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What is SAR imaging?

Synthetic Aperture Radar (SAR) imaging
I Region illuminated by electromagnetic (EM) waves from a moving

airborne platform
I For each fixed antenna position, EM waves are sent for a time

interval and the scattered waves measured
I Region imaged based on the measurement of scattered waves

Monostatic and bistatic SAR

I Monostatic SAR – one moving platform has both
transmitter and receiver

The scattered data under simplifying assumptions modeled as
integrals of a function over circles

I Bistatic SAR – transmitter and receiver follow
independent trajectories

The scattered data under simplifying assumptions modeled as
integrals of a function over ellipses
Ellipses – intersection with the ground of the ellipsoids of
revolution with the transmitter and receiver locations as the foci

Advantages of bistatic SAR

I Receivers are passive. Can be flown in unsafe
environment. Transmitters can be detected. Its
movement is restricted to a safe environment.

I Some objects capable of beam steering, i.e., scatter
signals in a direction different from the incoming one

I Bistatic data models arise in certain multipath data
models

Main questions

I Reconstruct an image of the region with a bistatic radar
imaging setup

I Reconstruct the singularities of the region
I The reconstruction operator introduces additional

singularities
I Understand the strength of the added singularities in

comparison to the true singularities

The mathematical model

FV (s, t) =

∫
e
−iω(t− 1

c0
R(x ,s))

A(s, t, x , ω)V (x)dxdω,

for (s, t) ∈ (s0, s1)× (t0, t1)︸ ︷︷ ︸
Y space

.

γT(s) and γR(s) – Trajectories of the transmitter and
receiver, c0 – Speed of light, s – slow time and t – fast
time

R(x , s) = |γT(s)− (x , 0)| + |(x , 0)− γR(s)| (bistatic
distance)

A(s, t, x , ω) – Takes into account geometric spreading
factors of the electromagnetic wave etc. Assume that A
satisfies a decay estimate of order 2.

Analysis of the operator F for arbitrary transmitter and
receiver trajectories is a hard problem

γT(s) = (s +α, 0, h) and γR(s) = (s −α, 0, h); α and h
are positive constants

F is a Fourier integral operator of order 3/2.

Analysis of singularities

Study the normal operator F∗F
This is not a ΨDO

We analyze the geometry of the canonical relation Λ of
F

Geometry of the canonical relation

To understand the microlocal mapping properties of F
and F∗F , we consider the projections
πL : T ∗Y × T ∗X → T ∗Y and
πR : T ∗Y × T ∗X → T ∗X restricted to Λ. Here X ⊂ R2

is the object domain. We prove the following:
(a) The projection πL restricted to Λ has a fold singularity on a

submanifold of Σ.
(b) The projection πR restricted to Λ has a blowdown singularity on

the same submanifold as in (a).

The normal operator F∗F

I Let K be the kernel of F∗F . Then the wavefront set
(WF) of K satisfies WF(K )′ ⊂ ∆ ∪ Λ̃. Here ∆

contributes the true singularities of the object. Λ̃
contributes the added singularities.

I We show that the normal operator F∗F is not a ΨDO.
Furthermore we characterize the strength of the added
singularities and show that it is the same as that of the
object singularities.

I Preprint available at
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