
 

 

 

  

Abstract— A heterogeneous network is a connected network 

of different platforms and operating systems. Job scheduling is 

a problem of selecting a free resource for unexecuted task from 

a pool of submitted tasks. Furthermore, it is required to find 

for every resource the best order of the tasks assigned to it. The 

purpose of this paper is to develop an efficient algorithm for 

job scheduling in heterogeneous networks. The algorithm 

should include parameters such as properties of resources and 

properties of jobs. The algorithm includes a cost function that 

is required to be optimized which includes parameters such as 

the total processing time, average waiting time. Our results 

demonstrate that the proposed algoritghm can be efficiently 

used to determine the performance of different job scheduling 

algorithms under different sets of loads. 

I. INTRODUCTION 

OB scheduling for heterogeneous networks has received 

significant attention in literature due to its significant 
effect of the overall performance of such networks [1, 2, 

3]. An important component of the management system of a 

heterogeneous network is an optimal and sub-optimal 

scheduler. The scheduler should be able to create a schedule 

after analyzing the pending workload and the free computing 

resources. The efficiency of a distributed computing system 

depends on the quality and features of the scheduler. 

Scheduling in a heterogeneous networked environment 

involves scheduling over two dimensions, time and space, 

and on two levels, jobs and computing resources [1]. 

A. Problem Identification 

 

The problem of job scheduling in heterogeneous 

network is a problem of identifying a resource for every task 

from the pool of unexecuted tasks. We define the problem 

using the following three dimensions: 

 
(1) Constraints 

There are three types of constraints 

 

(A) Jobs constraints: 

• Initial priority 

• Time and data dependency  

• Preemptability 

• Memory size required 

• Completion deadline 

• Number of processing slots required 
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(B) Recourses constraints. 

• Memory size 

• Number of processing slots available 

• Processing speed 

 

(C) Scheduling constraints: 

• Job advance reservation 

• Parallel job partitioning 

 

(2) Load balancing  
In order to balance the load among the network we assume 

that jobs are assigned to processors whenever they are free.  

 

(3) Cost function 

It is required to optimize a weighted cost function including 

with parameters such as total processing time, average 

waiting time, and average violation of completion deadline.  

II. RELATED WORK 

There are many approaches reported in literature for 

dynamic scheduling and load balancing in grid systems. 

Many of these involve some sort of centralized monitoring 

system, such as [4, 5, 6, 7], to collect up-to-date information 
on grid nodes. Such approaches suffer from the fact that the 

information needs to be kept up-to date as well as additional 

overhead which impacts negatively the performance. Such a 

phenomenon is obvious when the system is experiencing a 

heavy load [2]. 

Development in computational grid technologies has 

lead to high scale performances in distributed systems, 

wherein the grid resources are geographically dispersed and 

heterogeneous in nature.  Nonetheless, a grid site uses a 

large scale of communication overhead to capture load 

information. Also, computational grid systems rely on load 
balancing to enhance the utilization of each node, and 

minimize the average response time of each jobs. A node in 

terms of a distributed system has “different processing speed 

and system resources.” These nodes control the decision 

making process in load balancing. 

Since the load balancing decision is distributed; it is 

costly to let each node obtain the dynamic state information 

of the whole system.  To address this problem, some 

algorithm developed a suitable work around; for instance, 

Mosix which uses a probabilistic approach to choose a 

random subset of hosted to talk to and cut down 
communication cost. Diffusion-based approach uses the 
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near-neighbor load information to apportion surplus load 

from heavily loaded areas in the system. [1] 

III. PROPOSED ANALYTICAL MODEL 

 In this section we discuss how we represent our problem in 

a three dimensional model. This mathematical representation 

is a new representation that is not reported in the literature. 

A.  Constraints Representation 

There are three types of constraints 

 

(A) Jobs constraints: 

 

1. Initial priority is represented using two dimensional 
array IP of dimension n*3, IP[i,j], s.t. 1<= i <= n , 

1<= j <= 3 

 

IP [i, 1] represents the priority of the job which is a 

number between 1 and n. 

 

IP [i, 2] represents the status of the job. Status equal 

0 means the job did not start and it can be assigned 

to any free processor. Status equal 1 means the job 

started execution. Status equal 2 means the job is 

preempted and it can be assigned to any processor. 
Status equal 3 means the job finished execution. 

 

IP [i, 3] represents the finished slots if the job is in 

preempted status. 

 

2. Time and data dependency:  

 

a. Time dependency is represented using one 

dimensional array T of dimension n. T[i] = 

j, means that task number i can not be 

started before time j. 

b. Data dependency is represented using two 
dimensional array D of dimension n*n. 

D[i,j] = 1 means job i can not start before 

job j is finished , D[i,j] = 0 means job i can 

start before job j is finished.  

 

Please note that D[i,i] = 0 for all values 1<= i 

<= n. 

 

3. Preemptability: is represented using one 

dimensional array P of dimension n. P[i] = 1, means 

that task number i can be preempted during 
execution. P[i] = 0, means that task number i cannot 

be preempted during execution. 

 

4. Memory size: is represented using one dimensional 

array M of dimension n. M[i] = j means job i 

requires memory of size j bytes. 

 

5. Completion deadline: is represented using one 

dimensional array CD of dimension n. CD[i] = k 

means job i has to be finished by time k. 

 

6. Number of processing slots required is represented 

using one dimensional array NPSR of dimension n. 

NPSR [i] = j means that job i requires j slots. 

B.  Recourses Constraints: 

 

1. Memory size is represented using one dimensional 

array MP of dimension n. MP[i] = j means 

processor i has j bytes available for execution of 

tasks. 

 

2. Number of processing slots is represented using one 
dimensional array NPS of dimension n. NPS[i] = j 

means processor i has j slots that can be used for 

processing tasks. 

 

3. Processing speed is represented using one 

dimensional array PS of dimension n. PS[i] = j 

means processor i has a speed of j instructions per 

slot.  

C. Scheduling Constraints: 

 

1. Job advance reservation is represented using one 

dimensional array AR of dimension n. AR[i] = 1 

means processor i allows advance reservation. 

AR[i] = 0 means processor i does not allow 

advance reservation. 

 

2. Parallel job partitioning is represented using one 
dimensional array JP of dimension n. JP[i] = 1 

means processor i allows partitioning. JP[i] = 0 

means processor i does not allow partitioning. 

 

(2) Load balancing  

 

In order to balance the load among all processors, It is 

required to keep all processors busy. Instead of 

communicating the status of each processor to all processors, 

which requires exchanging large amount of data, processors 

get the next task to execute from the initial priority list (IP).  

 
(3) Cost function 

 

Our cost function will include the following parameters: 

 

P:  total processing time 

W:  average waiting time 

V:  average violation of completion deadline 

 

The cost function is a weighted function. The following are 

the weights: 

 
Ψ: weighted cost function 

α: weight of total processing time 

β: weight of average waiting time 



 

 

 

γ: weight of average violation of completion 

deadline 

 

Ψ = α * P + β * W + γ * V 

IV. PROPOSED PARALLEL ALGORITHM 

 The following is the parallel algorithm that will be executed 
by every processor. Figure (1) shows the initial status of the 

scheduler: 

 

Select_task () 

{  

Repeat for every free processor, p,   

 

Select the highest priority job, k, from IP such that: 

   IP [k, 2] = 0 did not start, or  

 IP [k, 2] = 2 job was preempted 

 

Check Time and data dependency: 
a. T[k] >=  current_clock  

b. D [k, i] for all values are satisfied. This condition 

can be checked using IP 

c. M[k] <= MP [p] : satisfy memory constraint 

Case 

- If all constraints are satisfied, set IP [K ,2 ] = 1 

- If any constraint is violated, select next available task 

- If there is no available task, wait for next slot 

- If IP [i, 2] = 3 for all values of I then  

   Finish_simulation_and_Produce_Statistics (); 

 } 

 
Preemption () 

{  

Repeat for busy processors (p) every time slot  

- Check for the preemptability of the current task(T) 

- If (P [T] = 1) and (current_period = Preemption_period) 

then  

(a) IP [T, 2] = 2 

(b) IP [T, 3] = IP [T, 3] + current_period 

- Select_task (); 

} 

 

Finish_Task_and_Collect)_Statistics () 
{  

Repeat for busy processors (p) every time slot and for task 

(k) 

 

- Check if task(T) has completed NPS(T) 

- If task (T) finished execution then 

(a) IP [T, 2] = 3 

 

 

 
 

Figure 1: Status of the scheduler before run start for 2 processors, 10 jobs and 5 resources 

 



 

 

 

(b) total processing time = total processing time + 

current-period 

 

(c) If (current_clock - CD [T])> 0 then 

average violation of completion deadline = 

average violation of completion deadline + 
(current_clock - CD [T] ) 

} 

 

Finish-simulation-and-Produce-Statistics () 

{ 

- Update P, V, W 

- Calculate Ψ = α * P + β * W + γ * V 

- Print Statistics 

} 

 

V. IMPLEMENTATION AND EXPERIMENTAL VARIFICATIONS 

 

We have implemented a simplified version of the algorithm 

using Visual Studio 2005 in C#. The following is a 

discussion of the implementation of the program. Figure (1) 

shows the initial status of the scheduler:  

 

Inputs: 
 
The user is allowed to use the visual interface for the 

following data: 

(1) Number of processors 

(2) Number of jobs 

(3) Number of resources 

 

The scheduler generates randomly the following data: 

(1) The start time 

(2) The priority level 

(3) The data size 

 

During the run of the simulation the following data is 

displayed: 

 

(1) Data about jobs in the memory such as its status, speed 

and the allocated time. Figure 2 shows the data about jobs in 
memory. 

 

(2) The detailed status of every processor when ever a job is 

assigned such as the priority, the resources used for that 

specific job, and the hit count for that specific processor. 

Figure 3 shows the status of the assigned task. 

 

(3) The priority algorithm used for that specific processor. 

The following priority algorithms are supported by the 

scheduler: PB, FIFO, and LRU. 

 
Figure 4 shows examples of priority algorithms used by the 

scheduler. Finally, Figure 5 provides the final results based 

on the proposed algorithm with the comprehensive amount 

of different statstics.  

VI. CONCLUSION 

In this paper we tackled the job scheduling problem in 

heterogeneous networks by developing a mathematical 

model and an efficient algorithm that takes into 

consideration the three types of constraints defined above, 

balancing load among processors in order to optimize the 

weighted cost function. 
 

We have implemented a prototype of the scheduler for 

educational purpose. The implementation can be easily used 

as an educational tool for teaching concepts of scheduling in 

heterogeneous networks. 

 

As a continuation of this study in a different course or an 

independent study, we are planning in the future to do a 

complete analysis of the algorithm and its performance in 

terms of different constraints:  

• Initial priority 

• Time and data dependency  

 

 
Figure 2: Data about jobs in memory 

 

 

 

 
Figure 3: Data of the assigned task. 

 

 

 
Figure 4: Example of priority algorithms used by the 

scheduler. 

 



 

 

 

• Preemptability 

• Memory size required 

• Completion deadline 

• Number of processing slots required 

• Memory size 

• Number of processing slots available 

• Processing speed 

• Job advance reservation 

• Parallel job partitioning 
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Figure 5: Final results of the simulation for 2 processors, 10 jobs and 5 resources 
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