

Abstract— A heterogeneous network is a connected network

of different platforms and operating systems. Job scheduling is

a problem of selecting a free resource for unexecuted task from

a pool of submitted tasks. Furthermore, it is required to find

for every resource the best order of the tasks assigned to it. The

purpose of this paper is to develop an efficient algorithm for

job scheduling in heterogeneous networks. The algorithm

should include parameters such as properties of resources and

properties of jobs. The algorithm includes a cost function that

is required to be optimized which includes parameters such as

the total processing time, average waiting time. Our results

demonstrate that the proposed algoritghm can be efficiently

used to determine the performance of different job scheduling

algorithms under different sets of loads.

I. INTRODUCTION

OB scheduling for heterogeneous networks has received

significant attention in literature due to its significant
effect of the overall performance of such networks [1, 2,

3]. An important component of the management system of a

heterogeneous network is an optimal and sub-optimal

scheduler. The scheduler should be able to create a schedule

after analyzing the pending workload and the free computing

resources. The efficiency of a distributed computing system

depends on the quality and features of the scheduler.

Scheduling in a heterogeneous networked environment

involves scheduling over two dimensions, time and space,

and on two levels, jobs and computing resources [1].

A. Problem Identification

The problem of job scheduling in heterogeneous

network is a problem of identifying a resource for every task

from the pool of unexecuted tasks. We define the problem

using the following three dimensions:

(1) Constraints

There are three types of constraints

(A) Jobs constraints:

• Initial priority

• Time and data dependency

• Preemptability

• Memory size required

• Completion deadline

• Number of processing slots required

Contact author: srizvi@bridgeport.edu

(B) Recourses constraints.

• Memory size

• Number of processing slots available

• Processing speed

(C) Scheduling constraints:

• Job advance reservation

• Parallel job partitioning

(2) Load balancing
In order to balance the load among the network we assume

that jobs are assigned to processors whenever they are free.

(3) Cost function

It is required to optimize a weighted cost function including

with parameters such as total processing time, average

waiting time, and average violation of completion deadline.

II. RELATED WORK

There are many approaches reported in literature for

dynamic scheduling and load balancing in grid systems.

Many of these involve some sort of centralized monitoring

system, such as [4, 5, 6, 7], to collect up-to-date information
on grid nodes. Such approaches suffer from the fact that the

information needs to be kept up-to date as well as additional

overhead which impacts negatively the performance. Such a

phenomenon is obvious when the system is experiencing a

heavy load [2].

Development in computational grid technologies has

lead to high scale performances in distributed systems,

wherein the grid resources are geographically dispersed and

heterogeneous in nature. Nonetheless, a grid site uses a

large scale of communication overhead to capture load

information. Also, computational grid systems rely on load
balancing to enhance the utilization of each node, and

minimize the average response time of each jobs. A node in

terms of a distributed system has “different processing speed

and system resources.” These nodes control the decision

making process in load balancing.

Since the load balancing decision is distributed; it is

costly to let each node obtain the dynamic state information

of the whole system. To address this problem, some

algorithm developed a suitable work around; for instance,

Mosix which uses a probabilistic approach to choose a

random subset of hosted to talk to and cut down
communication cost. Diffusion-based approach uses the

Optimization and Job Scheduling in

Heterogeneous Networks
Abdelrahman Elleithy, Syed S. Rizvi, and Khaled M. Elleithy

Computer Science and Engineering Department University of Bridgeport, Bridgeport, CT USA
{aelleithy, srizvi, elleithy}@bridgeport.edu

J

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UB ScholarWorks

https://core.ac.uk/display/52955645?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

near-neighbor load information to apportion surplus load

from heavily loaded areas in the system. [1]

III. PROPOSED ANALYTICAL MODEL

 In this section we discuss how we represent our problem in

a three dimensional model. This mathematical representation

is a new representation that is not reported in the literature.

A. Constraints Representation

There are three types of constraints

(A) Jobs constraints:

1. Initial priority is represented using two dimensional
array IP of dimension n*3, IP[i,j], s.t. 1<= i <= n ,

1<= j <= 3

IP [i, 1] represents the priority of the job which is a

number between 1 and n.

IP [i, 2] represents the status of the job. Status equal

0 means the job did not start and it can be assigned

to any free processor. Status equal 1 means the job

started execution. Status equal 2 means the job is

preempted and it can be assigned to any processor.
Status equal 3 means the job finished execution.

IP [i, 3] represents the finished slots if the job is in

preempted status.

2. Time and data dependency:

a. Time dependency is represented using one

dimensional array T of dimension n. T[i] =

j, means that task number i can not be

started before time j.

b. Data dependency is represented using two
dimensional array D of dimension n*n.

D[i,j] = 1 means job i can not start before

job j is finished , D[i,j] = 0 means job i can

start before job j is finished.

Please note that D[i,i] = 0 for all values 1<= i

<= n.

3. Preemptability: is represented using one

dimensional array P of dimension n. P[i] = 1, means

that task number i can be preempted during
execution. P[i] = 0, means that task number i cannot

be preempted during execution.

4. Memory size: is represented using one dimensional

array M of dimension n. M[i] = j means job i

requires memory of size j bytes.

5. Completion deadline: is represented using one

dimensional array CD of dimension n. CD[i] = k

means job i has to be finished by time k.

6. Number of processing slots required is represented

using one dimensional array NPSR of dimension n.

NPSR [i] = j means that job i requires j slots.

B. Recourses Constraints:

1. Memory size is represented using one dimensional

array MP of dimension n. MP[i] = j means

processor i has j bytes available for execution of

tasks.

2. Number of processing slots is represented using one
dimensional array NPS of dimension n. NPS[i] = j

means processor i has j slots that can be used for

processing tasks.

3. Processing speed is represented using one

dimensional array PS of dimension n. PS[i] = j

means processor i has a speed of j instructions per

slot.

C. Scheduling Constraints:

1. Job advance reservation is represented using one

dimensional array AR of dimension n. AR[i] = 1

means processor i allows advance reservation.

AR[i] = 0 means processor i does not allow

advance reservation.

2. Parallel job partitioning is represented using one
dimensional array JP of dimension n. JP[i] = 1

means processor i allows partitioning. JP[i] = 0

means processor i does not allow partitioning.

(2) Load balancing

In order to balance the load among all processors, It is

required to keep all processors busy. Instead of

communicating the status of each processor to all processors,

which requires exchanging large amount of data, processors

get the next task to execute from the initial priority list (IP).

(3) Cost function

Our cost function will include the following parameters:

P: total processing time

W: average waiting time

V: average violation of completion deadline

The cost function is a weighted function. The following are

the weights:

Ψ: weighted cost function

α: weight of total processing time

β: weight of average waiting time

γ: weight of average violation of completion

deadline

Ψ = α * P + β * W + γ * V

IV. PROPOSED PARALLEL ALGORITHM

 The following is the parallel algorithm that will be executed
by every processor. Figure (1) shows the initial status of the

scheduler:

Select_task ()

{

Repeat for every free processor, p,

Select the highest priority job, k, from IP such that:

 IP [k, 2] = 0 did not start, or

 IP [k, 2] = 2 job was preempted

Check Time and data dependency:
a. T[k] >= current_clock

b. D [k, i] for all values are satisfied. This condition

can be checked using IP

c. M[k] <= MP [p] : satisfy memory constraint

Case

- If all constraints are satisfied, set IP [K ,2] = 1

- If any constraint is violated, select next available task

- If there is no available task, wait for next slot

- If IP [i, 2] = 3 for all values of I then

 Finish_simulation_and_Produce_Statistics ();

 }

Preemption ()

{

Repeat for busy processors (p) every time slot

- Check for the preemptability of the current task(T)

- If (P [T] = 1) and (current_period = Preemption_period)

then

(a) IP [T, 2] = 2

(b) IP [T, 3] = IP [T, 3] + current_period

- Select_task ();

}

Finish_Task_and_Collect)_Statistics ()
{

Repeat for busy processors (p) every time slot and for task

(k)

- Check if task(T) has completed NPS(T)

- If task (T) finished execution then

(a) IP [T, 2] = 3

Figure 1: Status of the scheduler before run start for 2 processors, 10 jobs and 5 resources

(b) total processing time = total processing time +

current-period

(c) If (current_clock - CD [T])> 0 then

average violation of completion deadline =

average violation of completion deadline +
(current_clock - CD [T])

}

Finish-simulation-and-Produce-Statistics ()

{

- Update P, V, W

- Calculate Ψ = α * P + β * W + γ * V

- Print Statistics

}

V. IMPLEMENTATION AND EXPERIMENTAL VARIFICATIONS

We have implemented a simplified version of the algorithm

using Visual Studio 2005 in C#. The following is a

discussion of the implementation of the program. Figure (1)

shows the initial status of the scheduler:

Inputs:

The user is allowed to use the visual interface for the

following data:

(1) Number of processors

(2) Number of jobs

(3) Number of resources

The scheduler generates randomly the following data:

(1) The start time

(2) The priority level

(3) The data size

During the run of the simulation the following data is

displayed:

(1) Data about jobs in the memory such as its status, speed

and the allocated time. Figure 2 shows the data about jobs in
memory.

(2) The detailed status of every processor when ever a job is

assigned such as the priority, the resources used for that

specific job, and the hit count for that specific processor.

Figure 3 shows the status of the assigned task.

(3) The priority algorithm used for that specific processor.

The following priority algorithms are supported by the

scheduler: PB, FIFO, and LRU.

Figure 4 shows examples of priority algorithms used by the

scheduler. Finally, Figure 5 provides the final results based

on the proposed algorithm with the comprehensive amount

of different statstics.

VI. CONCLUSION

In this paper we tackled the job scheduling problem in

heterogeneous networks by developing a mathematical

model and an efficient algorithm that takes into

consideration the three types of constraints defined above,

balancing load among processors in order to optimize the

weighted cost function.

We have implemented a prototype of the scheduler for

educational purpose. The implementation can be easily used

as an educational tool for teaching concepts of scheduling in

heterogeneous networks.

As a continuation of this study in a different course or an

independent study, we are planning in the future to do a

complete analysis of the algorithm and its performance in

terms of different constraints:

• Initial priority

• Time and data dependency

Figure 2: Data about jobs in memory

Figure 3: Data of the assigned task.

Figure 4: Example of priority algorithms used by the

scheduler.

• Preemptability

• Memory size required

• Completion deadline

• Number of processing slots required

• Memory size

• Number of processing slots available

• Processing speed

• Job advance reservation

• Parallel job partitioning

REFERENCES

[1] K. Lu , Y. Zomaya, “A Hybrid Policy for Job Scheduling and
Load Balancing in Heterogeneous Computational Grids,”
Sixth International Symposium on Parallel and Distributed

Computing (ISPDC'07), pp. 19-26, 2007.
[2] L. Markov, “Two Stage Optimization of Job Scheduling and

Assignment in Heterogeneous Compute Farms,” 10th IEEE

International Workshop on Future Trends of Distributed

Computing Systems (FTDCS'04), pp. 119-124, 2004
[3] W. Homer, C. Lee, W. Chen, T. Lee, “A Job Schedule Model

Based on Grid Environment,” First International Conference

on Complex, Intelligent and Software Intensive Systems

(CISIS'07), pp. 43-49, 2007.
[4] S. Fitzgerald, I. Foster, C. Kesselman, V. Laszewski, G.

Smith, and S. Tuecke, “A Directory Service for Configuring
High-Performance Distributed Computations,” Proc of 6th

IEEE Symp. on High-Performance Computing, 1997, pp.365–
375, 1997.

[5] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S.
Tuecke,”A Computation Management Agent for Multi-
Institutional Gridsm” Proc. 10th IEEE Symp. on High-

Performance Computing, San Francisco, CA, USA, 2001
[6] R. Buyya, J. Abramson, and J. Giddy, J. Nimrod, “

Architecture for a Resource Management and Scheduling
System in a Global Computational Grid,” 4th IEEE Conf. on

High-Performance Computing in the Asia-Pacific Region,

China, 2000
[7] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman,

“Heuristics for Scheduling Parameter Sweep Applications in
Grid Environments,” Proceedings of the 9th Heterogeneous

Computing workshop (HCW'2000), pp349-363, 2000.

Authors Biographies

Abdelrahman Elleithy has received his
BS in Computer Science in 2007 from
the Department of Computer Science
and Engineering at the University of
Bridgeport, Connecticut, USA .

Abdelrahman is currently a MS student
and expected to receive his MS in
Computer Science in December 2008.
Abdelrahman has research interests in
wireless communications and parallel

Figure 5: Final results of the simulation for 2 processors, 10 jobs and 5 resources

processing where he published his research results papers in
national and international conferences.

SYED S. RIZVI is a Ph.D. student
of Computer Engineering at
University of Bridgeport. He
received a B.S. in Computer

Engineering from Sir Syed
University of Engineering and
Technology and an M.S. in
Computer Engineering from Old
Dominion University in 2001 and
2005 respectively. In the past, he has
done research on bioinformatics

projects where he investigated the use of Linux based cluster search

engines for finding the desired proteins in input and outputs
sequences from multiple databases. For last one year, his research
focused primarily on the modeling and simulation of wide range
parallel/distributed systems and the web based training
applications. Syed Rizvi is the author of 45 scholarly publications
in various areas. His current research focuses on the design,
implementation and comparisons of algorithms in the areas of
multiuser communications, multipath signals detection, multi-
access interference estimation, computational complexity and

combinatorial optimization of multiuser receivers, peer-to-peer
networking, and reconfigurable coprocessor and FPGA based
architectures.

DR. KHALED ELLEITHY received
the B.Sc. degree in computer science
and automatic control from Alexandria
University in 1983, the MS Degree in
computer networks from the same

university in 1986, and the MS and
Ph.D. degrees in computer science
from The Center for Advanced
Computer Studies at the University of
Louisiana at Lafayette in 1988 and

1990, respectively. From 1983 to 1986, he was with the Computer
Science Department, Alexandria University, Egypt, as a lecturer.
From September 1990 to May 1995 he worked as an assistant

professor at the Department of Computer Engineering, King Fahd
University of Petroleum and Minerals, Dhahran, Saudi Arabia.
From May 1995 to December 2000, he has worked as an Associate
Professor in the same department. In January 2000, Dr. Elleithy has
joined the Department of Computer Science and Engineering in
University of Bridgeport as an associate professor. Dr. Elleithy
published more than seventy research papers in international
journals and conferences. He has research interests are in the areas

of computer networks, network security, mobile communications,
and formal approaches for design and verification.

