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Abstract 

 
Regional reconstructions of air temperature over the past millennium provide 

critical context for ongoing climate change, but they are temporally limited 

in the recent period or absent for many parts of the world. We demonstrate 

the use of latewood blue intensity (LWB) to reconstruct current-year grow- 

ing (warm) season maximum temperatures (Tmax) in the low-to-mid latitudes 

(30°-50°N) of western North America. We present a new tree ring network 

comprised of 26 LWB chronologies developed from living, high-elevation Engel- 

mann spruce (Picea engelmannii Parry ex Engelm.) sampled across the western 

United States. The LWB parameter shows strong, positive (r =0.65-0.73), and 

temporally-stable correlations with growing season Tmax. From this network we 

present 4 individual Tmax reconstructions, which characterize regional temper- 

ature histories across western North America from northern Mexico to southern 

British Columbia over the past 4 centuries. Our comparison of these 4 tem- 

perature reconstructions highlights the spatial patterns of regional temperature 

trends throughout time. These reconstructions provide important updates and 
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increased data point density to the tree ring temperature proxy network of 

the Northern Hemisphere. We highlight the use of blue intensity methods at 

both low- and mid-latitude upper tree line locations to increase the presence 

of strongly temperature-sensitive records at increasingly lower latitudes of the 

Northern Hemisphere. 

Keywords: dendrochronology, climate change, latewood blue intensity, 

temperature reconstruction 
 

 

1. Introduction 

 
The instrumental temperature record of the past ca. 120 years is too short 

for contextualizing recent temperature trends over longer timescales. Paleocli- 

mate reconstructions, particularly derived from tree ring (TR) records, provide 

valuable estimates of past temperature variability that extend beyond the obser- 

vational period (Jones et al., 1998; Mann et al., 1999, 2009; Wahl & Ammann, 

2007; Christiansen & Charpentier-Ljungqvist, 2012; Cook et al., 2013; Linder- 

holm et al., 2015; Esper et al., 2018). Currently, the Northern Hemisphere 

(NH) contains numerous regions that are underrepresented by the coverage of 

long (e.g multi-century) TR-based paleoclimate proxies (Wilson et al., 2016; 

Anchukaitis  et  al.,  2017;  Köse  et  al.,  2017).  This  study  addresses  the  develop- 

ment of a collection of TR-derived proxy records in a region underrepresented 

by updated paleo-temperature records—the temperate zone of western North 

America—and presents a substantial improvement to the spatial coverage of 

paleo-temperature TR proxy record coverage across the NH paleo-network. 

Within the family of paleoclimate proxy records, tree rings are valuable be- 

cause they provide exactly-dated, well-replicated and sub-annually-resolved data 

that can extend back in time for multiple millennia, allowing for the analysis of 

low-frequency variability and trends (Cook & Briffa, 1990; Briffa et al., 2004). 

As novel dendrochronological techniques are developed and refined, tree rings 

have become one of the most important sources of late Holocene paleoclimate 

information, especially in the context of providing information about past hy- 
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droclimate and temperatures over increasingly longer time periods and across 

broader areas of the NH (D’Arrigo et al., 2006; Cook et al., 2007; Schneider 

et al., 2015; Stoffel et al., 2015; Cook et al., 2015; Wilson et al., 2016; An- 

chukaitis et al., 2017; Esper et al., 2018; Cook et al., 2020). Most large-scale 

temperature reconstructions are based on either a single index, such as one 

hemispheric or global mean derived from many points (e.g. Frank et al. 2010; 

Masson-Delmotte et al. 2013) or a spatially-resolved climate field reconstruc- 

tion, emphasizing regionality before the calculation of large-scale means (e.g. 

Tingley et al. 2012; Anchukaitis et al. 2017). 

A synthesis of continental-to hemispheric-scale temperature reconstructions 

indicates a coherent, unprecedented increase of surface air temperatures within 

the last century (Mann et al., 1999; Ahmed et al., 2013; Masson-Delmotte et al., 

2013). While such large-scale, single-point mean climate indices provide robust, 

large-scale estimates for attribution studies (Zhai et al., 2018; Stott et al., 2010), 

they do not perform well for examining regional-scale (100-500 km) temperature 

variability and relationships with internal modes of climate variability (Neukom 

et al., 2014; Wilson et al., 2016; Neukom et al., 2019; Christiansen & Ljungqvist, 

2017; Maxwell et al., 2020). The challenges associated with the accuracy and 

reliability of large-scale temperature reconstructions could be due to changes in 

strength of the predictor-predictand relationship across geographic space (e.g. 

function of distance decay), especially in places where the data network is spa- 

tially heterogeneous or sparse. The concurrent assumptions that [1] proxies 

must be robust estimators of local temperature and [2] the large-scale mean 

is well-represented by a network of local temperature datasets (Christiansen 

& Ljungqvist, 2017) may not be well-maintained as the number of records de- 

creases back in time. Relationships between local and NH mean temperatures 

are largely dependent upon geography, thus, the correspondence of interan- 

nual local temperature variability to NH mean temperatures varies across space 

(Christiansen & Ljungqvist, 2017). To account for regional variability that is 

often muted in large-scale reconstructions, finer-scale models offer the benefits 

of more accurately characterizing local-to-regional scale climate variability and 
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geographic expressions of atmospheric circulation patterns, radiative forcing, 

and ocean-atmosphere variability (Anchukaitis et al., 2017). 

Across the NH, TR-derived temperature reconstructions are most highly con- 

centrated at high latitudes (>50°N), where temperature is expected to be the 

most limiting factor on tree growth (e.g. Fritts 1976; Jacoby & D’Arrigo 1989; 

Briffa  et  al.  1992,  2001;  Anchukaitis  et  al.  2013;  Wilson  et  al.  2014;  Björklund 

et  al.  2014;  Rydval  et  al.  2014;  Linderholm  et  al.  2015;  Björklund  et  al.  2015; 

Wilson et al. 2017; Rydval et al. 2017; Fuentes et al. 2018; Wilson et al. 2019; 

Björklund  et  al.  2019).   At  high  latitudes,  spatially-resolved  TR  proxies  have 

been applied successfully for the evaluation of past temperature forcing by vol- 

canism (Anchukaitis et al., 2017; Edwards et al., 2021) and the timing and 

amplitude of past cool and warm events such as the Medieval Climate Anomaly 

(MCA), the Little Ice Agre (LIA), and the 20th-21st century warming trend 

(D’Arrigo et al., 2006; Schneider et al., 2015; Wilson et al., 2016). The same 

principle of temperature as a limiting factor for trees at high-latitudes (e.g. 

D’Arrigo et al. 2001; Gervais & MacDonald 2001; Porter et al. 2013), also ap- 

plies in high-elevation zones of low-to-mid-latitude, montane environments. 

Recent progress to broaden the latitudinal extent of the NH TR temperature 

proxy network to the lower latitudes (< 45°N, e.g.  Briffa et al. 2001; Büntgen 

et  al.  2008;  Dorado  Liñán  et  al.  2012;  Büntgen  et  al.  2017;  Heeter  et  al.  2019; 

Esper et al. 2020; Reid & Wilson 2020; Heeter et al. 2020; Harley et al. 2020a; 

Büntgen et al. 2005; Fan et al. 2009; Buckley et al. 2018) can be attributed to [1] 

an increased number of investigations of high-elevation, temperature-sensitive 

trees, and [2] the development and application of additional TR metrics other 

than tree ring width (TRW) such as maximum latewood density (MXD; Schwe- 

ingruber et al. 1978) and blue intensity (BI; McCarroll et al. 2002). These 

studies demonstrate that when TRW serves as a weak temperature predictor 

due to complex climate-growth relationships at lower latitudes (<40°N) (George 

&  Ault,  2014;  Fritts,  1976;  Wilson  et  al.,  2016;  Büntgen  et  al.,  2008;  Reid  & 

Wilson, 2020), ring-density parameters (e.g. MXD and BI) can still be strongly 

representative of local to regional temperatures. 
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Over the last decade, BI-derived temperature proxies have become impor- 

tant additions to the MXD and TRW temperature proxy network across the 

NH. BI uses the light absorbance properties of wood compounds that comprise 

the cell walls (e.g. lignin) to obtain a measure of raw light reflectance across the 

earlywood and latewood zones of an annual growth ring. Examination of mini- 

mum BI by McCarroll et al. (2002) showed the latewood reflectance exhibited a 

strong, negative relationship with MXD (r = -0.95, p <0.01), and thereby were 

the first to suggest that BI could be an important and effective surrogate for 

MXD to examine annual to decadal-scale changes in temperature. As raw BI 

measurement data are inversely correlated with MXD (i.e. a dense, dark late- 

wood will express low reflectance), current protocol inverts the raw latewood BI 

(latewood blue intensity; LWB) to allow the same detrending procedures to be 

used for both LWB and MXD data (Wilson et al., 2014; Rydval et al., 2014). 

As such, the LWB metric response to summer maximum temperature (Tmax) 

is typically very similar to that of MXD. Aside from exhibiting stronger, posi- 

tive relationships with instrumental summer temperature data than TRW (e.g. 

Wilson et al. 2014), both MXD and LWB are shown to exhibit less signal con- 

tamination from biological memory of non-climatic factors and express similar 

auto-correlative properties to the instrumental data (Esper et al., 2014; Rydval 

et al., 2018; Lücke et al., 2019). 

Continued efforts by the paleoclimate community to develop and archive 

robust temperature-proxy data are apparent by chronology network synthe- 

ses (e.g. Briffa et al. 1988, 1992; Schweingruber et al. 1993; Schweingruber 

& Briffa 1996), and most recently, the creation of NTREND-2016, a publicly 

available multi-TR-proxy dataset (Figure 1), as well as the PAGES 2K multi- 

proxy dataset (Consortium et al., 2017). While the spatial representation of 

paleo-temperature proxies in many parts of the low- and mid-latitudes of the 

NH continues to improve, many of these pre-existing proxies do not include the 

most recent period (e.g. Briffa et al., 2001); currently only a few TR based 

temperature reconstructions from the low-to-mid-latitudes of the NH extend 

past ca. 1990. As such, many of these records cannot be calibrated with in- 
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strumental climate data over the last ca. 20−30 years—a period characterized 

by unprecedented and extreme climatic trend. Therefore, temperature-sensitive 

records that extend to the most recent period are valuable, because they provide 

a more complete understanding of climate-tree growth relationships and past 

climate variability (Larson et al., 2013). 

To date, few TR-based temperature reconstructions, which characterize his- 

torical regional temperature variability, exist for the western continental United 

States (US) (Douglas & Stockton, 1975; Graumlich & Brubaker, 1986; Briffa 

et al., 1992; Graumlich, 1993; Biondi et al., 1999; Salzer et al., 2014a; Heeter 

et al., 2020, 2021; Martin et al., 2020). However, most of these records end prior 

to ca. 2000, and thus do not contextualize recent warming trends. The western 

US is a region within the NH where improvements to the temperature proxy 

network are needed both spatially and temporally. In this paper, we present 

a temperature-sensitive TR proxy network comprised of LWB records from 26 

sites across the western US. We use this new network to produce 4 regional 

reconstructions of growing-season Tmax that represent the spatial temperature 

variability not only across the low-to-mid latitudes of the western US, but also 

throughout southern Canada and northern Mexico. Temporally, these regional 

reconstructions include the most recent decade (post 2010 CE) and span sev- 

eral hundred years back in time. The temporal span of these reconstructions 

is valuable in that they track recent trends in regional temperature and their 

multi-century contextualization. Further, we emphasize the potential for BI 

parameters to fill data gaps in other low-to-mid-latitude regions globally. 

 

2. Methods 

 
2.1. Study location 

 

Data for this study are derived from a network of 26 sample sites across 

various regions of the western continental US (Figure 1; Table 1). All site-level 

TR chronologies are derived from living Engelmann spruce (Picea engelmanni 

Parry ex Engelm.). Sites were visited between 2001 and 2020, with the major- 
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ity of samples collected during the summers of 2017 and 2018. At each site, we 

used a hand-held increment borer to extract cores from 10 to 25 living trees, 

with 2 cores taken per tree at 1.3 m above the ground. We targeted P. en- 

gelmannii for this study, because this species is widely distributed across the 

most temperature-limited environments (elevations >3,000 m) of the western 

US. Further, P. engelmannii was shown previously to be favorable for BI meth- 

ods due to its light-colored wood, characterized by a lack of a visual color change 

between heartwood and sapwood, and a lack of resin content (e.g. Wilson et al. 

2014; Heeter et al. 2020). 

 
2.2. Sample preparation and data collection 

 

Each core sample was processed with the intent of collecting both TRW and 

LWB data. As such, we followed careful BI sample protocols to ensure high 

quality surface preparation, including achieving a flat sample surface plane and 

the removal of samples exhibiting discoloration due to resin content or fungal 

staining. After collection, cores were dried and mounted in the lab. Given that 

BI measurements can be affected by the presence of mobile wood compounds not 

confined to an individual annual ring, such as water and resins, chemical-based 

resin extraction is often required prior to BI measurement (e.g. 24 °C 99.5% 

acetone bath; Rydval et al. 2014; Buckley et al. 2018). Because the radial sec- 

tions of P. engelmannii cores were typically free of excessive resins and were 

uniformly light-colored with no obvious heartwood/sapwood color change, the 

samples for this study were not chemically treated. However, in recent decades, 

widespread activity from high-density populations of spruce beetle (Dendroctous 

rufipennis Kirby [Coleoptera: Scolytinae]) has caused large-scale forest distur- 

bances across western North America. The fungal symbiont most frequently 

associated with spruce beetle (95% of individuals) is Leptographium abietinum 

(Peck) M.J. Wingf. (Aukema et al., 2005; Cardoza et al., 2008; Six & Bentz, 

2003), a blue-staining endophloedic species (Davis et al., 2018). P. engelmannii 

are particularly prone to discoloration from blue-stain fungus, which presents a 

potential problem for measuring BI on this species. For this reason, we avoided 



9  

 
 
 

 

sampling any trees with evidence of spruce beetle infestation. Cores were also 

examined for any evidence of blue staining and omitted from further analysis if 

present. 

After examining cores for discoloration, we saturated the cells of the mounted 

samples by brushing the surfaces with water. We incrementally shaved all sat- 

urated samples with a core-microtome until a flat planar surface was achieved 

(Gärtner & Nievergelt, 2010).  Lastly, all shaved samples were polished with 40 

micron sanding paper and treated with compressed air to remove any residual 

sawdust particles from the intercelluar pores or cracks in the wood. 

Prepared samples were scanned as JPEG images on a calibrated Epson 12000 

XL flatbed scanner at 3200 dpi. We initially calibrated our scanner using the 

Silverfast software in combination with an IT8 7.2 calibration card. We then 

measured TRW of the scanned cores to 0.001 mm precision using the software 

CooRecorder (Larsson, 2014). After all samples were measured, visual TRW 

cross-dating was statistically validated using the software COFECHA (Holmes, 

1983). After absolute dating was established with TRW, we obtained LWB data 

for all samples in CooRecorder (Cybis, 2020). 

 
2.3. Chronology development and regionalization 

 

We developed TRW and LWB chronologies for each of the 26 sample sites, 

totalling 52 chronologies. As all chronologies showed non-climatic, growth- 

related age trends (Fritts, 1976), we compared multiple approaches to series 

detrending (e.g. Negative Exponential, Age-dependent, 2/3 spline) in both 

the ARSTAN (Cook & Holmes, 1996) and SignalFree (Melvin & Briffa, 2008) 

frameworks. The examination of multiple detrending options revealed mini- 

mal differences between chronology variants, however, we found that the best 

chronologies were consistently produced when calculated as power-transformed 

residuals (rather than ratios) in the SignalFree (SF) framework, detrended with 

the Age-dependent spline (SF-ad); we applied SF-ad detrending to all chronolo- 

gies in the network. We used an expressed population signal (EPS) value of 

0.85 to identify the period when chronology sample depth is not representative 
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of the theoretical perfect chronology. Common signal fidelity of each chronology 

was assessed using the RBAR (average correlation between series; Fritts 1976) 

value. 

We examined the spatio-temporal relationships between the detrended TRW 

and LWB chronologies and local (within 0.5°of the sample location) CRU TS 

4.04 0.5°(land) Tmean and Tmax data (Harris et al., 2014) using a Pearson cor- 

relation analysis in KNMI Climate Explorer (Trouet & Van Oldenborgh, 2013) 

over the period spanning 1920−present. This period best reflects when the rep- 

resentation of high-elevation areas by montane, climate-data stations is most- 

reliable and consistent across the western US. Because the TRW chronologies 

showed consistently weak correlations with CRU Tmean and Tmax (Harris et al., 

2014) (see section 3.1; Figure S1), we focus the remaining description of methods 

to LWB predictors. 

We sorted all LWB chronologies into sub-regional groupings using a 2 step 

process. First, we assessed the spatial homogeneity between all chronologies 

using principal component analysis (PCA; Husson et al., 2016) over the com- 

mon period shared by all 26 chronologies (1920−2000). Following the Kaiser- 

Guttman rule (Guttman, 1954; Kaiser, 1960), we retained the first n eigenvec- 

tors with eigenvalues >1.0. The network-wide PCA on the 26 LWB chronologies 

resulted in 3 PCs with eigenvalues >1.0, explaining a cumulative 68.5% (PC1: 

45.2%, PC2: 14.4%, PC3: 8.9%) of the overall variance amongst the LWB 

chronologies. Second, regional groupings were defined using a complete linkages 

hierarchical cluster analysis (HCA) (Revelle, 1979) on a Euclidean distance ma- 

trix created from loading values of LWB chronologies to the final subset of PCs 

using the R package FactorMineR (Husson et al., 2016). Results of the com- 

plete linkage HCA on the loading values of the chronologies to PC1−3 suggested 

optimal level of division was achieved at a height of 0.70 (Figure S2). This 

division level allowed us to group chronologies into 4 geographic regions: the 

Northern (NR), Central (CR), and Southern Rocky Mountains (SR), and the 

Intermontane Plateau (IP). 

Once individual chronologies were sorted into regions, we examined each site 
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chronology against regionally-averaged CRU TS 4.04 0.5°temperature (Tmax, 

Tmean), precipitation, and self-calibrating Palmer’s Severity Drought Index (scPDSI) 

spatial data fields (Harris et al., 2014) for each region in Climate Explorer. Since 

LWB predictors consistently showed the strongest relationships with regionally- 

averaged CRU Tmax over the common instrumental period (Figure 2; Figure 

S3), we proceeded with the CRU Tmax dataset for the subsequent reconstruc- 

tions. To determine the target seasonality of the subsequent reconstructions, we 

compared Pearson correlations across multiple months to determine which com- 

bination of months would result in the strongest positive relationship between 

the instrumental record and the predictors for each region. 
 

2.4. Regional reconstruction models 
 

Using the regional groupings identified by the HCA, we developed 4 regional 

Tmax reconstructions using a nested principal components regression (PCR) ap- 

proach, which accounts for the decrease in number of predictor chronologies back 

through time (Cook et al., 1999). Across each regional grouping, we initially 

pre-whitened the predictor LWB chronologies and CRU Tmax data to provide a 

conservative estimate of climate-predictor relationships that are not subject to 

inflation via auto-correlation. Chronologies were retained for modeling if they 

were positively and significantly (p<0.05) correlated to the regionally-averaged 

target temperature data during the common period (shared by the CRU Tmax 

data and the chronology) using the Pearson, Robust Pearson, and Spearman cor- 

relation coefficents (Table S3). The original chronologies (non-pre-whitened) of 

significant predictors were then used in the PCR to develop the reconstructions. 

Following the Kaiser-Guttman rule, the first n eigenvectors with eigenvalues >1 

were retained for the PCR. We determined the final subset of PCs by using the 

minimum Akaike information criterion (AIC), which includes a penalty term for 

increasing the number of predictors in the model (Akaike, 1974). 

We use 1920 as the starting year of the common calibration period because 

prior to this date, there are many places across the western US where repre- 

sentation of high-elevation areas by montane, climate-data stations is scarce or 
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inconsistent. For this same reason, a similar starting year for the calibration 

period was used for the temperature reconstruction by Heeter et al. (2020) in 

north-central New Mexico, US. The end of the common calibration date depends 

on the common period shared by all predictors of each region. The seasonality of 

each regional reconstruction was determined by performing a series of regression 

experiments between target CRU temperature data and the LWB predictors. 

For each region, we split the instrumental period into 2 periods (”early” and 

”late”) to validate and cross-validate the reconstruction model, as well as to 

test for stability over time (Table 2). We performed model validation by cal- 

culating cross-calibration statistics for the full period and verification statistics 

for the early period. This practice is common, as the earlier portions of the 

instrumental record often possess greater uncertainty than the latter part of 

the record (Cook et al., 2013) We used 2 goodness-of-fit tests to validate the 

models: the reduction of error (RE) and coefficient of efficiency (CE) (Fritts, 

1976; Cook et al., 1999). When RE values (ranges from -∞ to +1) are positive, 

the calibration model is a more skillful predictor of the target data than the 

mean of the instrumental data during the calibration period. Although CE has 

the same range and calculation, a positive CE value is more difficult to obtain 

because it relies on the verification period mean for a baseline of predictive skill. 

The validation statistics produced were the calibration and verification period 

coefficient of determination (CRSQ and VRSQ), and the validation period re- 

duction of error and coefficient of efficiency (VRE and VCE). To quantify model 

uncertainty, we used the maximum entropy bootstrapping method (MEBoot) 

(Vinod et al., 2009) to produce 300 reconstruction replicates. 

 
2.5. Reconstruction analyses 

 

We first transformed reconstructed values to anomalies calculated over the 

full period of each reconstruction. We then calculated the top 5 single-year 

cool and warm anomalies for each regional reconstruction. We conducted a 

severity-duration analysis (González & Valdés, 2003) on reconstructed values of 

at least 2+ years to determine the magnitude (average cumulative departure 
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from the long-term mean), duration (time span of each event), and intensity 

(duration divided by the magnitude) of warm and cool events. Duration and 

magnitude of each event were ranked and compiled to give each event an overall 

rank score. The top 5 warm and cool events are based on the overall score. 

We quantified and assessed the degree of between-group and within-group syn- 

chrony (the estimated proportion of common inter-annual variance; âc) of each 

regional reconstruction using the Dendrosync package in R (Alday et al., 2018). 

In order to better visualize and compare decadal trends across each region, we 

also transformed reconstructed values for each time series into z-scores based 

on the mean and standard deviation of the common reconstructed period and 

applied an 11-year running average smoother. We additionally compared corre- 

spondence between our record and other regional and hemispheric-scale temper- 

ature reconstructions using a Pearson’s correlation analysis over the common 

period of all reconstructions. 

 

3. Results  and  Discussion 

 
3.1. LWB as a temperature proxy in western North America 

 

The preliminary response of the individual LWB chronologies and their TRW 

counterparts to local temperature data consistently shows that LWB chronolo- 

gies exhibit a stronger relationship with current-year growing (warm) season 

temperatures than TRW (Figure S1). With the exception of a few sites, the 

LWB chronologies in this network are not highly correlated with their respec- 

tive TRW site chronologies (Table S1). While Salzer et al. (2014a) demonstrate 

that TRW can be a successful parameter for developing a low-frequency temper- 

ature reconstruction for a nearby region of North America (Great Basin), our 

findings highlight the utility of BI methods for creating temperature-sensitive 

proxies from tree rings when conventional TRW series do not show as strong 

of correlations with instrumental temperature data. We initially experimented 

with using both TRW and LWB for the proposes of reconstructing temperature, 

but the addition of the few TRW chronologies that were significantly (p<0.05), 
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but weakly correlated to temperature, to the predictor pools did not lead to any 

improvements in the models achieved when solely using LWB predictors.  Briffa 

et al. (1992) reported similar findings while experimenting with the inclusion of 

TRW predictors in their MXD-based temperature network for the western US. 

Like the presentation of the MXD network presented by Briffa et al. (1992), pro- 

ceeding with just the LWB predictors allows us to better emphasize the efficacy 

of the LWB metric for the creation of this temperature-sensitive TR network. 

The replication needed to attain the 0.85 EPS threshold ranges from 3−13 

trees, with an average of 6 trees. RBAR values range from 0.26−0.65, with an 

average of 0.36 (Table 1). These chronology statistics are consistent with find- 

ings from Wilson et al. (2014), who presented BI-derived temperature recon- 

structions using P. engelmannii from 7 sites across southern British Columbia, 

Canada. 

At the local scale (within 0.5°of each site), the LWB chronologies exhibit 

higher correlations with Tmax than with Tmean, which is consistent with other 

BI and MXD studies in North America (e.g. Wilson & Luckman 2003; Luck- 

man & Wilson 2005; Wilson et al. 2014, 2019; Heeter et al. 2020; Harley et al. 

2021). All temperature-LWB relationships are time-stable (Table 1). While 

sampling protocol aimed to avoid specimens visibly or knowingly influenced by 

ecological disturbance, we suspect that the chronologies at 3 sites (ABA, PLS, 

TUS) show the effects of heightened spruce beetle (Dendroctonus rufipennis 

Kirby) outbreaks in southern Utah during the turn of the 21st century (DeRose 

et al., 2011). The original sample collections from these 3 sites contained mul- 

tiple cores which were omitted due to the presence of blue staining across the 

outermost growth rings. For this reason, we truncated ABA to 2002, PLS to 

2000, and TUS to 2011. Because linkages have been shown between increased 

temperatures, heightened spruce beetle outbreak severity, and P. engelmannii 

mortality (DeRose et al., 2013; Pettit et al., 2020), targeting this tree species 

for future temperature reconstructions across the western US may warrant ad- 

ditional consideration of site-level land use and examination of disturbance his- 

tories (Trotsiuk et al., 2018). 
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3.1.1. Regional-level climate response 

All LWB chronologies show significant (p<0.05) and positive responses to 

CRU Tmax during at least 2 current-year growing season months (Figure 2). 

Across most regions, statistically significant (p<0.05) temperature response 

begins in March or April, and the optimum seasonal window concludes with 

September. For all regions, the strongest relationship between Tmax and the 

LWB chronologies over a single month occurs in August. This was expected, 

as the relationship between LWB and temperature has been widely shown to 

be strongest in late-summer months (Wilson et al., 2014; Heeter et al., 2020; 

Rydval et al., 2017; Wilson et al., 2019; Wiles et al., 2019; Heeter et al., 2021). 

Notably, the IP chronologies exhibit optimum response in the months of 

April, May, and August, with the June and July response being weak. Compared 

to the other 3 regions, the IP region simultaneously experiences the least amount 

of monthly precipitation and the highest mean and maximum temperatures 

during the mid-summer months (June and July) (Figure S4). We suspect that 

the decreased temperature response of IP LWB chronologies in June and July 

may be resultant of mid-summer temperatures exceeding the tolerance limits of 

trees in this region. The IP chronologies, many of which are located in the arid 

regions of southern Utah, exhibit the most strongly-negative correlations with 

regional target CRU scPDSI than any other region during June and July (Figure 

S3). Despite this characteristic, the IP chronologies do not show significantly 

negative correlations with precipitation during these months. Therefore, we 

suspect that the decreasing temperature response trend is less likely an artefact 

of a competing hydroclimate signal. A similar pattern of decreased mid-summer 

temperature response is also apparent with the NR LWB chronologies. However, 

unlike in the IP, where low precipitation is likely a limiting factor year-round 

regardless of temperature, the NR receives significantly less precipitation in June 

and July. The NR LWB chronologies show significant negative correlations with 

precipitation during these 2 months, thereby suggesting that this trend may be 

influenced by a competing hydroclimate signal during the mid-summer months. 
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Similar effects of reduced TR temperature-sensitivity during mid-summer can be 

seen in the LWB predictors developed in southern British Columbia and Alberta 

by Luckman & Wilson (2005) and Wilson et al. (2014).  Büntgen et al. (2017), 

who use MXD to reconstruct summer temperatures in the Spanish Pyrenees, 

suggest that a weakening of TR temperature sensitivity in mid-summer months 

due to increased drought stress likely occurred whenever past summers were 

exceptionally warm and dry. 

The SR chronologies express a strong temperature response, but over the 

shortest season compared to the other regions. This response may be impacted 

by the hydroclimate and evaporative demands related to temperature on TR 

growth in this region, as well as is likely artefact of negative correlations between 

Tmax and precipitation in this region during non-monsoonal months. Babst 

et al. (2016) suggest that annual growth of high-elevation conifers in the south- 

west US are primarily reliant on spring and monsoon precipitation, rather than 

winter precipitation. We suspect that the strong monsoonal influence of the SR 

during July−September (Figure S4; US Climate Data 2020) is potentially influ- 

encing the onset and duration of seasonal temperature response in this region. 

Additionally, the P. engelmannii collected from some of the sites in the SR 

region (e.g. LOS) exist as disjunct populations near the southernmost extent 

of the species geographic range (Little & Viereck, 1971). The shortened dura- 

tion of strong temperature response of southernmost chronologies within the SR 

supports the principle of ecological amplitude (Griggs, 1914; Fritts, 1976; Holt 

& Keitt, 2005). This spatial pattern suggests that there may be differences in 

tree sensitivity to temperature between individuals toward the southern range 

periphery versus those toward the center of the species range and, further, may 

be evidence of the role of temperature in how climate change influences future 

species distribution patterns (Thuiller, 2004; Hill et al., 2011). 

We found that the optimum target season for the NR is May-August (MJJA), 

the CR is May-September (MJJAS), the IP is April-September (AMJJAS), and 

the SR is August-September (AS) (Figure 2; Table S2). Notably, the IP shows 

highest r −values (p<0.05) when April and May are included. Most of the 



17  

 
 
 

 

regional chronology pools display the highest r -values when computed over a 

longer growing season comprised of multiple months. The SR is the exception, 

displaying highest r -values when computed over 2 consecutive months in the 

late growing season (August and September). This finding is consistent with 

prior results indicating reduced temperature response of LWB to earlier growing 

season temperatures in this southernmost region (Heeter et al., 2020). 

The differences in seasonal duration of the P. engelmannii LWB response 

to Tmax across the historical species range (Figure 1; Little & Viereck 1971) 

is likely attributable to factors such as [1] distance to upper tree-line (Lloyd & 

Fastie, 2002; Salzer et al., 2014b; Elliott, 2011; Kipfmueller & Salzer, 2010), [2] 

proximity to the interior versus the periphery of the range (Amburgey et al., 

2018; McCullough et al., 2017; Herrero et al., 2013), or [3] differences in the tim- 

ing of cambial reactivation (indicating start of the growing season) (Deslauriers 

et al., 2003; Begum et al., 2010; Gruber et al., 2009; Harley et al., 2012) based on 

location. Regardless of cause, differences in seasonal response can be problem- 

atic for equitably comparing temperature responses of chronologies comprising 

broadly-distributed temperature proxy networks. Similarly, differences in sea- 

sonality of temperature response at the local level has important implication 

for studies emphasizing spatial analysis of climate proxies (e.g. Anchukaitis 

et al. 2017), which use a common seasonal target over a broader area; in the 

case where the optimum seasonal target for reconstruction differs across space, 

calibration results of the spatially-resolved version of the reconstructions may 

appear weaker than calibration results of more localized reconstructions with 

variable seasonal targets, such as this study. As such, differences in seasonal 

response should also be taken into account when comparing TR temperature 

predictors across regions. 

 
3.2. Reconstruction models 

 

3.2.1. Model validation 

Calibration and verification statistics are summarized in Table 2. The last 

year of the common calibration period of each model ranges from 2000−2015. 
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The IP common calibration period ends in 2000, because several chronologies 

in this group are truncated due to issues of ecological disturbance in the most 

recent years of growth. The NR common calibration period is simply limited to 

the earlier sample date of one of the NR chronologies (FKY). Although FKY 

does not extend past the year 2000, the scarcity of temperature-sensitive records 

in this part of North America warrants its inclusion. Forward nests were then 

applied as needed: 1 for the NR, 3 for the CR, 4 for the IP and, and 2 for the 

SR (Table 2; Table S4). The nested PCR models retain only the first PC for the 

NR, CR, and IP models, with PC1 explaining 71.2%, 79.5%, and 68.1% of the 

respective cumulative variance for each model. The PCR process retains the 

first 2 PCs for the SR, with PC1 (59.7%) and PC2 (13.4%) explaining 73.1% 

of the cumulative model variance. These results reflect the strong common 

temperature signal among intra-regional predictors identified by the HCA. 

 
3.2.2. Model strength and timespan 

The timespan of each model varies, with start year of each reconstruction 

occurring between the period 1623−1730 (Table 2). VRE and VCE statistics 

are positive for all nests across the entire reconstructed period (Table 2; Table 

S4) for each region, indicating that all reconstructions are skillful estimates of 

temperature through time (Cook et al., 2013). All reconstructions cover the 

most recent decades, spanning to 2018. To date, there are few published tem- 

perature reconstructions that adequately capture the first 2 decades of the 21st 

century in the calibration period (e.g. Fuentes et al. 2018; Heeter et al. 2020; 

Keyimu et al. 2020a,b; Heeter et al. 2021). RSQ values indicate robust model 

strength for each region, explaining at least 44% of the common period temper- 

ature variance (Table 2; Table S4). Model strength for these 4 reconstructions 

are comparable to other BI- and MXD-based temperature reconstructions for 

North America (Briffa et al., 1992; Wilson et al., 2014, 2019; Heeter et al., 2020). 

Comparatively, the SR model shows the strongest overall skill, explaining 54% 

of the overall instrumental temperature variance of the most well-replicated nest 

(1878-2014). While the CR is comparatively the weakest and shortest model, 
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it still accounts for 44% of the temperature variance of the most well-replicated 

nest (1850-2015). 

The relationships between the LWB chronology predictors and CRU Tmax 

data also show strong spatial correlations (Figure 3). We noted only slight 

increases in spatial correlations between non-transformed data and the first- 

differenced data, indicating that the LWB response is strong at both the inter- 

annual and multi-decadal timescales. While the highest correlations are centered 

over the immediate study areas, thereby highlighting the sub-regional differences 

in Tmax patterns across the western US, these data are strongly representative of 

(r > 0.60, p<0.05) maximum temperature across the entire western US, north- 

west Mexico, and parts of southern Canada. The broad spatial implications of 

these results suggest the possibility to extend the NH TR based temperature 

proxy network southward, as previously highlighted by Heeter et al. (2020). 

Similar efforts to increase coverage of under-represented areas will allow for a 

better understanding of the spatial patterns of historical temperature variability 

across broader geographical space. 

 
3.3. Reconstruction analysis 

 

3.3.1. Analysis of historical temperature variability 

The 4 reconstructions show similar evidence of warm and cool periods but 

differ with regards to the onset, duration, and intensity of these periods (Fig- 

ure 4; Figure S5). We suspect that the differences among regions with regards 

to the magnitude and duration of warm and cool events can somewhat be at- 

tributed to the varying seasonal targets of each reconstruction. The instrumen- 

tal record indicates strong spatial coherence of surface air temperatures across 

the western US within the last century, which is well-reflected by the 4 recon- 

structions. Notably, all regional reconstructions capture a substantial warming 

trend beginning at the end of the 20th century into the present. The recent 

warming period of ca. 2000 to present, documented by the instrumental record, 

has somewhat limited representation by NH temperature proxy studies due to 

insufficient record length (e.g. Wilson et al. 2016; Anchukaitis et al. 2017). 
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Specifically in western North America, the most recent decades are character- 

ized by not only an unprecedented increase in surface air temperatures, but also 

anomalous drought, streamflow declines, increased wildfire activity, and reduced 

annual snowpack (Cook et al., 2004, 2008; Kalra et al., 2008; Pederson et al., 

2011; Abatzoglou & Williams, 2016; Harley & Maxwell, 2018; Williams et al., 

2020; Harley et al., 2020b). The severity-duration analysis indicates that, de- 

spite the short duration, high magnitude rankings places 2015−2018 within the 

top 10 overall ranking warm events, and as the most intense event for the CR, 

IP, and SR regions (Table 3). The year 2017 is ranked among the 10 warmest 

single-year anomalies over each reconstructed period for all regions, and in the 

top 5 for the CR, IP, and SR. While the CR, IP, and SR reconstructions slightly 

overestimate the warming of 2017, the relative ranking of warm years spanning 

the period 2015−2018 is well corroborated by the instrumental record (Figure 

3). Our ability to capture the period post ca. 2010 in the TR temperature 

proxy record for model calibration is meaningful, because it allows us to more 

accurately place the most recent period, characterized by severe trend, into his- 

torical context. Further, the strong correspondence between the instrumental 

and LWB data during the modern warming period (Figure 3) instills additional 

confidence in extending the tree ring records back in time to robustly provide 

estimates of other anomalously warm periods such as the MCA. Considering 

the serious implications of the projected continual warming (Flato et al., 2013), 

precise, updated proxy records are important for improved detection and at- 

tribution studies related to temperature trends and for constraining models of 

future temperature change. 

Another pattern captured across the majority of the regions is the cooling 

experienced between ca. 1960−1980. This period has widely been related to a 

time of global solar dimming (Wild, 2009). This cooling event in the 20th century 

is most intensely and continuously experienced in the CR and SR regions and 

may have implications for solar forcing attribution studies in North America. 

During this time, the IP oscillates between moderately cool (z-score >-1.0) and 

slightly warm (z-score <0.50) periods, while the NR shows the predominance of 
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slightly cool (z-score >-0.5) years. The period of ca. 1965−1980 is represented 

in both the 5 coldest single-year anomalies or the top 5 overall ranking cool 

events for each region. Notably, 1965 is both the single coldest year anomaly 

captured by both the instrumental data and reconstruction for the IP. 

Another major warm period that is well documented across all regional re- 

constructions occurred in the 1930s. This anomalous warming is often associated 

with the Dust Bowl, a period of extreme drought across the western US (Cook 

et al., 2008; Woodhouse et al., 2010). Conditions during certain years of the 

Dust Bowl rival the modern warming, as the period spanning ca. 1928−1942 

appears within the 5 top-ranking warm events for the NR, CR, and IP recon- 

structions. The magnitude of the Dust Bowl is comparatively strongest in the 

CR region, with z-scores > 1.0 for this period. The period 1928−1940 is the 

top-ranking warm event for the CR reconstruction. The CR differs from the 

other 3 regions in that the Dust Bowl warming appears to have been an abrupt 

change from moderately cooler years in the early 20th century to very warm 

years, as opposed to a continual warming trend since ca. 1900 that culminated 

in the 1930s and 1940s (Figure 4). The Dust Bowl is less pronounced in the SR, 

as ca. 1928−1940 is situated towards the terminus of a nearly continuous warm 

period since ca. 1830. 

The 4 regions show cooling around the time of the Dalton Minimum (ca. 

1790−1830; Wagner & Zorita 2005; Bond et al. 2001), which is widely described 

by numerous other temperature proxy studies of the NH (e.g. Briffa et al. 

1998; Büntgen et al. 2005).  While the cooling during the Dalton Minimum was 

historically attributed to solar forcing, in many areas, this period is primarily 

attributed to volcanic forcing (e.g. unknown 1809 event, Mt. Tambora eruption 

of 1815; Wagner & Zorita 2005; Hegerl et al. 2011; Gennaretti et al. 2014; Schurer 

et al. 2019). The cooling effects of volcanic eruptions during this time are widely 

documented in the TR record across North America (D’Arrigo & Jacoby, 1999; 

D’Arrigo et al., 2013; Stoffel et al., 2015; Wilson et al., 2016). Cooling begins 

approximately just after ca. 1790 for the majority of regions and lasts into the 

1840s. All regions show 2 distinct pulses during this period, the former spanning 
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ca. 1790−1820, and the latter spanning ca. 1825−1845. The second pulse is 

most intensely expressed in CR, with the period spanning 1834−1849 ranking 

as the top coldest event for the region. 

The Maunder Minimum (ca. 1645−1715; Eddy 1976), another cooling pe- 

riod attributed to solar forcing and volcanic activity (Lean et al., 1992; Shindell 

et al., 2001; Crowley et al., 2008), is less pronounced than the Dalton Minimum 

in IP and SR. The length of NR and CR precludes examination of this time pe- 

riod. IP characterizes the Maunder Minimum as oscillating between moderately 

warm and cool periods instead of a continuous cooling, whereas SR documents 

continuously warm temperatures interrupted by an intense cooling spanning the 

period ca. 1635−1655. IP indicated 2 of the 5 top-ranking cool events spanning 

the periods 1654−1659 and 1676−1678 occur during the Maunder Minimum. 

Similarly, the period spanning 1641−1656 is the top-ranking cool event for SR. 

While the Maunder Minimum can be seen in numerous longer-term reconstruc- 

tions of temperatures of the extra-tropical NH, (e.g. Briffa et al., 2001; Esper 

et al., 2002; Wilson et al., 2016) the presence and magnitude of these past events 

are not ubiquitous across different regions and scales (Anchukaitis et al., 2017). 

Spatial differences can be seen at the sub-continental level as well; within North 

America, paleo-temperature records from the Gulf of Alaska and the Alberta 

Icefields show the period ca. 1690−1710 CE as being anomalously cold and 

attributed to volcanic activity (Luckman & Wilson, 2005; Wiles et al., 2014), 

while this period is only somewhat evident in the IP record and absent in the 

SR record. Like with the Dalton Minimum, non-ubiquitous observations of the 

Maunder Minimum are likely resultant from heterogeneous climatic effects of 

volcanism over space. Studies suggest that temperature forcing of many of the 

largest, high-latitude volcanic eruptions of the past ca. 1200 years (e.g. 1783 

Laki), are varied globally (Zambri et al., 2019; Schmidt et al., 2012; Oman et al., 

2006). Specific to western North America, while Crowley et al. (2008) did not 

find a global expression of the Laki eruption, Jacoby et al. (1999) and Edwards 

et al. (2021) both show cooling effects from Laki across northern Alaska. Fur- 

ther, Shindell et al. (2001) attribute non-ubiquitous observations of the Maunder 
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Minimum, particularly over North America, to lowering indices of the Arctic Os- 

cillation/North Atlantic Oscillation as solar irradiance decreases in this period. 

The majority of examinations into the effects of volcanism on surface air 

temperatures in the NH are, to date, largely dependent on MXD chronologies. 

We suggest that LWB may be an additional suitable parameter for future quan- 

tification of volcanic cooling at finer timescales (e.g. seasonal or sub-seasonal), 

because like MXD, the temperature response of LWB is less likely to be influ- 

enced by biological persistence than with TRW (D’Arrigo et al., 2013; Stoffel 

et al., 2015; Lücke et al., 2019; Reid & Wilson, 2020).  Recently, Edwards et al. 

(2021) use a combination of quantitative wood anatomy (QWA; von Arx et al. 

2016) and climate modelling to show that the effects from the 1783 Laki (Ice- 

land) eruption across northern Alaska were more accurately characterized as an 

abrupt decrease in temperature at the end of the growing season, as opposed to 

an entire growing season that was anomalously cool. As such, the application 

of novel TR parameters such as BI and QWA will likely play an important role 

in future examination of the effects of volcanic cooling across different spatial 

and temporal scales. As suggested by D’Arrigo et al. (2013), the quality, type, 

and spatial distribution of chronologies averaged together to derive larger-scale 

estimates of past temperature are important to ensure that any volcanic signal 

is not muted. Attempts to decrease uncertainty in larger-scale estimates of tem- 

perature by increasing spatial coverage of temperature-sensitive TR chronologies 

will be welcome, particularly in the estimation of volcanic cooling. 
 

3.3.2. Reconstruction synchrony and large-scale comparisons 

While all 4 records show similar decadal trends, an examination of changes 

in the synchrony of trends are important to better understand how internal 

modes of variability result in changes to local climate over geographic space 

and time. Unlike correlation analysis, which provides a measure of similarity 

between the calculated means of individual timeseries over a given period (e.g 

10 year period), the additional value of analyzing timeseries synchrony is that it 

allows for examining the relative timing of climatic events and the likelihood that 



24  

 
 
 

 

such events will occur at the same time (e.g. extreme hot or cold years). Over 

the common period of all 4 regional models (1730−2018), trends in between- 

group synchrony of temperature anomalies show patterns of spatial-dependence. 

For example, the IP and SR show the highest between-group synchrony, and the 

NR and SR show the least (Figure 5A). Notable periods of increasing synchrony 

across all 4 records include the latter half of the 20th century, specifically the 

Dust Bowl, and the period between the Dalton Minimum and the terminus of 

the LIA (Figure 5B,C). The strongest decline in overall synchrony between the 

4 regions occurs around the turn of the 20th century following the LIA (ca. 

1880−1920). Although the Rocky Mountain models (NR, CR, and SR) show 

strong coherence during this time, the overall declining trend is driven by strong 

decreases in synchrony between IP and the Rocky Mountain models. This trend 

reflects the complexity of land surface temperature changes across geographic 

space during a climatic transition period characterized by substantial changes 

to relative external forcing by atmospheric and oceanic circulation patterns (e.g. 

AMO, PDO), as well as increased anthropogenic influence at the end of the LIA 

(Kreutz  et  al.,  1997;  Knudsen  et  al.,  2014;  Brönnimann  et  al.,  2019).   Future 

studies examining historical periods of asynchronous temperature trends across 

western North America are needed to more fully understand the effects of broad- 

scale ocean/atmospheric forcings on internal modes of temperature variability 

for this region. 

The ability to compare our records with other regional and hemispheric-scale 

reconstructions provides evidence to better understand the relationship between 

volcanism, atmospheric circulation, and changes to surface air temperatures 

across space, especially at lower latitudes. Our records show strong agreement 

with nearby temperature records from North America (Figures 6A, 6C). The 

strongest agreement between the 4 records we present and the MXD-based tem- 

perature record for the western US by Briffa et al. (1992) is not surprising given 

the similarities between LWB and MXD, as well as the close spatial proxim- 

ity of the records. Similarly, the coherence of the NR record with the British 

Columbia and Alberta records by Wilson et al. (2014) and Luckman & Wilson 
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(2005) is expected given the location and similar type and seasonality of these 

records. As such, we emphasize the importance of independent validation of 

previous studies within the region. Since many of these pre-existing tempera- 

ture proxy records for North America do not extend to include the most recent 

decades, our corroborating records provide valuable updates to this region of 

the NH temperature proxy network. 

To date, many ensemble reconstructions, providing estimates of historical 

temperature variability, exist for the NH. However, there is poor representation 

of temperature-sensitive predictors from the mid-latitudes of North America 

in these ensemble reconstructions. We compare decadal trends for each of the 

regional reconstructions presented in this study with 3 independent, ensemble 

temperature reconstructions of the extra-tropical NH (Figures 6B, 6C). The 4 

western US reconstructions show significant (p<0.05), positive agreement with 

the NH reconstructions over their common period of overlap (1730−1973). The 

strongest agreement occurs between the CR reconstruction and the multi-proxy 

summer (JJA) temperature reconstruction by Guillet et al. (2017) (r =0.57). We 

suspect that lower correlations between SR and the hemispheric reconstructions 

by Christiansen & Charpentier-Ljungqvist (2012) and Wilson et al. (2016) are 

partially due to differences in seasonality of input records, and potentially the 

decreased representation of low-latitude (<40°N) temperature-sensitive predic- 

tors in these NH estimates. Increasing the density of robust, local temperature 

records at lower latitudes of the NH may result in improved accuracy of fu- 

ture large-scale, ensemble NH temperature reconstructions in that they will be 

more representative of a greater latitudinal range for the NH. Both trends in 

asynchrony of regional temperature trends and differences between regional and 

large-scale models highlight the importance of regional temperature models for 

constraining the full range and variability of global temperature models. 
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4. Conclusions and future work 

 
Using the LWB parameter, we provide 4 regional reconstructions of growing 

season Tmax over much of the western North America temperate zone span- 

ning the past ca. 300−400 years to present. Strong calibration/verification 

statistics for each reconstruction model indicates that LWB is a robust predic- 

tor of growing-season Tmax, especially during late-summer. This LWB network 

provides paleo-temperature estimates which could further contribute increased 

understanding of the role of temperature on historical drought events, especially 

”hot droughts” (e.g. Overpeck 2013; Udall & Overpeck 2017) across the western 

US. As numerous temperature-sensitive MXD records exist across the western 

US, we suggest that future investigation of a multi-variate ensemble network 

of MXD, TRW, and LWB will considerably improve the current understanding 

of paleo-temperature across this portion of the NH network. While we have 

demonstrated the ability of LWB to contribute a collection of updated data 

points to the North American temperature proxy network, additional work is 

needed to extend the network back in time (e.g. sampling remnant or subfossil 

wood as in Luckman & Wilson 2005; Wiles et al. 2014; Gennaretti et al. 2014). 

Further, we posit that the continued exploration and application of BI methods 

at other mid-to-low latitude locations of the NH will contribute substantially to 

a more complete understanding of local to global climate histories and dynamics. 
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Büntgen, U., Esper, J., Frank, D. C., Nicolussi, K., & Schmidhalter, M. (2005). 

A 1052-year tree-ring proxy for alpine summer temperatures. Climate Dy- 

namics, 25 , 141–153. 
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Gärtner, H., & Nievergelt, D. (2010).  The core-microtome:  a new tool for sur- 

face preparation on cores and time series analysis of varying cell parameters. 

Dendrochronologia, 28 , 85–92. 

Gennaretti,  F.,  Arseneault,  D.,  Nicault,  A.,  Perreault,  L.,  &  Bégin,  Y.  (2014). 
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1 Tables and Figures 
 
 

Table 1: Information for sample sites (n =26) examined for the western US latewood 
blue intensity network. State Codes: Idaho: ID, Montana: MT, Wyoming: WY, Utah: UT, 
Colorado: CO, and New Mexico: NM.*Site numbers correspond to labels in Figure 1. Replication 

(Rep) indicates number of trees for each LWB chronology required to attain EPS >0.85, Years 

represents the timespan of each chronology using the EPS >0.85 threshold. We also include the 

average RBAR of each chronology and the optimum Pearson’s correlations (p<0.05) for 1920- 

present (1970-present) for each LWB chronology against the local 0.5◦(or larger where relevant) 
CRU TS 4.04 (Harris et al. 2014) maximum temperature grid. 

Site 

# 

Site 

code 

US 

State 

Lat. 

(°N) 

Lon. 

(°E) 

Elev. 

(m) 

Rep Years RBAR Corr. Tmax (post 

1970) 

1 BFL ID 48.88 -116.81 2282 3 1721-2019 0.54 Aug: 0.61 (0.68) 

2 MCO ID 46.80 -116.86 2963 5 1920-2019 0.34 JAS: 0.43 (0.37) 

3 FKY MT 45.50 -111.67 1930 10 1901-2000 0.26 Mar-Aug: 0.56 (0.61) 

4 FLS WY 44.91 -109.53 2959 7 1766-2016 0.28 JJA: 0.64 (0.68) 

5 RPS WY 44.99 -109.92 3046 8 1781-2017 0.27 JJA: 0.67 (0.67) 

6 MWS WY 44.80 -110.43 2960 8 1760-2019 0.29 JJA: 0.52 (0.59) 

7 BTP WY 44.57 -109.29 3010 5 1756-2015 0.39 JJA: 0.65 (0.61) 

8 CBS WY 44.57 -109.37 2945 6 1730-2015 0.34 JJAS: 0.65 (0.61) 

9 TOW WY 44.54 -109.31 2960 7 1850-2015 0.28 Aug: 0.64 (0.70) 

10 MBP WY 41.21 -109.29 3225 9 1909-2015 0.26 Aug: 0.53 (0.55) 

11 MON UT 38.60 -111.96 3122 6 1886-2016 0.32 Apr-Aug: 0.60 (0.61) 

12 TUS UT 38.36 -112.38 3263 3 1667-2011 0.49 Apr-Aug: 0.53 (0.50) 

13 TLM UT 38.41 -111.47 3436 8 1848-2016 0.27 Apr-Aug: 0.51 (0.57) 

14 BUP UT 37.32 -113.50 3438 3 1654-2018 0.65 AM: 0.47 (0.52) 

15 PLS UT 38.07 -111.56 3280 13 1891-2000 0.26 AM: 0.47 (0.47) 

16 HAY UT 38.49 -109.25 3271 6 1861-2017 0.32 Apr-Aug: 0.49 (0.59) 

17 ABA UT 37.84 -109.46 3425 4 1859-2002 0.42 Apr-Aug: 0.45 (0.50) 

18 MDB CO 40.21 -105.29 3300 4 1659-2015 0.43 AS: 0.46 (0.53) 

19 CPI CO 38.82 -106.40 3580 4 1778-2015 0.43 Jun-Sep: 0.54 (0.62) 

20 PPL CO 38.52 -105.42 3460 7 1732-2015 0.30 Aug: 0.36 (0.53) 

21 PPU CO 38.52 -105.42 3550 3 1623-2015 0.53 Aug: 0.54 (0.61) 

22 WHE NM 36.55 -105.41 3708 5 1803-2015 0.39 AS: 0.57 (0.59) 

23 JIS NM 36.18 -105.56 3587 6 1776-2014 0.32 AS: 0.56 (0.62) 

24 SLE NM 36.04 -105.54 3594 7 1848-2014 0.28 Aug: 0.39 (0.43) 

25 TLS NM 35.99 -105.64 3573 5 1694-2018 0.36 Aug: 0.53 (0.58) 

26 LOS NM 33.39 -105.81 3760 4 1878-2018 0.35 AS: 0.65 (0.73) 
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Table 2: Summary statistics for PC regressions of each region included in the western 

US latewood blue intensity network. (Top) Calibration and verification periods, monthly 

duration of the reconstructed season, and the final reconstructed period for each regional model. 

(Bottom) measures of explained variance for each regional model: RSQ (calibration period coef- 

ficient of multiple determination), VRE (validation period reduction of error), VCE (validation 

period coefficient of efficiency) and RMSE (root mean squared error). 

 Calibration 

period 

Verification 

Period 

Target 

months 

Reconstructed 

Period 

#forward 

nests 

#backward 

nests 

NR 1966-2000 1920-1965 MJJA 1721-2018 1 2 

CR 1966-2015 1920-1965 MJJAS 1730-2018 3 4 

IP 1966-2000 1920-1965 AMJJAS 1654-2018 4 7 

SR 1966-2014 1920-1965 AS 1623-2018 2 7 

 Model First Last Year RSQ VRE VCE RMSE  

 Year      

 NR 1920 2000 0.53 0.55 0.53 0.80  

 CR 1850 2015 0.44 0.44 0.44 0.84  

 IP 1909 2000 0.49 0.55 0.54 0.62  

 SR 1878 2014 0.54 0.53 0.52 0.65  
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Table 3: Results of severity-duration analysis showing the top-five ranking warmest (+, 

top row) and coolest (-, bottom row) single-year anomalies (left) and event periods 

(right) for the each region. Single-year anomalies calculated over the full period (NR: 1730- 

2018, CR: 1680-2018, IP: 1646-2018, and SR: 1622-2018). Duration indicates the number of years 

of each event, as calculated by the severity-duration analysis from reconstructed values. Magnitude 

= mean cumulative departure from the long-term reconstructed mean for each region; Intensity = 

duration (years) divided by the magnitude; after ranking, overall score = duration rank + intensity 

rank. Periods of interest are color coded: red= recent warming trend; orange= Dust Bowl; blue= 

Maunder Minimum; purple= Dalton Minimum. 
Rank Year 1-year Anomaly Period Duration (years) Magnitude Intensity Duration Rank Magnitude Rank Overall Score 
    Northern Rocky Mountains     

1 1979,1910 +1.70 1773-1786 14 +6.73 +0.48 9 68 77 
2 1940 +1.65 1930-1936 7 +6.80 +0.97 6 69 75 

3 1936 +1.63 1888-1898 11 +5.68 +0.52 8 66 74 

4 1931 +1.49 1908-1915 8 +6.20 +0.77 7 67 74 

5 1958 1.47 1938-1942 5 +5.62 +1.12 5 65 70 

1 1964 -4.63 1879-1884 6 -5.45 -0.91 6 69 75 

2 1899 -3.65 1818-1826 
1810-1815 

9 
6 

-4.90 
-4.32 

-0.54 
-0.72 

7 
6 

67 
65 

74 
71 

3 1907 -2.96 
       

4 1954 -2.57 1974-1976 3 -5.06 -1.69 3 68 71 
5 1876 -2.52 1964-1965 2 -4.82 -2.41 2 66 68 

Central Rocky Mountains 
1 2016 +3.08 1928-1940 13 +13.74 +1.06 9 69 78 

2 2017 +2.18 1888-1898 11 +6.38 +0.58 8 67 75 

3 1949 +2.08 2015-2018 4 +7.50 +1.87 4 68 72 

4 1988 +1.99 1869-1874 6 +4.31 +0.72 6 65 71 

5 1748 +1.81 1946-1950 5 +5.31 +1.06 5 66 71 

1 1968 -4.52 1834-1849 16 -17.71 -1.11 7 68 75 

2 1993 -3.16 1972-1980 9 -8.27 -0.92 6 67 73 

3 1787 -2.77 1904-1908 5 -5.44 -1.09 5 66 71 
4 1838 -2.74 1915-1918 4 -4.03 -1.01 4 64 68 

5 1951 -2.57 1967-1968 2 -4.54 -2.27 2 65 67 

Intermontane Plateaus 
1 1669 +3.08 1767-1777 11 +7.97 +0.72 9 94 103 

2 1690 +2.32 1664-1669 6 +8.08 +1.35 6 95 101 

3 2017 +2.28 1931-1940 10 +5.14 +0.51 8 92 100 

4 1729 +2.12 1711-1719 9 +4.65 0.52 7 91 98 
5 1783 +2.06 2015-2018 4 +6.28 +1.57 4 93 97 

1 1965 -3.83 1818-1824 7 -6.56 -0.94 7 94 101 

2 1746 -2.41 1654-1659 6 -9.20 -1.53 6 95 101 

3 1657 -2.23 1676-1678 3 -4.75 -1.58 3 93 96 

4 1763 -2.17 1758-1761 4 -3.87 -0.97 4 91 95 

5 1736 -2.13 1963-1965 3 -4.75 -1.58 3 92 95 

Southern Rocky Mountains 

1 2018 +3.52 1894-1905 12 +12.77 +1.06 9 73 82 

2 1632, 1902 +2.27 1942-1954 13 +7.33 +0.56 10 71 81 

3 1900 +2.00 1859-1865 7 +6.31 +0.90 7 70 77 

4 1856 +1.92 2015-2018 4 +7.48 +1.87 4 72 76 

5 2017 +1.72 1715-1722 8 +5.57 +0.70 8 68 76 

1 1646 -4.33 1641-1656 16 -20.50 -1.28 10 73 83 

2 1761 -3.39 1970-1984 15 -12.33 -0.82 9 72 81 

3 1831 -3.33 1805-1813 9 -9.07 -1.01 8 70 78 
4 1647 -2.81 1963-1968 6 -9.20 -1.53 5 71 76 

5 1645 -2.66 1758-1764 7 -8.87 -1.27 6 69 75 
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Figure 1: Global-spatial context of the western US blue intensity network. A) Location 

and data-classification of temperature-sensitive, tree-ring datasets currently included in the recent 

N-TREND network compiled by Wilson et al. (2016), as well as the 26 LWB chronology sites 

presented in this study (red circles). Map insets (B-F) displaying the locations of all 26 sites exam- 

ined in this study sorted by physiographic region, as well as the species range of Picea engelmannii 
(green polygon) as indicated by Little and Viereck (1971). Chronologies are clustered by hierar- 

chical cluster analysis into 4 regions (Figure S2): US Northern Rocky Mountains (teal), Central 

Rocky Mountains (green), Intermontane Plateau (salmon), and Southern Rocky Mountains (dark 

red). Numbers correspond to respective chronology information and statistics displayed in Table 

1. 
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Figure 2: Correlations (Pearson’s r ) between maximum temperature and (Tmax) late- 
wood blue intensity (LWB) chronologies across the western US network, grouped by 

region. Pearson’s r between all LWB chronologies across each region and current-year monthly 

regional target CRU 4.04 0.5◦Tmax data (Harris et al., 2014) for each region (NR: 45.0-49.0°N, 

117.0-111.5°W; CR: 44.0-45.0°N, 111.0-109.0°W; IP: 37.0-41.5°N, 114.0-109.0°W; SR: 33.0-40.5°N, 

106.0-105.0°W), and the optimum seasonal average of regional target CRU 4.04 0.5◦Tmax data. 
Correlations span the common period between the starting calibration year (1920) and the last 

year of each individual chronology. Dashed red lines indicate significance at the p<0.05 level. 
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Figure 3: Temporal and spatial relationships between 4 western US regional maximum 
temperature (Tmax) reconstructions and instrumental data. The temporal relationship 

(Pearson’s r, p<0.05) between the regional reconstructions (colored lines, line shading represents 

standard error) and the CRU TS 4.04 Tmax data (black line) (Harris et al., 2014) over the period 
spanning 1920-2018. We also include the extent of the spatial distribution of correlations between 
the predictor and predictand temperature data for each regional model over the period 1920-2018 

(Pearson’s r, significant at p<0.05 level). 
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Figure 4: Decadal-scale variability of 4 regional temperature reconstructions derived 

from the western US latewood blue intensity network. Temperature anomalies calculated 

as z-scores from the mean and standard deviation of the common period of all reconstructions 

(1730−2018) for each region. Notable cool and warm periods (Maunder and Dalton Minima and 

the Dust Bowl) are highlighted. Z-scores are smoothed with an 11-year running average. Warm 

years are indicated by red and cool years are indicated by blue. 
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Figure 5: Comparison and evaluation of synchrony between 4 regional temperature 

reconstructions. We compare between-group synchrony (the estimated proportion of common 

inter-annual  variance;  âc)  of  A)  individual  pairings  of  the  4  regional  reconstructions  (raw  recon- 

structed values) averaged over the entire common reconstructed period (1730-2018), B) time series 

of between-group synchrony trends between all 4 regional reconstructions using a 60-year window 

and 10-year lag (based on AIC criteria), and C) time series of between group synchrony trends of 

regional reconstruction pairings listed from B) using a 60-year window and 10-year lag (based on 

AIC criteria) over the common period (1730-2018). The error bars in A) and shadows in B) and 
C) depict the standard errors. 
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Figure 6: Coherence of 4 western US temperature reconstructions with independent 
regional- and large-scale paleo-temperature reconstructions. Comparison of plotted time 
series (as z-scores) between the 4 western US regional temperature reconstructions with A) 3 in- 
dependent regional temperature reconstructions from North America: Western US (Briffa et al., 
1992), Alberta, Canada (Luckman and Wilson 2005), and British Columbia, Canada (Wilson et al., 
2014), and with B) 3 independent ensemble temperature reconstructions for the Northern Hemi- 
sphere: N-TREND 2016 (Wilson et al., 2016), Guillet et al., 2017, and Christiansen and Ljungvist 

2012. All time series displayed as z-scores calculated over the common period for all records (1730- 

1973) and smoothed with an 11-year running average. C) Correlation matrix (Pearsons r -value) 
over the common period 1730-1973 between the 4 regional reconstructions from this study and the 

independent records listed in A) and B). All values in the matrix are significant at the p<0.05 level. 
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