
A GVT Based Algorithm for Butterfly Barrier in

Parallel and Distributed Systems

Syed S. Rizvi, Shalini Potham, and Khaled M. Elleithy
Computer Science Department, University of Bridgeport, Bridgeport, CT 06601 USA

{srizvi, spotham, elleithy}@bridgeport.edu

Abstract-Mattern’s GVT algorithm is a time management algorithm

that helps achieve the synchronization in parallel and distributed

systems. This algorithm uses ring structure to establish cuts C1 and

C2 to calculate the GVT. The latency of calculating the GVT is vital

in parallel/distributed systems which is extremely high if calculated

using this algorithm. However, using synchronous barriers with the

Matterns algorithm can help improving the GVT computation

process by minimizing the GVT latency. In this paper, we

incorporate the butterfly barrier to employ two cuts C1 and C2 and

obtain the resultant GVT at an affordable latency. Our analysis

shows that the proposed GVT computation algorithm significantly

improves the overall performance in terms of memory saving and

latency.

Keywords-Time management algorithm, latency, butterfly barrier

I. INTRODUCTION

A parallel and distributed system is an environment where a

huge single task is being divided into several sub-tasks and
each terminal getting a sub-task to execute. The main problem

that is being faced here is the synchronization. All the

processes need to be synchronized as the main aim of

distributed system is that the final output after execution of

entire task should be exactly the same as that of the output

attained when the same task is executed sequentially on a

single machine.

Mattern’s GVT algorithm helps keep all the processes in

synchronization by finding the minimum of time stamps of all

the messages at a point. It also makes sure that there are no

transient messages in the process of execution as it waits for

the processes to receive all the messages that are destined for it.
The backlog of this algorithm is that the latency is high. This

keeps the algorithm away from its widespread usage. The

performance of a parallel/distributed system can be degraded if

the latency for computing the GVT is high. The Mattern’s GVT

algorithm uses several variables which in turn increase the

number of memory fetches.

In the proposed algorithm, we implement the similar

mechanism structure suggested by the Mattern’s [1] with the

use of a matrix. This utilization of the matrix eliminates two of

the variables and an array as used by the original Mattern’s

GVT algorithm. Consequently, the use of matrix with the

Mattern’s algorithm provides several advantages such as it

reduces the number of memory fetches, saves memory,

increases the processor speed, and improves the latency. We
incorporated the butterfly barrier as it has great performance

when compared to the other barriers such as broadcast and the

centralized barriers [7]. When we finish implementing the

barrier with the proposed algorithm, the current simulation time

is updated. This implies that there is no need to communicate

the minimum time or the simulation time reducing the message

exchanges. This, therefore, improves the latency at affordable

rate.

II. RELATED WORK

The term distributed refers to distributing the execution of a

single run of a simulation program across multiple processors

[2]. One of the main problems associated with the distributed
simulation is the synchronization of a distributed execution. If

not properly handled, synchronization problems may degrade

the performance of a distributed simulation environment [5].

This situation gets more severe when the synchronization

algorithm needs to run to perform a detailed logistics

simulation in a distributed environment to simulate a huge

amount of data [6].

Event synchronization is an essential part of parallel

simulation [2]. In general, synchronization protocols can be

categorized into two different families: conservative and

optimistic. Time Warp is an optimistic protocol for
synchronizing parallel discrete event simulations [3]. Global

virtual time (GVT) is used in the Time Warp synchronization

mechanism to reclaim memory, commit output, detect

termination, and handle errors. GVT can be considered as a

global function which is computed many times during the

course of a simulation. The time required to compute the value

of GVT may result in performance degradation due to a slower

execution rate [4].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UB ScholarWorks

https://core.ac.uk/display/52955669?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

On the other hand, a small GVT latency (delay between its

occurrence and detection) reduces the processor’s idle time and

thus improves the overall throughput of distributed simulation

system. However, this reduction in the latency is not consistent

and linear if it is used in its original form with the existing

distributed termination detection algorithm [7].
Mattern’s [1] has proposed GVT approximation with

distributed termination detection algorithm. This algorithm

works fine and gives optimal performance in terms of accurate

GVT computation at the expense of slower execution rate. This

slower execution rate results a high GVT latency. Due to the

high GVT latency, the processors involve in communication

remain idle during that period of time. As a result, the overall

throughput of a discrete event parallel simulation system

degrades significantly. Thus, the high GVT latency prevents

the widespread use of this algorithm in discrete event parallel

simulation system.

However, if we could improve the latency of the GVT
computation, most of the discrete event parallel simulation

system would likely to get advantage of this technique in terms

of accurate GVT computation. In this paper, we examine the

potential use of butterfly barriers with the Mattern’s GVT

structure using a ring. Simulation results demonstrate that the

use of the tree barriers with the Mattern’s GVT structure can

significantly improve the latency time and thus increase the

overall throughput of the parallel simulation system. The

performance measure adopted in this paper is the achievable

latency for a fixed number of processors and the number of

message transmission during the GVT computation.
Thus, the focus of this paper is on the implementation of

butterfly barrier structures. In other words, we do not focus on

how the GVT is actually computed. Instead, our focus of study

is on the parameters (if any) or factors that may improve the

latency involved in GVT computation. In addition, we briefly

describe that what changes (if any) may introduce due to the

implementation of this new barrier structure that may have an

impact on the overall latency.

III. PROPOSED ALGORITHM

In this section, we present the proposed algorithm. For the
sake of simplicity, we divide the algorithms for both cuts C1

and C2.

A. The Proposed Algorithm

ALGO GVT_FLY(V[N][N],Tmin,Tnow,Tred,Ts,n)

 Begin

 Loop n times

 Begin

 //Green message sent by to

 V[i][j] = V[i][j]+1

 //Green message received by
 V[i][i] =V[i][i]+1

 //Calculate minimum time stamp

 Tmin = min (Tmin,Ts)

 CUT C1:
 //Messages exchanged at this point are the red messages

 // Red message sent by to

 V[i][j] = V[i][j]+1

 // Red message received by
 V[i][i] = V[i][i]+1
 //Calculate minimum time of red messages

 Tred = min (Tred,Ts)

 Forward token to appropriate LP

 CUT C2:

 //Wait until all messages are received

 Wait until(-V[i][i])

 Forward token to appropriate LP

 Tnow= min(Tred,Tmin)

END LOOP

END ALGO

B. A Detailed Overview of the Proposed Algorithm

The Mattern’s algorithm uses N vectors of size N to maintain

a track of the messages being exchanged among the LPs. It also

uses an array of size N to maintain a log of number of messages

a particular LP needs to receive. On the whole, it uses (N+1)

vectors of size N. This increases the number of fetches to

memory resulting in more processor idle time.

In our proposed algorithm, we implement an N x N matrix to
calculate the GVT whose flow can be explained as shown in

Fig.1. Firstly, the LPs exchange green messages (i.e., green

messages represent those messages that are safe to process by

LP). Whenever an sends a green message to , the cell

V[i][j] of the matrix gets updated as shown in Fig.2. On the

other hand, if receives a message, the cell V[i][i] of the
matrix is updated. At this point, we also calculate the minimum

of all the time stamps of the event messages. After a certain

period of time, when the first cut point C1 is reached, the LPs

start exchanging the red messages (i.e., the red messages

represent those messages that are referred as the straggler or the

transient messages). These messages are handled as shown in

the Fig. 3.

When an sends a red message to , the cell V[i][j] of

the matrix is updated. On the other hand, if receives a
message, the cell v[i][i] of the matrix is updated. At this cut

point, we also calculate the minimum timestamp of all the red

messages and then the control is passed to the appropriate pair-

wise LP. Next, at second cut point C2, the LPs have to wait

until all the messages destined to them are being received and

then calculate the current simulation time as the minimum of

the minimum time stamps calculated for red and green

messages.

The control token is then forwarded to the appropriate pair-
wise LP. Since we are using the butterfly barrier, the entire

process is repeated log2 N times. In other words, the condition

for this algorithm is that the number of processes involved in

the system should be a multiple of 2 (i.e., N=).
For the sake of a comprehensive explanation of the proposed

algorithm, let us take an example of four LPs communicating

with each other as shown in the Fig. 5. It can be seen in Fig. 5

that the four LPs are exchanging messages with respect to the

simulation time. Let us see how it modifies the cells of a matrix

which are initialized to zero. From the Fig.5, let us understand

how the cells are modified with respect to time. The first

message is sent by to . As a result, the cell V[1][3] of the
matrix is incremented and the message is immediately received

by the that will increment the cell V[3][3] of the matrix. In

 Start Event

Processing

Message

exchanges

Cut C1

Cut C2

 Iterated

LogN times?

Reach Sync

point

Yes

No

Fig.1. A high level architecture of the proposed algorithm that shows
the flow of data with the matrix and butterfly barrier

LPi send msg to

LPj

Increment
V[i][j]

LPj receives msg Increment

V[i][i]

Calculate min. of

TS

Fig. 2. Handling green messages

LPi send msg to

LPj

LPi receives msg

Calculate min. of

Tred

Forward token to

pair-wise LP

Increment
V[i][j]

Increment

V[i][i]

Fig.3 Cut C1 handling Red messages that represent the
transient or struggler messages

the second round, the next message is sent by to .
Consequently, the cell V[1][4] of the matrix is incremented and

since the message is immediately received by the , the cell
V[4][4] of the matrix is incremented. The next message is sent

by to that will increment the cell V[3][4] of the matrix.

However, before this message could be received by , the

next message is sent by to . The result of this
transmission would be an increment in the cell V[1][3] of the

matrix. As time progresses, the receives the message that
results an increment in the cell V[4][4] of the matrix and so on.

Table I shows the message exchanges till point C1. Table II
shows the message exchanges after C1 and before C2 and

Table III shows the message exchanges after C2.

 At point C2, the LP has to wait until it receives all the

messages that are destined to be received by it. This can be

done by using the condition that the has to wait until the
value of the cell V[i][i] of the matrix is equal to the sum of all

the other cells of the column ‘i’. In other words, has to wait

until V[i][i]= -V[i][i]. As an example, if we

take V1 from Table II, then at cut point C2, it has to wait until

V[1][1]=V[2][1]+V[3][1]+V[4][1].

According to Table II, the value of V[1][1] is ‘1’ and the sum

of other cells of first column is ‘2’. This implies that the

has to wait until it receives the message which is destined
to reach it. Once it receives the message, it increments V[1][1]

and again verifies weather if it has to wait. If not, it then passes

the control token to the next appropriate pair-wise LP.

Every time the process forwards the control token, it also

updates the current simulation time and as a result, we do not
require additional instructions as well as time to calculate the

GVT. This eliminates the need of communicating the GVT

time among the different LPs exchanging messages. This saves

Wait until every msg is

received

Calculate current

simulation time

Forward token to

pair-wise LP

Fig 4: Cut C2 handling green messages for synchronization

 LP1

LP2

LP3

LP4

C1 C2

 � Represents Cut points

Green-font ���� green messages (safe events)
Red-font ���� red messages (transient/struggler

messages)

Fig.5. Example of message exchanges between the four LPs.
The C1 and C2 represent two cuts for green and red messages.

TABLE I: MATRIX OF 4 LPS EXCHANGING GREEN MESSAGES

 V1 V2 V3 V4

V1 1 0 2 1

V2 1 0 0 0

V3 0 0 1 1

V4 0 0 1 2

TABLE II: MATRIX OF 4 LPS AT CUT C1

 V1 V2 V3 V4

V1 1 0 2 1

V2 2 1 0 0

V3 0 1 3 1

V4 0 0 1 2

TABLE III: MATRIX OF 4 LPS AT CUT C2

 V1 V2 V3 V4

V1 2 0 2 1

V2 2 2 0 0

V3 0 1 3 1

V4 0 1 1 2

time which in turns improves the GVT latency. This algorithm

proves helpful in upgrading the system performance of the

parallel and distributed systems.

IV. CONCLUSION

In this paper, we present an algorithm that helps us to

optimize the memory and processor utilization by using
matrices instead of using N different vectors of size N in order

to reduce the overall GVT latency. The improved GVT latency

can play a vital role in upgrading the parallel/distributed

system’s performance. In the future, it will be interesting to

develop an algorithm to calculate GVT using the tree barriers.

REFERENCES

[1] Mattern, F., Mehl, H., Schoone, A., Tel, G. Global Virtual Time

Approximation with Distributed Termination Detection Algorithms. Tech.

Rep. RUU-CS-91-32, Department of Computer Science, University of

Utrecht, The Netherlands, 1991.

[2] Friedemann Mattern, “Efficient Algorithms for Distributed Snapshots and

Global virtual Time Approximation,” Journal of Parallel and Distributed

Computing, Vol.18, No.4, 1993.

[3] Ranjit Noronha and Abu-Ghazaleh, “Using Programmable NICs for

Time-Warp Optimization,” Parallel and Distributed Processing

Symposium., Proceedings International, IPDPS 2002, Abstracts and CD-

ROM, PP 6-13, 2002.

[4] D. Bauer, G. Yaun, C. Carothers, S. Kalyanaraman, “Seven-O’ Clock: A

new Distributed GVT Algorithm using Network Atomic Operations,”

19th Workshop on Principles of Advanced and Distributed Simulation

(PADS'05), PP 39-48.

[5] Syed S. Rizvi, Khaked. M. Elleithy, Aasia Riasat, “Minimizing the Null

Message Exchange in Conservative Distributed Simulation,”

International Joint Conferences on Computer, Information, and Systems

Sciences, and Engineering, CISSE 2006, Bridgeport CT, pp. 443-448

,December 4-14 2006,

[6] Lee A. Belfore, Saurav Mazumdar, and Syed S. Rizvi et al., “Integrating

the joint operation feasibility tool with JFAST,” Proceedings of the Fall

2006 Simulation Interoperability Workshop, Orlando Fl, September 10-15

2006.

[7] Syed S. Rizvi, Khaled M. Elleithy, and Aasia Riasat, “Trees and

Butterflies Barriers in Mattern’s GVT: A Better Approach to Improve the

Latency and the Processor Idle Time for Wide Range Parallel and

Distributed Systems”, IEEE International Conference on Information and

Emerging Technologies (ICIET-2007), July 06-07, 2007, Karachi,

Pakistan.

