
w
w
w
.p
ph

m
j.c

om

Adv. in Comput. Sci. & Eng. 1(1) (2007), 47-59

 :tionClassifica jectSub sMathematic 2000 68, 68U10.

Keywords and phrases: image processing, computer vision, image histogram, hypercube

architecture, randomized algorithms.

Received March 16, 2007

 2007 Pushpa Publishing House

COMPUTING A COMPLETE HISTOGRAM OF AN

IMAGE IN LOG ()n STEPS AND MINIMUM EXPECTED

MEMORY REQUIREMENTS USING HYPERCUBES

TAREK M. SOBH

School of Engineering

University of Bridgeport

Connecticut, U. S. A.

Abstract

This work first reviews an already-developed, existing deterministic

parallel algorithm [2] to compute the complete histogram of an image in

optimal number of steps ()nlog on a hypercube architecture and

utilizing memory space on the order of (),log21 xxO where x is the

number of gray levels in the image, at each processing element. The

paper then introduces our improvement to this algorithm’s memory

requirements by introducing the concept of randomization into the

algorithm.

1. Introduction

The first algorithm [2] to be reviewed in this paper is concerned with
the task of computing the complete histogram of n gray level values in

nlog steps. The algorithm is described for hypercubes and computes the

complete histogram in nlog time independent of the range of gray level

values. The computation of the complete histogram of n such values takes

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UB ScholarWorks

https://core.ac.uk/display/52955651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

w
w
w
.p
ph

m
j.c

om

TAREK M. SOBH48

place in a series of nlog steps; after which, the histogram for value i can

be found in the lowest-addressed processor whose address ends in i. The
algorithm makes use of the association of suffixes of data values of
increasing width with suffixes of processor addresses. We shall begin by
defining the histogram of an image and the uses of the histogram in
different image processing applications, then we shall define the SIMD
hypercube multiprocessor and describe its interconnections. The
algorithm in [2] will be reviewed after that. Finally, we present an
improvement to this algorithm’s memory requirements via the usage of
randomization.

2. The Gray Level Histogram

One of the simplest and most useful tools in digital image processing
is the gray level histogram. The gray level histogram is a function
showing, for each gray level, the number of pixels in the image that have
that gray level. The abscissa is the gray level and the ordinate is the
frequency of occurrence (number of pixels). While the histogram of any
image contains considerable information, certain types of images are
completely specified by their histograms. When an image is condensed
into a histogram, all spatial information is discarded. There are many
uses for the gray level histogram. One important use is in digitizing
parameters, which is due to the fact that the histogram indicates whether
or not an image is properly scaled within the available gray level.
Another important use is in boundary threshold selection, as contour
lines provide an effective way to establish the boundary of a simple object
within an image. The contours may be, for example, the ‘dip’ between two
peaks in the histogram in the case of a light area within a dark area or
vice versa. The area and the integrated optical density of a simple object
can be computed from its image histogram too.

3. The SIMD Hypercube Microprocessor

A hypercube of dimension k has k2 nodes and kk2 edges. A

hypercube of dimension 2 is analogous to a square, the hypercubes of
dimension 3≥d can be recursively defined as obtained from two

hypercubes of dimension ()1−d each, by connecting corresponding nodes

w
w
w
.p
ph

m
j.c

om

COMPUTING A COMPLETE HISTOGRAM OF AN IMAGE … 49

of the two hypercubes. That is, two cells share a direct connection if and
only if their corresponding hypercube vertices are connected by a
hypercube edge. Furthermore, we can see that two cells will share a
direct connection if and only if their addresses differ in exactly one bit
position (i.e., one in each dimension). In the SIMD multiprocessor model
(single-instruction, multiple data), which is our model, all processing
elements execute a sequence of instructions, sent from one controller.

4. The Algorithm

This section explains and reviews the algorithm introduced in [2], so
that the reader of this article can follow later the development of our own
contribution, which is namely, randomizing the algorithm. The histogram
which is to be computed will be represented as a set of ordered pairs, each
pair will contain an index (represented in binary; for example,

012321 ,,,...,,, iiiiii mm −− will represent an index of length m bites,

which implies that the maximum number of gray levels allowed is m2),
and a count, which is the histogram value of the corresponding index
(that is, the number of pixels which have the index value as its gray
level).

4.1. Initial configuration

Initially each processing element (PE) in the hypercube includes one
and only one pair, which is in fact one pixel value, which means that the
count component of the pair have the value “1” throughout the hypercube.
This may be considered as if each PE of the hypercube contains a
histogram consisting of single pair, which is obtained by pairing the gray
level value (index) in the cell with the count “1”.

The goal may be considered then to ‘combine’ all those histograms in
different cells to form the complete histogram of the image, which is to be
distributed in some reasonable way throughout the hypercube in order to
be retrieved easily.

4.2. The basic idea behind the algorithm in [2]

The basic idea behind the algorithm is very simple, it is in fact the
idea of ‘combining’ all the values distributed throughout a hypercube into

w
w
w
.p
ph

m
j.c

om

TAREK M. SOBH50

a single processing element in nlog steps, where n is the number of cells

within the hypercube multiprocessor. Combining the set of values in the
hypercube is a very simple and standard procedure. It can be described

using a simple algorithm consisting of a loop that is to be performed k

times, where k is equal to the quantity .log n During iteration number j

the value that is stored in the processor

0121121 ,,...,,,1,...,,, aaaaaaa jjkk −+−−

is to be sent to the processor

0121121 ,,...,,,0,...,,, aaaaaaa jjkk −+−−

which is done in exactly one time step, as this is a hypercube edge. Then,
combined with the value stored in the latter processor, it can be seen that
after k steps the ‘combination’ of all the elements that were originally
distributed throughout the hypercube will be found in a single processor
namely the processor

.0,0,0...,,0,0,0 012321 −−− kkk

4.3. The problems arising when using the basic algorithm

In [2], it can be readily seen that the previous sort of algorithm can be

readily applied to a large class of problems, namely the class of problems

where the amount of storage that is required to store the combined value

after the current iteration does not increase or increase significantly, but

does so with a slow rate as more values are combined. If this was not

true, the amount of storage required would be in fact exponential. One

such problem may be the addition problem. For the problem of combining

histograms, this basic algorithm will not be suitable, because the output

of the operation of combining two histograms may be twice as large as

either of the original histograms. The consequence of this will be the

exponential growth in the storage required for the histogram in a given

processing element.

4.4. The description of the algorithm

The main idea behind the algorithm that the authors developed in [2]
is to try to alleviate the problem with the basic algorithm of the
exponential growth in memory requirement at the processing elements by

w
w
w
.p
ph

m
j.c

om

COMPUTING A COMPLETE HISTOGRAM OF AN IMAGE … 51

allowing the histogram information to remain distributed to a certain

degree while still aggregating it in a useful way in a series of nlog steps.

This is to be performed using the following algorithmic steps, presented
in [2]:

The algorithm is still a loop with k iterations with .log nk = At each

iteration j of the loop during the first m steps, the following is to be

performed (n = number of PE's; i.e., number of pixels, log=m (number of

gray levels))

All the pairs with index (in binary):

011121 ,...,,,0,...,,, iiiiii jjmm −+−−

 which are in a processing element in the hypercube whose address is:

011121 ,...,,,1,...,,, aaaaaa jjkk −+−−

 are sent to the PE in the hypercube whose address is:

011121 ,...,,,0,...,,, aaaaaa jjkk −+−−

At the same time, in a complementary fashion, all pairs with the
index:

011121 ,...,,,1,...,,, iiiiii jjmm −+−−

which are in a processing element in the hypercube whose address is:

011121 ,...,,,0,...,,, aaaaaa jjkk −+−−

 are sent to the PE in the hypercube whose address is:

011121 ,...,,,1,...,,, aaaaaa jjkk −+−−

At the very first iteration of the loop, every pair in the hypercube
whose index ends with a zero, which is in a PE whose address is:

1,...,,, 121 aaa kk −−

will be sent to the PE 0,...,,, 121 aaa kk −− also any pair with an

index ending in a one, which is in a PE whose address is:

0,...,,, 121 aaa kk −−

will be sent to the PE 1,...,,, 121 aaa kk −−

w
w
w
.p
ph

m
j.c

om

TAREK M. SOBH52

During the second iteration, every pair in the hypercube whose index

ends with a ,,0 0i which is in a PE whose address is:

0221 ,1,...,,, aaaa kk −−

will be sent to the PE ,,0,...,,, 0221 aaaa kk −− also any pair with an

index ending in a ,,1 0i which is in a PE whose address is:

0221 ,0,...,,, aaaa kk −−

will be sent to the PE 0221 ,1,...,,, aaaa kk −−

It can be readily noticed that some use is being made of the
association of suffixes of the indices and suffixes of the PE addresses.
After the values are sent, whenever two pairs with the same index (i.e.,
two pixels with the same gray level) are collected in the same PE, they
are to be combined to form one pair with the same index and with the
count value equal to the sum of count values of each individual pair, thus
forming the histogram. At first glance, it might seem that the problem of
the exponential growth in memory requirements at each PE still exists,
due to two facts:

1. The number of bits required for the count increases by one each
time a combine is performed.

2. The possibility that many pairs with indices which are the same in
the last several bits may be initially located in processing elements
such that they all happen afterwards to gravitate to a single cell,
which implies that the possibility for exponential growth in the
number of pairs stored in a particular processing element still
exists.

However, when one takes a closer look at the operation of this
algorithm, the situation will turn to be much better than it first appeared
to be. Regarding the first concern - the increase of the number of bits
needed for the count by one after each iteration - it can be seen that there
is no need to store after iteration j the last 1+j bits of any index, since

these bits will at that time be given by the last 1+j bits of the processing

element address which contains that index. It is true that the number of
bits needed to store the count will increase by one after each iteration but

w
w
w
.p
ph

m
j.c

om

COMPUTING A COMPLETE HISTOGRAM OF AN IMAGE … 53

at the same time the number of bits required to store the index will
decrease by one. Thus, the total number of bits required to store a pair
will remain a constant throughout the whole algorithm. The value of this
constant is simply equal to the number of bits required to store the gray

level plus one (i.e., ()1+m). The argument about the exponential growth

in the number of pairs to be stored at each processing element will also
be found to be not exactly the case, and this is discussed by the authors in
details in [2].

4.5. The formal algorithm

The following is the final algorithm in [2], described in pseudo-code

like language.

 Define n = number of nodes in hypercube (number of pixels).

.log2 nk =

x = number of gray levels.

.log2 xm =

 For 0=j to ()1−m do

 ()∗∗∗ Send all the pairs with index

011121 ,...,,,0,...,,, iiiiii jjmm −+−−

which are in a processing element in the hypercube whose address is

011121 ,...,,,1,...,,, aaaaaa jjkk −+−−

to the PE in the hypercube whose address is

011121 ,...,,,0,...,,, aaaaaa jjkk −+−−

 In parallel, send all pairs with the index

011121 ,...,,,1,...,,, iiiiii jjmm −+−−

 which are in a processing element in the hypercube whose address is

011121 ,...,,,0,...,,, aaaaaa jjkk −+−−

to the PE in the hypercube whose address is

011121 ,...,,,1,...,,, aaaaaa jjkk −+−−

w
w
w
.p
ph

m
j.c

om

TAREK M. SOBH54

If two pairs have the same index are collected in the same PE, then
they are to be combined to form one pair with the same index and with
the count value equal to the sum of count values of each individual pair;

end For;

If mk = then STOP else

 ()### For mj = to ()1−k Do

 Send the count value stored in the PE whose address is

011121 ,...,,,1,...,,, aaaaaa jjkk −+−−

 to the PE whose address is

011121 ,...,,,0,...,,, aaaaaa jjkk −+−−

 sum both count values and leave the combined histogram in the
latter PE.

 end For;

 end If.

The algorithm assumes that the number of bits to represent the gray
levels is never more than the number of bits required to represent the
number of pixels in an image, which is a logical and true assumption for
nearly all realistic situations in computer vision applications.

4.6. Complexity analysis of the deterministic algorithm

It can be seen that with regards to the time complexity of the
algorithm, that the algorithm runs exactly in nlog loop iterations, the

time for each loop iteration may be considered as one time step (including
routing and the combining operations performed within a processing
element), thus it is a nlog time complexity process. With regards to

space complexity, the maximum space required at a single PE will be an

()22cO space per cell, where c is the number of bits required to store one

of the histogram domain values.

To be more specific, the algorithm requires

() 2
log

2

2

21log
x

x +

space per PE, where x is the discretized number of gray levels.

w
w
w
.p
ph

m
j.c

om

COMPUTING A COMPLETE HISTOGRAM OF AN IMAGE … 55

5. Comments about the Deterministic Algorithm

The presented algorithm in [2] describes an intelligent approach to
solving the problem of finding the histogram of an image using a popular
parallel architecture in a number of steps equal to the diameter of the

hypercube (),log n which is the best complexity that can be hoped for.

The algorithm makes use of the association of data values (gray level
values) and PE addresses to keep a growing collection of values
distributed so that their growth is manageable. The space complexity as

described above is ().2 2cO It may be possible to reduce the space by the

use of some encoding techniques during the storage of histograms that
result while iterating. However, the algorithm would then have to be
modified accordingly and its behavior may become more complicated. The

algorithm works nicely for the cases when ,km ≤ as the formal

description of the algorithm imply.

6. The Randomized Version of the Algorithm

A randomized algorithm is best described as an algorithm where
some of the decisions are made based upon the outcome of coin flips. The
idea is to prove that the algorithm will behave in a certain manner with
high probability. In our problem, we are concerned with proving that
randomizing the algorithm will make the memory requirements at each
processing element less than those for the original algorithm with a high

probability. Typically, we mean a probability an−−≥ 1 for any .1>a

Generally speaking, we can divide randomized algorithms into two
classes. The first class is one in which the output is correct with high
probability and is guaranteed to use a certain amount of resources. In the
second one the algorithm is guaranteed to produce a correct output, using
a certain amount of resource with a high probability. The first class is

called a Monte Carlo algorithm the second is called a Las Vegas

algorithm, our new algorithm is of the Las Vegas type.

7. The Randomization Scheme

The randomization scheme we describe is basically a method to

w
w
w
.p
ph

m
j.c

om

TAREK M. SOBH56

change the step marked ()∗∗∗ in the old algorithm to be a randomized

routing step. This is instead of sending all the pairs to the specific
processor

011121 ,...,,,0,...,,, aaaaaa jjkk −+−−

we send them randomly in a first phase to the jk − processors (c means

complement)

011121 ,...,,,1,...,,, aaaaaa jjkk −+−− (1)

011121 ,...,,,1,...,,, aaacaaa jjkk −+−− (2)

() 011121 ,...,,,1,...,,,1 aaaacaajk jjkk −+−−−−

() 011121 ,...,,,1,...,,, aaaaacajk jjkk −+−−−

and then, a second phase, sends all ‘misplaced’ pairs; i.e., pairs with a

zero in their jth position in PE's 2 ()jk − to the proper PE's

011121 ,...,,,0,...,,, aaacaaa jjkk −+−− (2′)

(()) 011121 ,...,,,0,...,,,1 aaaacaajk jjkk −+−−
′−−

(()) .,...,,,0,...,,, 011121 aaaaacajk jjkk −+−−
′−

Note that this scheme complies with the idea behind the original

algorithm regarding that the suffixes of the indices of the pairs are the

same as the suffixes of the processing elements addresses, with the

advantage that the pairs are dispersed within the hypercube more than

before.

w
w
w
.p
ph

m
j.c

om

COMPUTING A COMPLETE HISTOGRAM OF AN IMAGE … 57

8. Probabilistic Analysis of Memory Requirements

An analysis of the memory locations required at each PE is to follow.

The analysis is done for a specific processing element []y at the first step

of the randomization procedure, the same analysis could be applied to all

PE's within the hypercube without loss of generality, the same method

could then be used for the following iterations till .1−= mj The fact

that the distributions used to calculate the number of pairs that are

expected to be at a certain processor (in the probability tree) are binomial

distributions and that the sum of jk − such distributions is still a

polynomial random variable could be applied to use Chernoff’s lemma.

Assume X is the random variable of the number of pairs (memory

locations needed), and m is the expected value we calculated, then

() XXE =

Implies (since X is polynomial) that the Probability ()()mepsilonX +≥ 1

is ,
2

2 a
epsilonm

ne −

<<≤ where ,1>a

which satisfies that the memory requirements are less than m with a

probability ,1 an−−≥ for any ,1>a as described before in the

randomization criteria.

9. Complexity Analysis of the Randomized Algorithm

It could be clearly seen that the memory requirements have

decreased significantly when applying this randomization scheme. The

number of bits for every pair is still equal to 1log2 +x at every time

during the iterations. Due to the ‘balance’ we discussed in the

probabilistic analysis, the number of pairs will always be close to a

constant. Even if the number of pairs increased to be proportional to

(),log2 x this will definitely be better than .x One may argue that

sending the pairs to more than one processor for randomization purposes

will increase the time complexity to be more than ()nO log steps, but this

is not true because the number of pairs will always be close to a constant

w
w
w
.p
ph

m
j.c

om

TAREK M. SOBH58

as we proved. Thus, the total memory requirements will be

()()xnxCO 22 logloglog −+ bits.

The second term is for the count increase by one for the loop ()###

after the index suffix is scanned for all the PE's. The time complexity

remains ().log nO As an example, 8256256 ∗∗ images that we used in

the original algorithm the memory requirements were 144 bits for each

PE. For the randomized algorithm, the memory requirements will be

equal to

() ()256log65536log1256log 222 −++C

i.e., ,89 +∗C which, if C was even equal to ,log2 x will be equal to 80

bits only for each PE with very high probability and the effect will be

more when the number of gray levels in an image is more.

10. Summary and Comments

The presented randomized algorithm describes a method of sound

improvement with regards to memory requirements when compared to

the deterministic algorithm. The new memory requirements could be

used at each PE and one can be sure that they will suffice with very high

probability. Randomized algorithms provide lower bounds for resources

like time and memory than those provided by deterministic algorithms in

many cases, especially in routing and routing-related problems. The time

complexity remains optimal and of the order of the diameter of the

hypercube.

References

[1] D. H. Ballard and C. M. Brown, Computer Vision, Prentice-Hall, 1982.

[2] T. Bestul and S. L. Davis, On computing complete histograms of images in Log(n)

steps using hypercubes, IEEE Trans. Pattern Analysis Machine Intell. 11(2) (1989),

212-213

[3] K. Hwang and F. A. Briggs, Computer Architecture and Parallel Processing,

McGraw Hill, 1984.

[4] M. O. Rabin, Probabilistic algorithms, Algorithms and Complexity, J. F. Traub, ed.,
Academic Press, 1976, pp. 21-40.

w
w
w
.p
ph

m
j.c

om

COMPUTING A COMPLETE HISTOGRAM OF AN IMAGE … 59

[5] S. Rajasekaran and T. Tsantilas, Optimal routing algorithms for mesh-connected

processor arrays, Algorithmica 8(1) (1992), 21-38.

[6] L. G. Valiant, A scheme for fast parallel communication, SIAM J. Comput. 11(2)

(1982), 350-361.

g

