T., Alexander, D. and Giza, C. C. [2013], ‘The pathophysiology of

traumatic brain injury at a glance’, Disease Models & Mechanisms 6(6), 1307–1315.

[37] Robba, C., Cardim, D., Tajsic, T., Pietersen, J., Bulman, M., Donnelly, J., Lavinio,

A., Gupta, A., Menon, D. K., Hutchinson, P. J. A. and Czosnyka, M. [2017], ‘Ultra­

sound non­invasive measurement of intracranial pressure in neurointensive care: A

prospective observational study’, PLOS Medicine 14(7), e1002356.

26



Chapter 2

[38] Robba, C., Donnelly, J., Cardim, D., Tajsic, T., Cabeleira, M., Citerio, G., Pelosi, P.,

Smielewski, P., Hutchinson, P., Menon, D. K. and Czosnyka, M. [2020], ‘Optic nerve

sheath diameter ultrasonography at admission as a predictor of intracranial hyperten­

sion in traumatic brain injured patients: a prospective observational study’, Journal of

Neurosurgery 132(4), 1279–1285.

[39] Sakka, L., Coll, G. and Chazal, J. [2011], ‘Anatomy and physiology of cere­

brospinal fluid’, European Annals of Otorhinolaryngology, Head and Neck Diseases

128(6), 309–316.

[40] Santello, M., Toni, N. and Volterra, A. [2019], ‘Astrocyte function from information

processing to cognition and cognitive impairment’, Nature Neuroscience 22(2), 154–

166.

[41] Saw, M. M., Chamberlain, J., Barr, M., Morgan, M. P. G., Burnett, J. R. and Ho, K. M.

[2014], ‘Differential disruption of blood–brain barrier in severe traumatic brain injury’,

Neurocritical Care 20(2), 209–216.

[42] Schmid, K. E. and Tortella, F. C. [2012], ‘The diagnosis of traumatic brain injury on

the battlefield’, Frontiers in Neurology 3(June), 1–5.

[43] Smith, L. G. F., Milliron, E., Ho, M.­L., Hu, H. H., Rusin, J., Leonard, J. and Srib­

nick, E. A. [2019], ‘Advanced neuroimaging in traumatic brain injury: an overview’,

Neurosurgical Focus 47(6), E17.

[44] Tavakoli, S., Peitz, G., Ares, W., Hafeez, S. and Grandhi, R. [2017], ‘Complications of

27



Chapter 2

invasive intracranial pressure monitoring devices in neurocritical care’, Neurosurgical

Focus 43(5), E6.

[45] Teasdale, G. and Jennett, B. [1974], ‘Assessment of coma and impaired conscious­

ness. a practical scale’, The Lancet 304(7872), 81–84.

[46] Teasdale, G. and Jennett, B. [1976], ‘Assessment and prognosis of coma after head

injury’, Acta Neurochirurgica 34(1­4), 45–55.

[47] Teasdale, G., Maas, A., Lecky, F., Manley, G., Stocchetti, N. and Murray, G. [2014],

‘The Glasgow coma scale at 40 years: standing the test of time’, The Lancet Neurol­

ogy 13(8), 844–854.

[48] Thelin, E. P., Nelson, D. W. and Bellander, B.­M. [2017], ‘A review of the clinical

utility of serum S100B protein levels in the assessment of traumatic brain injury’, Acta

Neurochirurgica 159(2), 209–225.

[49] Turner, R. C., Lucke­Wold, B. P., Robson, M. J., Omalu, B. I., Petraglia, A. L. and

Bailes, J. E. [2012], ‘Repetitive traumatic brain injury and development of chronic

traumatic encephalopathy: a potential role for biomarkers in diagnosis, prognosis,

and treatment?’, Frontiers in neurology 3, 186.

[50] Virchow, R. [1856], Gesammelte Abhandlungen zur Wissenschaftlichen Medicin,

Frankfurt A. M. : Meidinger Sohn & Comp.

[51] Waxham, M. N. [2014], From Molecules to Networks: An Introduction to Cellular and

Molecular Neuroscience, Elsevier.

28



Chapter 2

[52] Werner, C. and Engelhard, K. [2007], ‘Pathophysiology of traumatic brain injury’,

British Journal of Anaesthesia 99(1), 4–9.

[53] Wintermark, M., Sanelli, P. C., Anzai, Y., Tsiouris, A. J. and Whitlow, C. T. [2015],

‘Imaging evidence and recommendations for traumatic brain injury: Conventional neu­

roimaging techniques’, Journal of the American College of Radiology 12(2), e1–e14.

[54] World Health Organization [2001], ‘Biomarkers in risk assessment : validity and vali­

dation’.

[55] Yue, X. and Wang, L. [2009], ‘Deformation of skull bone as intracranial pressure

changing’, African Journal of Biotechnology 8(5), 745–750.

[56] Zetterberg, H., Smith, D. H. and Blennow, K. [2013], ‘Biomarkers of mild traumatic

brain injury in cerebrospinal fluid and blood’, Nature Reviews Neurology 9(4), 201–

210.

[57] Zuercher, M., Ummenhofer, W., Baltussen, A. and Walder, B. [2009], ‘The use of

Glasgow coma scale in injury assessment: A critical review’, Brain Injury 23(5), 371–

384.

29



CHAPTER 3

RAMAN SPECTROSCOPY

30



Chapter 3

Raman spectroscopy is a branch of optical spectroscopy that provides highly specific

chemical information about a sample, which can be measured quickly and non­invasively.

Furthermore, Raman spectrometers can be made compact, portable and have minimal

energy requirements. These key advantages make Raman spectroscopy highly attractive

in the field of biomedical imaging, but real­world applicability is hindered by a number of

key issues [5, 22, 43]. This section provides a brief introduction to Raman spectroscopy,

and highlights the challenges faced by Raman spectroscopy of biological tissue. Existing

work from the literature is reviewed, with an emphasis on neurological and ophthalmic

applications.

3.1 Raman Scattering

Raman spectroscopy is underpinned by Raman scattering, which describes the inelastic

scattering of light through interaction with matter. The phenomenon was first predicted by

Austrian physicist Adolf Smekal in 1923 and later shown experimentally by Kariamanikkam

Srinivasa Krishnan and Sir Chandrashekhara Venkata Raman in 1928 [46, 49]. Smekal

hypothesised based on an energy conservation argument for a system containing a photon

of energy hν, and a molecule who’s energy depends on a translational velocity, υ and it’s

quantum state Em, the following:

Mυ2

2
+ Em + hν =

Mυ′2

2
+ En + hν ′ (3.1)
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where M is the mass of the molecule and n and m represent different quantum numbers.

Conceptually, this process can be thought of as absorption of the photon by the molecule,

promoting the molecule to a virtual energy state, followed by the instantaneous emission

of a photon. The case where the final state is the same as the initial state for the molecule

(m=n) is the more widely known Rayleigh or elastic scattering. The 1928 article by C.V.

Raman showed the first experimental evidence of inelastic scattering [46]. Using a sin­

gle spectrogram from a monochromatic light source incident on benzene, Krishnan and

Raman demonstrated the presence of both red and blue shifted spectral lines. The lat­

ter describes the case where the scattered photon gains energy from the molecule in an

existing excited state as ‘negative absorption of radiation’ [46].

Fundamental to quantum mechanics, is the notion that energy is quantised and can

only occupy discrete energy states. In the case where the photon energy matches an al­

lowed electronic transition, absorption occurs, followed by subsequent emission of a pho­

ton known as fluorescence as the electron returns to it’s initial state. Both Raman scattering

and fluorescence involve an energy exchange between a photon and a molecule, but are

distinct optical processes. The important distinction is the timescale under which each

phenomenon occurs. As previously stated, Raman scattering occurs instantaneously (i.e.

the electron cannot occupy the virtual state), whereas for fluorescence there exists a real

electron transition over a finite period of time. In the case of fluorescence, the emitted

photon is always of lower energy (with the remaining energy dissipated as heat), and the

change in wavelength termed the Stokes shift. Rather confusingly, Raman scattering in­

herits this nomenclature, but for Raman scattering the emitted photon may be of lower

(Stokes) or higher (anti­Stokes) energy. The resultant energy transition of the molecule
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(m ̸= n) occurs due to a change of the vibrational state of the molecule [10].

Molecular vibrational energy levels arise from degrees of freedom, which can be subdi­

vided into translation, rotation and vibration. Translation and rotation refer to motion of the

molecule as a whole in space, but the same degrees of freedom exist for each atom within

the molecule, giving rise to vibrational states such as bond stretching or twisting [56]. At

this point, it is useful to consider a molecular bond by a simple model of two masses con­

nected by a spring, vibrating at some natural frequency. The Raman spectrum measures

intensity against spatial frequency (wavenumber) with units of cm­1. Using the mass on a

spring example and given the quantisation of energy, the allowed vibrational states would

appear as distinct lines in the spectrum. The spectrum of a molecule therefore provides

a corresponding barcode or fingerprint based on chemical composition. Unfortunately the

measured Raman spectrum does not appear as lines, but as bands with non­zero widths.

This broadening occurs due to a number of reasons, which include the local environment

of the molecule (temperature, pressure etc) and fundamentally limited by the uncertainty

principle, since the lifetime of the excited state is finite and short lived, we cannot ex­

actly measure the energy [21]. The Raman spectrum is commonly referred to in terms of

discrete regions: the low wavenumber region (100­200 cm­1); the fingerprint region (500­

2000 cm­1); and the high wavenumber region (2000­4000 cm­1) [50]. In this section, we

have briefly introduced the concept of Raman scattering alongside Rayleigh scattering

and fluorescence (Fig. 3.1), but have not discussed how these may hinder or interfere

with the measurement of Raman scattering. The reality is that Raman scattering yields by

far the weakest signal of the three, with about one in every million scattering events being

inelastic scatter. Furthermore, biological samples are inherently autofluorescent, but is
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Rayleigh Scattering            Raman Scattering                      Fluorescence

Electronic State
Vibrational State
Virtual State

Figure 3.1: Overview of Rayleigh scattering, Raman (Stokes and anti­Stokes) scattering
and fluorescence as energy level diagrams.

especially problematic in the retina, which contain lipofuscin pigments where fundus aut­

ofluorescence imaging is already used to detect some retinal abnormalities non­invasively

[35]. A number of approaches can be employed to suppress fluorescence; one of the

most promising of these being time resolved Raman spectroscopy [55]. This exploits the

physical timescales under which each occurs as described previously, but requires more

complicated instrumentation that at the present time remains niche in terms of commer­

cially available systems.
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3.2 Experimental Arrangement

As a result of the Raman effect being comparatively weak, a typical Raman instrument

uses a laser focused through a high magnification microscope objective to illuminate a

sample with monochromatic light. The high photon flux created at the focal point of the

beam can then generate a detectable number of Raman scattering events. The scattered

light is typically collected either via a forward­scattering (transmission) or back­scattering

(reflection) geometry. An illustration of a typical back­scattering arrangement is shown in

Fig. 3.2, where a laser is introduced into the optical path of a standard microscope, and

the back­scattered light from the sample is collected via the microscope objective. Incident

and collected light are typically separated by a dichroic beamsplitter. A confocal geome­

try is commonly applied, which rejects out of focus light, through the use of a slit. Before

reaching the spectrometer, back­scattered Rayleigh light is suppressed by the introduc­

tion of a filter, such as a long pass filter. A number of spectrometer designs exist, but the

most common uses a diffraction grating to spatially disperse the various Raman bands be­

fore being measured using a high sensitivity detector (usually a multi­stage cooled charge

coupled device (CCD)) [50].

3.3 Raman Spectroscopy in Diagnostics

This section reviews both ex­vivo and in­vivo applications of Raman spectroscopy in the

literature, with an emphasis on studies of tissue from the brain and the eye. Whilst our

interest lies primarily in the use of Raman spectroscopy for in­vivo assessment, much
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Figure 3.2: Illustration of typical confocal Raman spectroscopy arrangement.

of the current focus in the field is towards sensing applications using surface enhanced

Raman spectroscopy (SERS) [15]. Bodily fluids such as blood, serum, saliva and urine are

regularly collected clinically to aid in the diagnosis of a number of diseases. SERS allows

for trace level detail to be detected from samples by exploiting optical effects, such as

surface plasmon resonance from metallic nanoparticles, which enhance the local electric

field and Raman signal in proximity to the sample [2]. The enhancement offered by SERS

mitigates the inherent weakness of Raman spectroscopy and has the potential to provide

timely diagnostics from trace levels of molecular disease biomarkers.

Despite these advantages, the issue of identifying target molecules in isolation remains

a huge challenge from bodily fluid samples. Earlier, we asserted that Raman spectroscopy
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provides a molecular fingerprint. However, for biological samples containing thousands of

different compounds of varying sizes, the Raman spectrum begins to become convoluted

as bands overlap. What results, is an unmixing problem not dissimilar from the classi­

cal cocktail party problem; where the challenge is to depict independent conversations

amongst the noise of the room [13]. Numerous efforts have been made to address this

issue, which can be broken down as either upstream or downstream to the measurement.

Upstream efforts include the use of filtration, antibodies and physical methods to capture

the molecules of interest and remove those which would confound the results [4, 9, 51].

Downstream methods use computational algorithms to decompose the signal or naively

separate the data using multivariate techniques [4]. Multivariate methods used in Raman

spectroscopy attempt to separate the data according to statistical properties inherent in

the dataset, and are often essential to provide meaningful analysis from spectra of biolog­

ical samples. The unmixing problem is further exacerbated by common sample preser­

vation techniques for fluid and tissue samples (fixation, anti­coagulants, wax embedding

and cryopreservation etc), which can dominate Raman spectra [12]. A final factor in the

translation of SERS from laboratory to clinic has been a lack of reproducibility, in particular

for nanoparticle based approaches [57].

A number of more recent studies have started to address these shortcomings, in ef­

forts to scale up the technology [29, 33, 47]. Work by Rickard et al. demonstrated the

efficacy of a SERS platform applied to TBI diagnostics, built using a one­step lithographic

process and combined with microfluidics to physically separate plasma from whole blood

[47]. By creating a library of Raman spectra for TBI biomarkers (S100­B, NAA, GFAP etc),

concentration changes in severe TBI patients were identified with a high sensitivity, both
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temporally and compared to control samples. The use of SERS has the potential to provide

vast improvements over traditional assays (e.g. ELISA), with the ability to rapidly detect

trace level (picomolar) concentrations of injury biomarkers, but comes with some of the

same limitations identified in the previous chapter. Specifically, it is unclear whether the

evolution of biomarker concentrations with time is related to patient recovery or associated

with clearance from the body. Further work is also required to show that the method can

be applied in discrimination between injury severity [47].

Here, we have given only an anecdotal introduction to SERS, to give a flavour for the

current trends in the field of Raman spectroscopy. Unfortunately, SERS is fundamentally

incompatible with our primary focus towards non­invasively identifying TBI in­vivo from the

posterior of the eye. That said, many of the challenges in handling, storing and measuring

biological samples remain relevant to our efforts, particularly for initial proof­of­concept

studies using ex­vivo samples. By targeting tissue belonging to the CNS, we significantly

reduce the need to filter out confounding compounds, where we technically measure from

the brain side of the BBB.

3.3.1 Neurology

In neurology, there is a large emphasis on using Raman spectroscopy for cancer detection,

in particular as an inter­operative guide during tumour resection [16, 26, 30]. The motiva­

tion for this partly comes from the diffuse nature of glioblastomas, where discrepancies

between preoperative MRI scans lead to relapse from the resection margin. The avail­

ability of handheld Raman probes for industrial applications means that proof­of­concept

interventions using Raman spectroscopy are straightforward to integrate into existing sur­
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gical practice. The concept is highlighted across several publications by Jermyn et al.

working in the group of Frederic Leblond [24–26]. The probe developed featured a com­

pact concentric design, with a central excitation illumination fibre and peripheral collection

fibres, which allowed for integration into existing surgical practice. By comparison to MRI,

the use of Raman spectroscopy showed a greater specificity and sensitivity, centimetres

beyond the region of detection using MRI. Following their initial in­vivo study, the group

(perhaps somewhat confusingly) performed ex­vivo validation in a study that combined

several different animal models and devices [16]. The work by Desroches et al. [16] ex­

tended the initial concept to show that high wavenumber bands alone can be used in the

classification of cancerous tissue. Finally, the group have shown that the need to manually

subtract background effects caused by fluorescent lights in the operating theatre can be

ignored through the use of machine learning [25].

Along more fundamental lines of enquiry, the Raman spectra of different brain struc­

tures has been studied, with clear differences observable in the spectra of white matter

and grey matter. The work by Kast et al. [31] acknowledges that Raman bands displaying

key changes for white matter and grey matter come from a mixture of lipids and proteins.

However, white matter contains a higher proportion of lipids and so by using peak ratios

the authors were able to discriminate between tissue types. An unusual aspect, is the

visual approach that was taken to present data from tissue biopsies. The bands at 1004,

1330:1344, and 1660 cm­1 were mapped to red, green and blue colour channels respec­

tively, providing an immediate visual representation through colour mixing. These false

colour images showed good agreement with histological staining, however, using this ap­

proach to visually show cancerous and necrotic tissue was less convincing. More work
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in this study could have been done to show parity between the colours used in histology

and the falsely coloured Raman map by creating a colour space mapping between histol­

ogy images and Raman maps. This would allow clinical interpretation without the need for

further user training, or to physically stain samples [31].

A similar analysis was performed by Koljenović et al. [34], using falsely coloured Ra­

man image maps of tissue from both brain and bladder in a porcine model. In this study,

the authors note design considerations when using fibre optics, which allows for the bulk

laser/spectrometer setup to be kept away from tissue/patient measurements as discussed

previously in the work by Desroches et al. [16]. As with later work in the Leblond group,

Koljenović et al. highlight the practical importance of the high wavenumber region. Unlike

the fingerprint region, the high wavenumber region is devoid of Raman scatter generated

by silica fibres, which otherwise needs to be filtered out. Koljenović et al. show using

false coloured Raman maps of porcine tissue, that the same diagnostic information can be

generated from the high wavenumber region as fingerprint region [34]. This leads to the

more general assertion that for preliminary studies, where the focus is on understanding

the molecular changes observed and basic scientific understanding, the fingerprint region

has higher value owing to having a greater number of peaks, and therefore deeper un­

derstanding of the underlying biochemistry. However, for translational applications, where

the focus shifts to diagnostic discrimination and the physical design and dimensions of the

device become more important; the high wavenumber region may serve as a better fit.

So far, we have discussed in­vivo and ex­vivo examples in the literature for using Ra­

man spectroscopy to identify abnormalities in the brain, but these have all focused around

the detection of cancer. In addition to cancer detection, Raman spectroscopy has been
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shown to be sensitive to conformational changes in proteins, which has important implica­

tions for neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Ji et al. [27]

showed a blue shift of 10 cm­1 to the amide I band (1660 cm­1) as a result of misfolded

proteins in a murine model of Alzheimer’s disease. Separately, Flynn et al. [20] studied

the formation of α­synuclein amyloid fibrils associated with Parkinson’s disease, as they

aggregate from solution under differing pH levels and for mutant forms of the protein linked

to early onset of the disease. As in the previous study, energy shifts to the amide I band

were observed along with narrowing of the band with aggregation. These studies highlight

the capability of Raman spectroscopy to show exquisite chemical information from biolog­

ical samples, but the similarity in the observed changes between different diseases raises

questions regarding specificity, which remain currently unanswered.

The first experiment showing that Raman spectroscopy is sensitive to biochemical

changes following TBI was performed by Tay et al. [54] using a focal brain injury model (left

motor cortex) in mice. Dramatic changes were observed in the spectral profile in response

to injury, using the uninjured hemisphere as a control. Importantly, the authors showed

that the results were largely unaffected by tissue fixation. Although the Raman analysis in

this study was purely qualitative, immunohistology studies were also performed, showing

that the observed changes may be linked to mitochondrial activity and apoptosis following

injury [54]. More recent work by Surmacki et al. [53] has studied the temporal response

to TBI at 2 and 7 days after injury, again in a murine model. In addition to changes from

the hemisphere of injury (left), spectral changes were also observed from the contralateral

hemisphere and seen to evolve with time. Unlike the previous study, attribution to the un­

derlying biochemistry was made with reference to Raman spectra of brain specific lipids
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to make qualitative attribution to a relative increase in cholesterol with injury.

Multivariate analysis was used in the form of principal component analysis (PCA), which

is a dimensionality reduction technique using the inherent variance of the data. PCA

projects the data onto the axis of greatest variance (the first principal component or PC1).

Subsequent dimensions are along the direction of largest variance, subject to being or­

thogonal to the previous dimensions. Separation of data is usually displayed using scores

plots as pairs of dimensions, which show how samples of different types (e.g. injured, con­

trol) lie in the PC space. These are accompanied by loadings plots, showing the spectral

weighting associated with each component, allowing for identification of Raman bands in

the spectra unique to each group (with reference to the scores plot) [11]. In the article by

Surmacki et al. [53], the results displayed PC2 vs PC3 accounting for only 2.25 % and 0.78

% of the total variance in the data, and showed poor separation of the data. Although PC1

was not shown in the scores plot, the loadings were shown for PC1, PC2 and PC3, where

PC1 accounted for 95.01 % of the total variance, indicating a large degree of similarity

between the samples [53].

3.3.2 Ophthalmology

Surprisingly, given what may be a natural fear towards intentionally shining a laser into

the eye, there has been a significant level of interest in the field of ophthalmology for the

application of Raman spectroscopy [18]. This includes both the breadth of studies (with

every anatomical layer of the eye being studied) to the degree of translation, including

human clinical trials [41]. Encouragingly, some of the most promising results are from

studies of the retina. These results show our initial aversion towards laser spectroscopy in
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the eye may not be justified, with lasers being routinely used in ophthalmic applications for

both diagnostics using optical coherence tomography (OCT) and corrective surgery [1, 42].

Cornea

Lens

Retina

Optic Nerve

ScelraVitreous Humour

Iris

Figure 3.3: Illustration showing anatomy of the eye.

The eye is composed of several anatomical layers (Fig. 3.3), working together to cap­

ture and focus light onto the back of the eye, which is then converted to electrical signals

interpreted by the brain. Forming a curved transparent barrier to the outside world, the

cornea is responsible for over 70 % of the total refractive power of the eye. After passing

through the cornea, light is further focused by the crystalline lens, which adjusts in shape

to allow for focusing on near or distant objects. The main volume of the eye is occupied

by the vitreous humour, composed mostly of water and containing a complex network of

collagen. Finally, light is incident on the retina, which contains photoreceptive cells which
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detect colour (cones) and intensity (rods) [3].

The cornea provides a tough external barrier, whilst simultaneously providing excel­

lent transparency as a result of highly regulated collagen fibrils. Epithelial and endothelial

cells at the anterior and posterior boundaries to the cornea actively maintain water levels,

essential for optical clarity. An early study by Bauer et al. used the ratio of CH and OH

bonds from the high wavenumber region to assess corneal hydration in­vivo in rabbits [7].

A small follow­up study was performed in­vivo in two legally blind humans, where hydra­

tion was manually controlled by the application of a mild dehydrating solution [6]. Targeting

the cornea using Raman spectroscopy requires little modification from a laboratory setup,

but there does not appear to be any further work beyond these preliminary studies. Most

recently, a similar study in rabbits has been conducted, but using terahertz (far infrared)

reflectometry, indicating that the measurement of corneal hydration remains a clinically

unsolved problem [8].

The aqueous humour separates the cornea and lens, and consists of mostly water.

Lambert et al. [36] suggested Raman spectroscopy of the aqueous humour could be used

as an non­invasive method to monitor glucose levels in diabetics. Clinically relevant glu­

cose concentrations were first measured in an artificial aqueous humour, followed by a

study to compare eye safety trade­offs against measured signal in rabbits. In­vitro mea­

surements from human aqueous humours were taken from patients undergoing cataract

surgery, which was used to form a predictive model and mapping between blood glucose.

[36, 37]. Again, there appear to be no further follow­on studies to show efficacy in hu­

mans. Instead, more recent work has focused on transcutaneous Raman measurements

from skin [28]. The latter approach can be more easily incorporated into continuous un­
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obtrusive patient monitoring through a wearable device, but requires more complex post

processing to remove contributions from from skin tissue.

The crystalline lens contains a set of water­soluble proteins called crystallins, that

form tightly packed aggregates to increase the refractive power, whilst maintaining trans­

parency. The formation of cataracts (clouding of the lens) that leads to impaired vision,

account for 50 % of all cases of blindness and is commonly associated with ageing [44].

Raman spectroscopy of the lens has focused primarily on ex­vivo investigations to study

conformational changes to lens proteins with age [23]. It is curious that there are no ex­

amples of in­vivo Raman spectroscopy of the lens in the literature, given the number of

ex­vivo studies.

The vitreous humour sits behind the crystalline lens and forms the largest tissue body

in the eye, filling the space from the lens to the retina, having a gel­like structure and con­

sisting mostly of water. A US patent exists for Raman spectroscopy of the vitreous, with a

focus on the detection of glutamate as a marker of glaucoma or diabetic retinopathy [48].

Glaucoma is defined as damage to the optic nerve by pressure from fluid in the eye, and

often has no symptoms. Diabetic retinopathy is a risk for patients with type I and II dia­

betes, where damage to blood vessels in the retina lead to a loss of vision [14, 45]. The

data backing the patent are described by a publication in 2003, using ex­vivo porcine eyes

spiked with glutamate. The results from this study are tenuous at best, with the authors ad­

mitting that contributions from the cornea and lens dominated the spectra. Measurements

of glutamate were only successfully measured by using artificially high concentrations and

removing the cornea and lens to leave an eye cup where the vitreous could be focused on

directly. Unsurprisingly, the patent has since been abandoned [32].
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Finally, light incident on the retina is captured somewhat like a camera by photorecep­

tive cells. The signal is transmitted along the optic nerve to the brain, which is interpreted as

an image. A central area of the retina, known as the macula provides high resolution colour

information, and another area of the eye subject to degradation with ageing (age­related

macular degeneration (AMD)). In 2001, it was shown that resonance Raman spectroscopy

could be applied to detect macular pigments from the retina, owing to the relatively unique

property of the molecules to have electronic transitions in the visible spectrum (for obvious

reasons). Resonance of the Raman effect occurs when the excitation laser energy is very

close to the energy of an electronic transition, and so ideally suited to the task of detecting

macular pigments. The results were shown to be successful in­vivo and have since gone

on to clinical trials [19, 41].

More recently, Marro et al. [38] studied inflammation in murine retina cultures, and

suggested the results could be applied to retinal damage in the case of multiple sclerosis

(MS). An autoimmune disease of the nervous system, MS results in demyelination of axons

mediated by microglia, resulting in visual, motor, sensory and psychological changes [17].

This is the first description of the use of Raman spectroscopy to study diseases effecting

the brain, however, the primary focus in the study remained damage to the retina [38].

The tissue preparation method employed by Marro et al. is noteworthy, as this allowed

the authors to model inflammatory responses over time ex­vivo. Retinae were dissected

from mice, flat mounted into well plates, and cultured in cell media between spectroscopy

measurements [39]. Changes to spectra were studied in terms of constituent biological

components, by using multivariate analysis to fit from a ‘database’ of candidate molecules.

Whilst this shows how Raman spectroscopy can be used to study cellular processes, the
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authors acknowledged that this currently requires prior knowledge and assumptions, given

limited completeness and availability of appropriate databases [38].

In 2019, Stiebing et al. [52] addressed the limitations of existing studies of the retina,

where in­vivo measurements were only possible using resonant targets such as macular

pigments. The experimental arrangement used optics that mimic the human eye in place of

a microscope objective, and showed that Raman spectra could be measured from ex­vivo

flat mounted human retina using a 785 nm excitation at eye safe laser powers [52]. Raman

image maps over the retina were used to produce false colour images that show the spatial

distribution of chemical species, and highlighting the fovea. However, the Raman maps

took 6 hours to acquire, meaning that in­vivo acquisition would currently be limited to point

measurements [52].

Despite large variation in the data caused by autofluorescence, major bands associated

with lipids and proteins were identifiable through careful subtraction of the fluorescence

signal. The authors presented the mean data smoothed to demonstrate comparison to a

commercial confocal microscope. This effectively demonstrates the main Raman bands

and proves the concept, but the applicability of such smoothing, which in effect removes

data is questionable for any disease model. A final point of consideration is that the sys­

tem assumed the pupil to be dilated, which can be performed by mydriatic drops, and is

regularly used by opticians [40]. However, this would move a future diagnostic platform

from non­invasive to minimally invasive, which would limit the usefulness in PoC TBI diag­

nostics. Paralysation using mydriatic drops dilates the pupil for hours to days, which would

impede the monitoring of GCS measurements.
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3.4 Conclusions

In this section we have shown that Raman spectroscopy can offer a label free mechanism

for measuring changes to biochemistry, which can be applied in­vivo in invasive settings

such as surgery, but has also shown promise for non­invasive measurement; in particular

in the field of ophthalmology.

Given a rooting in more fundamental chemistry, the analysis of spectra from biologi­

cal samples, formed of complex permutations of thousands of individual molecules in a

single sample remains challenging. Historical chemometric analysis tools such as PCA

are commonly used inappropriately in the literature in efforts to overcome the high dimen­

sionality of the data, leaving both the author and reader underwhelmed and confused. By

aiming to study posterior tissue through a thick heterogeneous sample (the eye), and in­

directly detect subtle changes from brain injury, without the luxury of SERS, will require

improvements to analysis methods.

The link between damage to the retina and CNS has been briefly noted in the literature

[38], but this has not currently been applied to a specific model of disease or injury. In

exploring whether it is fundamentally possible to study biochemical changes resultant from

TBI, we will expand the possibilities of an emerging diagnostic platform.
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4.1 Abstract

Raman spectroscopy shows promise as a tool for timely diagnostics via in­vivo spec­

troscopy of the eye, for a number of ophthalmic diseases. By measuring the inelastic

scattering of light, Raman spectroscopy is able to reveal detailed chemical characteristics,

but is an inherently weak effect resulting in noisy complex signal, which is often difficult

to analyse. Here, we embraced that noise to develop the self optimising Kohonen index

network (SKiNET), and provide a generic framework for multivariate analysis that simulta­

neously provides dimensionality reduction, feature extraction and multi­class classification

as part of a seamless interface. The method was tested by classification of anatomical

ex­vivo eye tissue segments from porcine eyes, yielding an accuracy > 93 % across 5 tis­

sue types. Unlike traditional packages, the method performs data analysis directly in the

web browser through modern web and cloud technologies as an open source extendable

web app. The unprecedented accuracy and clarity of the SKiNET methodology has the

potential to revolutionise the use of Raman spectroscopy for in­vivo applications.

4.2 Introduction

Raman spectroscopy is a non­invasive technique for immediate detection and analyses

of the biochemical composition of analytes by measurement of the inelastic scattering of

light. A schematic showing a typical experimental arrangement is shown in Fig. 4.1a,

where longer wavelength inelastically scattered light from the sample is directed to a spec­

trometer via a beamsplitter. It is one of most sensitive optical spectroscopy methods yet
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can be packaged as a hand­held device [19, 32]. Therefore, there is a considerable inter­

est in applying Raman spectroscopy for the point­of­care detection of clinical biomarkers.

Ophthalmic applications have received particular interest, as the optically clear nature of

the eye provides a convenient route for in­vivo measurements [3, 12, 13, 26, 27, 31]. The

Laser

Spectrometer

Beamsplit

Lens

a

Figure 4.1: Illustration of Raman spectroscopy experimental arrangement and anatomy of
the eye.

a, Illustration of typical Raman spectroscopy setup. Light from a laser is focused into the eye.
Backscattered light is then directed via a beamsplitter to a spectrometer. b, Schematic of the eye.

eye consists of a number of anatomical layers (Fig. 4.1b), each with their own specific

functions, which are biologically and chemically distinct. Despite studies highlighting the

potential for early diagnostics of diseases that target a specific tissue type, there is cur­

rently no direct comparison of Raman spectra from each anatomical tissue layer. Whilst
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Raman spectroscopy offers excellent chemical specificity, biological samples form com­

plex permutations built from only a few amino acid building blocks, resulting in consider­

able spectral overlap and complex data analysis [7]. The problem is further compounded

by poor signal to noise as a result of the Raman effect being relatively weak. Particularly

for diagnostic applications, it is crucial to be able to accurately identify and understand the

signal originating from different parts of the eye. In addition to eye tissue, the optic nerve

was included as an additional class, as this represents a particularly interesting target for

applications beyond ophthalmology. Forming part of the central nervous system, the optic

nerve is technically part of the brain and lies at the same focal plane as the retina. The

ability to spectrally isolate and characterise the optic nerve from the rest of the eye would

lay foundations for further diagnostic possibilities of major neurological diseases including

for instance: traumatic brain injury, multiple sclerosis or Alzheimer’s disease.

The analysis of such datasets is often conducted as a workflow of three stages: projec­

tion, feature extraction and classification. The initial step (projection) aims to show spatial

separation of data from spectra according to different types or classes in two or three di­

mensions. Feature extraction then follows, with the aim of understanding what Raman

bands in the data cause any separation observed in the projection step. Finally, this infor­

mation is used to build a classification model, that can make accurate predictions about

future unlabelled data.

In the field of Raman spectroscopy and even more generally in chemometrics, PCA is

favoured for projection and feature extraction, followed by partial least squares discriminant

analysis (PLS­DA) and more recently deep learning models for classification [21, 22, 34].

However, PCA routinely shows poorly defined class boundaries, struggles with large intra­
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class variance (such as biological samples) and quickly breaks down for multi­class prob­

lems [9]. Furthermore, classification is often handled in isolation to projection and feature

extraction, forming a semantic disconnect, and whilst deep learning has shown impres­

sive classification results, these methods offer no insight into the underlying physical and

chemical changes.

Our aim is to provide a single method to address each of these stages, connected

by a single mathematical principle and improve on the issues found using PCA based

approaches. Work by Brereton et al. highlighted the use of the self organising map (SOM)

applied to nuclear magnetic resonance (NMR) spectroscopy in comparison to PCA, and

showed much clearer visualisations. The work was further extended to support feature

extraction and classification using SOMs by the introduction of the self organising map

discriminant index (SOMDI) [5, 23, 37].

Here, we develop an improved SOMDI based supervised learning method, defined as

the self optimising Kohonen index network (SKiNET) to demonstrate effective classifica­

tion, and illustrate the complete linked workflow from projection to classification by means

of a user­friendly web app [2]. This represents a major shift, that follows a growing trend in

industry to move from traditional desktop applications to the cloud (including office suites,

multimedia editing and computer aided design (CAD)) and yet the advantages of con­

nected scalable applications are seldom leveraged in the scientific community.

The SOM or Kohonen map was first described by Teuvo Kohonen in 1982 as a model

inspired by nature and the way that neurons in the visual cortex are spatially organised

according to the type of visual stimuli [18]. The SOM defines a 2D map of neurons, typi­

cally arranged as a grid of hexagons. Each neuron is assigned a weight vector, which is
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initialised randomly and has a length equal to the number of variables in a spectrum. The

weight vector effects which neuron will be activated for a given sample and neighbouring

neurons will have similar weights. Spatial clustering is therefore observed in the trained

map, with spectra that exhibit distinct properties activating different neurons. In order to

understand which features in the data cause certain neurons to activate over others, the

SOMDI was used [23]. The SOMDI introduces class vectors as labels for each spectrum

and corresponding weight vectors for each neuron, without influencing the training process.

These allow for the identification of what type of data a given neuron activates, which can

be used to inspect the weights across all neurons and extract prominent features belonging

to each class.

4.3 Results

Raman spectra were randomly sampled from tissue segments from 11 separate enucle­

ated eyes, by acquiring coarse map scans of 88 spectra per tissue segment. The aqueous

humour sitting between the cornea and crystalline lens, consisting mostly of water, was ne­

glected. Fig. 4.2a shows averaged spectra representative of each tissue type, or class

to be identified. Individual Raman spectra were kept consciously noisy by using a short

acquisition time and limited laser power, to be representative of real world applications,

which are limited by both scan time and maximum permissible exposure (MPE) defining

eye safe limits [36]. Examples of typical raw spectra (after cosmic ray removal and base­

line subtraction) are shown in Fig. 4.2b. Whilst the averaged spectra across each class

showed obvious spectral differences, a large degree of variance was seen across each
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   a     b

Figure 4.2: Raman Spectra of eye tissue.

a, Averaged Raman spectra from isolated tissue segments of each anatomical layer. b, Typical
raw spectra for each tissue type used for training and classification.

map scan (Appendix A.1). As neural networks are data hungry algorithms by nature, it

was hypothesised that a meaningful model could be trained by using a large enough num­

ber of noisy inputs. Initially, a 25 % partition from each class of the 4840 spectra were

reserved for test data.

Our results are presented as a typical multivariate analysis workflow of: (1) projection

of the hyperspectral data set into 2D space; (2) feature extraction to identify which spectral

bands are characteristic of each tissue type and (3) a classification model to automati­

cally identify the origin of an unknown spectrum. In each case, the SOM shows dramatic

improvement over PCA based methods, offering better presentation of the data, clearer
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insights and greater classification accuracy.

a                                                                                       b

Figure 4.3: Dimensionality reduction and feature extraction of eye tissue spectra using
SOMs.

a, SOM trained on spectra across the 5 eye tissue types. b, SOMDI showing relative importance
of different bands for each class to observed clustering in the SOM.

4.3.1 Data Projection

Fig. 4.3a shows a clear separation of the data from the five tissue classes arranged as

a 16x16 SOM, trained on spectra from the five tissue classes. Neurons (hexagons) are

coloured according to themodal class they activate, from the training set of Raman spectra.

Neurons that have no majority class or activate non of the training data are shown in white.

Coloured circles within each neuron represent spectra from the training data that have been

activated for that neuron. To aid visualisation, circles have been forced to not overlap in
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space using the D3­force library [4], providing an alternative mechanism to display sample

frequency and class overlap for each neuron. Note that almost all of the available white

space in the figure is used completely. For each class, there is a clearly defined block

of neurons, with many of these activating only a single tissue type. An approximately

even distribution in the number of neurons required to identify each class is observed, with

a slightly higher weighting for the vitreous humour. As a result of the vitreous humour

consisting mainly of water and containing very few cells, the additional effort required by

the network to isolate the tissue can be observed in the map. This can be considered by

analogy to how the brain associates a larger number of neurons to facial features, than for

example arms and legs (the cortical homunculus).

Themajority of poorly separated samples are located centrally at the boundary between

classes and extend down to the bottom edge of the map. Interestingly, in this region, there

is a cluster of samples predominately corresponding to the retina, indicating that a number

of retina samples are particularly noisy, further corroborated by being spatially located

near other neurons that also lack any well defined class. While the SOM is analogous to

the PCA scores plot (Appendix A.2a), PCA performs particularly badly when compared

against the SOM. However, it should be noted that the level of separation observed by

PCA is completely inline with results commonly reported in the literature. Since PCA relies

on separation by variance in the data, the class clusters are bound around a central point,

as a result of noise or absence or spectral features, causing significant spatial overlap.
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4.3.2 Feature Extraction

The SOMDI provides a representation of weights associated with neurons that identify

a particular class. A higher SOMDI intensity indicates a greater importance of particular

inverse centimetres along the x­axis of a spectrum. Fig. 4.3b shows the SOMDI overlaid

for each class, where the most important Raman bands associated with each tissue layer

can be easily identified. Despite the level of noise in the original data, well defined peaks

are resolved in Fig. 4.3b, which are either more prominent or unique to each class. Strong

weights are attributed to the cornea at 938 (C­C stretch) and 1241 cm­1 (C­N stretch), which

also correspond, with a certain confidence, to the stretching modes of the C­C backbone

and amide III modes of collagen.

The crystalline lens of the eye is predominately identified by a very strong SOMDI

weight at 1005 cm­1 (2,4,6 C radial) and is attributed to phenylalanine, which is abundant

in water­soluble proteins present in the lens and directly relates to the tissue’s function.

The high polarisability of this molecule, which results in a large Raman scattering cross­

section, aids in increasing the refractive index of the lens thus, providing fine focusing of

light onto the retina. The vitreous humour is more challenging to isolate, with the strongest

weights at 854, 858 cm­1 overlapping with significant weights for cornea, which have been

associated with proline in collagen, along with small distinct weights at 832, 1044 and

1049 cm­1. These bands may be indicative of the difference in collagen type found in the

cornea versus the vitreous humour (type I vs. type II respectively) yet, a direct comparison

of the two protein types is further required to support this postulation. The interpretation

and discrimination of collagen types by Raman spectroscopy is currently an active area of
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interest, where SKiNET may also offer additional insight [14, 15].

The remaining two classes of retina and the optic nerve are perhaps the most intriguing,

located within the same focal plane, with the optic nerve connecting directly to the brain. An

isolated peak at 1658 cm­1 (C=O stretch) identifies the retina and is associated with amide

I (α­helix) groups in proteins. The detection of light by rods and cones in turn, relies on

photo­receptive proteins known as opsins, which have an α­helical secondary structure. In

contrast, the optic nerve can be characterised by a strong weight at 1441 (CH2 scissoring,

CH3 bending) and 1297 (CH2 deformations) cm­1, strongly associated with lipids and fatty

acids. The brain is composed of nearly 60% fat, with lipids and fatty acids playing important

roles in brain function, which here we observe as a clear marker for the distinction between

brain and eye tissue via Raman spectroscopy [8]. Furthermore, the optic nerve is devoid

of photo­receptive cells and responsible for the blind spot in humans and therefore, the

peaks at 1441 and 1658 cm­1 act as biologically relevant markers for each [16]. Individual

bond assignments were made with reference to Larkin [20], and associations to high level

biological structures based on the work by Talari et al. and Movasaghi et al., providing

databases of Raman bands found in biological tissue [25, 35].

Finally, unlike PCA loadings, which are often used to show similar information, the

SOMDI can be interpreted in isolation. Conversely, PCA loadings are only relevant to

a direction in PC space, relying on constant reference to the scores plot, which quickly

become cumbersome for multi­class problems or where multiple PC scores are considered

(Appendix A.2b).
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4.3.3 Classification

Automated classification of Raman spectra and assignment to a particular tissue type or

disease state is perhaps the most important step for the translation of Raman­based di­

agnostic techniques to real­world, clinical applications. However, whilst SOMs have his­

torically been used for visual separation of data, experimental results of classification are

rare. The most common method is to look­up the modal class of the neuron activated

for a test sample, as used to colour neurons in Fig 4.3a. Since the SOMDI automatically

provides class labels, the maximum SOMDI weight can also be used to perform class

identification of any given neuron. However, both of these methods remain unsupervised

learning mechanisms, without optimisation towards the correct answer in the training set.

This is in contrast to widely used supervised learning algorithms, such as multi­layer per­

ceptrons (MLP), support vector machines (SVM), PLS­DA and k­nearest neighbours (kNN)

[17, 30, 33].

Supervised learning can be introduced to SOMs by allowing the class weights used for

the SOMDI to influence the learning process. For large enough label values, this effec­

tively forces the map to cluster, however can result in over­fitting [37]. For our data, no

benefit was observed using this method over the modal class on the unsupervised SOM

(Appendix A.3). Instead, a concept from learning vector quantisation (LVQ) was applied

to the trained map and defined as a self optimising Kohonen index network (SKiNET). A

penalty is introduced for spectra (from the training set) that activate neurons identifying a

different class. This has a natural tendency to self­optimise, with the identical behaviour

to the vanilla SOM when training data activate the correct class. Fig. 4.4a shows the
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a                                                                          b

Figure 4.4: Classification performance of SKiNET against current state­of­the­art.

a, Classification accuracy of tissue using SKiNET against current state­of­the­art (multi­layer per­
ceptrons (MLP), support vector machines (SVM), partial least squares discriminant analysis (PLS­
DA) and k­nearest neighbours (kNN)). b, Effect of number of principal components on classification
accuracy for PCA based methods.

classification accuracy across all five tissue types using SKiNET, vs current state of the

art methods. A 25 % partition of the original data set was randomly assigned as test data

and not used for training and optimisation of the network. The remaining 75 % was used

to optimise hyper­parameters of each classifier, which were tuned by performing 10­fold

stratified cross validation. Most notable is the considerable improvement over PLS­DA,

which is perhaps the most widely adopted method in chemometrics [6]. PCA was used

as a dimensionality reduction method prior to classification for SVM, PLS­DA and kNN.

It should be emphasised that only the first two principal components were kept. Fig 4.4b
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shows that by including a larger number of components, each of the classification methods

can achieve a similar accuracy. The case of keeping more components for classification

than are used for projection and feature extraction is routinely used in the literature. The

alternative is to show several pairwise PCA scores plots, which arguably leaves the data

in a high dimensional space [11, 21, 34].

However, by implementing SKiNET we are able to achieve a classification accuracy

equivalent to keeping 6 components, whilst still being able to fully separate the data in

only two spatial dimensions; equivalent to using 2 PCA components. Additionally, SK­

iNET showed a comparable performance to MLP, whilst providing clear visualisations and

feature extraction that MLP and other neural network based methods lack. The confusion

matrix (Appendix A.1) provides a breakdown of test samples classified into each class,

and highlights the stability of the method across each of the five tissue types.

4.4 Discussion

The use of spectral fingerprints for clinical diagnostics requires two major components: the

ability to quickly and accurately distinguish between different states (such as tissue types or

diseases) and an understanding of the underlying chemical differences that enable such

separation. The former is driven by an obvious need to perform timely diagnostics, but

these decisions must be underpinned by biologically relevant changes. These issues are

usually treated in isolation by multivariate techniques, with the best classification methods

providing no insight into their nature. SKiNET addresses this disconnect, by using a sin­

gle, simple architecture to provide clear visualisations and a high classification accuracy,
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whilst retaining an understanding of the major chemical differences between classes. Fur­

thermore, the SOM removes the need for much of the linear algebra and matrix notation

required to fully appreciate PCA. Instead, the SOM can be adequately described using

only addition and subtraction.

We reiterate that SOMs can offer a vastly superior spatial separation of chemometric

data, that has now been demonstrated for both NMR and Raman spectroscopy. The SOM

can be considered mathematically as a non­linear equivalent to PCA, and therefore hints

that these data may not in fact be linearly separable, as would normally be assumed from

Raman spectroscopy and is a requirement for PCA to be valid [17]. Our assertion is that the

inherent heterogeneity combined with spectral overlap could easily lead to this condition

for biological samples. Despite the level of overlap and noise present in our raw data, the

SOMDI offers a convenient method to quickly isolate important bands and automatically act

as a noise filter. By using the SOMDI it was possible to easily identify prominent markers

for bulk tissue properties in each of the tissue types considered.

LVQ offers a convenient means of introducing supervised learning into the SOM, how­

ever, there are several variations of the LVQ algorithm that have not been explored here.

This remains an area for future work, in addition to automatically setting the map param­

eters such as number of neurons, neighbourhood size, and an adaptive learning rate. Fi­

nally, it was shown that SOMDI weights could act as iterative class labels that are present

throughout the learning process and change dynamically. As a result, there is scope to

explore SKiNET based classification in conjunction with other SOM optimisation methods,

that presently rely on a hit count (majority voting), which requires placing all of the training

data into the SOM at every learning step where we wish to identify the winning class for
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a given neuron [28]. Since the SOMDI provides a constant dynamic neuron identifier, this

would allow for scaling to larger training sets using such methods.

In general, SKiNET was seen to offer a huge classification improvement over existing

methods, performing particularly better than PLS­DA, which is the current status quo in

chemometrics. Several of the points stressed here have been mentioned in other publica­

tions across different disciplines, but never cohesively. It is therefore of equal importance

that the entry point for SKiNET is not to download, buy a software package or compile

scripts; but simply visit a website and upload data.

The ability to quickly identify tissue from the noisy spectral response of a short acquisi­

tion, as demonstrated here represents an important stepping stone towards the practical

applicability of in­vivo ophthalmic Raman spectroscopy, allowing for the capture of clean

signal in the region of interest only. Filtered signal could then be fed into a second SKiNET

model designed to distinguish between specific disease states.

4.5 Methods

4.5.1 Self­optimising Kohonen Index Network (SKiNET)

The SOM is represented by a set of neurons arranged in a (hexagonal) grid. Here, we

describe the basic SOM algorithm with SOMDI variables added for feature extraction [18,

23]. We then describe how LVQ is included as an additional step to provide supervised

learning, whilst using the SOMDI to identify each neuron class. Variables definitions are

shown in Table 4.1 for reference. In each case, the capitalised letter represents the set for
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a given variable, e.g., the SOM contains a grid of N neurons.

Variable Description Length
i A single spectrum 1015
j Spectrum class label vector 5
s Training sample and label [i, j]
n A neuron
w Spectrum weight vector length(i)
c Class weight vector length(j)
t training step integer

Table 4.1: Definitions of variables used to describe SOM and SKiNET.

Initially, every neuron is assigned weight vectors w (spectrum weight) and c (class

weight), which are randomly initialised. The SOM is then trained according to the following

algorithm:

1. Select a sample s at random from S

2. Calculate the euclidean distance, d for each n:

d =
√
i2 + w2

3. Define the best matching unit (BMU ) as the neuron with minimum d

4. Update weights, w and c of each neuron be similar to the input:

scaleFactor = neighbourhood(BMU, t) ∗ learningRate(t)

w = w + scaleFactor ∗ (i− w)

c = c+ scaleFactor ∗ (j − c)

The map is gradually trained by repeating these steps numerous times. The update step

applied in step 4 depends on a neighbourhood function which ensures neurons closest to
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the best matching unit (BMU) are effected most (according to a Gaussian function), with

a decreasing neighbourhood size with each t. Secondly a learningRate influences the

update criteria, which linearly decreases with each iteration, t from a fixed initial starting

value. To note, while class weights are updated in steps 4, they play no role in step 2, i.e.,

the spectra alone are responsible for finding the BMU.

The class vectors J have values of 1 for a given index or otherwise 0, e.g., [1, 0, 0

, 0, 0] and [0, 1, 0, 0, 0] representing labels for two of the five classes. As the map is

trained, the neuron class vectors C become close to 1 as the neuron activates more of

one spectral type and tend towards zero for all other class variables. Fig. 4.5 illustrates

how these vectors define class planes that are used to form the SOMDI. Once the map is

trained, the class of any given n can be identified by finding the maximum of c.

4.5.1.1 Supervised Learning

A second learning round is then applied, keeping the spatial mapping of neurons, but

changing the update criteria to use rules from LVQ:

1. Start with trained SOM

2. Select a sample s at random from S

3. Calculate euclidean distance, for each n

4. Define BMU as the neuron with minimum d

5. Identify BMU and s class labels:

classj = indexOf(max(j))
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classc = indexOf(max(c))

6. Update BMU w and c:

if (classj = classc) then

w = w + scaleFactor ∗ (i− w)

c = c+ scaleFactor ∗ (j − c)

else

w = w − scaleFactor ∗ (i− w)

c = c− scaleFactor ∗ (j − c)

where only the update step changes when s lands on an incorrect neuron, to move both the

spectrum weights and class weights of the BMU further away (and so making the neuron

less likely to activate a similar spectrum in future iterations). During LVQ only the the

BMU is updated under this regime and thus, represents only a small perturbation to the

network. By analogy, this can be thought of as applying fine details to a painting, after the

initial broad brush strokes to block in colours.

The method is described as self­optimising, since when the BMU class matches that of

the input, the BMU weights are moved closer to the input as per the original unsupervised

SOM algorithm. This allows a natural optimum to be reached, whilst preventing over­fitting.

A second consequence of SKiNET, is a greater degree of freedom for each neuron. In the

update step, the weight vector for the data and class labels are both updated, allowing for

the class definition of a neuron to dynamically change as the map is trained.
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Figure 4.5: Illustration of SOM class planes used for SOMDI.

Illustrative example of SOM for two classes A and B, coloured red and blue, respectively. The
weight vectorsW and C can be thought of as making up additional planes in the z direction. Class
planes are formed having values close to 1 for a given class and values close to 0 otherwise. These
are used for classification and identification of the most important planes in W for the SOMDI.

4.5.2 Samples

Tissue samples were retrieved within hours of slaughter from a total of 11 enucleated

porcine eyes, provided by Rowley CH Ltd, a local abattoir. Eyes were dissected to isolate

small segments of cornea, lens, vitreous humour, retina and optic nerve. Tissue samples

were prepared using a protocol suggested by Cui et al., using glass slides covered with

aluminium foil as a cost effective substrate, and allowed to air dry for 24 hours [10].
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4.5.3 Raman Spectroscopy

An InVia Qontor (Renishaw plc) equipped with a 785 nm laser was used for all measure­

ments. LiveTrack maps over a sample area of 110 x 77 microns were acquired for each

sample, with an acquisition time of 5 s for each point location in the map, and laser power

of 2 mW, a 50x Leica objective (0.75 NA), 1200 l/mm grating with scans recorded in the

range 550­1670 cm­1. A total of 88 scans per tissue sample were recorded (4840 spectra

total).

4.5.4 Software and Preprocessing

Baseline subtraction and cosmic ray removal were applied in WiRE 5.1 (Renishaw plc),

each sample was independently standardised by mean centering and scaling to unit vari­

ance using Scikit­learn in python [29]. The package was then used to define training/test

partitions, cross validation folds and define models for each classifier. The SOM based

methods were defined in JavaScript by forking an existing open source SOM library [24].

The entire library was heavily refactored to include support for the SKiNET, and is avail­

able on Github [1]. For consistency, a wrapper was created around the JavaScript library,

to expose the same methods in python, allowing for all models to be benchmarked via the

same script.
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5.1 Abstract

Traumatic brain injury (TBI) is a major burden on healthcare services worldwide, where

scientific and clinical innovation is needed to provide better understanding of biochemical

damage to improve both pre­hospital assessment and intensive care monitoring. Here,

we present an unconventional concept of using Raman spectroscopy to measure the bio­

chemical response to the retina in an ex­vivomurine model of TBI. Through comparison to

spectra from the brain and retina following injury, we elicit subtle spectral changes through

the use of multivariate analysis, linked to a decrease in cardiolipin and indicating metabolic

disruption. The ability to classify injury severity via spectra of the retina is demonstrated for

severe TBI (82.0 %), moderate TBI (75.1 %) and sham groups (69.4 %). By fundamentally

demonstrating that the eye serves as a window to the brain, we lay the groundwork for

further exploitation of Raman spectroscopy for indirect, non­invasive assessment of brain

chemistry.

5.2 Introduction

TBI, resulting from sudden impact such as assault, sporting injuries or road traffic accidents

is a major cause of morbidity and mortality, affecting an estimated 69 million individuals

worldwide each year [5]. The initial damage triggers a complex cascade of metabolic, bio­

chemical and inflammatory responses leading to secondary injury that can occur over the

following hours, days or months [16]. The Glasgow coma scale (GCS), based on visual

assessment of the patient’s verbal, visual and motor responses, is the current gold stan­
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dard to stratify injury severity and acute clinical evolution in TBI. The GCS defines arbitrary

boundaries for injury severity grouped as mild, moderate and severe [23]. Whilst this has

real clinical value, minimal mechanistic insight is provided into the pathobiology of damage

evolution after injury. Novel technologies which can be applied quickly and non­invasively

at the point of care (PoC) for interfacing with the brain and define the chemical signatures

of TBI pathobiology are needed. A non­invasive method that can detect and quantify TBI

would not only provide a more accurate, objective and timely approach to diagnosis, but

may help expand our understanding of injury evolution and enable personalized interven­

tion approaches.

The skull provides a thick protective layer around the brain, which strictly limits the

available options for both non­invasive and invasive sampling of brain tissue, especially

in pre­hospital settings. However, sitting at the back of the eye exists a small part of the

brain covered only by optically clear media; the retina and the optic disc. The optic disc

appears as a bright circle in fundus images, and is the route through which visual informa­

tion captured from the retina is passed to the brain along the optic nerve. Also known as

the blind spot, the optic disc is devoid of photoreceptive cells and consists predominantly

of white matter. Derived from an out­pouching of the diencephalon as the brain develops

and bathed in the cerebrospinal fluid, both the optic nerve and retina are technically part

of the central nervous system [17]. The retina and optic nerve have long been known

to display physically measurable changes as a result of increased intracranial pressure

(ICP), where ICP monitoring is of paramount importance for intensive care monitoring in

TBI. Measurements from the eye of such changes have been the target of several studies

aiming to develop non­invasive ICP, but to our knowledge no such attempts have been
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made to measure the resultant biochemical change [7, 8, 14].

We therefore have hypothesized that a form of optical spectroscopy, which has the po­

tential to be translated into a non­invasive method to probe the posterior segment of the

eye (retina and optic nerve), may be able to monitor injury evolution in real time after TBI.

Among the optical spectroscopy techniques, Raman spectroscopy offers the richest and

most sensitive chemical discrimination. Temporal changes from direct analyses of brain

tissue have previously been studied by Surmacki et al. [20] using our murine model of

TBI. Raman scattering is based on the inelastic interaction between light and a molecule,

where the energy exchange from a scattering event causes a change in the vibrational

energy level of a molecular bond. Since energy levels of electrons in molecules are quan­

tized, only specific and discrete energy states are allowed. The Raman spectrum therefore

defines a chemical fingerprint that is uniquely determined by the underlying molecular con­

stituents [10]. Nevertheless, for biological samples there exists significant redundancy and

complexity of spectral bands that makes analysis and interpretation of the data non­trivial.

Raman scattering is also an extremely weak effect, and thus, long acquisition times and

the use of a high­powered laser focused through an objective are standard requirements

for well resolved spectra. The notion of laser exposure to the eye invokes a natural aver­

sion, however every anatomical tissue layer of the eye has been successfully studied using

Raman spectroscopy [6]. By adhering to laser safety limits, Obana et al. [15] conducted

an in­vivo study using resonance Raman spectroscopy in humans to assess age­related

maculopathy. More recently, Marro et al. [13] were able to measure inflammatory changes

in retina cell cultures and Stiebing et al. [19] have showed how this can be extended to

non­resonant Raman spectroscopy, using flat mounted retina samples combined with an
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optical pathway mimicking the human eye.

Recently, we developed a machine learning technique based on self organizing maps

(SOMs), the self optimizing Kohonen index network (SKiNET) for simultaneously providing

rich information and classification from biological samples, even with noisy or poor quality

spectra that would result from a lower laser power and short acquisition times [2]. SOMs

provide visually intuitive 2D clustering (e.g. according to injury state) of high dimensional

data such as Raman spectra, that are otherwise difficult to interpret for large sample and

measurement numbers. Whilst SOMs are usually an unsupervised method, SKiNET in­

corporates supervised learning to additionally provide accurate classification, which could

then be used to make diagnostic predictions. Finally, a form of feature extraction using the

self organizing map discriminant analysis (SOMDI) allows us to understand which spectral

features (and therefore chemical changes) are responsible for the clustering seen in the

SOM [12].

Here, Raman spectroscopy combined with SKiNET is applied to investigate whether

the retina can reflect the brain microenvironment after injury, in a clinically relevant murine

model of focal TBI. Our results show that spectra from the eye can distinguish moderate

TBI (mTBI) and severe TBI (sTBI) from a sham group, and show this to be as a result

of similar chemical changes to those seen at the point of injury on the brain. Through

quantitative and qualitative analysis we suggest the detected changes are largely due to

metabolic distress and the release of cardiolipin, consistent with recent work in the field

of mass spectrometry [4]. This validation is particularly promising as mass spectrometry

provides vastly superior molecular discrimination. However, Raman spectroscopy has the

advantage of being a non­destructive technique and as highlighted, there are ongoing
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efforts in the field for translation into in­vivo measurements, and diagnostics.

5.3 Results and Discussion

a                       b                                                       c      

   200 μm

Figure 5.1: Photographs of mouse brain and retina following cortical impact.

a, Photograph of whole brain following sTBI to the left parietotemporal cortex. b, Illustration of
mouse brain and optic tract, highlighting ipsilateral (blue) and contralateral (orange) projections
connecting the brain to the retina. c, Example of a bright field microscopy image of a flat mounted
retina from the mTBI group.

Experimental TBI was induced by controlled cortical impact in mice (n=6), with the de­

gree of injury (either moderate or severe) being defined by the deformation depth. Tissue

samples of postfixed brain (Fig. 5.1a) and eyes were collected 3 days after injury from

sham, mTBI and sTBI groups. An illustration of the mouse head is shown in Fig. 5.1b,

highlighting the bilateral axon projections that are present between the brain and the retina.

Samples from the retinae of both eyes weremeasured by carefully dissecting each eye and

flat mounting the retina onto aluminium slides (Fig. 5.1c). Raman spectra were collected
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using identical parameters for brain and retina samples across all injury states. Spectra

were collected using surface map scans to follow the tissue topography, with a total of 400

spectra per sample, with a 785 nm excitation (50 mW), 1 s acquisitions and 5 accumula­

tions at each map position. Each Raman map was averaged to give a single spectrum per

tissue sample (Appendix B.1, B.2). A complete description of the experimental procedure

can be found in the Materials and Methods section.

The averaged Raman spectra from the impact site on the left hemisphere of the brain

(contusion core) shows clear changes to the spectral profile (Fig. 5.2a), with noticeable

decreases to the bands around 1003, 1266 and 1660 cm­1 compared to the sham group for

both mTBI and sTBI (Fig. 5.2a). Unsurprisingly, there is a greater change to these bands

for sTBI over mTBI, however the sTBI group also shows changes to the bands around 1337

and 1447 cm­1. In comparison to the sham group, TBI samples from the brain appear more

noisy, as a result of interference from additional autofluorescence as a consequence of the

haemorrhage clearly visible at the impact site (Fig. 5.1a). In one of the mTBI samples,

autofluorescence led to the majority of spectra in the map being saturated, and the sample

was omitted from the results. The average spectra from retina samples show only slight

variations compared to the sham group (Fig. 5.2b), however the changes observed are

also predominantly to the bands at 1003, 1266 and 1660 cm­1. To understand whether

these slight changes are meaningful, machine learning techniques are required, which is

addressed in the multivariate analysis section. For mTBI, the change at 1266 cm­1 is the

only feature consistent with sTBI in the retina, as well as the observed changes from brain

tissue. As with brain tissue, a change at 1337 cm­1 is unique to sTBI, but the decrease at

1660 cm­1 that was prominent for brain tissue is only seen for sTBI.
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a                                                                          b
   Brain          Retina

Figure 5.2: Average Raman spectra from brain and retina samples.

a, Average Raman spectra collected in the contusion core for mTBI and sTBI compared to the sham
group. b, Average Raman spectra collected from flat mounted retina samples (both eyes), showing
mTBI and sTBI compared to the sham group. Raman spectra were collected asmapmeasurements
of 400 spectra over each sample, using a 785 nm excitation laser (50 mW), 1s acquisitions with 5
accumulations. Mapmeasurements from each sample were averaged to produce a single spectrum
per sample (n=6).

The Raman bands labelled in Fig. 5.2a,b are only those that show a noticeable change

to both brain and retina tissue. Each band is assigned in terms of the associated chemical

vibrational mode, with reference to Larkin [11], along with common biochemical attributions

with reference to Talari et al. [21] where applicable. From the summary in Table 5.1, it is

clear that the most prominent changes are most commonly associated with contributions

from both lipids and proteins in the literature [21]. Since the brain contains nearly 60 % fat

and the Raman signature for all 12 major and minor brain specific lipids have been well
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characterized [3, 9], we can attempt to decompose the changes due to the lipid contribu­

tion. This approach was previously performed qualitatively by Surmacki et al. [20] on brain

tissue using our murine TBI model to study temporal changes with Raman spectroscopy.

Peak (cm ­1) Assignment Attribution
850 C­H wagging ­
1003 C­C skeletal phenylalanine
1266 C­H bending mixed (proteins/lipids)
1337 C­N stretching, N­H bending Amide III
1447 C­H2 bending mixed (proteins/lipids)
1660 C=C stretching mixed (proteins/lipids)

Table 5.1: Summary of chemical assignments and biochemical attribution to Raman bands
which display a change after TBI. The bands showing the strongest changes in the spec­
tra are highlighted in bold.

Here, we quantitatively assess changes to lipid composition in response to TBI by us­

ing non negative least squares non­negative least squares (NNLS) fitting. The raw data

for brain specific lipids, provided by Krafft et al. [9] was used as NNLS fitting parame­

ters to identify the relative contributions in each tissue sample for sham, mTBI and sTBI.

The resultant fitting coefficients for each lipid spectrum are therefore proportional to the

lipid concentration measured within each tissue sample. A one­way analysis of variance

(ANOVA) shows a statistically significant difference in the contribution (compared to the

sham) from cardiolipin (Fig. 5.3a) and cholesterol (Fig. 5.3b), with a decrease in cardi­

olipin linked to the decrease in the bands at 1266 and 1660 cm­1 for TBI, and an increase

in cholesterol from the change in the band at 1440 cm­1 for both moderate and severe TBI

vs the sham (Fig. 5.4). However, cholesterol and cardiolipin changes are not affected by

the degree of injury (Fig. 5.3a,b).

Cardiolipin is found exclusively in the inner mitochondrial membrane, playing a cru­
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a                                                                     b

Figure 5.3: Change in contribution from cardiolipin and cholesterol from brain tissue with
TBI.

Change in the relative contribution from cardiolipin (a) and cholesterol (b) for sham, mTBI and
sTBI. Boxplots show the NNLS coefficient fitted to the average map spectrum measured from each
brain sample at the injury site. A statistically significant difference determined by one­way ANOVA
exists in cardiolipin for mTBI (p = 0.0062) and sTBI (p = 0.0074) compared to the sham. For
cholesterol, there is a statistically significant difference between mTBI (p = 0.0204) and sTBI (p =
0.0047) compared to the sham. There is no statistically significant difference between mTBI and
sTBI for either cholesterol or cardiolipin (*p < 0.05, **p < 0.01).

cial role in cell metabolism and signalling; including apoptosis. A decrease in cardiolipin

concentration following cortical impact has recently been shown using mass spectrome­

try, where both the importance in relation to TBI and opportunity for future therapeutics

were highlighted [4]. Furthermore, the release of cardiolipin microparticles following TBI

induced cell damage has been show to compromise the blood brain barrier, and so plays a

major role in the resulting biochemical cascade and metabolic disruption [26]. Finally these

findings are also consistent with earlier studies using Raman spectroscopy to assess TBI
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in mice, where the author’s concluded a link between the observed spectral changes and

apoptosis via comparison to immunohistochemistry of the samples [22]. Although these re­

sults are encouraging, it should be noted that the spectral bands associated with cardiolipin

are also present in several proteins, and so these changes cannot solely be attributed to

cardiolipin [18]. The large decrease in fitting coefficient for cardiolipin was accompanied by

smaller, but significant increase in cholesterol (Fig. 5.3b). The brain is the most cholesterol

rich organ, containing around 20 % of the total amount in the body, which has structural

roles in cell membranes and the myelin sheath. An excess of cholesterol is most likely

associated with cell debris [25]. Whilst other brain lipids were fitted with non­zero coeffi­

cients, no further clear or significant changes were observed in response to TBI (Appendix

B.1­B.3).

5.4 Multivariate Analysis Reveals Changes from Retina

We have demonstrated prominent biochemical changes associated with TBI that are de­

tectable from direct Raman analysis of brain tissue, but these changes appear only faintly

reflected in the averaged results from the retina. Whilst the average spectra provide an

easily digestible format in order to present the data, it forces us to throw away vital informa­

tion that arises from point­point variation within each sample combined with sample­sample

variation. Fortunately, multivariate techniques allow us to capture all of this information and

extract the most important spectral features which characterize a group of data, such as an

injury state. Recently, we highlighted the value of SOMs in the analysis of Raman spec­

tra from biological samples [2]. The 400 spectra measured across each tissue sample
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Figure 5.4: Spectra for cholesterol and cardiolipin (using data from Krafft et al. [9]) and
average spectra for brain tissue from sham and sTBI.

were grouped according to injury state from both eyes (summarized in Table 5.2). 20 %

of the data was randomly selected from each group and reserved as test data, leaving the

remaining 80 % for training (Table 5.3).

Spectra Per Tissue Sample Mice Eyes Total
Sham 400 6 2 4800
mTBI 400 6 2 4800
sTBI 400 6 2 4800

14,400

Table 5.2: Summary of retina spectra used as inputs for multivariate analysis across the
three injury states (sham, mTBI and sTBI).

Briefly, a SOM is a type of artificial neural network which is typically visualized as a

2D array of hexagonal neurons, which loosely tries to mimic the visual cortex in the brain;
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Injury State Total Training Data (80 %) Test Data (20 %)
Sham 4800 3840 960
mTBI 4800 3840 960
sTBI 4800 3840 960
Total 14,400 11,520 2880

Table 5.3: Breakdown of data across each injury state, and split into training and test data
sets.

with neighbouring neurons activating on similar inputs. The training process is performed

iteratively by presenting an individual spectrum (ξ) from the training data, and finding the

neuron that has previously activated on data most similar to the input, ξ. The winning

neuron is then updated to become more likely to activate on data like ξ, along with neigh­

bouring neurons (but to a lesser degree). The result is neurons that are grouped according

to particular features, as see in Fig. 5.5a. Each neuron (hexagon) in the SOM is coloured

according to the type of data it activates from the training data (sham, mTBI or sTBI), pro­

viding immediate visualization of how the data is organized in groups. A clear separation

between sham and sTBI groups can be seen in the SOM shown in Fig. 5.5a. To indicate

neurons that activate on more than one injury state, colour mixing is used according to the

relative proportion of hits from each state. Using the SOMDI [12], it is possible to identify

features in the Raman spectrum responsible for the clustering observed in the SOM. For

sTBI: increases to the bands around 850, 1098 and 1337 cm­1, coupled to decreases in

the bands around 1003, 1266 and 1660 cm­1 are observed, relative to the sham group (Fig.

5.5b). These changes largely reflect those observed for sTBI in brain tissue (Fig. 5.2a),

including the decrease to the 1266/1660 cm­1 bands attributed to cardiolipin. However,

minor discrepancies exist between changes to the bands at 1337, and 1447 cm­1. In com­
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a                                                                     b
Sham      sTBI

Figure 5.5: Dimensionality reduction and feature extraction of sTBI vs sham from spectra
of the retina.

a, Clustering of Raman spectra from the retina for sTBI (orange) and sham (black) groups using a
SOM. b, Features extracted (SOMDI) from SOM shown in a, highlighting the Raman bands most
influential to neurons in the SOM for sham and sTBI groups.

parison to sTBI, mTBI shows a poorer separation in the SOM (Fig. 5.6a), with a greater

proportion of neurons activating on a mixture of mTBI and sham groups, particularly for

neurons associated with mTBI. This is seen by mixing of the colors for injury states in the

SOM. However, distinct regions are still present for both mTBI and sham groups. The

same is true for the SOMDI of mTBI vs sham (Fig. 5.6b), with very few spectral regions of

similarity between the two groups, indicating a greater degree of heterogeneity. Despite

the increased variation, increases to the bands at 850, 1098 coupled to a decrease in the

band at 1266 cm­1 are still observed for mTBI. The consistency of changes to these three
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bands across injury severity and seen both in brain and retina tissue may provide important

markers for future studies.

a                                                                     b

Sham      mTBI

Figure 5.6: Dimensionality reduction and feature extraction of mTBI vs sham from spectra
of the retina.

a, Clustering of mTBI (purple) and sham (black) Raman spectra from the retina using a SOM. d,
Features extracted from SOM in c, highlighting Raman bands for sham and mTBI groups.

Classification using Raman spectra from the retina is then performed by using SKiNET

on the data shown in Table 5.3 to create a predictive model of TBI. Models are optimized

by using 10­fold cross validation on the training data to tune: the number of neurons in

the SOM; initial learning rate; and training iterations. Following optimization, the trained

network is used to predict the previously unused test data, showing a good sensitivity

for sTBI (82.0 ± 1.4 %). A poorer classification accuracy is obtained for sham (69.4 ±

0.9 %) and mTBI groups (75.1 ± 0.9 %), with a large proportion of sham data incorrectly
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classified as mTBI and vice versa (Table 5.4). Similar results are obtained by splitting the

data according to ipsilateral (side of injury) and contralateral retinae (Appendix B.4). The

classification result may be improved by a much larger training set, however, the modest

specificity could be an indicator of the inherent heterogeneity of TBI. Rather than using

coarsely defined boundaries of mild, moderate and severe, a study comparing Raman

spectroscopy to the total coma score (providing an incremental scale in the range 3­15)

may be more appropriate [23], but is outside the current scope.

Predicted
Sham (%) mTBI (%) sTBI (%)

A
ct
ua
l Sham (%) 69.4 24.0 6.6

mTBI (%) 17.9 75.1 6.9
sTBI (%) 7.9 10.0 82.0

Table 5.4: Summary of classification accuracy as a confusion matrix for: sham, mTBI and
sTBI groups using trained SKiNET against test data. Data shown is the average classi­
fication accuracy across 10 SOM initializations, trained using Raman spectra from flat
mounted mouse retina (both eyes).

5.5 Conclusions

For the first time, we have shown that Raman spectroscopy can be used to effectively and

accurately identify TBI from tissue samples of the retina, coupled to chemical changes

from a cortical impact to the brain. Machine learning using the SOMDI and SKiNET has

been used to extract the subtle spectral changes present from the retina, and shown these

to be in line with the measured changes to brain tissue. Consistent changes to Raman

bands were observed both in brain and retina tissue for mTBI and sTBI, when compared
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to the sham group. Raman spectroscopy represents a unique opportunity for TBI moni­

toring throughout the patient journey from pre­hospital assessment, to intensive care and

follow up examinations. In demonstrating a fundamental ability to study chemical changes

from eye tissue as a result of TBI, we begin to push the boundaries of Raman spectroscopy

of the eye beyond purely ophthalmic applications; opening a new window to study neuro­

logical changes.

5.6 Methods

5.6.1 Mouse Model of TBI and Tissue Processing

Adult (8 weeks old) C57BL/6J male mice (Envigo RMS srl) were used. No additional proce­

dures were performed on mice except those related to the experiment they were intended

for. Procedures involving animals and their care were conducted in conformity with the

institutional guidelines at the Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy

in compliance with national (D.lgs 26/2014; Authorization n. 19/2008­A issued March 6,

2008 by Ministry of Health) and international laws and policies (EEC Council Directive

2010/63/UE; the NIH Guide for the Care and Use of Laboratory Animals, 2011 edition).

They were reviewed and approved by the Mario Negri Institute Animal Care and Use Com­

mittee that includes ad hoc members for ethical issues, and by the Italian Ministry of Health

(Decreto no. D/07/2013­B and 301/2017­PR). Animal facilities meet international stan­

dards and are regularly checked by a certified veterinarian who is responsible for health

monitoring, animal welfare supervision, experimental protocols and review of procedures.
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Mice were anaesthetised by isoflurane inhalation (induction 3%; maintenance 1.5%) in an

N2O/O2 (70%/30%) mixture and placed in a stereotaxic frame. Rectal temperature was

maintained at 37°C. Mice were then subjected to craniectomy followed by induction of

controlled cortical impact brain injury as previously described [24]. Briefly, the injury was

induced using a 3­mm rigid impactor driven by a pneumatic piston rigidly mounted at an an­

gle of 20° from the vertical plane and applied to the exposed dura mater, between bregma

and lambda, over the left parietotemporal cortex (antero­posteriority: ­2.5 mm, laterality:

­2.5 mm), at an impactor velocity of 5 m/s. The deformation depth was of either 1 mm

or 0.5 mm, resulting in a severe (sTBI) or moderate (mTBI) level of injury respectively.

The craniotomy was then covered via cranioplasty and the scalp sutured. Sham mice re­

ceived identical anaesthesia and surgery without brain injury. Three days after TBI, mice

were deeply anaesthetised with Ketamine Chlorhydrate (20 mg, i.p.) and Medetomidine

Chlorhydrate (0.2 mg, i.p.) transcardially perfused with 30mL of phosphate­buffered saline

(PBS) 1% (pH 7.4), followed by 60 mL of paraformaldehyde (PFA) 4% in PBS. The brains

and eyes were carefully removed from the skull and post­fixed in 4% PFA in PBS for 24

hours at 4 °C. The post­fixed tissue were then rinsed and stored in normal saline (NaCl

0.9%) at 4°C. Samples we mounted on microscope slides covered with aluminium foil for

spectroscopy studies as whole brains. Retina samples were prepared by micro­dissection

of eyes in PBS, followed by flat mounting on aluminium slides. Samples were air dried for

1 hour before measurement.
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5.6.2 Raman Spectroscopy

An InVia Qontor (Renishaw plc) equipped with a 785 nm laser was used for all measure­

ments. Surface maps over a 20x20 grid, using a step size of 1.5 µm between points were

acquired for each sample, with an acquisition time of 1s, 5 accumulations and laser power

of 50 mW, a 50x Leica objective (0.75 NA), 1200 l/mm grating with scans recorded in the

range 605­1715 cm­1. A total of 400 spectra per tissue sample were recorded. Care was

taken to ensure consistent sample preparation between samples and across injury states.

All tissue was kept refrigerated in PBS prior to measurement. All Raman spectra were

measured on the same day for each tissue type (brain, retina) and within 72 hours of sac­

rifice. Raman maps were measured in the contusion core for mTBI and sTBI, and the

corresponding area in the sham group. Maps measured from the retina of both eyes were

taken from an area in close proximity to the optic disc for each mouse. Post processing of

spectra was performed in WiRE 5.3 (Renishaw Plc), cosmic rays were removed from each

map using the nearest neighbour method, followed by baseline subtraction using the ’in­

telligent spline’ fitting (11 nodes). Finally, the average was taken from each map resulting

in a single spectrum per sample. NNLS fitting was performed against each average spec­

tra using lipid data provided by Krafft et al. loaded into as components into the analysis

tool in WiRE [9]. Multivariate analysis was performed using SKiNET using the accompa­

nying Raman Toolkit web interface to build SOM models using training data and perform

predictions against test data [1].
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6.1 Abstract

Raman spectroscopy offers rich non­invasive chemical information by measuring inelas­

tically scattered light from a laser, making it a target of interest for a number of clinical

diagnostic applications. In the field of ophthalmology, several attempts have been made

to use Raman spectroscopy to augment existing imaging modalities at every anatomical

layer of the eye. The most challenging of these is the retina, sitting at the back of the eye.

Recent ex­vivo studies of the retina have shown that Raman spectroscopy can identify

subtle chemical changes in the presence of disease or injury states that are applicable to

both opthalmology and neurology.

However, the inclusion of the optical properties from the eye results in a compound

lens effect, which reduces the overall working distance and makes focusing on the retina

impossible. Here, we show that using the eye alone to focus a collimated beam onto the

retina, high wavenumber Raman bands can be measured, whilst simultaneously perform­

ing imaging of the retina (fundus photography). A compact, portable and eye­safe device

is shown by incorporating a smartphone fundus camera and Raman spectroscopy in a 3D

printed housing, tested on a synthetic tissue phantom that mimicks the optical and spectral

characteristics of the undilated eye.

Introduction

Raman spectroscopy has shown potential to provide rapid, real­time and quantitative diag­

nostic information in a number of clinical settings both in­vivo, and ex­vivo (e.g. from bio­
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logical fluid or tissue biopsies). Bymeasuring subtle changes to inelastically scattered light,

Raman spectroscopy is able to accurately measure the chemical composition of samples,

identify changes in disease specific biomarkers and provide diagnostic capability [5, 7–9].

A key advantage is the ability to produce portable, even handheld systems that can be

used in clinical and surgical settings [17]. Despite the obvious benefit, Raman scattering

is a weak effect, and other more prominent optical processes such as fluorescence tend

to dominate. Raman scattering occurs at a rate of around one in every million scattering

events (five orders of magnitude smaller than Rayleigh scattering). In order to generate

a measurable signal, most Raman systems use a focused laser beam to create a high

photon flux at the sample. Both the dominance of fluorescence and the need for a high

energy density are problematic for studying biological samples, which tend to have a strong

autofluorescent signal and are easily damaged by high laser powers. Therefore, the task

at the multidisciplinary boundary between academic and clinical work is to maximise the

analytical benefit, given the imposed physiological constraints.

Our emphasis is on the development of non­invasive in­vivo techniques, which nat­

urally tend to be further limited to the extremities. A few exceptions exist, e.g. using

variations such as spatially offset Raman spectroscopy (SORS) to non­invasively study

the composition of bone [18]. Perhaps surprisingly, in opthalmology there are a number

of attempts to use Raman spectroscopy to identify disease states in the eye [3, 10, 16].

Recent works highlighted the ability to identify malignant tissue in the brain, acting as a

surgical guide, but requires direct and invasive access to the brain [5]. In previous work

we demonstrated a path towards non­invasive detection of changes to brain chemistry,

by using spectra from tissue samples of the retina to identify TBI in a murine model with a
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high degree of accuracy and affinity for differing degrees of injury severity [2]. Although the

work presented marked an important milestone, the translational step from ex­vivomurine

tissue to in­vivo measurements is far from obvious or trivial. Recent work in the literature

has also studied the retina by similar means, using a standard Raman arrangement and

flat mounted or cultured retina tissue [12]. However, the major obstacle to in vivo imag­

ing is the use of high magnification, high numerical aperture objective lenses, which are

typically required for Raman spectroscopy. Such objectives have a natural incompatibility

with imaging the eye posterior, since the eye itself can be considered as a lens with a

combined positive power of 60 diopters [19]. The combined eye­microscope optics leads

to a compound lens arrangement, which shortens the working distance of the microscope

lens (illustrated in Fig. 6.1). Here, we attempt to address this issue by developing a 3D

a b

Figure 6.1: Illustration showing the convergence of a collimated beam entering the eye
onto the retina (a) and the compound lens effect (b) resulting from the introduction of a
microscope objective.
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printed eye tissue phantom that mimics both the optical characteristics of the undilated

eye and Raman signature from the optic nerve. Combined with a commercially available

class I laser, we show that high frequency Raman bands can be safely measured from

the retina and highlight the relevance of these spectra to TBI diagnostics as an example

application. Stiebing et al. [20] have recently demonstrated a similar synthetic model, but

considered the dilated pupil; increasing the numerical aperture of the eye. Mydriatic drops

can be used to manually dilate pupils, but results in pupil paralysis typically lasting several

hours, which is undesirable for rapid TBI diagnostics [14].

The Raman spectrum is commonly divided into distinct frequency regions, with the ma­

jority of studies focusing on the fingerprint region between 400 ­ 1800 cm­1; providing the

richest molecular ‘fingerprints’. The high frequency bands between 2800 ­ 3200 cm­1 are

often used to provide complementary information but contain fewer distinct peaks and pro­

vide a more obfuscated picture. Nevertheless, changes to high frequency band profiles

have recently been used to provide classification boundaries in their own right between

tissue types and disease states for a growing number of cases [11, 15]. This is particu­

larly true for lipid rich fatty substances, which includes brain tissue [13]. Adding to these

findings, we show that high wavenumber bands alone can be used to identify TBI from the

retina. Using this result, we have then designed a method for eye­safe data acquisition in a

realistic synthetic model of the human eye; thereby providing the first tangible path towards

non­invasive PoC diagnostics of the brain using Raman spectroscopy. Crucially, our de­

sign permits simultaneous Raman spectroscopy and fundus photography by isolating the

Raman and white light paths.
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Results and Discussion

Figure 6.2: Representative Raman spectra of fatty tissue (porcine) covering the fingerprint
and high wavenumber regions.

Raman spectra measured using a commercial confocal Raman instrument (Qontor InVia, Renishaw
Plc), with excitation wavelengths of 633 nm and 785 nm (1­2 mW). Baseline correction performed
in WiRE using intelligent polynomial fitting.

As a result of the fundamental restriction imposed by the optics of the eye shown in Fig.

6.1, we aim to measure Raman spectra from the retina using a collimated beam incident

on the cornea, allowing the eye to naturally focus the beam onto the retina. This has

previously proven successful in­vivo, but limited to identification of age related macular

degeneration, by exploiting resonance Raman of macular pigments [6]. Such an effect

dramatically enhances the available signal, which helps to mitigate the restricted laser
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power and absence of high power optics.

For fatty tissue, such as that found in the brain, we observe an apparent enhancement

of high wavenumber bands when using a 633 nm excitation (Fig. 6.2), which normally

yields relatively weak bands (e.g. using a 785 nm excitation). Fig. 6.2 shows Raman spec­

tra of fatty tissue measured using an excitation wavelengths of 633 nm and 785 nm, span­

ning the fingerprint and high frequency regions. In additon to the strong high wavenumber

response observed at 633 nm, the high wavenumber bands suffer little intereference from

fluorescence, which tends to dominate the fingerprint region. The enhancement effect

we observed using a 633 nm laser is not fully understood, but we suggest this may be

explained by resonance of the methylene overtone that exists at 619.68 nm [4].

In our previous work, we showed that Raman spectroscopy can be used to detect

TBI from the retina in a murine model by using machine learning to separate the data

and form a classification model [2]. High wavenumber measurements using an excitation

wavelength of 633 nm recorded from these tissue samples are shown for the first time

here. These data also display a clear separation between control and TBI groups using

the SOM (Fig. 6.3a) [1]. A subtle, but clear change in the ratio of the bands around 2850

and 2930 cm­1 can be observed from features extracted using the SOMDI to distinguish

between control and TBI samples (Fig. 6.3b). The commercial availability of Conformité

Européenne (CE) marked class I lasers, which would guarantee eye safety is low, owing to

a lack of demand and a legal responsibility that such devices incur. CE marking indicates

conformity with European health and safety regulations, which leaves manufacturers at

risk of fines or imprisonment if products are found to be non­compliant. As a result, lasers

used in CD drives and even laser pointers are all rated class II or above. Fortunately a
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a b

Control       TBI

Figure 6.3: a, Spatial clustering of high wavenumber spectra from control and TBI tissue
of flat mounted murine retina (n=6) and 400 spectra per sample shown using a SOM. b,
Extracted Raman features (SOMDI) for control and TBI groups from the SOM.

635 nm CE marked class I laser is available, advertised for visual fault testing of optical

fibres (Kingfisher International). The use of fibre optics allows for further design freedom,

allowing for bulky components such as the spectrometer to be kept away from the patient,

ensuring a compact imaging system. Silica used in fibre optics normally creates additional

interference as this generates its own Raman signal in the fingerprint region. Fortunately,

in the high wavenumber region there is no Raman contribution from silica.

We have observed an enhanced response from the high wavenumber region for fatty

tissue, shown that these bands alone are capable of detecting the presence of TBI and

identified an eye safe laser. In combination with the ability to avoid interference from flu­
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orescence and Raman scattering from optical fibres, we therefore have a suitable set of

tools to explore the feasibility of detecting high wavenumber Raman bands from the retina.

Simultaneous Raman Spectroscopy and Fundus Photography

ba

c

Figure 6.4: Fundus photographs of author’s eye and tissue phantom.

a, Fundus photograph of author’s eye taken using unmodified D­EYE camera attachment. b, fundus
photograph (video still) from combined D­EYE and Raman spectroscopy setup, highlighting the
laser spot, c fundus photograph (video still) focused on the tissue phantom posterior using the
combined D­EYE and Raman spectroscopy setup. The laser spot in (i) and (ii) are indicated by an
arrow.

In order to measure Raman spectra from the eye posterior a co­aligned imaging system

is required to target a region of interest on the retina, such as the optic disc. A D­EYE

smartphone fundus camera is used for optical imaging of the retina, which utilises the

flash from a smartphone camera for illumination and the phone camera for imaging. The

D­EYE is a compact optical module that provides direct illumination and therefore can be

used without pupil dilation of the subject. An example fundus image using the D­EYE is
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shown in Fig. 6.4a. Fig 6.4b shows that a small amount of laser light is transmitted to the

camera through the 625 nm filter, however during fundus imaging (Fig. 6.4c) the laser spot

is only faintly visible. A crosshair was drawn onto the phone screen to mark the position of

the laser, making targeting straightforward and minimising laser exposure time. A short­

a                                                                          b

F1
F2

F3

R2

R1

R3

F4

Figure 6.5: Illustration and photograph of combined fundus photography and eye safe
Raman spectroscopy optical paths contained within a 3D printed housing.

a, The fundus imaging path consists of a smartphone (F1), D­EYE module (F2), 625 nm short pass
filter (F3) and the eye (F4). The Raman spectroscopy path consists primarily of a 635 nm class I
laser (0.6 mW) (R1), dichroic beamsplitter (R2) and spectrometer (R3), converging with the imaging
path at F3. b, Photograph of the completed setup, including smartphone, housing and input/output
fibres.

pass 625 nm filter (designed for epifluorescence microscopy) is introduced at an angle of

45 degrees into the optical path between the D­EYE camera and the subject. The cut­off

range, edge steepness and efficiency of the filter is such that the majority of the visible
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spectrum is transmitted along the path from the camera to the eye and back (> 90 %),

whilst rejecting white light from the source at wavelengths > 625 nm that would otherwise

interfere with Raman measurements. Wavelengths > 625 nm are efficiently reflected at an

angle of 45 degrees (> 98 %), allowing for the introduction of the class I 635 nm laser (0.6

mW) and subsequently Stokes shifted Raman scatter orthogonal to the fundus imaging

path.

The combined system is illustrated in Fig. 6.5a showing the 3D printed housing con­

taining the short­pass 625 nm filter (F3). The 635 nm laser is introduced into the housing

via a ThorLabs FiberPort, which provides fine control of the beam position and collimation,

aiding alignment. The collimated beam is then passed through a 635 nm laser line filter, be­

fore being reflected at 45 degrees by a 635 nm dichroic filter (R2) towards F3 and focused

onto the retina by the eye. The backscattered Raman light is reflected along the reverse

path of F3 towards R2, where the longer wavelength Raman scatter passes through the

filter (R2) to a collection FiberPort (R3). Between R2 and R3 sits a 650 nm long pass filter

to reject Rayleigh scatter to the detector. R3 is used to focus the beam into a fibre and

the spectrum measured using an OceanOptics QE Pro spectrometer tailored for a 638 nm

excitation. A photograph of the completed setup is shown in Fig. 6.5b, demonstrating a

compact portable and eye safe system for simultaneous fundus photography and detection

of high wavenumber Raman bands.

Phantom Eye Model

The device introduced in the previous section relies on the optical power of the eye to focus

the Raman laser as shown in Fig. 6.1a. In order to provide a controlled testing environment
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with fixed optics, a tissue phantom for the eye was created that mimics the physical dimen­

sions and optical characteristics of the eye, whilst providing a realistic Raman signature

of the retina. On average, the human eye has a combined power of 60 diopters, with the

majority of focusing being provided by the cornea, and fine adjustment by the crystalline

lens [19]. For simplicity a single lens is used to mimic the combined power, restricted by a

4 mm diameter pinhole representing the undilated pupil and housed in a 3D printed case.

The tissue characteristics of the retina are then mimicked by a removable sample holder,

where a small piece of fatty tissue could be mounted. The sample holder is screwed in

place using 3D printed threads, which allows for small focus adjustments to compensate for

differences in the thickness of different tissue samples. An exploded view and schematic

of the lens (L), housing and sample holder (S) are shown in Fig. 6.6a. The optics of the

printed tissue phantom are visually confirmed in Fig. 6.6b, showing a photograph taken

using the smartphone without the D­EYE attachment (i), and with the D­EYE attachment

(ii), where a target card placed at the position of the retina is only visible through the pupil

using the D­EYE fundus camera module. A spectrum measured from the tissue phantom

and optical arrangement shown in Fig. 6.5a is shown in Fig. 6.7 (top), where the major

bands of the high wavenumber region are clearly resolvable. A representative spectrum

from the training dataset used to identify and cluster TBI in the murine model (Fig. 6.3a)

is shown in Fig. 6.7 (bottom), where the raw data shown in grey was used in the SOM

clustering. This result highlights that whilst the spectra obtainable from a portable system

using a class I laser remain noisy, data of this quality can be used to provide meaningful

insights with the use of machine learning and a large number of training inputs.
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a        b

ii

i

Figure 6.6: 3D printed eye tissue phantom.

a, Exploded view and schematic (inset) of eye tissue phantom, consisting of a single lens to mimic
the total power of the eye (L), 4 mm pinhole (P) representing the undilated pupil and screw in sample
holder (S). b, Photograph of printed tissue phantom (i), Fundus photograph of tissue phantom using
D­EYE camera observing target card at eye posterior.

Conclusions

Raman spectroscopy offers a wealth of chemical information that has the potential to offer

crucial clinical insight in a growing number of diagnostic and patient monitoring scenarios.

By developing an eye safe mechanism that combines fundus photography and Raman

spectroscopy for the first time, we start to bridge the gap between potential and reality with

the aid of additive manufacturing, smartphone technology, and machine learning. The

results presented highlight that Raman spectroscopy of the retina is subject to the natural
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Figure 6.7: High wavenumber spectra from phantom eye model using portable setup (top)
and repesentative spectrum from commercial instrument used to form SOM model and
distinguish between control and TBI in murine model (bottom).

In each case the raw data is shown in grey, with a smoothed representation shown in black.
Smoothing was performed in MATLAB and for visual presentation of the major Raman bands in
the high wavenumber region only.

optics and dimensions of the eye, but importantly show how this can be incorporated into

the device design.

Whilst we have demonstrated that high wavenumber bands that can be detected from a

tissue phantom of the eye can be used to identify TBI, Raman spectroscopy has the poten­

tial to be applied to a multitude of neurological and ophthalmic conditions. Importantly, the

measurement is made portable and non­invasive, therefore enabling routine point­of­care

use and long term patient monitoring. In future, we aim to replace the standalone spec­

trometer with a compact on­device spectrometer and smartphone readout, allowing for

fundus photography and Raman spectroscopy from a single smartphone screen, backed

by cloud data processing, storage and machine learning.
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Materials and Methods

The combined Raman spectroscopy/fundus photography setup consisted of the following

components: iPhone 6 (Apple Inc), D­EYE Smartphone­Based Retinal Imaging System

(D­EYE Srl), 625 nm edge BrightLine single­edge shortpass standard epi­fluorescence

dichroic beamsplitter, 635 nm BrightLine dichroic beamplitter (Laser 2000 Ltd), 650 nm

FEL0650 long pass filter, 635 nm FL0635­10 laser line filter, 2x FiberPort, FC/PC 100 µm

0.22 NA multi­mode input fibre, SMA­SMA 100 µm 0.22 NA multi­mode output fibre (Thor­

Labs Inc), 635 nm class I Laser (KI9807A VFL, Kingfisher International), QE Pro Spec­

trometer optimised for 638 nm (Ocean Optics Inc). The eye tissue phantom consisted of a

3D printed housing encasing an aspheric condenser lens (ACL2018U) with a focal length

of 18 mm (ThorLabs Inc). Fatty porcine tissue from bacon was used to simulate the signal

from the optic nerve and retina in the phantom. Spectra were acquired using OceanView

software (Ocean Optics Inc) and an acquisition time of 30 s and 3 accumulations. CAD

designs for 3D printing were made using Autodesk Fusion 360, and printed in polylactic

acid (PLA) using an Ultimaker 3 Extended (Ultimaker BV).

Murine Tissue

Raman spectra measured from a clinically relevant murine model of focal TBI (n=6) were

acquired using an InVia Qontor (Renish aw plc) equipped with a 633 nm according to the

protocol described previously [2]. Surface maps over an area of 2500 µm2 were acquired

for each sample, with an acquisition time of 5s and laser power of 1 mW, a 50x Leica

objective (0.75 NA), 1200 l/mm grating with scans recorded in the range 2032­3466 cm­1.
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A total of 400 spectra per tissue sample were recorded. Spectra were processed using

cosmic ray removal and baseline subtraction in WiRE 5.3 (Renishaw Plc) and exported to

text files. SOM analysis was performed using SKiNET [1].
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SUMMARY AND FUTURE WORK
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7.1 Summary

The work in this thesis explored the blue sky concept of measuring changes to brain chem­

istry non­invasively via the eye, imposing strict constraints that are highly unfavourable for

Raman spectroscopy. In the absence of SERS, we have shown that machine learning

methods can make meaningful insights from extremely noisy spectra. In Chapter 4, com­

putational tools were developed to bridge the disconnect between multivariate analysis in

academia and the classification performance offered by ANNs, due to the current resur­

gence in artificial intelligence. Combining the aspects of data projection, feature extraction

and classification into one pipeline rooted in a single mathematical principle, provides a

streamlined process for data analysis. By leveraging modern web technologies, data anal­

ysis can be performed remotely on any device that has a web browser, and designed to

be user friendly to spectroscopists and clinicians, rather than statisticians [2]. A common

criticism of ANNs and JavaScript is that they take a long time to train, and that JavaScript is

by no means an efficient language. However, the interface provided by commercial PCA

tools is so cumbersome that SKiNET can create projects, upload data and train SOMs,

whilst the former is still loading the data. It is therefore naive to consider a system based

on the performance of the chosen language and hardware alone.

Chapter 5 shows the first evidence that Raman spectra of the retina can be used to

identify TBI. Through the application of SKiNET, we reveal the changes to the spectra

responsible for the spatial clustering and classification results to be in­line with those ob­

served from Raman spectra of the brain. Furthermore, our findings were in keeping with

prior work in the literature for TBI brain tissue, in both the fields of Raman spectroscopy
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and mass spectrometry [5, 11, 12]. Whilst these results are extremely encouraging, the

sample numbers were limited (as part of the 3R’s and financially) and we did not study the

case of mild TBI.

One possible solution for addressing the issue of sample numbers, would be to have a

method for direct in­vivo measurements of spectra from the retina and optic nerve, which

is eye safe. Chapter 6 demonstrates a possible pathway for translation, as a handheld

smartphone device capable of both fundus photography and high wavenumber Raman

spectroscopy simultaneously. The key design elements that allowed for this were the D­

EYE smartphone camera (modified to allow additional optics to be placed between the lens

and patient), and 625 nm filter used to efficiently separate the imaging and Raman light

paths. A limitation of the existing design is that only high wavenumber bands can be mea­

sured. Although these have shown promise as diagnostic markers for a number of cases,

the specificity in multi­disease setting is unknown [3, 6, 8]. That said, the approaches used

clinically today and many of the proposed methods (such as S100­B biomarker assays)

suffer the same lack of specificity [1].

For now, the GCS remains the only ground truth for clinical and academic understand­

ing of TBI that can span the entire patient journey as well as injury severity. Non­invasive

in­vivoRaman spectroscopy may represent the first opportunity for a real alternative, whilst

simultaneously offering greater mechanistic insight to further our understanding of the un­

derlying pathobiology of TBI.

127



Chapter 7

7.2 Future Work

For the immediate future, there is a need to validate our findings through internal and ex­

ternal references. Internal references refer to a method of direct analysis of brain tissue

in­vivo in humans in the context of TBI. We have performed preliminary work for incor­

porating Raman spectroscopy into an existing standard of care for invasive monitoring in

intensive care following TBI, via an intracranial bolt [10]. This approach reduces the barrier

to entry for ethical approval and allows ground truth assessment with respect to the GCS

and ICP. External referencing refers to validation of the biochemical attributions made by

a means other than Raman spectroscopy. Since it is possible to measure the optic nerve

sheath diameter using MRI [7], it may also be feasible to measure chemical information

from the optic nerve sheath using MRS. Chemical species detected by MRS such as NAA

could then be used as reference compounds in a fitting library for complementary Raman

spectra. However, this requires further development of the device demonstrated in chapter

6, and ethical approval for use in­vivo. A drawback of the current design is the apparent

intensity of the class I laser as perceived by the patient. A more appropriate approach

may be to explore laser wavelengths outside the visible range (e.g. 1064 nm), however

this is introduces a new set of challenges. Most notably, there is a much higher demand for

optics in the visible over the near­infrared, and so the corresponding filters and detectors

tend to lag behind in terms of efficiency. A counter argument to this statement is that in

the near­infrared there is much more room for future innovation. Given the experience in

lithography and metamaterials within our research group, there may be scope to address

existing shortcomings through the development of in­house filters and sensors .
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Equally important, given the label free nature of Raman spectroscopy is to showwhether

diagnostic capabilities of existing studies hold true under multi­disease settings. Since

much of the work in the literature makes reference to cellular processes involved in inflam­

mation and apoptosis, which are not disease specific, it is important that this is addressed

in­vitro and ex­vivo [9, 12]. Failure to do so could result in a critical barrier as applications

are translated from academic to clinical domains.

More generally, the field of Raman spectroscopy remains immature in comparison to

techniques such as mass spectrometry. It is somewhat perplexing that assignments of

Raman bands and identification of spectra are still made manually. These are tasks which

are far better served by computational methods, and should be automated. Unfortunately,

what few databases do exist are far from exhaustive, yet come at a high premium as

proprietary offerings from device manufacturers. Ultimately, the only way to address this

fundamental shortcoming is through open collaboration.

Imagine that instead of Raman measurements running on offline systems, which fre­

quently crash, are seldom updated and often require deprecated software, Raman spec­

troscopy to be conducted through cloud systems and behave more like a Google search.

Since curation of data is an uninteresting task, by far the best way to build large and accu­

rate databases quickly is through the wisdom of crowds [4]. Such a platform could easily

be made independent of device manufacturers, with leading device manufacturers starting

to offer programmatic interfaces for exactly this purpose.

Clearly, before Raman spectroscopy can become a disruptive and successful clinical

technology, there are many scientific and engineering obstacles which need to be ad­

dressed. Overcoming these challenges remainsmultidisciplinary in nature, at the precipice
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between scientific and commercial domains.
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APPENDIX A

SUPPORTING INFORMATION FOR CHAPTER 4

Cornea Lens Vitreous Humour Retina Optic Nerve
Cornea 88.0 2.1 4.7 3.3 2.8
Lens 0.5 99.8 0.5 0 0.1
Vitreous Humour 1.0 0.1 96.5 2.7 0.5
Retina 1.0 0.2 2.3 95.7 1.7
Optic Nerve 4.6 0.71 0.8 2.2 92.5

Table A.1: Confusion matrix showing average percentage for each class from the 1210 test
spectra.
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a) b)

c) d)

e)

Figure A.1: Paired examples of bright field optical microscope images (left) and PCA
scores across map scan (right) for each tissue type: a, cornea, b, lens, c, vitreous humour,
d, retina and e, optic nerve.
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Figure A.2: a, Scores plot for the first two principal components showing poor spatial sep­
aration of classes. b, Loadings for PC1 and PC2.
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Figure A.3: Comparison of classification accuracy for different approaches to SOM based
classification. SOM­H refers to using the hit count for class identification, SOM­S uses
supervised SOMs with an optimal scaling value.
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APPENDIX B

SUPPORTING INFORMATION FOR CHAPTER 5

Lipid #07 #08 #09 #64 #65 #69 Average
Cardiolipin 0.88 0.85 0.86 0.86 0.85 0.86 0.86
Cholesteryl ester 0 0 0 0 0 0 0
Cholesterol 0.11 0.12 0.13 0.11 0.13 0.12 0.12
Cytochrome C 0.11 0.12 0.15 0.12 0.11 0.11 0.12
Galactocerebroside 0 0 0 0 0 0 0
Ganglioside 0 0 0 0 0 0 0
Sphyingomyelin 1.15 1.24 0.87 1.38 1.39 1.41 1.24
Phosphatidylcholine 0 0 0 0 0 0 0
Phosphatidylserine 0 0 0 0 0 0 0
Phosphatidylinositol 0 0 0 0 0 0 0
Phosphatidylethanolamine 0 0 0 0 0 0 0
Sulfatide 0 0 0 0 0 0 0
Triacylglyceride 0.05 0.06 0.06 0.03 0.03 0.03 0.04

Table B.1: Decomposition of contribution from brain lipids in average Raman spectra of
brain samples from contusion core for sham group using NNLS fitting.
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Lipid #04 #05 #06 #66 #67 Average
Cardiolipin 0.29 0.58 0.53 0.02 0.45 0.37
Cholesteryl ester 0 0 0 0 0 0
Cholesterol 0.2 0.18 0.23 0.1 0.22 0.18
Cytochrome C 0.48 0.22 0.02 0.24 0.12 0.22
Galactocerebroside 0 0 0 0 0 0
Ganglioside 0 0 0 0 0 0
Sphyingomyelin 0 1.48 2.6 0 1.02 1.02
Phosphatidylcholine 0.78 0 0 0.2 0.64 0.32
Phosphatidylserine 0 0 0 0 0 0
Phosphatidylinositol 0 0 0 1.33 0 0.27
Phosphatidylethanolamine 0.01 0 0 0 0.04 0.01
Sulfatide 0 0 0.32 0 0 0.06
Triacylglyceride 0.02 0.05 0.06 0 0.06 0.04

Table B.2: Decomposition of contribution from brain lipids in average Raman spectra of
brain samples from contusion core for mTBI group using NNLS fitting. Lipids that have
non­zero fitting coefficients in the sham group are highlighted in bold.

Lipid #01 #02 #03 #61 #62 #63 Average
Cardiolipin 0.02 0.63 0.58 0.33 0.12 0.77 0.41
Cholesteryl ester 0 0 0 0 0.02 0 0.00
Cholesterol 0.19 0.2 0.21 0.2 0.25 0.14 0.20
Cytochrome C 0.4 0.01 0.21 0.34 0 0 0.16
Galactocerebroside 0 0 0 0 0 0 0
Ganglioside 0 0 0 0 0.22 0 0.04
Sphyingomyelin 0 2.6 1.22 2.02 0.42 2.22 1.41
Phosphatidylcholine 0.94 0 0 0 1.1 0 0.34
Phosphatidylserine 0 0 0.16 0 0 0 0.03
Phosphatidylinositol 0.28 0 0 0 0 0 0.05
Phosphatidylethanolamine 0 0 0 0 0 0 0
Sulfatide 0 0.13 0 0 0 0 0.02
Triacylglyceride 0.11 0.07 0.03 0.09 0.18 0.08 0.09

Table B.3: Decomposition of contribution from brain lipids in average Raman spectra of
brain samples from contusion core for sTBI group using NNLS fitting. Lipids that have
non­zero fitting coefficients in the sham group are highlighted in bold.
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a b

c
Sham

Figure B.1: Raman spectra collected from the injury site on left hemisphere of brain (n=6)
for mTBI (a), sTBI (b), and sham (c) groups. Data for each tissue sample were collected as
a Raman surface map (400 points) following the surface topography. Raman maps were
averaged to give a single spectrum per sample, followed by baseline subtraction using an
intelligent spline fit.
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a b

c
Sham

Figure B.2: Raman spectra collected from ipsilateral (IL) and contralateral (CL) flat
mounted retina (n=6) for mTBI (a), sTBI (b), and sham (c) groups. Data for each tissue
sample were collected as a Raman surface map (400 points) following the surface topog­
raphy. Raman maps were averaged to give a single spectrum per sample, followed by
baseline subtraction using an intelligent spline fit.
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Model Sham (%) mTBI (%) sTBI (%)
Bilateral 69.4 (± 0.9) 75.1 (± 0.9) 82.0 (± 1.4)
Ipsilateral 81.5 (± 0.8) 76.7 (± 1.9) 86.2 (± 1.4)

Contralateral 76.6 (± 1.6) 76.6 (± 1.2) 88.7 (± 0.9)

Table B.4: Classification accuracy of TBI using Raman spectra of retina, modeled using
data from both eyes (bilateral), eyes from the side of injury only (ipsilateral) and contralat­
eral eyes. Results show the average over 10 SOM initializations and standard deviation in
brackets.
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ABSTRACT: Surface-enhanced Raman spectroscopy (SERS)
pushes past the boundaries and inherent weaknesses of Raman
spectroscopy, with a great potential for a broad range of applications
particularly, for sensing. Yet, current real world applications are
limited due to poor reproducibility, low-throughput, and stability
issues. Here, we present the design and fabrication of self-assembly
guided structures based on adjustable block co-polymer (BCP)
nanomorphologies and demonstrate reproducible SERS enhance-
ment across large areas. Golden three-dimensional (3D) nano-
structured morphologies with controllable dimensions and mor-
phologies exhibit high chemical stability, enhanced plasmonic
properties and are highly suitable for SERS substrates due to the
strong enhancement of the electromagnetic field. Adjustable, free standing porous nanostructures, continuous in 3D space are
achieved by removal of selected BCP constituents. Four BCP morphologies and the corresponding achievable enhancement
factors are investigated at 633 and 785 nm excitation wavelengths. The choice of excitation laser is shown to greatly affect the
observed signal enhancement, highlighting the sensitivity of the technique to the underlying surface architecture and length
scales. By using BCP assemblies, it is possible to reliably tune these parameters to match specific applications, thus bridging the
gap toward the realization of applied metamaterials. The fabricated SERS platforms via three-dimensional block co-polymer-
based nanoarchitectures provide a recipe for intelligent engineering and design of optimized SERS-active substrates for
utilization in the Raman spectroscopy-based devices toward enabling the next-generation technologies fulfilling a multitude of
criteria.

KEYWORDS: surface-enhanced Raman spectroscopy (SERS), block-co-polymer nanomorphologies,
tuneable golden 3D nanostructures

■ INTRODUCTION

Block co-polymer (BCP) nanoarchitectures have been
emerging as straightforward and high-throughput platforms
for designing and fabricating a range of large-area nanostruc-
tures with controllable dimensions, composition, and spatial
arrangement. Considerable research has been directed toward
fabricating and exploiting the self-assembled BCP microphases
for their potential implementation into a variety of functional
applications, including additives to enable enhanced toughness
of plastics and polymer blend composites, guiding the synthesis
of nanoparticles1 acting as capsules for drug delivery,2

platforms for organic photovolatics, electronics, data storage,
and sensors.3−6 Surface-enhanced Raman spectroscopy
(SERS) has been concurrently, a topic of extensive scientific

investigations in particular, because of its high-sensitivity and
specificity for tracing molecular fingerprints, aided by optically
excited localized surface plasmon resonances (LSPRs), yielding
intense local electric fields on metal micro to nanostruc-
tures.7−9 A significant SERS enhancement can be achieved via
the coupling of the excitations of surface fields to adsorbed or
proximal molecules.10−12 The substrate on which SERS10,13−21

is performed is often the crucial factor for successful signal
enhancement. However, consistent and controllable fabrication
of SERS-active, sensitive and adjustable surfaces still remains
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challenging. SERS substrates are often limited by instability
and lack of tuneability. Since every flaw in the substrate has a
direct and considerable impact on the ultimate signal, SERS
still requires development of methods for designing,
fabricating, and controlling the surface architecture. Many
studies exploit nanoparticle-based systems for SERS enhance-
ment and consequently, their reproducibility, stability, and
practical applications remain debatable.22−25 The vast majority
of top-down synthetic routes to generate nanostructures are
based on conventional patterning techniques and are typically
expensive, complex and often require precise integration of
multistep processes while exhibiting a limited scalability,
highlighting the need for more reliable and straightforward
lithographic methods to develop efficient access to adjustable
three-dimensionally (3D) isotropic nanostructures. This has
driven extensive efforts to explore novel processes for the
fabrication of highly ordered 3D structures with sub-micro-
meter periodicities, signposting BCP self-assembly as an
alternative bottom-up lithographic method, enabling specific
orientations from chosen materials on supporting substrates, as
a platform for a next generation of miniaturized devices.
However, the utilization of self-assembled BCPs for
plasmonics, including SERS, has only recently begun to gain
traction9,26,27 but still remains predominantly underexplored.
Recently, Zhang et al. reported the use of BCP cylinders
integrated with silver nanoparticles for enhancing Raman
signals,28 although for practical SERS applications, gold, being
more inert and stable, is more suitable than silver.
Furthermore, none of the studies has paid attention to the
optimization and tuning possibilities, which can be accessed via
the range of morphologies of BCP-based substrates for
advanced SERS applications. Careful control, understanding,
and subsequent intelligent engineering can, therefore, further
enable the tailoring of bottom-up BCP morphologies for the
generation of “hot-spots”; to take full advantage of the
synergistic functions of the resulting BCP-based SERS
architectures.
Here, we demonstrate a range of gold SERS-active 3D

nanostructures fabricated from block co-polymer self-
assembled materials and study their corresponding SERS
enhancement and optical properties. Through tailoring the
BCP synthesis and tuning the self-assembly, combined with
guidance and fabrication of nanomorphologies with character-
istic length scales, patterning method and laser frequencies,
flexible 3D architectures are fabricated, which are difficult to
achieve in another fashion. The fabricated 3D gold SERS
substrates are based on block-co-polymer microdomain
morphologies and comprised of planar (lamellar) structures,
cylindrical (both parallel and perpendicular to the supporting
substrates), and gyroid (double and free-standing) morphol-
ogies. Selective degradation of the self-assembled phase-
separated BCP components, plated with a plasmon-active
metal (gold) effectively enhances the electromagnetic field,
yielding high SERS signals. Consequently, we have designed
nanostructured substrates with varying, laser-matching SERS
enhancements, which are known to exhibit different Raman
signal augmentation at different excitation wavelengths.
Characterization of the photonic properties of 3D BCP-
based nano-morphologies revealed that these composite
nanostructures behave like new metals with distinct optical
characteristics, with a plasma edge shifted to longer wave-
lengths and a transparency that is greatly increased compared
to naturally occurring bulk metal.29 Substrates with tuneable

(controllable) surface plasmon resonances of the nanostruc-
tures matching the excitation lasers are essential for gaining the
highest enhancements. Broad surface plasmon resonances are
needed, especially with red and near-infrared excitation lasers
so that high electric fields at both the excitation and Raman
scattered wavelengths can be available, to allow for the highest
enhancements to be obtained.30 The obtainable optical
properties can be further tuned immensely by variation of
the unit cell size, the fill fraction, choice of the BCP
morphology, and the plasmonic metal used for filling into
the template, building upon the various approaches developed
to tune the size, shape, and spacing of BCP domains and the
nanostructures derived from them.31−35 The architectures
fabricated here can provide low-cost, simple, large-active-area
substrates, with broad plasmon resonances which open a
window for a range of SERS active, easily switchable structures
to accommodate various applications toward developing novel,
adjustable photonic metamaterials and miniaturized devices.

■ RESULTS AND DISCUSSION
The phase diagram in Figure 1 demonstrates the designed and
fabricated BCP assemblies containing a range of nano-

structured morphologies, including the double gyroid (DG),
free-standing gyroid (FSG), mixed combination of parallel and
perpendicular to the substrate, (MCYL), hexagonal cylinder
domains and only perpendicular cylinders (CYL), accordingly.
In the bulk, various morphologies that depend on the relative
volume fraction of one block relative to the other produce
complex nanostructures due to the microphase separation of
the BCPs on the molecular scale resulting in a spontaneous
formation of a broad spectrum of ordered nanostructures. The
evolving nanomorphologies from the BCP melt are determined
by the competition of entropy and the enthalpy between the

Figure 1. Schematic representation of the fabrication of four
morphologies for SERS substrates from the available self-assembled
range of BCPs. (i) Three-dimensional gyroid nanostructures
comprised of three rotated arms at the 3-fold junction with each
arm attached to another set. (ii) Tuning the volume fractions of the
blocks yields lamellae and cylinder morphologies. (iii, iv) Fabrication
of mixed (hexagonal and lying) cylinder arrays and those
perpendicular to the substrate (iv) via annealing of poly-
(ferrocenylsilane)-block-polylactide (PFS-b-PLA) film above the
glass transition temperature, Tg in a capacitor like set-up with an
applied Ef of 155 ± 15 V/μm, which are solidified by quenching to
room temperature. Mixed morphology comprised of a combination of
parallel and perpendicular to the substrate cylinders can be generated
in-between (iii) and (iv) by controlling the strength of the applied
electric field.
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two blocks and eventually result in the minimization of the
system’s energy, yielding the most favorable configurations.
BCP phase morphology typically evolves at the length scale

of tens of nanometers and can be controlled by the volume
fractions of the constituent blocks, whereas the total number of
monomers N in the BCP chain determines the dimensions of
the nanostructure. Lamellar morphology typically results from
the alternating symmetric BCP layers, whereas higher levels of
one constituting block volume fraction yield asymmetric
morphologies comprised of one component forming the
minority phase and the other, the matrix phase and finally,
with the bicontinuous gyroids (Figure 1i) formed between the
lamellae (Figure 1ii) and the hexagonally packed cylinders,
oriented parallel to the substrate. BCP self-assembly of
random-coil polymers is a highly efficient process and on
supporting surfaces, many of the co-polymer morphologies
exist naturally in a thin film or layer geometries. However, the
interactions of the blocks with the surface typically result in an
orientation of the microdomains parallel to the substrate,
(Figure 1iii) limiting the successful replication of “lying”
cylinders due to the collapse of the structure following the
removal of the matrix during the templating process.
Well-defined nanostructures with long-range positional

tuning and a high-degree of alignment can be achieved by
controlling the hydrodynamic flow and the strength of applied
field in a microcapacitor device. Therefore, an experimental
set-up for exposing BCP films to an electric field, without a
gap, was assembled to perpendicularly align the cylinders lying
parallel to the supporting substrate inside the BCP thin film.
Application of an external electric field, Ef, enables control of
the degree of alignment of the hexagonally ordered cylinders,
between lying to perpendicular orientations as well as
(between Figure 1iii to iv, accordingly) mixed cylinders
morphologies, i.e., MCYL. Annealing above the glass transition
temperature of the thin BCP film, without applying an external
electric field, results in cylinders which predominantly remain
oriented parallel to the substrate with distinctive areas of a
terraced-like morphology (Figure 1iii) due to the reorganiza-
tion of the highly mobile chains in the BCP melt.
Polystyrene-b-poly(D,L-lactide) (PS-b-PLLA) block-co-poly-

mer was used to synthesize the double gyroid nanostructure
comprising two interpenetrating, three-dimensional and
continuous networks containing 39% fill fraction (Figure 2a).
Selective degradation of the minor phase, while preserving the
majority one in a phase-separated block co-polymer morphol-
ogy, by ultraviolet (UV) ozone etching and via a subtle
hydrolytic-degradation, yielded a free-standing gyroid template
(Figure 2b), which was subsequently coated with inorganic
material such as gold (Figure 3). Thin films (50−400 nm) of
poly(ferrocenylsilane)-block-polylactide (PFS-b-PLA), spin-
coated onto a p-doped silicon wafer (covered with a 50 nm
gold layer on their backside) or on the fluorine-doped tin oxide
(FTO) glass, formed a cylindrical microphase morphology
with an ordered block co-polymer containing cylinders of PLA
in a matrix of PFS, lying in the plane of the film (Figure 2c).
Cylinder orientation parallel to the film’s surface is typically
thermodynamically preferred because of the differing surface
energies of the two blocks at one or both interfaces. The
electric field-guided surface morphology of co-polymer
cylinders annealed above the glass transition temperature in
the capacitor sandwich with an applied voltage of 3−4 kV
yielding vertically aligned cylindrical nanodomains parallel to
the axis of the electric field lines, (Figure 2d) due to the

Figure 2. Scanning electron microscopy (SEM) and atomic force
microscopy (AFM) characterization of the BCP-based nanomorphol-
ogies. Tilted (a) and a top-view (a, inset) images of the initially
fabricated DG morphology and (b) FSG nanostructures after the
selective removal of the minor phase yielding matrix with
interconnected networks as a template for further nucleation and
growth of inorganic material. (c) As-spun thin BCP film reveals
microphase morphology of lying cylinders (inset) which are then
reorganized into vertical cylinders (d) mixed with areas of lying
cylinders (MCYL) (d, inset) after the electric field application and
annealing in a controlled manner.

Figure 3. Gold-plated three-dimensional nanomorphologies. Low-
angle backscattered scanning electron microscopy (LAB-SEM)
images of Au-plated and -sputtered nanostructures of (a) FSG with
a unit cell of 20 nm and fill fraction of 21% and (b) DG with the
corresponding MATLAB-generated simulations of the nanostructure’s
cell-unit (inset). (c) AFM height image of aligned cylinders
continuously spanning the two electrodes with cross-sectional SEM
(c, inset) revealing voids left by removal of the minor phase and
subsequently gold plated and sputtered. (d) Surface SEM of the Au-
replicated mixed cylindrical morphology after UV ozone etching of
PFS matrix with the FFT of the image (inset).
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fluctuations of the cylinders around their equilibrium positions
and reorganization of the annealed microphase morphology
toward a higher lateral symmetry. In the assembled micro-
capacitor-device geometry, the electric field results in an
aligning torque on the BCP cylindrical morphology and
enables control and manipulation of the degree and proportion
of the alignment yielding the mixed nanomorphology of
MCYL (Figures 2d, inset and 3d).36,37

Subsequently, a range of gold-plated nanostructures based
on branched 3D organic/inorganic nanohybrids was fabricated.
Au-plated DG (Figure 3b) and FSG (Figure 3a) intercon-
nected nanonetworks were generated via selective degradation
of the PLLA phase and plating with gold (200 ± 30 nm) via
electrodeposition or sputtering (see Supporting Information,
S1), followed by the UV irradiation, at a wavelength of 254
nm, removing the sacrificial organic layer. Hydrolytic removal
of the PLA phase in the cylindrical morphologies and the
subsequent electroplating of gold nanolayer, provided topo-
graphic cylindrical features, visible in the AFM height and
cross-sectional low-angle backscattered scanning electron
microscopy (LAB-SEM) images, (Figure 3c and inset)
revealing vertically organized cylindrical phase morphologies.
Absence or existence of a characteristic frequency in the two-
dimensional fast Fourier transform (2D-FFT) power spectrum
further helps to identify the lack or existence of the
corresponding periodical structural patterns. The lower
symmetry of the 2D-FFT power spectrum, corresponding to
the experimentally obtained SEM image, pattern in the inset of
Figure 3d is indicative of the shorter-range packing in the case
of the mixed cylindrical nanomorphologies with a proportion
of horizontal and vertical cylinders (Figure 3d).
SERS performance of the four fabricated nanostructures was

evaluated through adsorbing a monolayer of benzenethiol, as a
Raman probe, from a 10 μM ethanolic solution on each gold
nanosurface (Figure 4a) at excitation wavelengths of 633 and
785 nm as well as using rhodamine 6G (R6G) as a Raman
active molecule (see Supporting Information, S3).17,38,39

Notably, SERS spectra of benzenethiol exhibit a difference in
intensity of the Raman bands at different excitation wave-
lengths. Although strong Raman bands at 1000, 1027, and
1070 cm−1, corresponding to the aromatic ring breathing
modes, in-plane C−H deformation and rocking vibrations of
benzene are observed under excitation of both 633 and 785
nm, at the shorter laser wavelength of 633 nm additional

Raman bands, above 1300 cm−1 are also enhanced. The
absolute enhancement factor (EF) (Figure 4b) for the FSG-
based SERS substrate was found to be 6.1 × 107 and 6.7 × 107

at 785 and 633 nm, respectively. For the other three
nanostructures of CYL, MCYL and DG, the EF was
consistently higher at 785 nm excitation laser with 38%
increase in enhancement for the CYL (EF = 4.5 × 107 and 3.2
× 107 at 785 and 633 nm, respectively) and 61% for the MCYL
(EF = 5.0 × 107 and 1.9 × 107 at 785 and 633 nm,
respectively) in comparison to excitation with a 633 nm laser.
The smallest enhancement was observed for the DG based
SERS nanostructures with EF of 2.6 × 106 at 785 nm and 9.6 ×
105 at 633 nm. The substrates exhibited a good SERS signal
reproducibility which was established by examining random
areas (n = 10) across each surface under identical experimental
conditions using benzenethiol monolayer as the SERS probe,
yielding similar relative peak intensities. Uniform and
consistent SERS signals were detected from different locations
across each sample area as well as across several substrates
under identical experimental conditions, with the correlated
SERS based enhancement factor calculation, (see Supporting
Information, S2) demonstrating that the values are narrowly
distributed around the average of (8.2 ± 1.2) × 107, (4.5 ±
2.3) × 107, 6.6 × 107 ± 8.9 × 106 and (3.5 ± 1.3) × 106 for
FSG, CYL, MCYL and DG, accordingly (Figure 4c). Based on
the 0.95 confidence interval data, we therefore expect the
difference in enhancement factor as measured between the
different areas to lie between (5.8 × 107, 1.1 × 108), (4.6 ×
107, 9.0 × 107), (4.9 × 107, 8.4 × 107) and (7.8 × 105, 6.1 ×
106) for FSG, CYL, MCYL and DG, respectively. Importantly,
all the EFs are on the same order of magnitude of ×107 (for
FSG, MCYL and CYL) and ×106 (for DG) with the small
variation in the pre-factor values, with the largest difference in
the SERS EFs of less than 7-fold for the DG and less than 2-
fold for both the for the MCYL and the FSG (Figure S2),
indicating good signal reproducibility in agreement with the
typical SERS platforms, considered highly similar even when
showing a nearly 1 order of magnitude difference.40 The EF
achieved with these morphologies is of similar or higher
magnitude to the commercially available SERS substrates such
as for instance, Mesophotincs,41 ST Japan,42 Stellnet Inc.43 as
well as to the conventional surfaces reported in literature.4,44,45

Interestingly, only for the FSG nanostructure, the relative
SERS enhancement of benzenthiol molecules was found to be

Figure 4. BCP-based SERS substrates. (a) Representative SERS spectra of benzenethiol (inset) recorded from substrates excited with a 633 nm
(blue) and 785 lasers (red) with typical Raman bands at 1000 and 1070 cm−1 of the aromatic ring deformation vibrations. (b) Relative SERS
enhancement of the 1070 cm−1 peak with the highest signal enhancement obtained for the FSG with 633 nm followed by MCYL with 785 nm. (c)
The average SERS enhancement factors (EFs) of the 3D SERS-active nanomorphologies across 10 areas on each substrate indicate uniform
properties across the structured area with EFs of the order of 107−8 for FSG and MCYL and only 105−6 for the DG nanostructures.
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both the highest as well as greater while using the 633 nm laser
versus the 785 nm, in comparison to the rest of the
nanoarchitectures, for which the 785 nm yielded higher
enhancement of the signal relative to the 633 nm.
Furthermore, the MCYL SERS surface demonstrated the
biggest increase in enhancement using the 785 nm excitation
laser versus the 633 nm, greatly exceeding the DG
nanostructure, which showed the lowest EF amongst the
fabricated substrates (1.9 × 107 compared to 9.6 × 105)
(Figure 4b). This can be explained by the fact that SERS
enhancement effect is dependent on the wavelength and
mainly arises from the LSPRs of the nanoarchitectures and
therefore, a particular SERS substrate will exhibit highest
enhancement at a certain excitation wavelength. These results
indicate that the FSG is the optimal nanostructure to be
exploited with the 633 nm excitation laser to yield the highest
enhancement. However, since BCP morphologies that are
bicontinuous in all three spatial dimensions are still rare and
difficult to manufacture in particular, over large areas, the
MCYL morphology presents itself as a particularly promising
and viable candidate as a strong SERS enhancing substrate
with a 785 nm laser. Since the shape of the nano-morphology
plays an important role in SERS, and the electromagnetic
enhancement is strongly dependent on the surface morphology
and precise shape of the features at the metal surface, the
optimal SERS enhancement requires a delicate balance
between the excited and scattered wavelengths with the
plasmon peak of the metal nanostructure. A plasmon which
can be excited at the scattered wavelength out-couples the
Raman scattered radiation more efficiently. This is important
especially in the near-infrared, where the laser excitation and
the Raman scattered radiation can be significantly different in
terms of wavelength and hence, excitation or existence of
plasmonic absorption at one of these is not sufficient for
obtaining the highest SERS enhancements. We show that the
enhancement factors in SERS are dependent on the excitation
wavelength for the same SERS probe molecule even for the
same nanostructure. While thiols, such as mercaptobenzoic
acid, bind covalently to the gold surface, there has not been
any report of contribution of chemical enhancement
mechanism in studies using 633 or 785 nm excitation
wavelengths46 except when using semiconductors as sub-
strates.47 Hence, we can conclude that in this case the
electromagnetic enhancement mechanism is the primary
reason for the enhancements of 105−108 observed for the
various structures.
While the SERS activity of the plasmonic BCP-morphologies

is promising for detection applications due to uniform and high
EFs the optical properties of these metamaterials themselves
are interesting. New optical properties emerge, different to
bulk gold in these metamaterial-like nanostructures. Figure 5
shows the transmittance spectra recorded with unpolarized
light in the visible range on each gold-plated nanostructure
sample (Figure 5, inset). The spectra are normalized relative to
the transmission from a smooth gold film on the same
supporting substrate.
For the gold infiltrated nanomorphologies there is a distinct

change in the position of the extinction wavelength maximum.
For the FSG, a characteristic extinction peak in the
transmission is observed around 600 nm, which shifts
progressively to higher energy of 485 nm for CYL, 520 nm
for MCYL and 540 nm for the DG. The MCYL extinction
maximum at 520 nm absorption max is also observed for

nanoparticles (20 nm particles) while for bulk gold it is further
blue-shifted to 500 nm or below and is related to inter-band
transitions, here it is additionally attributable to multi-domain
structure as the plasma frequency is inherently modified by the
nano-structuring and corresponding air-filling fraction.48 For
single gyroid metamaterials fabricated in gold, properties such
as enhanced transmission have been previously observed due
to their sub-wavelength architectures and the arising plasmon
resonances.29 The transmission spectrum in Figure 5 of FSG
nanostructure is qualitatively similar to that shown for single
gyroids previously. The difference in the maximum extinction
wavelength at 600 nm compared to the one reported by
Salvatore et al.29 is attributed to the 20 nm unit cell size in the
fabricated structures. For DG structures, very low transmission
is observed. This is not unsurprising as Hur et al. have
previously predicted a different mechanism of propagation of
surface plasmons in double gyroid metamaterials.49 The
existence of two interpenetrating continuous plasmon metal
networks induces local capacitance and alters the surface
plasmon propagation. Thus, losses can be higher and also
significantly dependent on each of the interpenetrating
structures, e.g., their relative fill-fraction or size of struts. The
filling fraction of double gyroid (DG) is higher at 39% than the
single gyroid (free standing gyroid; FSG) at 21%. As
mentioned by Salvatore et al.29 and further described by
Farah et al.50 that the reflectivity spectra depend on the
structural motifs such as the size of the struts and tune with fill
fraction, gyroid pitch and dielectric filling. In our results shown
in Figure 5, there is a blue shift of the transmittance-dip
between the DG and FSG spectra consistent with the decrease
in the filling-fraction. Moreover, the polarization of domains
with respect to the incident light can also yield a blue shift of
spectra of metamaterials as shown by Vignolini et al.51

although in our case, we do not expect such differences
between FSG and DG films. On the other hand, comparing the
spectra for the cylindrical structures we find that the mixed
cylinders show two broad peaks while the aligned cylinders
show only one peak. This is attributed to the alignment of the

Figure 5. Optical properties of gold-plated nanostructures. Spectro-
scopic characterization of the optical behavior for transmission
configuration with unpolarized incident light for each BCP-based
nanomorphology (red: FSG, green: MCYL, blue: CYL and black:
DG) with characteristic extinction peaks compared to a gold layer of
similar thickness. The blue shift is consistent with what predicted and
measured for metamaterials and porous gold and is due to a reduction
in the average electron density of the nanostructure and an increase in
the self-inductance of the interconnected network of gold.
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cylinders with respect to the polarization of the incident
(unpolarized) light. In the case of the MCYL the alignment of
the cylinders is both perpendicular and parallel to the surface
while in the CYL, the cylinders are predominantly
perpendicular to the surface. Although an analytical model to
predict the extinction peaks is beyond the scope of the current
work, we speculate that the broader peak at >600 nm is due to
the cylinders parallel to surface (longitudinal mode: along the
length) while the peak at ∼500 nm is due to the cylinders
perpendicular to the surface (transverse mode). To note, that
while the SERS enhancements of the substrates and the optical
properties are related, the optical properties of metamaterials,
even though fabricated from plasmonic materials, are
dominated by those due to their intrinsic structure. Plasmon
length scales are of the order of ∼100 nm, while metamaterials
such those demonstrated here have <10 nm length scales. The
SERS enhancements which are observed in our case provide
clear evidence that plasmons are excited in these metamate-
rials. However, the optical transmission spectra indicate that
the optical properties are more than due to plasmonic
absorption only with the understanding of the extraordinary
optical properties of novel plasmonic metamaterials being an
area of active, ongoing research.52

■ CONCLUSIONS

The guided self-assembly of the BCP blocks offers a unique
platform for structuring materials with tuneable sizes on the
nanoscale thus, offering a great variability of structural features
by the independent control of experimental parameters in a
robust manner, generating high-fidelity consistent nano-
architectures across large substrate areas and subsequently,
enabling reliable manufacture of substrates with high SERS
enhancements. The optical properties of these nanomaterials
are found to be distinguished primarily by the morphology,
length scale and periodicity on which the constituent materials
are structured. The tuning of plasmon resonances can further
be accomplished by controlling the dimensions (size and
periods) of the microphase-separated nanostructures, through
alteration of the molecular weight and composition which in
turn, will allow the design of SERS substrates that generate
strong localized electromagnetic fields at optical wavelengths
that are required for the optimum SERS excitation by different
laser sources thus, harnessing such inherently precise self-
assembly behavior of BCPs towards the realization of 3D
metamaterials. Dimensional control of the nano-morphologies
combined with theoretical modeling could further improve the
BCP-based SERS substrates and the enhancements that can be
obtained from them and is currently underway. Finally,
establishing of such a technique might also provide the
missing-link towards the realization of applied metamaterials,
heralding a new era for developing novel types of optical
materials from BCP self-assembly and their integration into
composite functional devices.

■ EXPERIMENTAL SECTION
Sample Preparation. The samples were prepared using the PFS-

b-PLA and PS-b-PLLA block-copolymers (volume fraction, f = 39%)
with thin films spin-coated from a 5−10 wt/wt %, from toluene, onto
Au-plated p-doped silicon wafers or transparent FTO glass substrates.
The minority component was subsequently removed either by UV
etching (15 min at 254 nm) or exposure to plasma system (10 min,
O2 plasma) under controlled low pressure conditions. In order to
release the BCP film prior or post degradation and for imaging

purposes, the underlying gold layer was removed via etching in 80:1
bromine to methanol solution. The resulting nanostructures were
plated via electrodeposition with Au with an initial nucleation step
between 0.0 and −1.2 V at a scan rate of 50 mV/s (average of three
cyclic voltammetry scans) followed by the deposition step (100 s,
−0.8 V) up to a thickness in ranges between 200 and 300 nm.53 A
reaction kinetics-controlled region (from −0.2 to −0.75 V) was
followed by a mass transport-controlled region (from −0.8 to −1 V),
featuring a cathodic peak characteristic of diffusion-controlled
electroplating processes. As the electroplating process was used to
obtain nanometer Au layers, the gold growth rate was slow enough to
enable careful control over the deposition process, generally achieved
in the kinetics-controlled region, where the applied over-potential
with respect to the open circuit potential value is small and therefore,
acts as the gold deposition driving force. Plating at E = −0.8 V, the
electrochemically-driven Au3+ reduction occurred at the working
electrode with a high deposition rate, leading to the formation of a
large number of initial nuclei which ultimately grow to overlap and
form a full layer with an average representative thickness of 200 nm
(at 100 s deposition time).54 The nanostructures were alternatively
(or additionally) covered with a thin Au film using an Emitech
sputter-coater with a direct current Ar plasma (gold target purity
99.999%, Kurt J. Lesker Company) with two cycles of 10 s at 55 mA
were carried out.

Alignment of BCP Using an Electric Field. BCP thin film was
spin-coated onto a supporting conductive substrate, serving as a
bottom electrode, of either silicon with a nanometre gold layer
evaporated on the back side of it or FTO glass with a thin layer of
silver paste around the edge of the substrate. A capacitor-like device
was subsequently assembled with vertical electric field applied across
it (a constant high-voltage of 4 kV was applied across the assembled
capacitor device), while the BCP film was annealed above the glass
transition temperature of both constituent blocks (Tg(PFS) = 103 °C
and Tg(PLA) = 57 °C). The opposing electrode was a 20 μm thick sheet
of Kapton with a 50 nm evaporated gold layer on the bottom side
along with a thin layer of 2 μm of poly(dimethylsiloxane) (Sylgard
184, Dow-Corning) spin-coated on front of it to establish a conformal
contact with the BCP film.

Atomic Force Microscopy. NanoScope IV Multimode and
Dimension 3100 (Digital Instruments, Santa Barbara, CA) atomic
force microscope were used to thoroughly characterize the surfaces’
topography. The AFM measurements were performed using tapping
mode via an intermittent contact of the tip with the sample, in
ambient conditions. NSG 20 cantilevers with a resonance frequency of
260 kHz and a stiffness of 28 N/m were used. Height and phase
images were analyzed with the Nanoscope software (Digital
Instruments). To improve contrast, patterns were exposed to UV-
light and rinsed in cyclohexane to remove some of the PS phase.

Scanning Electron Microscopy. Samples for SEM imaging were
prepared by placing a post-experiment, disassembled substrate with
the generated patterns on an inclined or cross-sectional holder to
enable the imaging of the top and cross-sectional views. Scanning
electron micrographs were acquired using a thermally assisted field
emission scanning electron microscope (LEO VP 1530 and FEI
Magellan and Helios) with a lateral resolution of 1−5 nm. A LEO
ULTRA 55 SEM instrument including a Schottky emitter (ZrO/W
cathode) was also used for imaging the samples with a typical
acceleration voltage of 2−5 kV equipped with the energy dispersive X-
ray spectroscopy. Scanning transmission electron microscope
(STEM) images were obtained using Hitachi s5500 with a cold
field-emission source and lens detector with 4 Å resolution, allowing
adjustable acceptance angle STEM imaging. Low-angle backscattered
electron imaging mode was used to contrast the as-spun and those
gold replicated samples, providing the atomic number contrast. The
power spectrum results of BCP nanostructure images were obtained
with the image analysis program (ImageJ) applying a 2D-FFT
algorithm.

SERS Measurements. SERS measurements were carried out
using micro Raman spectroscopy system with InVia Qontor
spectrometer for confocal Raman (Renishaw Plc.) equipped with
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514, 633 and 785 nm lasers which was adjusted for optimal
throughput, fluorescence control and sensitivity. Benzenethiol was
adsorbed onto the gold surface by soaking in a 10 μm solution in
ethanol for 30 min. The samples were then rinsed with ethanol and
left to dry in air for 15 min before measurement. The spectra were
typically acquired at 10 s exposure time and a laser power of 1−3 mW
to avoid photochemical effects in the SERS spectra, sample damage or
degradation. SERS maps were generated in a Streamline mode scan
with 10 s exposure time and 50 mW power at 633 and 785 nm. A 50×
objective with a numerical aperture of 0.75 was used for SERS
measurements over a range of 500−1600 cm−1 relative to the
excitation Raman shift. Optical measurements were carried out with a
specially adapted research grade microscope (Leica DM 2700 M)
equipped with incoherent white light source, allowing confocal
measurements with 2.5 μm depth resolution. The spectra were
normalized with respect to those recorded on flat gold or gold
covered flat copolymer film surfaces. An intelligent fitting filter was
applied for baseline subtraction. After excluding regions with peaks,
the baseline was fitted to all the remaining points in each spectrum
and a polynomial order of 8 with the noise tolerance of 1.50 was
applied.
Optical Characterization. Leica DM200 optical polarizing

microscope was used to investigate the optical texture of the samples.
The optical transmission characterization of the samples was
evaluated in terms of variations of the intensity of transmitted light
using unpolarized incident light and the attached spectrometer
(Horiba). The microscope xenon lamp acted as an illumination
source for the spectroscopic measurements. 100 um optical fiber
(ThorLabs) in the focal plane of 20× microscope objective working
distance has served as pinhole for the signal collection. Motorized
MicroHR Imaging Spectrometer with solid state UV coated silicon
over indium gallium arsenide detector for 200−1700 nm and the
SynerJY for Windows software were used for data acquisition and
analysis.
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(45) Schmidt, M. S.; Hübner, J.; Boisen, A. Large Area Fabrication
of Leaning Silicon Nanopillars for Surface Enhanced Raman
Spectroscopy. Adv. Mater. 2012, 24, OP11−OP18.
(46) Michota, A.; Bukowska, J. Surface-Enhanced Raman Scattering
(SERS) of 4-Mercaptobenzoic Acid on Silver and Gold Substrates. J.
Raman Spectrosc. 2003, 34, 21−25.
(47) Zhang, X.; Yu, Z.; Ji, W.; Sui, H.; Cong, Q.; Wang, X.; Zhao, B.
Charge-Transfer Effect on Surface-Enhanced Raman Scattering
(SERS) in an Ordered Ag NPs/4-Mercaptobenzoic Acid/TiO2
System. J. Phys. Chem. C 2015, 119, 22439−22444.
(48) Dolan, J. A.; Saba, M.; Dehmel, R.; Gunkel, I.; Gu, Y.; Wiesner,
U.; Hess, O.; Wilkinson, T. D.; Baumberg, J. J.; Steiner, U.; Wilts, B.
D. Gyroid Optical Metamaterials: Calculating the Effective
Permittivity of Multidomain Samples. ACS Photonics 2016, 3,
1888−1896.
(49) Hur, K.; Fracescato, Y.; Giannini, V.; Maier, S.; Hennig, R. G.;
Weisner, U. Three-Dimensionally Isotropic Negative Refractive Index
Materials from Block Copolymer Self-Assembled Chiral Gyroid
Networks. Angew. Chem., Int. Ed. 2011, 50, 11985−11989.
(50) Farah, P.; Demetriadou, A.; Salvatore, S.; Vignolini, S.; Stefik,
M.; Wiesner, U.; Hess, O.; Steiner, U.; Valev, V.; Baumberg, J.
Ultrafast Non-linear Response of Gold Gyroid 3D Metamaterials.
Phys. Rev. Appl. 2014, 2, No. 044002.
(51) Vignolini, S.; Yufa, N. A.; Cunha, P. S.; Guldin, S.; Rushkin, I.;
Stefik, M.; Hur, K.; Wiesner, U.; Baumberg, J. J.; Steiner, U. A 3D
Optical Metamaterial Made by Self-Assembly. Adv. Mater. 2012, 24,
OP23−OP27.
(52) Hess, O.; Pendry, J. B.; Maier, S. A.; Oulton, R. F.; Hamm, J.
M.; Tsakmakidis, K. L. Active Nanoplasmonic Metamaterials. Nat.
Mater. 2012, 11, 573−584.
(53) Tucker, R. E. Universal Metal Finishing Guidebook; Elsevier:
New York, 2014.
(54) Estrine, E. C.; Riemer, S.; Venkatasamy, V.; Stadler, B.;
Tabakovic, I. Mechanism and Stability Study of Gold Electro-
deposition from Thiosulfate-Sulfite Solution. J. Electrochem. Soc. 2014,
161, 687−696.

ACS Applied Materials & Interfaces Research Article

DOI: 10.1021/acsami.9b00420
ACS Appl. Mater. Interfaces 2019, 11, 14437−14444

14444



S-1

-Supporting Information-

Tuneable Metamaterial-like Platforms for Surface Enhanced Raman Scattering via 
Three-Dimensional Block Copolymer Based Nanoarchitectures

Carl Banbury1, Jonathan James Stanley Rickard1,2, Sumeet Mahajan3 and Pola Goldberg Oppenheimer1,*

1 School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, 
B15 2TT, UK

2 Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
3 Department of Chemistry and the Institute for Life sciences, University of Southampton, University Road, Southampton, 

SO17 1BJ, UK

* E-mail:  GoldberP@bham.ac.uk 

 



S-2

S1: Depth/Thickness Characterisation of the Electrdeposited Gold
Using the electrodeposition, thicknesses ranging from fractions of a template layer to several template layers 
can be obtained by adjusting the deposition time. At our experimental conditions, with the nucleation step 
consisting of 3 CV scans at a scan rate of 50mVs-1 and a deposition step at a fixed potential of -0.8V (vs. 
SCE, where maximum deposition efficiency occurs) for 100s (reaction kinetics-controlled region followed by 
a mass transport-controlled region, featuring a cathodic peak characteristic of diffusion-controlled 
electroplating processes) is known to yield a final thickness of 200±30nm. [Estrine, E.C. et al. J. Electrochem. 
Chem. 2014, 161, D687; Universal Metal Finishing Guidebook. Elsevier, 2013] 
      Based on the Faraday-Couloumb’s Law, [Randles, J.E.B. Trans. Faraday Soc. 1948, 327]  the coating 
thickness can be stabilized for each metal by time and, under constant circumstances with constant current 
density (I), thickness rate of the coating (dX) develops related to time which is described through Equation 
[1]:

                                                                                                                                                [1]
𝒅𝒙
𝒅𝒕 =

𝑴𝒘𝑰𝝋
𝝆𝑨𝒛𝑭

Supplementary Figure S1. (a). Low-angle back-scattered top-view SEM images of non-plated (a) versus the Au replicated 
(b-c) gyroid morphologies and the cross-sectional LAB-SEM profile images of gyroid and cylinder morphologies (d-f), 
electrochemically filled to depths of 200-230nm, with occasional overgrowth (above the thickness of the nano-morphology) 
appearing as florets of gold in several areas (b, inset) and the remaining polymer matrix was removed by exposing the material 
to 254nm UV etching. (g). EDX profile analysis reveals dominant Au peaks (highlighted with arrows) and given it interaction 
volume (at 5keV electron beam penetration depth is ~500nm), it also relevels occasional peaks of indium from the undelaying 
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ITO glass. (h). AFM height (left hand-side) and the corresponding cross-sectional depth profiles (right-hand side) of as-plated 
Au nanolayer (no BCP structure) highlighting 3 random locations on the substrate with an average heights of 203nm at set 
plating conditions.  The AFM height images were acquired by plating the Au layer (left hand-side of the AFM height image) 
and subsequently, scalpel removal of the deposited gold, revealing bare substrate (right hand-side of the AFM height image) 
and creating the ‘step-profile’ enabling the characterisation of the depth profiles. 

where, Mw is the molar weight of materials, (φ) current efficiency, ρ density of the sheeted layer, A deposited 
space, z the number of transferred electrons, and F is Faraday constant. Therefore, thickness (x) = 
[ItMwφ]/[96485ρAz]. Hence, at the current efficiency of 100% with the current density of 2mA/cm2 at 0.8V vs. 
SCE at our experimental conditions, the plating rate is 120nm/min. Therefore, the calculated gold plated 
thickness is 200nm (for 100s). [Estrine, E.C. et al. Journal of Electrochemical Chemistry 2014, 161, D687] 
and the deposited thickness can be altered from several single layers up to hundreds micrometres. 
      
S2: Enhancement Factor Reproducibility 
The reproducibility of the enhancement factor was obtained from 10 random areas for each of the four 
morphologies with the corresponding confidence intervals.

Supplementary Figure S2. Calculation of the Enhancement Factor and Reproducibility (a-b, left) and the corresponding 
narrowly distributed EF values (all around x107) for the FSG (a, right) and MCYL (b, right) morphologies.  (c). Three different 
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substrates at 4-7 locations, under identical experimental conditions using BT monolayer as a standard probe analyte, yielded 
reproducible relative SERS intensities with variations of less than 9% in relative STDEV and less than 5.5% in terms of the 
relative peak intensities. (d). SERS signal of the peaks at 1070cm-1 of BT from 7 randomly selected positions on the substrates.

The limits of agreement and a range within which we expect 95% of future differences in measurements 
between each two substrates to lie, are calculated by first, establishing the mean and the STDEV for 10 areas 
across each substrate and subsequently, for the normally distributed data, the confidence interval limits for 
the EF values were calculated according to the: mean difference -1.96×STDEV (differences) and mean 
difference + 1.96×STDEV (differences). The EF values are narrowly distributed around the average of 8.2×107 
± 1.2×107, 4.5×107 ± 2.3×107, 6.6×107 ± 8.9×106 and 3.5×106 ± 1.3×106 for FSG (Fig. S2, a; left hand-side), 
CYL, MCYL (Fig.S2, b; left hand-side) and DG, accordingly. 
      The enhancement factors of the FSG-SERS substrates (Fig.S2, a; right hand-side) and MCYL-SERS 
substrates (Fig.S2, b; right hand-side) (n=10) show a narrow distribution with an average enhancement on 
the scale of (6-9) x107 (excluding one single area). Importantly, all EFs are on the same order of magnitude 
of x107 (for FSG, MCYL and CYL) and x106 (for DG) with the small variation in the pre-factor values. This 
confirms high-signal reproducibility over large areas in particular, as SERS EFs are typically considered very 
similar even when they show a nearly 1 order of magnitude difference [e.g., Ansar, S.M. et al. Phys. Chem. 
Lett. 2012, 3, 560]. SERS spectra of benzenethiol (Fig.S2, c) and intensities of the peaks at 1070cm-1 (Fig.S2, 
d) on 7 MCYL substrates across several random locations on each, with a 785nm laser and a 10s integration 
time, demonstrate reliable signal and substrate reproducibility. Repeatable SERS response was obtained 
from the surfaces with relative standard deviation values of less than 8.7% in the framework of one sample 
(error bars) and between the different samples (height of the bars).

S3: SERS Performance of the BCP-based Nanomorphologies Using R6G as Raman Probe 
SERS performance of the four fabricated nanostructures was also evaluated with of 10μM R6G (Plaser = 3mW, 
t =10s) on each gold nanosurface (Fig. S3, a) at excitation wavelengths of 633 (grey) and 785nm (black). 

b

Supplementary Figure S3. (a). Representative SERS spectra of R6G recorded from substrates excited with a 633nm (grey) 
and 785 lasers (black) with typical Raman bands at 1363 and 1508cm-1 of the aromatic C-C stretching. (b). Relative SERS 
enhancement of the 1363cm-1 peak  with the highest signal enhancement obtained for the FSG with 785nm followed by MCYL.

The marked peaks correspond to the Raman lines for R6G. SERS spectra exhibit difference in intensity and 
in certain enhanced Raman peaks at each excitation wavelength. While strong representative Raman bands 
at 613, 776, 1313, 1363 and 1508cm-1, corresponding to the C-C-C in-plane ring bending, C-H out-of-plane 
bending and the aromatic C-C stretching, accordingly,  are observed under excitation of both 633 and 785nm, 
at the shorter laser wavelength of 633nm additional Raman bands, of 1014, 1030, 1137 and 1572cm-1 are 
also enhanced, while the 1123 cm-1  (C-H in-plane bending) and 1647cm-1 (aromatic C-C stretching) peaks 
are further enhanced at 785nm excitation laser only. The absolute enhancement factor (EF) for all four nano-
morphologies was found to be on the order of 107 with the FSG, followed by the MCYL, outperforming all the 
other nanostructures at 785nm, similarly to the case of BT (Fig. S3, b). 
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Development of the Self Optimising 
Kohonen Index Network (SKiNET) 
for Raman Spectroscopy Based 
Detection of Anatomical Eye Tissue
Carl Banbury1, Richard Mason2, Iain Styles3, Neil Eisenstein   1, Michael Clancy1, 
Antonio Belli4, Ann Logan4 & Pola Goldberg Oppenheimer   1

Raman spectroscopy shows promise as a tool for timely diagnostics via in-vivo spectroscopy of the 
eye, for a number of ophthalmic diseases. By measuring the inelastic scattering of light, Raman 
spectroscopy is able to reveal detailed chemical characteristics, but is an inherently weak effect 
resulting in noisy complex signal, which is often difficult to analyse. Here, we embraced that noise 
to develop the self-optimising Kohonen index network (SKiNET), and provide a generic framework 
for multivariate analysis that simultaneously provides dimensionality reduction, feature extraction 
and multi-class classification as part of a seamless interface. The method was tested by classification 
of anatomical ex-vivo eye tissue segments from porcine eyes, yielding an accuracy >93% across 5 
tissue types. Unlike traditional packages, the method performs data analysis directly in the web 
browser through modern web and cloud technologies as an open source extendable web app. The 
unprecedented accuracy and clarity of the SKiNET methodology has the potential to revolutionise the 
use of Raman spectroscopy for in-vivo applications.

Raman spectroscopy is a non-invasive technique for immediate detection and analyses of the biochemical com-
position of analytes by measurement of the inelastic scattering of light. A schematic showing a typical experi-
mental arrangement is shown in Fig. 1a, where longer wavelength inelastically scattered light from the sample is 
directed to a spectrometer via a beamsplitter. It is one of most sensitive optical spectroscopy methods yet can be 
packaged as a hand-held device1,2. Therefore, there is a considerable interest in applying Raman spectroscopy for 
the point-of-care detection of clinical biomarkers. Ophthalmic applications have received particular interest, as 
the optically clear nature of the eye provides a convenient route for in-vivo measurements3–8.

The eye consists of a number of anatomical layers (Fig. 1b), each with their own specific functions, which are 
biologically and chemically distinct. Despite studies highlighting the potential for early diagnostics of diseases 
that target a specific tissue type, there is currently no direct comparison of Raman spectra from each anatomical 
tissue layer. Whilst Raman spectroscopy offers excellent chemical specificity, biological samples form complex 
permutations built from only a few amino acid building blocks, resulting in considerable spectral overlap and 
complex data analysis9. The problem is further compounded by poor signal to noise as a result of the Raman 
effect being relatively weak. Particularly for diagnostic applications, it is crucial to be able to accurately identify 
and understand the signal originating from different parts of the eye. In addition to eye tissue, the optic nerve 
was included as an additional class, as this represents a particularly interesting target for applications beyond 
ophthalmology. Forming part of the central nervous system, the optic nerve is technically part of the brain and 
lies at the same focal plane as the retina. The ability to spectrally isolate and characterise the optic nerve from the 
rest of the eye would lay foundations for further diagnostic possibilities of major neurological diseases including 
for instance: traumatic brain injury, multiple sclerosis or Alzheimer’s disease.

The analysis of such datasets is often conducted as a workflow of three stages: projection, feature extraction 
and classification. The initial step (projection) aims to show spatial separation of data from spectra according to 
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different types or classes in two or three dimensions. Feature extraction then follows, with the aim of understand-
ing what Raman bands in the data cause any separation observed in the projection step. Finally, this information 
is used to build a classification model, that can make accurate predictions about future unlabelled data.

In the field of Raman spectroscopy and even more generally in chemometrics, principal component analysis 
(PCA) is favoured for projection and feature extraction, followed by partial least squares discriminant analysis 
(PLS-DA) and more recently deep learning models for classification10–12. However, PCA routinely shows poorly 
defined class boundaries, struggles with large intra-class variance (such as biological samples) and quickly breaks 
down for multi-class problems13. Furthermore, classification is often handled in isolation to projection and fea-
ture extraction, forming an semantic disconnect, and whilst deep learning has shown impressive classification 
results, these methods offer no insight into the underlying physical and chemical changes.

Our aim is to provide a single method to address each of these stages, connected by a single mathematical 
principle and improve on the issues found using PCA based approaches. Work by Brereton et al. highlighted the 
use of self organising maps (SOMs) applied to nuclear magnetic resonance spectroscopy in comparison to PCA, 
and showed much clearer visualisations. The work was further extended to support feature extraction and classi-
fication using SOMs by the introduction of the self organising map discriminant index (SOMDI)14–16.

Here, we develop an improved SOMDI based supervised learning method, defined as the self-optimising 
Kohonen index network (SKiNET) to demonstrate effective classification, and illustrate the complete linked 
workflow from projection to classification by means of a user-friendly web app17. This represents a major shift, 
that follows a growing trend in industry to move from traditional desktop applications to the cloud (including 
office suites, multimedia editing and computer aided design (CAD)) and yet the advantages of connected scalable 
applications are seldom leveraged in the scientific community.

Figure 1.  (a) Schematic of a typical Raman setup. Light from a laser is focused into the eye. Backscattered light 
is then directed via a beamsplitter to a spectrometer. (b) Schematic of the eye. (c) Averaged Raman spectra from 
isolated tissue segments of each anatomical layer. (d) Typical raw spectra for each tissue type used for training 
and classification.
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The SOM or Kohonen map was first described by Teuvo Kohonen in 1982 as a model inspired by nature and 
the way that neurons in the visual cortex are spatially organised according to the type of visual stimuli18. The SOM 
defines a 2D map of neurons, typically arranged as a grid of hexagons. Each neuron is assigned a weight vector, 
which is initialised randomly and has a length equal to the number of variables in a spectrum. The weight vector 
effects which neuron will be activated for a given sample and neighbouring neurons will have similar weights. 
Spatial clustering is therefore observed in the trained map, with spectra that exhibit distinct properties activating 
different neurons. In order to understand which features in the data cause certain neurons to activate over others, 
the self organising map discriminant index (SOMDI) was used15. The SOMDI introduces class vectors as labels 
for each spectrum and corresponding weight vectors for each neuron, without influencing the training process. 
These allow for the identification of what type of data a given neuron activates, which can be used to inspect the 
weights across all neurons and extract prominent features belonging to each class.

Results
Raman spectra were randomly sampled from tissue segments from 11 separate enucleated eyes, by acquiring 
coarse map scans of 88 spectra per tissue segment. The aqueous humour sitting between the cornea and crystal-
line lens, consisting mostly of water, was neglected. Figure 1c shows averaged spectra representative of each tissue 
type, or class to be identified. Individual Raman spectra were kept consciously noisy by using a short acquisition 
time and limited laser power, to be representative of real world applications, which are limited by both scan time 
and maximum permissible exposure (MPE) defining eye safe limits19. Examples of typical raw spectra (after 
cosmic ray removal and baseline subtraction) are shown in Fig. 1d. Whilst the averaged spectra across each class 
showed obvious spectral differences, a large degree of variance was seen across each map scan (Supplementary 
Information, Fig. S1). As neural networks are data hungry algorithms by nature, it was hypothesised that a mean-
ingful model could be trained by using a large enough number of noisy inputs. Initially, a 25% partition from each 
class of the 4840 spectra were reserved for test data.

Our results are presented as a typical mutlivariate analysis workflow of: (1) projection of the hyperspectral 
data set into 2D space; (2) feature extraction to identify which spectral bands are characteristic of each tissue type 
and (3) a classification model to automatically identify the origin of an unknown spectrum. In each case, the SOM 
shows dramatic improvement over PCA based methods, offering better presentation of the data, clearer insights 
and greater classification accuracy.

Data projection.  Figure 2a shows a clear separation of the data from the five tissue classes arranged as a 
16 × 16 SOM, trained on spectra from the five tissue classes. Neurons (hexagons) are coloured according to the 
modal class they activate, from the training set of Raman spectra. Neurons that have no majority class or activate 
non of the training data are shown in white. Coloured circles within each neuron represent spectra from the 
training data that have been activated for that neuron. To aid visualisation, circles have been forced to not over-
lap in space using the D3-force library20, providing an alternative mechanism to display sample frequency and 
class overlap for each neuron. Note that almost all of the available white space in the figure is used completely. 
For each class, there is a clearly defined block of neurons, with many of these activating only a single tissue type. 
An approximately even distribution in the number of neurons required to identify each class is observed, with a 
slightly higher weighting for the vitreous humour. As a result of the vitreous humour consisting mainly of water 
and containing very few cells, the additional effort required by the network to isolate the tissue can be observed 
in the map. This can be considered by analogy to how the brain associates a larger number of neurons to facial 
features, than for example arms and legs (the cortical homunculus).

The majority of poorly separated samples are located centrally at the boundary between classes and extend 
down to the bottom edge of the map. Interestingly, in this region, there is a cluster of samples predominately cor-
responding to the retina, indicating that a number of retina samples are particularly noisy, further corroborated 
by being spatially located near other neurons that also lack any well defined class. While the SOM is analogous 
to the PCA scores plot (Supplementary Information, Fig. S2a), PCA performs particularly badly when compared 
against the SOM. However, it should be noted that the level of separation observed by PCA is completely inline 
with results commonly reported in the literature. Since PCA relies on separation by variance in the data, the class 
clusters are bound around a central point, as a result of noise or absence or spectral features, causing significant 
spatial overlap.

Feature extraction.  The SOMDI provides a representation of weights associated with neurons that identify 
a particular class. A higher SOMDI intensity indicates a greater importance of particular inverse centimetres 
along the x-axis of a spectrum. Figure 2b shows the SOMDI overlaid for each class, where the most important 
Raman bands associated with each tissue layer can be easily identified. Despite the level of noise in the original 
data, well defined peaks are resolved in Fig. 2b, which are either more prominent or unique to each class. Strong 
weights are attributed to the cornea at 938 (C-C stretch) and 1241 cm−1 (C-N stretch), which also correspond, 
with a certain confidence, to the stretching modes of the C-C backbone and amide III modes of collagen.

The crystalline lens of the eye is predominately identified by a very strong SOMDI weight at 1005 cm−1 (2,4,6C 
radial) and is attributed to phenylalanine, which is abundant in water-soluble proteins present in the lens and 
directly relates to the tissue’s function. The high polarizability of this molecule, which results in a large Raman 
scattering cross-section, aids in increasing the refractive index of the lens thus, providing fine focusing of light 
onto the retina. The vitreous humour is more challenging to isolate, with the strongest weights at 854, 858 cm−1 
overlapping with significant weights for cornea, which have been associated with proline in collagen, along with 
small distinct weights at 832, 1044 and 1049 cm−1. These bands may be indicative of the difference in collagen 
type found in the cornea versus the vitreous humour (type I vs. type II respectively) yet, a direct comparison of 
the two protein types is further required to support this postulation. The interpretation and discrimination of 
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collagen types by Raman spectroscopy is currently an active area of interest, where SkiNET may also offer addi-
tional insight21,22.

The remaining two classes of retina and the optic nerve are perhaps the most intriguing, located within the 
same focal plane, with the optic nerve connecting directly to the brain. An isolated peak at 1658 cm−1 (C=O 
stretch) identifies the retina and is associated with amide I (α-helix) groups in proteins. The detection of light by 
rods and cones in turn, relies on photo-receptive proteins known as opsins, which have an α-helical secondary 
structure. In contrast, the optic nerve can be characterised by a strong weight at 1441 (CH2 scissoring, CH3 bend-
ing) and 1297 (CH2 deformations) cm−1, strongly associated with lipids and fatty acids. The brain is composed 
of nearly 60% fat, with lipids and fatty acids playing important roles in brain function, which here we observe as 
a clear marker for the distinction between brain and eye tissue via Raman spectroscopy23. Furthermore, the optic 
nerve is devoid of photo-receptive cells and responsible for the blind spot in humans and therefore, the peaks at 
1441 and 1658 cm−1 act as biologically relevant markers for each24. Individual bond assignments were made with 
reference to Larkin25, and associations to high level biological structures based on the work by Talari et al. and 
Movasaghi et al., providing databases of Raman bands found in biological tissue26,27.

Finally, unlike PCA loadings, which are often used to show similar information, the SOMDI can be inter-
preted in isolation. Conversely, PCA loadings are only relevant to a direction in PC space, relying on constant 
reference to the scores plot, which quickly become cumbersome for multi-class problems or where multiple PC 
scores are considered (Supplementary Information, Fig. S2b).

Classification.  Automated classification of Raman spectra and assignment to a particular tissue type or 
disease state is perhaps the most important step for the translation of Raman-based diagnostic techniques to 
real-world, clinical applications. However, whilst SOMs have historically been used for visual separation of data, 
experimental results of classification are rare. The most common method is to look-up the modal class of the 
neuron activated for a test sample, as used to colour neurons in Fig. 2a. Since the SOMDI automatically provides 
class labels, the maximum SOMDI weight can also be used to perform class identification of any given neuron. 

Figure 2.  (a) SOM trained on spectra across the 5 eye tissue types. (b) SOMDI showing relative importance 
of different bands for each class to observed clustering in the SOM. (c) Classification accuracy of tissue using 
SKiNET against current state-of-the-art (multi-layer perceptrons (MLP), support vector machines (SVM), 
partial least squares discriminant analysis (PLS-DA) and k-nearest neighbours (kNN)). (d) Effect of number of 
principal components on classification accuracy for PCA based methods.
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However, both of these methods remain unsupervised learning mechanisms, without optimisation towards 
the correct answer in the training set. This is in contrast to widely used supervised learning algorithms, such 
as multi-layer perceptrons (MLP), support vector machines (SVM), partial least squares discriminant analysis 
(PLS-DA) and k-nearest neighbours (kNN)28–30.

Supervised learning can be introduced to SOMs by allowing the class weights used for the SOMDI to influence 
the learning process. For large enough label values, this effectively forces the map to cluster, however can result 
in over-fitting16. For our data, no benefit was observed using this method over the modal class on the unsuper-
vised SOM (Supplementary Information, Fig. S3). Instead, a concept from learning vector quantisation (LVQ) 
was applied to the trained map and defined as a self-optimising Kohonen index network (SKiNET). A penalty is 
introduced for spectra (from the training set) that activate neurons identifying a different class. This has a natural 
tendency to self-optimise, with the identical behaviour to the vanilla SOM when training data activate the correct 
class.

Figure 2c shows the classification accuracy across all five tissue types using SKiNET, vs. current state-of-the-art 
methods. A 25% partition of the original data set was randomly assigned as test data and not used for training and 
optimisation of the network. The remaining 75% was used to optimise hyper-parameters of each classifier, which 
were tuned by performing 10-fold stratified cross validation. Most notable is the considerable improvement over 
PLS-DA, which is perhaps the most widely adopted method in chemometrics31. PCA was used as a dimension-
ality reduction method prior to classification for SVM, PLS-DA and kNN. It should be emphasised that only the 
first two principal components were kept. Figure 2d shows that by including a larger number of components, each 
of the classification methods can achieve a similar accuracy. The case of keeping more components for classifi-
cation than are used for projection and feature extraction is routinely used in the literature. The alternative is to 
show several pairwise PCA scores plots, which arguably leaves the data in a high dimensional space10,11,32.

However, by implementing SKiNET we are able to achieve a classification accuracy equivalent to keeping 6 
components, whilst still being able to fully separate the data in only two spatial dimensions; equivalent to using 2 
PCA components. Additionally, SKiNET showed a comparable performance to multi-layered perceptrons (MLP), 
whilst providing clear visualisations and feature extraction that MLPs and other neural network based methods 
lack. The confusion matrix (Supplementary Information, Table. S1) provides a breakdown of test samples classi-
fied into each class, and highlights the stability of the method across each of the five tissue types.

Discussion
The use of spectral fingerprints for clinical diagnostics requires two major components: the ability to quickly 
and accurately distinguish between different states (such as tissue types or diseases) and an understanding of 
the underlying chemical differences that enable such separation. The former is driven by an obvious need to 
perform timely diagnostics, but these decisions must be underpinned by biologically relevant changes. These 
issues are usually treated in isolation by multivariate techniques, with the best classification methods providing 
no insight into their nature. SKiNET addresses this disconnect, by using a single, simple architecture to provide 
clear visualisations and a high classification accuracy, whilst retaining an understanding of the major chemical 
differences between classes. Furthermore, the SOM removes the need for much of the linear algebra and matrix 
notation required to fully appreciate PCA. Instead, the SOM can be adequately described using only addition and 
subtraction.

We reiterate that SOMs can offer a vastly superior spatial separation of chemometric data, that has now 
been demonstrated for both NMR and Raman spectroscopy. The SOM can be considered mathematically as a 
non-linear equivalent to PCA, and therefore hints that these data may not in fact be linearly separable, as would 
normally be assumed from Raman spectroscopy and is a requirement for PCA to be valid30. Our assertion is 
that the inherent heterogeneity combined with spectral overlap could easily lead to this condition for biological 
samples. Despite the level of overlap and noise present in our raw data, the SOMDI offers a convenient method 
to quickly isolate important bands and automatically act as a noise filter. By using the SOMDI it was possible to 
easily identify prominent markers for bulk tissue properties in each of the tissue types considered.

LVQ offers a convenient means of introducing supervised learning into the SOM, however there are sev-
eral variations of the LVQ algorithm that have not been explored here. This remains an area for future work, in 
addition to automatically setting the map parameters such as number of neurons, neighbourhood size, and an 
adaptive learning rate. Finally, it was shown that SOMDI weights could act as iterative class labels that are present 
throughout the learning process and change dynamically. As a result, there is scope to explore SKiNET based 
classification in conjunction with other SOM optimisation methods, that presently rely on a hit count (majority 
voting), which requires placing all of the training data into the SOM at every learning step where we wish to iden-
tify the winning class for a given neuron33. Since the SOMDI provides a constant dynamic neuron identifier, this 
would allow for scaling to larger training sets using such methods.

In general, SKiNET was seen to offer a huge classification improvement over existing methods, performing 
particularly better than PLS-DA, which is the current status quo in chemometrics. Several of the points stressed 
here have been mentioned in other publications across different disciplines, but never cohesively. It is therefore of 
equal importance that the entry point for SKiNET is not to download, buy a software package or compile scripts; 
but simply visit a website and upload data.

The ability to quickly identify tissue from the noisy spectral response of a short acquisition, as demonstrated 
here represents an important stepping stone towards the practical applicability of in-vivo ophthalmic Raman 
spectroscopy, allowing for the capture of clean signal in the region of interest only. Filtered signal could then be 
fed into a second SKiNET model designed to distinguish between specific disease states.
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Methods
Self-optimising kohonen index network (SKiNET).  The SOM is represented by a set of neurons 
arranged in a (hexagonal) grid. Here, we describe the basic SOM algorithm with SOMDI variables added for fea-
ture extraction15,18. We then describe how LVQ is included as an additional step to provide supervised learning, 
whilst using the SOMDI to identify each neuron class. Variables definitions are shown in Table 1 for reference. In 
each case, the capitalised letter represents the set for a given variable, e.g., the SOM contains a grid of N neurons.

Initially, every neuron is assigned weight vectors w (spectrum weight) and c (class weight), which are ran-
domly initialised. The SOM is then trained according to the following algorithm:

	 1.	 Select a sample s at random from S
	 2.	 Calculate the euclidean distance, d for each n:

= +d i w2 2

	 3.	 Define the best matching unit (BMU) as the neuron with minimum d
	 4.	 Update weights, w and c of each neuron be similar to the input:

= ∗scaleFactor neighbourhood BMU t learningRate t( , ) ( )

= + ∗ −w w scaleFactor i w( )

= + ∗ −c c scaleFactor j c( )

The map is gradually trained by repeating these steps numerous times. The update step applied in step 4 
depends on a neighbourhood function which ensures neurons closest to the BMU are effected most (according to 
a Gaussian function), with a decreasing neighbourhood size with each t. Secondly a learningRate influences the 
update criteria, which linearly decreases with each iteration, t from a fixed initial starting value. To note, while 
class weights are updated in steps 4, they play no role in step 2, i.e., the spectra alone are responsible for finding 
the BMU.

The class vectors J have values of 1 for a given index or otherwise 0, e.g.,[1, 0, 0, 0, 0] and [0, 1, 0, 0, 0] repre-
senting labels for two of the five classes. As the map is trained, the neuron class vectors C become close to 1 as the 
neuron activates more of one spectral type and tend towards zero for all other class variables. Figure 3 illustrates 
how these vectors define class planes that are used to form the SOMDI. Once the map is trained, the class of any 
given n can be identified by finding the maximum of c.

Supervised learning.  A second learning round is then applied, keeping the spatial mapping of neurons, but 
changing the update criteria to use rules from LVQ:

	 1.	 Start with trained SOM
	 2.	 Select a sample s at random from S
	 3.	 Calculate euclidean distance, for each n
	 4.	 Define BMU as the neuron with minimum d
	 5.	 Identify BMU and s class labels:

=class indexOf max j( ( ))j

=class indexOf max c( ( ))c

	 6.	 Update BMU w and c:

if (classj = classc) then

= + ∗ −w w scaleFactor i w( )

Variable Description Length

i A single spectrum 1015

j Spectrum class label vector 5

s Training sample and label [i, j]

n A neuron

w Spectrum weight vector length(i)

c Class weight vector length(j)

t Training step integer

Table 1.  Definitions of variables used to describe SOM and SKiNET.
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= + ∗ −c c scaleFactor j c( )

else

= − ∗ −w w scaleFactor i w( )

= − ∗ −c c scaleFactor j c( )

where only the update step changes when s lands on an incorrect neuron, to move both the spectrum weights and 
class weights of the BMU further away (and so making the neuron less likely to activate a similar spectrum in 
future iterations). During LVQ only the the BMU is updated under this regime and thus, represents only a small 
perturbation to the network. By analogy, this can be thought of as applying fine details to a painting, after the 
initial broad brush strokes to block in colours.

The method is described as self-optimising, since when the BMU class matches that of the input, the BMU 
weights are moved closer to the input as per the original unsupervised SOM algorithm. This allows a natural 
optimum to be reached, whilst preventing over-fitting. A second consequence of SKiNET, is a greater degree 
of freedom for each neuron. In the update step, the weight vector for the data and class labels are both updated, 
allowing for the class definition of a neuron to dynamically change as the map is trained.

Samples.  Tissue samples were retrieved within hours of slaughter from a total of 11 enucleated porcine eyes, 
provided by Rowley CH Ltd, a local abattoir. Eyes were dissected to isolate small segments of cornea, lens, vitreous 
humour, retina and optic nerve. Tissue samples were prepared using a protocol suggested by Cui et al., using glass 
slides covered with aluminium foil as a cost effective substrate, and allowed to air dry for 24 hours34.

Raman spectroscopy.  An InVia Qontor (Renishaw plc) equipped with a 785 nm laser was used for all meas-
urements. LiveTrack maps over a sample area of 110 × 77 microns were acquired for each sample, with an acqui-
sition time of 5 s for each point location in the map, and laser power of 2 mW, a 50 × Leica objective (0.75 NA), 
1200 l/mm grating with scans recorded in the range 550–1670 cm−1. A total of 88 scans per tissue sample were 
recorded (4840 spectra total).

Software and preprocessing.  Baseline subtraction and cosmic ray removal were applied in WiRE 5.1 
(Renishaw plc), each sample was independently standardised by mean centering and scaling to unit variance 
using Scikit-learn in python35. The package was then used to define training/test partitions, cross validation folds 
and define models for each classifier. The SOM based methods were defined in JavaScript by forking an existing 
open source SOM library36. The entire library was heavily refactored to include support for SKiNET, and is availa-
ble on Github37. For consistency, a wrapper was created around the JavaScript library, to expose the same methods 
in python, allowing for all models to be benchmarked via the same script.

Code and Data Availability
For SOM and SOM based classification, the code was implemented in JavaScript, chosen for it’s ubiquity on almost 
every modern device. This allowed for the creation of simple, user friendly web interface that can be easily accessed 
from any location, without any need to install or compile a single line of code. The lack of easily accessible tools has 
previously been cited as a reason for poor adoption of such methods as seen in chemometrics. We are aiming to 
address this gap by providing both a library and web app available as open source tools17,37. All Raman spectra used 
in the analysis presented are available in electronic form from the corresponding author upon request.

Figure 3.  Illustrative example of SOM for two classes A and B, coloured red and blue, respectively. The weight 
vectors W and C can be thought of as making up additional planes in the z direction. Class planes are formed 
having values close to 1 for a given class and values close to 0 otherwise. These are used for classification and 
identification of the most important planes in W for the SOMDI.
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Figure S1: Paired examples of bright field optical microscope images (left) and PCA scores across
map scan (right) for each tissue type: a, cornea, b, lens, c, vitreous humour, d, retina and e, optic
nerve.
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Figure S2: a, Scores plot for the first two principal components showing poor spatial separation of
classes. b, Loadings for PC1 and PC2.

Cornea Lens Vitreous Humour Retina Optic Nerve
Cornea 88.0 2.1 4.7 3.3 2.8
Lens 0.5 99.8 0.5 0 0.1
Vitreous Humour 1.0 0.1 96.5 2.7 0.5
Retina 1.0 0.2 2.3 95.7 1.7
Optic Nerve 4.6 0.71 0.8 2.2 92.5

Table S1: Confusion matrix showing average percentage for each class from the 1210 test spectra.
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Abstract: Traumatic brain injury (TBI) is a major burden on healthcare services worldwide,
where scientific and clinical innovation is needed to provide better understanding of biochemical
damage to improve both pre-hospital assessment and intensive care monitoring. Here, we present
an unconventional concept of using Raman spectroscopy to measure the biochemical response to
the retina in an ex-vivo murine model of TBI. Through comparison to spectra from the brain and
retina following injury, we elicit subtle spectral changes through the use of multivariate analysis,
linked to a decrease in cardiolipin and indicating metabolic disruption. The ability to classify
injury severity via spectra of the retina is demonstrated for severe TBI (82.0 %), moderate TBI
(75.1 %) and sham groups (69.4 %). By showing that optical spectroscopy can be used to explore
the eye as the window to the brain, we lay the groundwork for further exploitation of Raman
spectroscopy for indirect, non-invasive assessment of brain chemistry.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further
distribution of this work must maintain attribution to the author(s) and the published article’s title, journal
citation, and DOI.

1. Introduction

Traumatic brain injury (TBI), resulting from sudden impact such as assault, sporting injuries
or road traffic accidents is a major cause of morbidity and mortality, affecting an estimated 69
million individuals worldwide each year [1]. The initial damage triggers a complex cascade of
metabolic, biochemical and inflammatory responses leading to secondary injury that can occur
over the following hours, days or months [2]. The Glasgow coma scale (GCS), based on visual
assessment of the patient’s verbal, visual and motor responses, is the current gold standard to
stratify injury severity and acute clinical evolution in TBI. The GCS defines arbitrary boundaries
for injury severity grouped as mild, moderate and severe [3]. Whilst this has real clinical value,
minimal mechanistic insight is provided into the pathobiology of damage evolution after injury.
Novel technologies which can be applied quickly and non-invasively at the point of care (PoC)
for interfacing with the brain and define the chemical signatures of TBI pathobiology are needed.
A non-invasive method that can detect and quantify TBI would not only provide a more accurate,
objective and timely approach to diagnosis, but may help expand our understanding of injury
evolution and enable personalized intervention approaches.

The skull provides a thick protective layer around the brain, which strictly limits the available
options for both non-invasive and invasive sampling of brain tissue, especially in pre-hospital
settings. However, sitting at the back of the eye exists a small part of the brain covered only by
optically clear media; the retina and the optic disc. The optic disc appears as a bright circle in
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fundus images, and is the route through which visual information captured from the retina is
passed to the brain along the optic nerve. Also known as the blind spot, the optic disc is devoid of
photoreceptive cells and consists predominantly of white matter. Derived from an out-pouching
of the diencephalon as the brain develops and bathed in the cerebrospinal fluid, both the optic
nerve and retina are technically part of the central nervous system [4]. The retina and optic
nerve have long been known to display physically measurable changes as a result of increased
intracranial pressure (ICP), where ICP monitoring is of paramount importance for intensive care
monitoring in TBI. Measurements from the eye of such changes have been the target of several
studies aiming to develop non-invasive ICP, but to our knowledge no such attempts have been
made to measure the resultant biochemical change [5–7].

We therefore have hypothesized that a form of optical spectroscopy, which has the potential to
be translated into a non-invasive method to probe the posterior segment of the eye (retina and
optic nerve), may be able to monitor injury evolution in real time after TBI. Among the optical
spectroscopy techniques, Raman spectroscopy offers the richest and most sensitive chemical
discrimination. Temporal changes from direct analyses of brain tissue have previously been
studied by Surmacki et al. [8] using our murine model of TBI. Raman scattering is based on the
inelastic interaction between light and a molecule, where the energy exchange from a scattering
event causes a change in the vibrational energy level of a molecular bond. Since energy levels
of electrons in molecules are quantized, only specific and discrete energy states are allowed.
The Raman spectrum therefore defines a chemical fingerprint that is uniquely determined by
the underlying molecular constituents [9]. Nevertheless, for biological samples there exists
significant redundancy and complexity of spectral bands that makes analysis and interpretation of
the data non-trivial. Raman scattering is also an extremely weak effect, and thus, long acquisition
times and the use of a high-powered laser focused through an objective are standard requirements
for well resolved spectra. The notion of laser exposure to the eye invokes a natural aversion,
however every anatomical tissue layer of the eye has been successfully studied using Raman
spectroscopy [10]. By adhering to laser safety limits, Obana et al. [11] conducted an in-vivo
study using resonance Raman spectroscopy in humans to assess age-related maculopathy. More
recently, Marro et al. [12] were able to measure inflammatory changes in retina cell cultures and
Stiebing et al. [13] have showed how this can be extended to non-resonant Raman spectroscopy,
using flat mounted retina samples combined with an optical pathway mimicking the human eye.

Recently, we developed amachine learning technique based on self organizingmaps (SOM)s, the
self optimizing Kohonen index network (SKiNET) for simultaneously providing rich information
and classification from biological samples, even with noisy or poor quality spectra that would
result from a lower laser power and short acquisition times [14]. SOMs provide visually intuitive
2D clustering (e.g. according to injury state) of high dimensional data such as Raman spectra,
that are otherwise difficult to interpret for large sample and measurement numbers. Whilst SOMs
are usually an unsupervised method, SKiNET incorporates supervised learning to additionally
provide accurate classification, which could then be used to make diagnostic predictions. Finally,
a form of feature extraction using the self organizing map discriminant index (SOMDI) allows us
to understand which spectral features (and therefore chemical changes) are responsible for the
clustering seen in the SOM [15].

Here, Raman spectroscopy combined with SKiNET is applied to investigate whether the retina
can reflect the brain microenvironment after injury, in a clinically relevant murine model of focal
TBI. Our results show that spectra from the eye can distinguish moderate TBI (mTBI) and severe
TBI (sTBI) from a sham group, and show this to be as a result of similar chemical changes to
those seen at the point of injury on the brain. Through quantitative and qualitative analysis we
suggest the detected changes are largely due to metabolic distress and the release of cardiolipin,
consistent with recent work in the field of mass spectrometry [16]. This validation is particularly
promising as mass spectrometry provides vastly superior molecular discrimination. However,
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Raman spectroscopy has the advantage of being a non-destructive technique and as highlighted,
there are ongoing efforts in the field for translation into in-vivo measurements, and diagnostics.

2. Methods

2.1. Mouse model of TBI and tissue processing

Adult (8 weeks old) C57BL/6J male mice (Envigo RMS srl) were used. No additional procedures
were performed on mice except those related to the experiment they were intended for. Procedures
involving animals and their care were conducted in conformity with the institutional guidelines at
the Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy in compliance with national
(D.lgs 26/2014; Authorization n. 19/2008-A issued March 6, 2008 by Ministry of Health) and
international laws and policies (EEC Council Directive 2010/63/UE; the NIH Guide for the Care
and Use of Laboratory Animals, 2011 edition). They were reviewed and approved by the Mario
Negri Institute Animal Care and Use Committee that includes ad hoc members for ethical issues,
and by the Italian Ministry of Health (Decreto no. D/07/2013-B and 301/2017-PR). Animal
facilities meet international standards and are regularly checked by a certified veterinarian who is
responsible for health monitoring, animal welfare supervision, experimental protocols and review
of procedures. Mice were anesthetized by isoflurane inhalation (induction 3%; maintenance
1.5%) in an N2O/O2 (70%/30%) mixture and placed in a stereotaxic frame. Rectal temperature
was maintained at 37 ◦C. Mice were then subjected to craniectomy followed by induction of
controlled cortical impact brain injury as previously described [17]. Briefly, the injury was
induced using a 3-mm rigid impactor driven by a pneumatic piston rigidly mounted at an angle of
20◦ from the vertical plane and applied to the exposed dura mater, between bregma and lambda,
over the left parietotemporal cortex (antero-posteriority: −2.5 mm, laterality: −2.5 mm), at an
impactor velocity of 5 m/s. The deformation depth was of either 1 mm or 0.5 mm, resulting
in a severe (sTBI) or moderate (mTBI) level of injury respectively. The craniotomy was then
covered via cranioplasty and the scalp sutured. Sham mice received identical anesthesia and
surgery without brain injury. Three days after TBI, mice were deeply anesthetized with Ketamine
Chlorhydrate (150 mg/kg, i.p.) and Medetomidine Chlorhydrate (0.2 mg/kg, i.p.) transcardially
perfused with 30 mL of phosphate-buffered saline (PBS) 1% (pH 7.4), followed by 60 mL of
paraformaldehyde (PFA) 4% in PBS. The brains and eyes were carefully removed from the skull
and post-fixed in 4% PFA in PBS for 24 hours at 4 ◦C. The post-fixed tissue were then rinsed and
stored in normal saline (NaCl 0.9%) at 4 ◦C. Samples we mounted on microscope slides covered
with aluminum foil for spectroscopy studies as whole brains. Retina samples were prepared by
micro-dissection of eyes in PBS, followed by flat mounting on aluminum slides. Samples were
air dried for 1 hour before measurement.

2.2. Raman spectroscopy

An InVia Qontor (Renishaw plc) equipped with a 785 nm laser was used for all measurements.
Raman maps over a 20x20 grid (400 spectra), using a step size of 1.5 µm between points were
acquired for each sample. The surface map feature in the instrument software (WiRE (Renishaw
plc)) was used to follow the topography of the sample, by uniformly measuring 9 position
coordinates (x,y,z) and interpolating over the map area. At each position, a spectrum was
recorded using a laser power of 50 mW, focused through a 50x Leica objective (0.75 NA) over 5
s (1 s acquisition, 5 accumulations). Spectra were measured in the range 605-1715 cm−1 using a
1200 l/mm grating. Instrument calibration was performed using the internal silicon reference
built into the InVia system. Care was taken to ensure consistent sample preparation between
samples and across injury states. All tissue was kept refrigerated in PBS prior to measurement.
All Raman spectra were measured on the same day for each tissue type (brain, retina) and within
72 hours of sacrifice. Raman maps were measured in the contusion core for mTBI and sTBI, and
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the corresponding area in the sham group. Maps measured from the retina of both eyes were
taken from an area in close proximity to the optic disc for each mouse. Post processing of spectra
was performed in WiRE 5.3 (Renishaw Plc), cosmic rays were removed from each map using the
nearest neighbor method, followed by baseline subtraction using the ‘intelligent spline’ fitting (11
nodes). Finally, the average was taken from each map resulting in a single spectrum per sample.

2.3. Analysis of retina tissue

The 400 spectra measured across each tissue sample were grouped according to injury state from
both eyes (summarized in Table 1). 20 % of the data was randomly selected from each group and
reserved as test data, leaving the remaining 80 % for training (Table 2). Analysis of the training
data was performed using SKiNET [18], by randomly passing samples from the training data
into the SOM over a number of iterations. SKiNET models were optimized by performing 10
fold cross validation on the the training data, and tuning the number of neurons, initial learning
rate and number of training steps. The final model used a 20x20 grid of neurons, 57600 training
steps (5 epochs of the data), with an initial learning rate of 0.2. The initial neighborhood size
was maintained at 2 / 3 the edge length of the grid and cosine similarity used as the distance
metric to determine the best matching unit. Finally, the optimized model was used to classify the
previously unused test data, to give an indicator of the classification performance. Classification
using the test data were repeated 10 times from separate SOM initializations and an average of
the results output as a confusion matrix. An illustration of the workflow is shown in Fig. S1.

Table 1. Summary of retina spectra used as inputs for
multivariate analysis across the three injury states (sham,

mTBI and sTBI).

Spectra Per Tissue Sample Mice Eyes Total

Sham 400 6 2 4800

mTBI 400 6 2 4800

sTBI 400 6 2 4800

14,400

Table 2. Breakdown of data across each injury state, and
split into training and test data sets.

Injury State Total Training Data (80 %) Test Data (20 %)

Sham 4800 3840 960

mTBI 4800 3840 960

sTBI 4800 3840 960

Total 14,400 11,520 2880

2.4. Analysis of brain tissue

SkiNET was used to analyze spectra measured from whole brain samples as described in the
previous section. The 400 spectra measured across each tissue sample were grouped according
to injury state from the contusion core, and 20 % of the data reserved as test data (summarized in
Table 3). Non-negative least squares (NNLS) analysis was performed on brain tissue by fitting a
library of component spectra to the average spectrum for each brain sample (Fig. S2d-f). The
component spectra consisted of raw data provided by Krafft et al. [19] for human brain lipids
and cardiolipin. Cytochrome c was purchased from Sigma-Aldrich Ltd and measured without
modification at 785 nm using a laser power of 10 mW, focused through a 50x Leica objective
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(0.75 NA) over 10 s (1s acquisition, 10 accumulations). The lsqnonneg function in MATLAB
was used to determine coefficients of the raw component spectra to the average spectra measured
from the brain. The interp1 function was used to rescale the data in the range of 1200-1714
cm−1 in increments of one inverse centimeter.

Table 3. Breakdown of data across each injury state, and
split into training and test data sets from brain tissue in the

contusion core.

Injury State Total Training Data (80 %) Test Data (20 %)

Sham 2400 1920 480

mTBI 2400 1920 480

sTBI 2400 1920 480

Total 7200 5760 1440

3. Results

Experimental TBI was induced by controlled cortical impact in mice (n=6 for each injury state),
with the degree of injury (either moderate or severe) being defined by the deformation depth.
Tissue samples of postfixed brain (Fig. 1(a)) and eyes were collected 3 days after injury from sham,
mTBI and sTBI groups. An illustration of the mouse head is shown in Fig. 1(b), highlighting the
bilateral axon projections that are present between the brain and the retina. Each eye was carefully
dissected to isolate and flat mount the retina as shown in Fig. 1(c). The corresponding Raman
spectra (averaged over all samples) from the contusion core of the brain (Fig. 1(d)) and from flat
mounted retina (Fig. 1(e)) are shown for mTBI and sTBI against the sham group. Assignments to
the highlighted bands are summarized in Table 4, along with common biochemical attributions,
with reference to the database published by Talari et al. [20].

Table 4. Summary of chemical assignments and biochemical
attribution to Raman bands which display a change after TBI.

Assignments were made with reference to Larkin [21], common
biochemical attributions made with reference to the database by

Talari et al. [20].

Peak (cm −1) Assignment Attribution

850 C-H wagging -

1003 C-C skeletal phenylalanine

1266 C-H bending mixed (proteins/lipids)

1337 C-N stretching, N-H bending Amide III

1447 C-H2 bending mixed (proteins/lipids)

1660 C=C stretching mixed (proteins/lipids)

3.1. Multivariate analysis of retina tissue

From the average spectra of brain tissue in Fig. 1(d), dramatic changes to the bands around
1266 and 1660 cm−1 are clearly visible, however the data from the retina (Fig. 1(e)) are almost
indistinguishable across the three injury states. The average spectra provide an easily digestible
format in order to present the data, but forces us to throw away vital information that arises from
point-point variation within each sample combined with sample-sample variation. Fortunately,
multivariate techniques allow us to capture all of this information and extract the most important
spectral features which characterize a group of data, such as an injury state. Recently, we
highlighted the value of SOMs in the analysis of Raman spectra from biological samples [14].
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The 400 spectra measured across each tissue sample were grouped according to injury state from
both eyes. 20 % of the data was randomly selected from each group and reserved as test data,
leaving the remaining 80 % for training.

Fig. 1. a, Photograph of whole brain following sTBI to the left parietotemporal cortex. b,
Illustration of mouse brain and optic tract, highlighting ipsilateral (blue) and contralateral
(orange) projections connecting the brain to the retina. c, Example of a bright fieldmicroscopy
image of a flat mounted retina from the mTBI group. d, Average Raman spectra collected
in the contusion core for mTBI and sTBI compared to the sham group. e, Average Raman
spectra collected from flat mounted retina samples (both eyes), showing mTBI and sTBI
compared to the sham group. Raman spectra were collected as map measurements of 400
spectra over each sample, using a 785 nm excitation laser (50 mW), 1s acquisitions with 5
accumulations. Map measurements from each sample were averaged to produce a single
spectrum per sample (n=6 for each injury state).

Briefly, a SOM is a type of artificial neural network that is typically visualized as a 2D array of
hexagonal neurons, which loosely tries to mimic the visual cortex in the brain; with neighboring
neurons activating on similar inputs. The training process is performed iteratively by presenting
an individual spectrum (ξ) from the training data, and finding the neuron that has previously
activated on data most similar to the input, ξ. The winning neuron is then updated to become
more likely to activate on data like ξ, along with neighboring neurons (but to a lesser degree).
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The result is neurons that are grouped according to particular features, as see in Fig. 2(a). Each
neuron (hexagon) in the SOM is colored according to the type of data it activates from the training
data (sham, mTBI or sTBI), providing immediate visualization of how the data is organized in
groups.

A clear separation between sham and sTBI groups can be seen in the SOM shown in Fig. 2(a).
To indicate neurons that activate on more than one injury state, color mixing is used according to
the relative proportion of hits from each state. Using the SOMDI [15], it is possible to identify
features in the Raman spectrum responsible for the clustering observed in the SOM. For sTBI:
increases to the bands around 850, 1098 and 1337 cm−1, coupled to decreases in the bands around
1003, 1266 and 1660 cm−1 are observed, relative to the sham group (Fig. 2(b)). In comparison
to sTBI, mTBI shows a poorer separation in the SOM (Fig. 2(c)), with a greater proportion of
neurons activating on a mixture of mTBI and sham groups, particularly for neurons associated
with mTBI. This is seen by mixing of the colors for injury states in the SOM. However, distinct
regions are still present for both mTBI and sham groups. The same is true for the SOMDI of
mTBI vs sham (Fig. 2(d)), with very few spectral regions of similarity between the two groups,
indicating a greater degree of heterogeneity. Despite the increased variation, increases to the
bands at 850, 1098 coupled to a decrease in the band at 1266 cm−1 are still observed for mTBI.
Following separation of the data from injured and healthy tissue, SKiNET can be used as a

classifier. The classification method works by inputting a test sample into the trained network,
and identifying which neuron is activated. The SOMDI associated with the activated neuron
provides class data (based on the training inputs), which is used to make a prediction for the
new sample. Models were optimized by using 10-fold cross validation on the training data to
tune: the number of neurons in the SOM; initial learning rate; and training steps. Following
optimization, the trained network was used to predict the previously unused test data, and showed
good sensitivity for sTBI (82.0 ± 1.4 %). A poorer classification accuracy was obtained for sham
(69.4 ± 0.9 %) and mTBI groups (75.1 ± 0.9 %), with a large proportion of sham data incorrectly
classified as mTBI and vice versa (Table 5). Similar results were obtained by splitting the data
according to ipsilateral (side of injury) and contralateral retinae (Table S1), and in comparison to
the cross validation accuracy against the training data (Table S2).

Table 5. Summary of classification accuracy as a
confusion matrix for: sham, mTBI and sTBI groups

using trained SKiNET against test data. Data shown is
the average classification accuracy across 10 SOM

initializations, trained using Raman spectra from flat
mounted mouse retina (both eyes).

Predicted

Sham (%) mTBI (%) sTBI (%)

A
ct
ua
l

Sham (%) 69.4 24.0 6.6

mTBI (%) 17.9 75.1 6.9

sTBI (%) 7.9 10.0 82.0

3.2. Corresponding changes to brain spectra

In contrast to the retina, Raman spectra of brain tissue from the site of injury showed more
dramatic and consistent changes across injury groups. Even in the average spectra over all
samples (Fig. 1(d)), there are visible differences to the bands around 1266 cm−1 and 1660 cm−1.
This observation is supported by SKiNET analysis applied to the spectra from brain tissue in the
contusion core, using the same methodology described in the previous section. Spectra from the
test data were classified with an accuracy of (100 ± 0.0 % ) for sham, (94.5 ± 0.9 % ) for mTBI
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Fig. 2. a, Clustering of Raman spectra from the retina for sTBI (orange) and sham (black)
groups using a SOM. b, Features extracted (SOMDI) from SOM shown in (a), highlighting
the Raman bands most influential to neurons in the SOM for sham and sTBI groups. c,
Clustering of mTBI (purple) and sham (black) Raman spectra from the retina using a SOM.
d, Features extracted from SOM in c, highlighting Raman bands for sham and mTBI groups.

and (91.2 ± 1.3 % ) for sTBI. Furthermore, the extracted features using the SOMDI (Fig. S4)
closely resemble the average spectra.
A decrease to the band at 1266 cm−1 in TBI samples appears to be a key feature from the

analysis of both brain and retina. Visually, this can be observed using false colored Raman maps
of the ratio of the band at 1447 vs 1266 cm−1 (Fig. 3). The band at 1266 cm−1 is assigned to CH
bending modes, and commonly associated with amide groups in lipids and proteins [20]. Since
the brain contains nearly 60 % fat and the Raman signature for all 12 major and minor brain
specific lipids have been well characterized [19,22], we attempted to decompose the changes
due to the lipid contribution. NNLS fitting was performed against average spectra from brain
tissue from each sample (Fig. S2d-f), using a library of component spectra, which included the
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raw data for brain specific lipids, cardiolipin (provided by Krafft et al. [19]) and cytochrome c.
Fitting was performed in the range 1200-1714 cm−1, to identify the relative contributions in each
tissue sample for sham, mTBI and sTBI. The resultant fitting coefficients for each lipid spectrum
are therefore proportional to the lipid concentration measured within each tissue sample. A
one-way ANOVA shows a statistically significant difference in the contribution (compared to the
sham) from cardiolipin (Fig. 4(a)), linked to the decrease in the bands at 1266 and 1660 cm−1

(Fig. 4(b)) in TBI for both moderate and severe TBI vs the sham. No significant change was
observed between injury severity for cardiolipin. A small decrease in the fitting coefficient for
cholesterol was observed, along with an increase in sphingomyelin, but were not statistically
significant (Table S3-S5).

Fig. 3. False colored Raman maps showing the peak ratio at 1447 / 1266 cm−1 for a single
brain tissue sample from Sham (a), mTBI (b), and STBI (c) groups. d-f, Corresponding
Raman maps of ipsilateral tissue of retina from the same mice. Raman maps for all samples
are shown in Fig. S5-S6.
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Fig. 4. a, Change in the relative contribution from cardiolipin for sham, mTBI and sTBI.
Boxplot shows the NNLS coefficient fitted to the average map spectrum measured from
each brain sample at the injury site, in the range 1200-1714 cm−1. A statistically significant
difference determined by one-way ANOVA exists in cardiolipin for mTBI (p = 0.0090) and
sTBI (p = 0.0011) compared to the sham. There is no statistically significant difference
between mTBI and sTBI (*p < 0.05, **p < 0.01). b, Spectra for cardiolipin (using data
from Krafft et al. [19]) and average spectra for brain tissue from sham and sTBI.

4. Discussion

Through the use of SKiNET, subtle changes to spectral features have been identified for TBI,
further highlighting the value of SOMs in the analysis of Raman spectra. The observed change
to the band 1266 cm−1 has been shown to be present for both the brain and retina, proportional
to injury severity (Fig. 3). However, whilst Raman maps of brain tissue show a strong and
uniform relative decrease at 1266 cm−1, tissue from the retina appears more heterogeneous. This
suggests that future applications of the technology may require targeted scanning over specific
areas of the retina (e.g. optic disc), and identify a number of spectra above a certain threshold for
TBI. Furthermore, the change seen in Fig. 3 was not observed consistently across all samples,
especially from contralateral tissue (Fig. S6). One implication is that a change to a single Raman
band in isolation is not enough to classify tissue, emphasizing the importance of tools such as
SKiNET, which use all of the available data.
From brain tissue, obvious and consistent changes were observed to spectra in response to

injury, which is in contrast to the subtle changes seen in the previous work by Surmacki et al.
[8]. An explanation for this discrepancy is that we collected a large number of spectra over an
area for each sample, whilst following the surface topography. Hemorrhaging that was clearly
visible in the contusion core from mTBI and sTBI samples of the brain (Fig. 1(a)) led to a
strong background autofluorescence, which we have attributed to the near infrared absorption of
deoxyhemoglobin [23]. Whilst this did not effect measurements from the retina, this may have
led to artifacts in the baseline correction, such as the small bands observed between 1447 and
1660 cm−1.
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4.1. Biochemical attribution

Attribution and deconvolution of Raman spectra to biological species from spectra of tissue
remains challenging, which we have attempted through the use of NNLS fitting. The choice of
fitting library followed previous qualitative analysis [8], and included cardiolipin and cyctochrome
c as markers of mitochondrial activity. Cardiolipin is found exclusively in the inner mitochondrial
membrane, playing a crucial role in cell metabolism and signaling; including apoptosis. A
decrease in cardiolipin concentration following cortical impact has recently been shown using
mass spectrometry, where both the importance in relation to TBI and opportunity for future
therapeutics were highlighted [16]. Furthermore, the release of cardiolipin microparticles
following TBI induced cell damage has been show to compromise the blood brain barrier, and so
plays a major role in the resulting biochemical cascade and metabolic disruption [24]. These
findings are also consistent with earlier studies using Raman spectroscopy to assess TBI in mice,
where the authors concluded a link between the observed spectral changes and apoptosis via
comparison to immunohistochemistry of the samples [25]. Cytochrome c is a protein found
in the inner membrane of mitochondria, where a complementary change to cardiolipin was
expected. Small coefficients were fitted for cytochrome c in the mTBI and sTBI groups, which
were not present in the sham group. This adds additional weight to the conclusion that the
observed changes in response to injury are a result of metabolic distress. Although these results
are encouraging, it should be noted that the spectral bands associated with cardiolipin are also
present in several proteins, and so these changes cannot solely be attributed to cardiolipin [26].

4.2. Translation and future work

Despite the obvious challenges for Raman spectroscopy of the eye, it appears to be an area of
active development, with Stiebing et al. [13] recently showing how spectra can be safely collected
from ex-vivo human retina using a synthetic model of the optical parameters of the eye, in place
of a microscope objective. The spectra acquired through such a low numerical aperture geometry
are inevitably noisy, or require long acquisition times. In the present study, the important issue of
eye safety limits have not been addressed, and a traditional Raman microscope geometry used.
However, short acquisition times meant that individual spectra used as training inputs were noisy
and yet, via SKiNET these were used to accurately identify TBI severity. Now that we have
established a preliminary proof of concept, a study using a larger animal model of TBI (e.g.
porcine) could be used demonstrate in-vivo viability.

5. Conclusions

For the first time, we have shown that Raman spectroscopy can be used to effectively and
accurately identify TBI from tissue samples of the retina, coupled to chemical changes from a
cortical impact to the brain. Machine learning using the SOMDI and SKiNET has been used to
extract the subtle spectral changes present from the retina, and shown these to be in line with the
measured changes to brain tissue. Consistent changes were observed in particular for the band
at 1266 cm−1 both in brain and retina tissue for mTBI and sTBI, when compared to the sham
group. Raman spectroscopy represents a unique opportunity for TBI monitoring throughout the
patient journey from pre-hospital assessment, to intensive care and follow up examinations. In
demonstrating a fundamental ability to study chemical changes from eye tissue as a result of TBI,
we begin to push the boundaries of Raman spectroscopy of the eye beyond purely ophthalmic
applications; opening a new window to study neurological changes.
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Fig. S1. Illustration of data analysis workflow for retina tissue using SKiNET. Spectra
measured from Raman maps (a) of flat mounted retina (n=6) are grouped according
to injury state (b). A 20 % partition of the data is randomly selected and reserved
as test data (c). The remaining 80 % is input into SKiNET, which directly provides
dimensionality reduction (SOM), feature extraction (SOMDI) and classification d.
SKiNET is optimized on the training data using cross validation, and adjusting the
available parameters (number of neurons, initial learning rate and number of training
steps) to maximize the classification accuracy on the training data. Finally, the optimized
model is shown the previously unused test data and asked to classifify each spectrum as
either sham, mTBI or sTBI (e).
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Fig. S2. Average Raman spectra collected from the injury site on left hemisphere of
brain (n=6) for mTBI (a), sTBI (b), and sham (c) groups. Data for each tissue sample
were collected as a Raman surface map (400 points) following the surface topography.
d-f, Average Raman spectra for sham, mTBI and sTBI samples following baseline
subtraction using an intelligent spline fit.
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Fig. S3. Average Raman spectra collected from ipsilateral (IL) and contralateral (CL)
flat mounted retina (n=6) for mTBI (a), sTBI (b), and sham (c) groups. Data for each
tissue sample were collected as a Raman surface map (400 points) following the surface
topography. d-f, Average Raman spectra for sham, mTBI and sTBI samples following
baseline subtraction using an intelligent spline fit.

Model Sham (%) mTBI (%) sTBI (%)

Bilateral 69.4 (± 0.9) 75.1 (± 0.9) 82.0 (± 1.4)

Ipsilateral 81.5 (± 0.8) 76.7 (± 1.9) 86.2 (± 1.4)

Contralateral 76.6 (± 1.6) 76.6 (± 1.2) 88.7 (± 0.9)

Table S1. Classification accuracy of TBI using Raman spectra of retina, modeled
using data from both eyes (bilateral), eyes from the side of injury only (ipsilateral) and
contralateral eyes. Results show the average over 10 SOM initializations and standard
deviation in brackets.



Predicted

Sham (%) mTBI (%) sTBI (%)

A
ct
ua
l Sham (%) 67.8 24.9 7.3

mTBI (%) 17.6 76.1 8.6

sTBI (%) 8.8 13.6 77.7

Table S2. Summary of cross-validation accuracy as a confusion matrix for: sham,
mTBI and sTBI from flat mounted mouse retina (both eyes) on 80 % partition of
training data. Model trained using 400 neurons, with an initial learning rate of 0.2, and
57600 training steps.

Lipid #07 #08 #09 #64 #65 #69 Average

Cardiolipin 0.74 0.71 0.72 0.73 0.71 0.72 0.72

Cholesteryl ester 0 0 0 0 0 0 0

Cholesterol 0.17 0.19 0.21 0.16 0.17 0.16 0.18

Cytochrome C 0 0 0 0 0 0 0

Galactocerebroside 0 0 0 0 0 0 0

Ganglioside 0 0 0 0 0 0 0

Sphyingomyelin 0.07 0.08 0.04 0.09 0.10 0.10 0.08

Phosphatidylcholine 0 0 0 0 0 0 0

Phosphatidylserine 0 0 0 0 0 0 0

Phosphatidylinositol 0 0 0 0 0 0 0

Phosphatidylethanolamine 0 0 0 0 0 0 0

Sulfatide 0 0 0 0 0 0 0

Triacylglyceride 0 0.01 0.01 0 0 0 0

R2 0.88 0.89 0.87 0.86 0.86 0.86 0.87

Table S3. Decomposition of contribution from brain lipids (rows) in average Raman
spectra of brain samples (columns) from contusion core for sham group using NNLS
fitting. Each sample was fitted against the set of component spectra in the range 1200 -
1714 cm-1.



Lipid #04 #05 #06 #66 #67 Average

Cardiolipin 0.24 0.53 0.41 0.49 0.50 0.43

Cholesteryl ester 0 0 0 0 0 0

Cholesterol 0.17 0.16 0.20 0.08 0.19 0.16

Cytochrome C 0.35 0.10 0 0.25 0.02 0.14

Galactocerebroside 0.14 0 0 0.15 0 0.06

Ganglioside 0 0 0 0 0 0

Sphyingomyelin 0 0.16 0.39 0 0.14 0.14

Phosphatidylcholine 0.13 0 0.05 0 0.10 0.06

Phosphatidylserine 0.016 0 0 0 0 0

Phosphatidylinositol 0 0 0 0 0 0

Phosphatidylethanolamine 0 0 0 0 0 0

Sulfatide 0 0 0 0 0 0

Triacylglyceride 0 0.04 0 0 0.08 0.03

R2 0.8 0.84 0.92 0.75 0.89 0.84

Table S4. Decomposition of contribution from brain lipids (rows) in average Raman
spectra of brain samples (columns) from contusion core for mTBI group using NNLS
fitting. Lipids that have non-zero fitting coefficients in the sham group are highlighted
in bold. Each sample was fitted against the set of component spectra in the range 1200 -
1714 cm-1.



Lipid #01 #02 #03 #61 #62 #63 Average

Cardiolipin 0.17 0.51 0.57 0.19 0.02 0.63 0.35

Cholesteryl ester 0 0 0 0 0 0 0

Cholesterol 0.18 0.19 0.22 0.16 0.13 0.1 0.16

Cytochrome C 0.41 0 0.07 0.22 0 0 0.12

Galactocerebroside 0 0 0 0 0 0 0

Ganglioside 0 0 0 0 0 0 0

Sphyingomyelin 0 0.32 0.1 0.18 0.12 0.25 0.16

Phosphatidylcholine 0.02 0 0 0.22 0.57 0 0.13

Phosphatidylserine 0.01 0 0 0 0 0 0

Phosphatidylinositol 0 0 0 0 0 0 0

Phosphatidylethanolamine 0 0 0 0 0 0 0

Sulfatide 0 0 0 0 0 0 0

Triacylglyceride 0.27 0.03 0.03 0.04 0.29 0.06 0.12

R2 0.62 0.90 0.86 0.84 0.77 0.84 0.81

Table S5. Decomposition of contribution from brain lipids in average Raman spectra of
brain samples from contusion core for sTBI group using NNLS fitting. Lipids that have
non-zero fitting coefficients in the sham group are highlighted in bold. Each sample
was fitted against the set of component spectra in the range 1200 - 1714 cm-1.
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Fig. S4. a, Clustering of Raman spectra from the brain in the contusion core for sTBI
(orange) and sham (black) groups using a SOM. b, Features extracted (SOMDI) from
SOM shown in (a), highlighting the Raman bands most influential to neurons in the
SOM for sham and sTBI groups. c, Clustering of mTBI (purple) and sham (black)
Raman spectra from the brain in the contusion core using a SOM. d, Features extracted
from SOM in c, highlighting Raman bands for sham and mTBI groups.
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Fig. S5. False colored Raman maps for whole brain tissue from the contusion core, and
for corresponding ipsilateral flat mounted retina samples. Maps are colored according
to the ratio between the bands at 1447 and 1266 cm-1.
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Fig. S6. False colored Raman maps for whole brain tissue from the contusion core,
and for corresponding contralateral flat mounted retina samples. Maps are colored
according to the ratio between the bands at 1447 and 1266 cm-1.


