What is SAR imaging?

Synthetic Aperture Radar (SAR) imaging

- ► Region illuminated by electromagnetic (EM) waves from a moving airborne platform
- ► For each fixed antenna position, EM waves are sent for a time interval and the scattered waves measured
- ▶ Region imaged based on the measurement of scattered waves

Monostatic and bistatic SAR

- ► Monostatic SAR one moving platform has both transmitter and receiver
 - The scattered data under simplifying assumptions modeled as integrals of a function over circles
- ▶ Bistatic SAR transmitter and receiver follow independent trajectories
 - The scattered data under simplifying assumptions modeled as integrals of a function over ellipses
 - Ellipses intersection with the ground of the ellipsoids of revolution with the transmitter and receiver locations as the foci

Advantages of bistatic SAR

- Receivers are passive. Can be flown in unsafe environment. Transmitters can be detected. Its movement is restricted to a safe environment.
- Some objects capable of beam steering, i.e., scatter signals in a direction different from the incoming one
- ► Bistatic data models arise in certain multipath data models

Main questions

- ► Reconstruct an image of the region with a bistatic radar imaging setup
- ▶ Reconstruct the singularities of the region
- ► The reconstruction operator introduces additional singularities
- ► Understand the strength of the added singularities in comparison to the true singularities

The mathematical model

$$\mathcal{F}V(s,t) = \int e^{-\mathrm{i}\omega(t-\frac{1}{c_0}R(x,s))} A(s,t,x,\omega) V(x) \mathrm{d}x \mathrm{d}\omega,$$
 for $(s,t) \in (s_0,s_1) \times (t_0,t_1)$.

Y space

 $\gamma_T(s)$ and $\gamma_R(s)$ – Trajectories of the transmitter and receiver, c_0 – Speed of light, s – slow time and t – fast time

$$R(x, s) = |\gamma_T(s) - (x, 0)| + |(x, 0) - \gamma_R(s)|$$
 (bistatic distance)

 $A(s, t, x, \omega)$ – Takes into account geometric spreading factors of the electromagnetic wave etc. Assume that A satisfies a decay estimate of order 2.

Analysis of the operator \mathcal{F} for arbitrary transmitter and receiver trajectories is a hard problem

 $\gamma_T(s) = (s + \alpha, 0, h)$ and $\gamma_R(s) = (s - \alpha, 0, h)$; α and h are positive constants

 \mathcal{F} is a Fourier integral operator of order 3/2.

Analysis of singularities

Study the normal operator $\mathcal{F}^*\mathcal{F}$

This is not a ΨDO

We analyze the geometry of the canonical relation Λ of ${\cal F}$

Geometry of the canonical relation

To understand the microlocal mapping properties of \mathcal{F} and $\mathcal{F}^*\mathcal{F}$, we consider the projections

 $\pi_L: T^*Y \times T^*X \to T^*Y$ and

 $\pi_R: T^*Y \times T^*X \to T^*X$ restricted to Λ. Here $X \subset \mathbb{R}^2$ is the object domain. We prove the following:

- (a) The projection π_L restricted to Λ has a fold singularity on a submanifold of Σ .
- (b) The projection π_R restricted to Λ has a blowdown singularity on the same submanifold as in (a).

The normal operator $\mathcal{F}^*\mathcal{F}$

- Let K be the kernel of $\mathcal{F}^*\mathcal{F}$. Then the wavefront set (WF) of K satisfies $WF(K)' \subset \Delta \cup \widetilde{\Lambda}$. Here Δ contributes the true singularities of the object. $\widetilde{\Lambda}$ contributes the added singularities.
- ▶ We show that the normal operator $\mathcal{F}^*\mathcal{F}$ is not a Ψ DO. Furthermore we characterize the strength of the added singularities and show that it is the same as that of the object singularities.
- Preprint available at http://arxiv.org/abs/1008.0687