
        

Citation for published version:
Wøhlk, S & Laporte, G 2019, 'A districting-based heuristic for the coordinated capacitated arc routing problem',
Computers and Operations Research, vol. 111, pp. 271-284. https://doi.org/10.1016/j.cor.2019.07.006

DOI:
10.1016/j.cor.2019.07.006

Publication date:
2019

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-NC-ND

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 16. Aug. 2022

https://doi.org/10.1016/j.cor.2019.07.006
https://doi.org/10.1016/j.cor.2019.07.006
https://researchportal.bath.ac.uk/en/publications/1c01f617-694a-4a90-b4d9-60f2de946477


A Districting-Based Heuristic for the Coordinated
Capacitated Arc Routing Problem

Sanne Wøhlka,∗, Gilbert Laporteb

aCORAL - Cluster for Operations Research, Analytics, and Logistics, Department of
Economics and Business Economics, Aarhus University, Fuglesangs Allé 4, DK-8210
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Abstract

The purpose of this paper is to solve a multi-period garbage collection problem
involving several garbage types called fractions, such as general and organic
waste, paper and carboard, glass and metal, and plastic. The study is motivated
by a real-life problem arising in Denmark. Because of the nature of the fractions,
not all of them have the same collection frequency. Currently the collection
days for the various fractions are uncoordinated. An interesting question is to
determine the added cost in terms of traveled distance and vehicle fleet size of
coordinating these collections in order to reduce the inconvenience borne by the
citizens. To this end we develop a multi-phase heuristic: 1) small collection
districts, each corresponding to a day of the week, are first created; 2) the
districts are assigned to specific weekdays based on a closeness criterion; 3) they
are balanced in order to make a more efficient use of the vehicles; 4) collection
routes are then created for each district and each waste fraction by means of the
FastCARP heuristic. Extensive tests over a variety of scenarios indicate that
coordinating the collections yields a routing cost increase of 12.4%, while the
number of vehicles increases in less than half of the instances.

Keywords: Garbage collection, districting, arc routing, heuristics

1. Introduction

The purpose of this paper is to solve a multi-period garbage collection problem
involving several garbage types called fractions. In our application these are
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general and organic waste, paper and carboard, glass and metal, and plastic.
Our study is motivated by a real-life problem arising in Denmark. In this5

country, garbage collection falls under the responsibility of the counties. There
are 98 Danish counties and we obtained data for six of them under a cooperative
research agreement (see Figure 1). These counties represent several areas of
Denmark. Two are rural (North (N) and South (S) Djurs), two are semi-rural
(Skanderborg and Odder (K)) and will be treated as one in our experiments,10

and two are urban (Frederiksberg (F) and Odense (O)). Because of the nature
of the fractions (for example, organic waste attracts animals), not all of them
require the same collection frequency. While general or organic garbage may
require weekly or biweekly collections, recyclable materials such as glass and
paper may have longer collection intervals. Under the current practice, the15

collection days for different fractions are uncoordinated. To illustrate, general
and organic waste can be collected every Monday, paper and cardboard every
fourth Tuesday, glass and metal every third Thursday, and plastic every second
Friday (see Figure 2).

Denmark. Zoom on Copenhagen.

Figure 1: The counties providing the data.

However, in places like Denmark, where the citizens have to move their waste20

bins from the backyard to the sidewalk the evening before collection, and back
the next day, such a schedule means that the citizens must relocate bins multiple
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days each week. It would be easier for them to perform such operations all
at once, and they would not have to be constantly preoccupied with garbage
collection. For this reason, a more coordinated collection schedule, such as the25

one depicted in Figure 3, could be preferable. In this schedule, garbage collection
always takes place on a Monday for all fractions, even though the garbage
type varies from week to week. The idea of introducing coordinated collection
schedules for garbage collection, where all collections would always occur on
the same weekday for each citizen, was recently proposed in [1]. Clearly, a30

coordinated schedule may not be possible in some old towns with narrow streets
where there is not sufficient space to put many bins all at once. However, in
the majority of the places underlying our study in Denmark, there are no real
practical problems with a coordinated schedule.

Figure 2: Example of an inconvenient schedule for the citizens.

Figure 3: Example of a more convenient schedule for the citizens.

There is yet no hard computational evidence that the uncoordinated collection35

schedules are beneficial in terms of collection costs. Some of our partners have
expressed their interest in an investigation of the relative collection cost of the
coordinated and uncoordinated schedule. The research question that motivates
this paper is therefore to determine by how much implementing a coordinated
collection schedule would increase the collection costs, measured as the number40

of vehicles needed (assuming that a vehicle can perform a single route each
day), as well as the total distance driven. In order to provide an input to the
decision process, we have developed a districting-based heuristic for the design of
coordinated garbage collection schedule, and we have compared the solutions to
those obtained under an uncoordinated collection scheme. Our computational45

results indicate that the increase in distance is 12.4% and the number of vehicles
increases in less than half of the cases. Whether such increases are acceptable
or not is up to the administrators to decide.

The problem under consideration is of very large scale, which imposes severe
practical restrictions on our solution methodology. To give the reader an idea of50

the large size of these instances, in the five areas considered in this study, there
are between 26 and 11,656 nodes, between 33 and 12,691 edges, between 19 and
8,651 required edges, and between two and 54 vehicles over all fractions. These
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very large sizes preclude the use of any exact algorithm (for example, the largest
CARP instances that can be solved optimally involve around 190 edges (see [2])).55

The use of metaheuristics such as tabu search, adaptive large neighbourhood
search, or genetic algorithms (see [3] for a survey) is also impractical since
such techniques must apply several destroy and repair operators over a very
large number of iterations in order to produce high quality results. Typically,
if a problem instance involves n nodes, then the complexity of most standard60

operators tends to be at least O(n2). As a result, we must contend ourselves with
relatively simple low-complexity heuristics. It soon became clear to us that as a
first step we would have to partition the counties into more manageable districts
in each of which a routing heuristic would have to be applied separately. One
such heuristic, used as a subroutine in this work, is the FastCARP algorithm65

recently proposed by [4] for the CARP. As we will show, the use of districts
not only reflects the current managerial practice, but it is instrumental in the
design of coordinated collection schedules. However, the districting process is
not without some inherent difficulties, as we will explain in the following.

As far as we are aware, the problem under study has never been previously70

studied. Related papers are those of [5], [6], and [7] for territorial districting in
an arc routing context, [8], [9], and [10] for the study of multi-fractions garbage
collection problems, [3] for the design of heuristics for the CARP in general,
and [11] and [12] for the CARP in a garbage collection context. The papers
by [13] and [14] also describe interesting case studies in the context of curbside75

garbage collection, while [15] takes a broader perspective on research of garbage
collection operations. However, it looks as if the design of coordinated multi-
fractions collection schedules has never been investigated. Furthermore, we refer
the reader to [16] and [17] for thorough surveys of the CARP.

The remainder of this paper is organized as follows. Section 2 contains a de-80

tailed description of our problem. In Section 3, we discuss different approaches
to decomposing the problem into districts and explain why our approach to
districting makes sense not only in terms of working with smaller and more
manageable territorial entities, but also as a means of coordinating the collec-
tion schedules. Our solution approach is described in Section 4 and Section85

5 describes our base of comparison without enforcing coordination. Extensive
computational experiments are presented in Section 6, followed by conclusions
in Section 7.

2. Formal Problem Description

The problem just introduced is known as the Coordinated Capacitated Arc90

Routing Problem (C-CARP) and was first presented in [1]. In the following, we
will describe the problem formally, using a slightly simplified notation.

The C-CARP is defined on an undirected connected graph G = (N , E), where N
is the set of nodes and E is the set of edges. The edges are defined as unordered
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pairs (i, j) with i, j ∈ N , and with every edge, (i, j) ∈ E is associated a traversal95

cost cij > 0. With every pair of nodes i and j, we associate a cost sij equal to
the shortest distance between i and j, which can easily be determined. Node
0 ∈ N represents the depot.

In order to describe the time perspective of the problem, let τ be the number
of service days in a week, i.e. τ is typically 5 or 6. Let T = {1, 2, 3, . . .} be the100

set of service days in the planning horizon. Note that T excludes non-service
days, and therefore, if τ = 5, then days 1, 6, 11, . . . are Mondays.

We denote by F the set of all waste fractions to be collected, and for each fraction
f ∈ F , a demand qfij ≥ 0 must be collected from edge (i, j) every lf days with

respect to T (e.g. if τ = 6, then lf = 6 and lf = 12, correspond to weekly and105

biweekly collection, respectively). We define EfR = {(i, j) ∈ E : qfij > 0}. By

definition, we have either (lf mod τ) = 0 or (τ mod lf ) = 0 for every fraction
f ∈ F , i.e., lf ∈ {. . . , τ/3, τ/2, τ, 2τ, 3τ, . . .}. We refer to waste fractions with
lf < τ as frequent fractions and to those with lf ≥ τ as non-frequent fractions.

To collect the waste, a set Kf of identical vehicles are available for each waste110

fraction f ∈ F . Each vehicle for collection of fraction f has a capacity equal to
W f .

A feasible solution of the C-CARP is characterized by sets of routes for the
vehicles satisfying the following requirements:

1. every waste fraction f ∈ F is collected from every edge (i, j) with qfij > 0115

every lf days throughout the planning horizon;

2. for each edge, the collection of all non-frequent waste fraction is done on
the same day of the week;

3. for each edge, one of the weekly collections of each frequent fraction is
done on the same day of the week as the collection of the non-frequent120

fractions on that edge;

4. each vehicle performs at most one route each day in T ;

5. waste fraction f ∈ F is collected only by vehicles in Kf ;

6. the total demand collected by each vehicle each day does not exceed the
capacity of that vehicle;125

7. all routes start and end at the depot;

8. every collection of a given waste fraction from a given edge is done by the
same vehicle.

The primary objective of the C-CARP is to minimize the total number of vehi-
cles used, while the secondary objective is the minimization of the total routing130

cost over the |T | days of the planning horizon, defined as the total distance
traversed by the vehicles.
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3. Decomposition of the problem

When solving very large scale and complex problems such as the one considered
in this paper, it is highly sensible to apply some kind of decomposition. The135

most natural approach would be to decompose the problem by waste fraction
such that each waste fraction is treated separately. However, this is not possible
due to the coordination constraints, and this approach was therefore discarded.
An alternative approach is to decompose the problem graphically. While this
would decrease the size of each subproblem, it does not reduce the complexity140

of the problem.

Finally, the problem can be decomposed along the time horizon and through
the use of districts. A district is defined as a set of edges serviced on a specific
day of the week. There are two ways this decomposition can be implemented.
First, the problem can be decomposed by calendar day, so that each day in T is145

handled separately. To this end, we can create the planning horizon |T | districts,
one for each day, and assign each waste fraction of each edge to several districts
that are lf days apart in time and in such a way that the demand for each
fraction is balanced across the districts. This would result in 12 to 60 districts,
depending on the instance. While performing this assignment and possibly150

adjusting the assignment, the coordination requirements 2 and 3 is Section 2
must be respected. Once the districts are designed, routes must be created to
service the edges of each district. During the routing phase, requirement 8 must
be ensured, possibly by replication of the same set of routes for several districts.

Second, the problem can be decomposed on the basis of weekdays, as opposed to155

specific days of the planning horizon, by forming one district for Mondays, one
for Tuesdays, and so forth. This approach results in τ districts, each edge in the
graph being assigned to exactly one district, thereby automatically enforcing
the coordination requirements 2 and 3. When seeking to obtain well-balanced
districts, the demand of frequent edges needs extra care, as illustrated in the next160

paragraph, but non-frequent edges are handled in a straightforward manner.
After creating routes for each district and each fraction, a finalization procedure
needs to be performed. To illustrate this, consider the Monday district for a
fraction with lf = 3τ , and assume that 15 routes are created for it. Now,
the first five routes are executed on Monday in the first week, the next five on165

Monday the second week, and the final five on Monday the third week, and
this plan is repeated the following Mondays in a cyclic manner. This is the
approach we have chosen for decomposing the problem in this paper because
the coordination can be handled more naturally and the balancing of districts
is easier due to the smaller number.170

Under this approach, the handling of non-frequent fractions is straightforward,
but extra attention still needs to be given to frequent fractions when balancing
the districts. This is illustrated in the following example with τ = 6, and three
fractions with l1 = 6, l2 = 3, and l3 = 2. Here, six districts are created and each
edge is assigned to one district. The districts are assigned to weekdays: district175
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Weekdays
1 2 3 4 5 6

F
ra

ct
io

n 1 1 2 3 4 5 6
2 1 4 2 5 3 6 1 4 2 5 3 6
3 1 3 5 2 4 6 1 3 5 2 4 6 1 3 5 2 4 6

Table 1: Districts associated with each waste fraction and each weekday in the example of
Section 3.

1 is assigned to Mondays, district 2 to Tuesdays, and so forth. In Table 1 we
show, for each waste fraction, which district is being collected each weekday. In
the figure, we have marked in bold the district that is assigned to the weekday.
For instance, we see that on weekday 3, we collect waste fraction 3 from the
edges assigned to districts 1, 3, and 5. In our algorithm, we ensure that the180

same routes are used for collecting fraction 3 on weekdays 1, 3, 5, when these
districts are serviced.

4. Description of the algorithm

Our overall solution strategy for the C-CARP is outlined in Algorithm 1 and
detailed in the following sections. We start with a short overview.185

Algorithm 1 Overview of the full algorithm

Create initial districts . Section 4.1
Assign districts to weekdays . Section 4.2
if the districts are unbalanced then

Balance districts using Algorithm 3 . Section 4.3
end if
for each f ∈ F , d ∈ {1, . . . ,min{τ, lf}} do

Call FastCARP(f, d) . Section 4.4
end for
Finalize solution . Section 4.5

We start by partitioning G into τ initial districts in such a way that every edge
is assigned to exactly one district. Because the demands of the different waste
fractions across the edges are not perfectly correlated, and because the frequent
fractions need to be collected on multiple weekdays, the algorithm does not
attempt to generate perfectly balanced districts at this point. Each district will190

subsequently be assigned to a day of the week d such that all waste fractions
of the edges in the district are collected on day d (frequent fractions are also
collected at one or more additional days). Thereby, the districts will ensure the
coordination, which is the purpose of their creation. Applying this procedure
ensures that requirement 1 of Section 2 is satisfied and that the coordination195

requirements 2 and 3 are also dealt with. Creation of the initial districts is
detailed in Section 4.1.
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After the creation of the initial weekday districts, we assign them to specific
weekdays based on a combination of closeness of the districts and of the inter-
action among the days. This is detailed in Section 4.2.200

Based on the knowledge of collection intervals for each waste fraction and the
edges assigned to the district, we know the total amount to be collected on
each day, and hence we can estimate the number of vehicles needed to collect
that waste. For non-frequent fractions, this is relatively straightforward. But
for frequent fractions, we must take into consideration that for instance, for a205

fraction with lf = 3 (τ = 6), both the edges assigned to the district of day 1
and those assigned to the district of day 4 must be serviced on both days. Next,
we calculate a slack value for each waste fraction and each district based on the
initial districts and their assignment to days of the week. Intuitively, this tells
us whether a district requires more vehicles than predicted by a lower bound210

(if the slack is positive) or fewer vehicles (if the slack is negative). If any of
the districts requires too many vehicles, we seek to obtain a better balancing
among the districts. The main challenges in the balancing phase comes from
the fact that we work with multiple waste fractions simultaneously, not all of
which require collection from all edges, as well as from the frequent fractions215

because they affect multiple districts when moved. The purpose of this balancing
phase is to favour the primary objective of the problem: minimizing the total
number of vehicles needed. The balancing phase preserves the coordination and
is described in Section 4.3.

After the districts have been determined and assigned to days of the week, the220

problem reduces to a CARP for each day of the week and each waste fraction,
thus satisfying requirements 5, 6, and 7. This problem is solved by means of
the FastCARP heuristic developed in [4], which is summarized in Section 4.4.
It is also here that we handle requirement 8. This heuristic aims to favour the
secondary objective: minimizing the total routing cost.225

The solution is then finalized by determining which routes to service each week
while satisfying requirement 4, and the final total cost calculation is performed.
This is detailed in Section 4.5. During this process, we also ensure that the
waste of an edge is always collected by the same vehicles, one for each fraction.

4.1. Creation of the Initial Districts230

Our districting algorithm consists of two phases. We first create a number of
small districts, and then merge them into weekday districts.

In the first phase, we first determine the minimum number Φ̂ of small districts
that we aim for. Based on preliminary tuning, we set Φ̂ = 2τ . However, due to
variations in demand, we tend to end up with significantly more than Φ̂ small235

districts, in particular when the vehicles are relatively small compared with the
demand, or when the demand for different fractions is unevenly spread over the
graph. For each fraction f ∈ F , we define Lf = (

∑
(i,j)∈EfR

qfij)/Φ̂ as the amount
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of demand of each fraction we aim for in each small district. To create a small
district, we start by identifying a seed, which is chosen as the node furthest from240

the depot having at least one unassigned adjacent edge. We then repeatedly
select an edge with one end node closest to the seed, and secondarily, furthest
from the depot as a candidate to be added to the district. If the candidate
edge does not cause the total sum of demand to exceed Lf for any f ∈ F , it is
added to the district. This process is iterated until no more edges can be added245

without exceeding Lf for some fraction f ∈ F . We repeat the entire process
until all edges have been assigned to a district. After the first phase, we have
obtained Φ small districts, usually with Φ > Φ̂. At this point, we redefine the
seeds of the districts by identifying the node adjacent to a required edge in the
district, for which the sum to all other endpoints of required edges in the district250

is minimized, and we designate that node as the seed of the district. With this
definition, the seed represents a “centre of gravity” of the required edges in the
district.

Figure 4: Illustration of the modified distance function. Based on that, dist(i, j) = 4 and
dist(i, j′) = 2.

In the second phase, we make use of a modified distance function, which defines
the distance between any two nodes as the number of districts that the shortest255

path between the nodes intersects. This is illustrated in Figure 4. In this phase,
we merge the Φ small districts into τ weekday districts by repeatedly selecting a
father district and a non-father district to merge as described below, letting the
seed of the joint district be the new centre of gravity of the joint district. For

this process, we define L
f

similarly to Lf , but now with the goal of creating τ260

weekday districts, hence L
f

= (
∑

(i,j)∈EfR
qfij)/τ . We also define a buffer ρ which,

based on preliminary tuning, is initially set to 1.2. We first identify a set of τ
father districts, one for each service day of the week, as follows. The first father
district is selected as the one that maximizes the distance between the depot
and the seed of the district. The remaining τ − 1 father districts are selected265

iteratively as the district whose seed node is furthest away from the closest
seed node of the existing father districts. In case of a tie, we use the modified
distance function as secondary criterion. We now repeatedly consider all father
- non-father pairs, and among the pairs we select one for which the joint demand

does not exceed ρL
f

for any fraction f . The primary selection criterion is the270
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minimization of the modified distance function, and the secondary criterion is
the minimization of the shortest distance between the seeds of the districts. We
merge the non-father district with the father district and update the seed to
represent the centre of gravity of the joint district. This process is repeated

while pairs are found within the limit of ρL
f
. When no further pair can be275

identified, ρ is multiplied by 1.2, and the search process is reiterated. The
full process if repeated until only τ districts remain and these are the initial
weekday districts. The logic behind this 2-phase process is that the demand
is very unevenly distributed over the graph based on distances, but that it is
more evenly distributed over the small districts and using the modified distance280

function. This eases the creation of relatively balanced districts. Figure 5
provides an example of the initial districts in one of our instances.

Figure 5: Example of initial districts. Here showing instance O1 A.

4.2. Assigning the Districts to Weekdays

When lf ≥ τ for all waste fractions f , it does not matter how the districts are
assigned to weekdays since there will be no interaction between the districts.285

Hence we perform the assignment in a straightforward manner. However, this
is not the case when frequent fractions are present. Consider, for example a
fraction requiring service twice a week, with τ = 6. In this example, the districts
assigned to days 1 and 4 will both be serviced for this fraction on both days (as
well as districts assigned to days 2 and 5, for instance). In Figure 6, we show two290

different assignments of districts to weekdays. In the straightforward assignment
shown in the lower part of the figure, the districts to be collected jointly are
geographically distant, whereas in the upper assignment the joint collection
occurs from neighbouring districts. To foster good routing, our procedure aims
to create assignments with the characteristics of the upper assignment. Viewed295

10



1 2 3 4 5 6

1 4 2 5 3 6

Figure 6: Illustration of two different assignments of six districts to weekdays, where each
square represent a district. The numbers in the districts represent weekdays and the arcs
represent districts to be collected jointly for a waste fraction with lf = 3.

in a different way: the more interaction between two weekdays in terms of
coinciding collections, the more important is it that the districts assigned to
those days are not too distant from each other. This is the motivation behind
the following procedure for the assignment of districts to weekdays when at least
one waste fraction f has lf < τ .300

To measure the distance between two districts, we use the shortest path distance
sij between the seeds of the districts, as representatives of the centre of gravities.
To measure the interrelation between the weekdays, we construct a matrix A of
size τ×τ . For each pair of days, i, j ∈ {1, . . . , τ}, the value of Aij is the number
of days during the week for which the districts assigned to i and j, respectively,305

will be collected jointly. The values of the Amatrix are determined by Algorithm
2.

Algorithm 2 Construction of the A matrix

Aij = 0 ∀i, j ∈ {1, . . . , τ}
for all f frequent do

for all i, j ∈ {1, . . . , τ}, i 6= j do
if (i mod lf ) = (j mod lf ) then Aij ← Aij + τ/lf

end if
end for

end for

To illustrate this algorithm, consider an example with τ = 6 and two frequent
fractions: fraction 1 with collection interval l1 = 3 (two collections per week),
and fraction 2 with collection interval l2 = 2 (three collections per week). Table310

2 shows the A matrix for this example. Here, A14 = 2 means that twice during
the week, the districts assigned to weekdays 1 and 4 must be collected together
(this will happen on weekdays 1 and 4); A13 = 3 means that three times per
week, the districts assigned to days 1 and 3 must be collected together (this will
happen on weekdays 1, 3, and 5). Therefore, the higher the value Aij , the more315

costly it is for the districts assigned to weekdays i and j to be far from each
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other.

1 2 3 4 5 6
1 0 0 3 2 3 0
2 0 0 0 3 2 3
3 3 0 0 0 3 2
4 2 3 0 0 0 3
5 3 2 3 0 0 0
6 0 3 2 3 0 0

Table 2: Illustration of matrix A.

Let O be the set of all possible vectors O of length τ representing assignments
of district seeds to weekdays i (i = 1, . . . , τ). This definition of O induces a
one-to-one correspondence between weekdays and districts. We seek the least
costly assignment in terms of joint collection from multiple districts on the same
day, and thereby we select the assignment

O∗ = arg min
O∈O
{
τ∑
i=1

τ∑
j=1

sO(i)O(j)Aij}.

The number of distinct assignments is (τ − 1)! which is not very large since τ is
the number of service days per week (120 if τ = 6). We therefore determine O∗

by full enumeration.320

Finally, and independently of the method used for assigning districts to week-
days, we renumber the districts in such a way that the district assigned to day
i is indexed by i.

4.3. Balancing of the Districts

To motivate the next part of the algorithm, we consider an example, where, for325

some waste fraction, two vehicles are needed to collect the waste of edges of
the district assigned to Mondays, while four are needed on Tuesdays, and six
are needed on Wednesdays. To collect the waste in this manner, six vehicles
are necessary. A more balanced assignment of edges to districts would result in
only four vehicles being needed in this example. When multiple waste fractions330

are available, obtaining balanced districts is more involved than with a single
fraction because the same district may need too many vehicles for one fraction,
while at the same time needing too few vehicles for another fraction. As an
additional complication, we face the fact that for frequent fractions, moving an
edge from one district to another not only affects the waste to be collected in335

these two districts, but also affects the districts assigned to the other days when
this edge must be serviced. In this section, we describe our algorithm to move
edges between districts in order to obtain a more balanced partitioning of the
graph into districts, and thereby favour the primary objective of the problem.
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To describe the balancing procedure, we need some additional notation. With340

the renumbering at the end of Section 4.2, we know that district number d is
assigned to weekday d. We use Ed to denote the set of edges assigned to district
d. For each frequent fraction f and each weekday d, we define P fd as the set of

weekdays that are multiples of lf days away from d, i.e. P fd = {d′ ∈ {1, . . . , τ} :
d′ = d+αlf , α integer, α 6= 0}. Hence, on day d, when collecting fraction f ∈ F ,345

we must collect from the district assigned to day d as well as from the districts
assigned to the days in P fd .

For every waste fraction f ∈ F and every weekday d, we compute a lower
bound K̂f

d on the number of vehicles needed to service the demand of fraction f
assigned to that day. For non-frequent waste fractions, this bound is computed350

as K̂f
d = d τ

lfW f

∑
(i,j)∈Ed q

f
ije. For frequent fractions, both the demand of the

district assigned to day d and the demand in districts assigned to days that are
a multiple of lf away from d must be serviced on day d. Hence, the number of
vehicles needed is at least K̂f

d = d 1
W f (

∑
(i,j)∈Ed q

f
ij +

∑
d′∈Pd

∑
(i,j)∈Ed′

qfij)e.

We also compute the overall minimum number of vehicles needed for each frac-355

tion if the demand is evenly spread over all days as K
f

= d τ
lfW f

∑
(i,j)∈EfR

qfije
for both frequent and non-frequent fractions.

Next, we define the slack Sfd of each fraction f ∈ F and each weekday d as

Sfd = K̂f
d −K

f
. Intuitively, the slack is the additional number of vehicles needed

to service the demand for f on weekday d, compared to the theoretical lower360

bound on the number of vehicles needed. Therefore, Sfd > 0 is an indication
that some demand for fraction f needs to be removed from district d (or from

a district in P fd if f is frequent) in order to obtain a balanced distribution,

whereas Sfd < 0 means that district d (or d′ ∈ P fd if f is frequent ) can safely

receive some additional demand for f . We also define Sd = maxf∈F{Sfd } and365

Sd = minf∈F{Sfd }, as well as S = maxd∈D{Sd} and S = mind∈D{Sd}, where a
perfect balancing will result in these values differing by no more than one.

The idea behind our balancing algorithm as outlined in Algorithm 3, is to de-
crease S as long as possible, then increase S, and repeat this exchange mecha-
nism as long as changes are found for either to the two values. During the course370

of the algorithm, we keep track of the boundary Bd of the districts, which we
define as the set of nodes adjacent to at least one edge in the district, but also to
at least one edge in another district. Whenever an edge is moved from a district
d′ to another district d′′, both Bd′ and Bd′′ may need to be updated regarding
the two end nodes of the edge.375

We move demand in two different ways in the algorithm, corresponding to the
two ‘while blocks’, both of which will be detailed below. We first consider the
situation where we seek to move edges away from a given weekday d′. In this
case, d′ is selected to be the district of a weekday with the largest slack S.
We seek to move edges that are adjacent to the boundary Bd′ to neighbouring380

districts until the largest slack Sd′ of d′ is decreased by one unit (this is controlled
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Algorithm 3 Balance districts

Compute Sd and Sd ∀d, and S and S. . Keep them updated
Set improved = true
while improved = true do . Repeat while improvement is obtained

Set improved = false
Set U = {1, . . . , τ}
while U 6= ∅ and S > 0 do

Set d′ = arg maxd∈{1,...,τ}{Sd} . Most positive slack

Set m = Sd′

while Possible and Sd′ = m do
Move edges from d′ to neighbouring districts

end while
if Sd′ = m− 1 then . Decrease slack of weekday d′

improved = true
else . No improvement was obtained for d′

U = U \ {d′}
end if

end while
Set U = {1, . . . , τ}
while U 6= ∅ and S < 0 do

Set d′ = arg mind∈{1,...,τ}{Sd} . Most negative slack
Set m = Sd′

while Possible and Sd′ = m do
Move edges from neighbouring districts to d′

end while
if Sd′ = m+ 1 then . Increase slack of weekday d′

improved = true
else . No improvement was obtained for d′

U = U \ {d′}
end if

end while
end while
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by the variable m in the algorithm). This is done in the following way. The
nodes i in Bd′ are considered in decreasing order of to their distance to the
seed of district d′, and the edges adjacent to i which are in district d′ are then
considered in arbitrary order. For each such edge (i, j), we consider the other385

weekday districts d that also have i on their boundary. Among those, we move
(i, j) to the district where the seed of d is closest to (i, j), and where Sfd will not
be increased for any fraction f by the addition of (i, j) to d. This movement
may cause i or j to be added to or removed from the boundaries of d′ or d.
It may happen that no district can receive (i, j) under the given restrictions,390

in which case we proceed without moving the edge. The process stops when
the largest slack of d′ is decreased by one unit or when all edges adjacent to
the boundary have been considered. At this point, if Sd′ has not decreased, we
temporarily exclude d′ from consideration (this is controlled by the set U in the
algorithm). The whole process is then repeated until no further improvement395

in the slack can be found and all districts have been temporarily excluded.

When no further improvement can be found by moving edges from specific
districts, we start to seek improvements by moving edges to specific districts
with a negative slack. To this end, we select d′ among the weekdays with the
most negative slack Sd′ , and we seek to increase the slack by one unit (this is400

again controlled by m in the algorithm). Now, the nodes i in Bd′ are considered
in increasing order of their distance to the seed of district d′, and the edges
adjacent to i that are not in the district d′ are then considered in arbitrary
order. The edge is moved from its current district d to district d′ provided that
the movement does not cause Sfd′ > 0 for any waste fraction in the receiving405

district and does not cause the slack Sd to become smaller than the current worst
slack S (note that because we move edges away from d, we risk decreasing the
slack of d). Again, the process continues until Sd′ is improved or until all edges
adjacent to the boundary of d′ have been explored, and the process is reiterated
as above. This alternating process is repeated as long as improvements are410

obtained in either of the two parts.

In Table 3, we illustrate the effect of our balancing procedure on an example.
The top of the table shows the least number of vehicles, K̂f

d needed to collect
each waste fraction in each district before (left) and after (right) balancing,
as well as the global lower bound on the number of vehicles for each fraction,415

K
f
. The lower part of the table shows the slack Sfd for each district and each

waste fraction, as well as the upper and lower bounds for each district, before
(left) and after (right) balancing. In the left part of the table, we see that
S = maxd∈D{Sd} = 3, which is obtained for districts 1 and 5. We arbitrarily
select one of them: 1. The algorithm thus starts by attempting to move demand420

from district 1 to the other districts. After moving sufficient demand away from
district 1, the slack of that district decreases to S1 = 2, but we still have S5 = 3,
and thereby S = 3. The algorithm now attempts to move demand from district
5 to the other districts until S5 decreases to 2, at which point S = 2. This
value is again obtained for both districts 1 and 5, and the algorithm will now425
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District District
1 2 3 4 5 1 2 3 4 5

K̂f
d before balancing K̂f

d after balancing K
f

F
ra

ct
io

n 1 6 4 5 4 6 5 5 5 5 5 5
2 17 11 15 12 17 15 14 14 14 14 14
3 5 3 5 4 5 4 4 5 4 4 4

Sfd before balancing Sfd after balancing

F
ra

ct
io

n 1 1 -1 0 -1 1 0 0 0 0 0
2 3 -3 1 -2 3 1 0 0 0 0
3 1 -1 1 0 1 0 0 1 0 0

Sd 3 -1 1 0 3 1 0 1 0 0
Sd 1 -3 0 -2 1 0 0 0 0 0

Table 3: Example of balancing of instance O10 B.

proceed by first moving demand from one of these, then from the other, and
so on. The right-hand side of Table 3 shows that the districts after completion
of the balancing algorithm are better balanced. In fact, the estimated need for
vehicles after balancing is 25 (5+15+5), compared to 28 (6+17+5) before the
balancing procedure. Figure 7 shows the districts in our example from Figure430

5 after the balancing process.

Figure 7: Example of balanced districts. Here showing the same instance as in Figure 5.

4.4. Creation of Routes

At this point in the algorithm, we know which edges to service on each weekday
and the route creation can start. For each non-frequent fraction f ∈ F , the
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edges in Efd must be serviced on weekday d (e.g. on Mondays for d = 1). We435

use the FastCARP algorithm of [4], summarized below, to create a set Rfd of
routes servicing these edges. For frequent fractions f ∈ F , we know that exactly
the same set of edges must be serviced on day d as on days d′ ∈ Pd, namely
the edges in Ed ∪

⋃
d′∈Pd

Ed′ . We therefore use FastCARP to create a set Rfd
of routes servicing all of these edges and we repeat the same set of routes for440

weekdays d′ ∈ Pd. Therefore, the route generation procedure is only executed
for the first lf weekdays for frequent fractions. With this procedure, we ensure
that the edges in Ed and

⋃
d′∈Pd

Ed′ are serviced by the same vehicle every time
they are serviced, even though they are assigned to different districts.

The FastCARP algorithm described in [4], which we use to create the routes is445

designed to solve large-scale CARPs within a short computation time. It starts
by creating a giant tour without consideration of vehicle capacities. When con-
sidering large-scale problems, the approach of repeatedly rearranging and split-
ting a giant tour may be time consuming. Therefore, the FastCARP partitions
the giant tour into d

√
ke partial giant tours (PGTs), each of which is eventually450

split into approximately d
√
ke vehicle routes, where k is the estimated number

of routes needed in the solution. In a cyclic and overlapping manner, the algo-
rithm now merges two adjacent PGTs. Then on the resulting merged PGT, it
performs a sequence of paste, switch, shorten, and split procedures ([18], [19])
with the purpose of improving that part of the routes. After completing this455

process, the merged PGT is separated into two individual PGTs again. Then
the whole process is repeated by merging one of the just processed PGTs with
the next PGT in line.

4.5. Finalizing the Solution

The final step of the algorithm is to determine which routes to execute on each460

day of the planning horizon and hence to determine the total number of vehicles
and the total cost.

We start by an example. Assume that τ = 6 and |T | = 36 (six weeks), and
consider the district assigned to weekday 1 (Monday) and collection of fraction
1 with l1 = 18. The collection frequency corresponds to three weeks. Therefore,465

one third of the routes in R1
1 can be executed in week 1 (day 1), one third in

week 2 (day 7), and one third in week 3 (day 13), with this plan repeated on
Mondays in weeks 4, 5, and 6. Hence, the |R1

1| routes are evenly spread over
l1/τ (18/6 = 3) Mondays (adjusted for rounding).

To formalize this, we consider first the non-frequent fractions f ∈ F , lf ≥ τ470

with a set Rfd of routes created for each of τ weekdays d. With a collection
frequency of lf days, there are lf collection days in a cyclic plan, of which lf/τ
are the same weekday as d, and the plan is repeated γf = |T |/lf times over the

planning horizon. We partition the routes in Rfd into lf/τ groups, containing

d|Rfd |/(lf/τ)e routes in the first (|Rfd | mod (lf/τ)) groups and b|Rfd |/(lf/τ)c475
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routes in the remaining lf/τ − (|Rfd | mod (lf/τ)) groups. These groups are
then assigned to each of the lf/τ days of that weekday, and the routes of each
group are repeated in a cyclic manner γf times over the planning horizon. This
plan for fraction f requires Kf = maxd∈{1,...,τ}{d|Rfd |/(lf/τ)e} vehicles and

the total cost throughout the planning horizon is Cf = γf
∑
d∈{1,...,τ} C(Rfd),480

where C(Rfd) represents the total cost of the routes in Rfd .

Next, we consider the frequent fractions f ∈ F , lf < τ , with a set Rfd of routes

created for each of the first lf weekdays. For these fractions, all |Rfd | routes are
executed every lf days and therefore, a total of |T |/lf times over the planning
horizon. The total number of vehicles needed to service fraction f is therefore485

Kf = maxd=1,...lf {|R
f
d |}, and the total cost over the planning horizon is Cf =

(|T |/lf )
∑
d=1,...lf C(Rfd), where C(Rfd) represents the total cost of the routes

in Rfd .

Finally, we determine the total number of vehicles needed as K =
∑
f∈F K

f ,

and the total routing cost over the planning horizon as C =
∑
f∈F C

f .490

5. Algorithm without Coordination for Comparison

Recall that the purpose of this paper is to investigate the added cost of coordi-
nation in terms of two quality measures: the number of vehicles and the total
routing cost, defined as the total distance driven. In Section 4, we presented our
algorithm to create coordinated solutions for our problem. In that algorithm, in495

order to ensure coordinated collection, we partitioned the problem into weekday
districts, and aimed, via the procedure presented in Section 4.3, to minimize the
number of vehicles used. We then applied the FastCARP to create routes for
each waste fraction in each district, and we finally distributed these routes over
the days of that weekday, while still respecting the coordination.500

In order to make a comparison, we need an algorithm that solves the problem
without enforcing coordination of the collections. In order to reach as fair a
comparison as possible, we use the same underlying routing procedure.

When no coordination is required, we can solve the instances as a number of
individual CARPs, one for each waste fraction, without creating districts, and505

aggregate the costs. To this end, for each waste fraction f ∈ F , we use the
FastCARP once with the full graph as input to obtain a set of routes Rf .

Since fraction f needs collection with an interval of lf days, the |Rf | routes are

evenly spread over lf days. As a result, we need K =
∑
f∈Fd

|Rf |
lf
e vehicles to

collect all waste fractions.510

Each route for collection of f is executed |T |
lf

times during the time horizon,

resulting in a total cost of C =
∑
f∈F

|T |
lf
C(Rf ) for collecting all fractions,
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where C(Rf ) is used to denote the total cost of the routes in Rf . This is
summarized in Algorithm 4.

Algorithm 4 Route construction without coordination

for each f ∈ F do
Rf ← FastCARP(f)

end for
K =

∑
f∈Fd

|Rf |
lf
e

C =
∑
f∈F

|T |
lf
C(Rf )

6. Computational Experiments515

The algorithms were implemented in C++ in MS Visual Studio Professional
2015 and executed on an Intel Xeon CPU with 12 cores running at 3.5 GHz and
64 GBs RAM. It was executed sequentially, i.e., without taking advantage of
the multiple cores.

6.1. Test Instances520

In the following, we describe the instances used in our experiments. For each
waste fraction and each district, we allow for one minute computing time per
1,000 edges in that district requiring service of that waste fraction in the routing
part of the algorithm. This means that the longest computing time including
districting is only about 35 minutes, which is observed for a graph O1 E with525

10,352 nodes and four waste fractions to be coordinated, two of which are fre-
quent, using a total of 43 vehicles over a planning horizon of 12 days.

We have used the part of the benchmark data presented in [1] with homoge-
neous fleets for each waste fraction, with few modifications. We have made the
following adjustments to the original data. 1) For all instances in sets C and530

E, we have made all days service days such that τ = 6 instead of five. 2) To

ensure that W f ≥ qfij for all f and for all (i, j), we have created new vehicles
for the following four instances: F11 D, F12 D, F13 D, and S1 D. All data are
available at http://www.optimization.dk/CARP/.

The data set consists of 125 instances, most of which are of very large scale,535

ranging up to 11,656 nodes and 12,691 edges. Underlying the 125 instances are
25 graphs: five from each of the five areas of Denmark considered in our study
(F, K, N, O, and S). The total amount of waste on the edges in each of these
graphs has been partitioned in different ways, and the collection intervals have
been varied to create five instances based on each graph. These constitute five540

datasets (A,. . .,E), each containing 25 instances, one for each graph.

Table 4 shows some characteristics of the data sets after our adjustments. The
instances in sets A, B, and D contain only non-frequent fractions, whereas sets
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C and E also contain frequent fractions. Set C mainly differs from set B by
imposing shorter frequencies for collection resulting in lower demands, and a545

change in τ , and the same holds for sets D and E.

A B C D E
Number of instances 25 25 25 25 25
Time horizon (weeks) 6 6 6 12 2
Time horizon (T ) (service days) 30 30 36 60 12
Service days per week (τ) 5 5 6 5 6
Number of waste fractions 2 3 3 4 4
Intervals (lf ) (days) 10, 15 5, 10, 15 3, 12, 18 5, 10, 15, 20 2, 3, 6, 12
Intervals (weeks) 2, 3 1, 2, 3 1/2, 2, 3 1, 2, 3, 4 1/3, 1/2, 1, 2
Av. percentage of edges not req. service 36.2 36.2 36.2 36.2 36.2
Av. percentage of edges req. 1 fraction 14.0 1.2 1.2 1.2 1.2
Av. percentage of edges req. 2 fractions 49.8 13.7 13.7 0.6 0.6
Av. percentage of edges req. 3 fractions 48.9 48.9 17.9 17.9
Av. percentage of edges req. 4 fractions 44.1 44.1

Table 4: Characteristics of the five sets of C-CARP instances used in our experiments.

6.2. Results

We now present our computational results. The first part of each of Tables
7–11 provides detailed information about the instances. The first two columns
provide names of the graphs and of the vehicle files. Jointly these constitute the550

instance. The next three columns give the number of nodes, edges, and waste
fractions in the instance. Column 6 gives the number of service days in a week,
while column 7 provides the number of weeks in the time horizon.

The results of our algorithm with coordination are provided in the second part
of Tables 7–11. Here we give the total number of vehicles K used in the solution555

across all the waste fractions, the total routing cost C over all waste fractions
during the whole time horizon, and the total computing time for the algorithm
in seconds.

Since this paper is the first to solve this problem, we do not have a direct
comparison basis. However, we analyze how the two quality measures (number560

of vehicles and total routing cost) are affected by the requirement that different
waste fractions must be collected on the same weekday. We therefore provide
the total number of vehicles K used in the solution across all the waste fractions,
the total routing cost C over all waste fractions during the whole time horizon
obtained with the algorithm without coordination presented in Section 5, as565

well as the computing time of that algorithm. These values are provided in the
third part of Tables 7–11. The computing times with and without coordination
are essentially the same since they depend on the number of required edges for
each waste fraction.

The last part of Tables 7–11 provides the percent increase in number of vehicles570

and cost caused by the requirement to coordinate collections. The increase
in the number of vehicles is computed as ∆K = 100Kwith−Kwithout

Kwithout
, and the
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increase in cost is computed similarly. Figure 8 plots ∆K as a function of the
number of nodes in the graphs, while Table 5 gives the frequency of the need for
extra vehicles over all 125 instances. In total, 96 more vehicles are needed when575

considering all instances and all waste fractions, and extra vehicles are needed
in 59 of the 125 instances. Figure 9 shows the percent increase in routing cost
as a function of the number of nodes.

Figure 8: Percent increase in the number of vehicles as a consequence of coordination.

Kwith −Kwithout 0 1 2 3 4 5 6
Frequency 66 35 17 4 1 1 1

Table 5: Frequency of the observed differences in number of vehicles.

When comparing the results with and without coordination, we observe that
the routing cost with coordination increases on average by 12.4% over all 125580

instances, whereas the number of vehicles increases in only 59 instances, by an
average of 9.1% over all 125 instances. Figure 9 shows that the increase in
routing cost caused by coordination is significantly larger for small instances
than for the larger ones. We observe a cost difference of more than 10% in very
few of the instances with more than 4,000 nodes. The explanation is probably585

that once the graph reaches a certain size, and the number of routes is likewise
large, routing can still be done quite efficiently even if a coordination constraint
is imposed. We observe a similar, but less clear, tendency regarding the number
of vehicles in Figure 8.

Table 6 shows details of the results aggregated for each set in the left part and590

for each area in the right part. The four columns in each part of the table show
1) the number of the 25 instances in each set (or each area) (| > 0|) where
coordination caused a need for extra vehicles, 2) the total number of extra
vehicles needed in the sets (or areas) (

∑
) , 3) the average percent increase in
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Figure 9: Percent increase in routing cost as a consequence of coordination.

Partitioned by set Partitioned by area
| > 0|

∑
∆K ∆C | > 0|

∑
∆K ∆C

A 10 12 11.7 11.5 F 12 18 12.2 17.8
B 12 16 8.9 12.8 K 12 26 7.6 12.7
C 12 16 8.9 12.2 N 11 14 7.7 8.3
D 11 21 5.9 12.4 O 12 17 9.6 8.1
E 14 31 10.1 13.2 S 12 21 8.3 15.1
Total 59 96 Total 59 96
Avg. 9.1 12.4 Avg. 9.1 12.4

Table 6: Average results for each dataset in the left part, and for each area in the right part.
Legend: | > 0|: Number of instances in each set (or each area) where coordination caused a
need for extra vehicles;

∑
: Total number of extra vehicles needed in the sets (or areas); ∆K:

Average percent increase in the number of vehicles; ∆C: Average percent increase in routing
cost.

the number of vehicles (∆K), and 4) the average percent increase in routing595

cost (∆C).

When we look across the five sets in the left of Table 6, we observe only small
variations regarding the increase in routing cost. The largest changes are gener-
ally observed in set E which has both many fractions and frequent collections,
both of which are factors that can complicate the solution of the problem. At600

the other end of the scale, we observe that set A is generally affected the least
regarding routing cost. This was to be expected since the A-instances have
only two fractions to coordinate. The results regarding the percent increase in
vehicles also vary little across the sets, and the total number of extra vehicles
needed increases, as expected, with the number of waste fractions. The set D605

stands out with a smaller percent increase in vehicles than the others. This may
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be explained by the fact that this set generally uses more vehicles per fraction
than the others, as can be seen from Tables 7–11.

Comparing the five geographical areas in Table 6, we first observe that area F
exhibits larger changes than the other areas. This is consistent with Figures 8610

and 9 since the instances in the F area are significantly smaller than the other
instances, the largest having less than 1,000 nodes. Among the other four areas,
areas K and S show a larger increase in routing cost. A possible explaining factor
for this behaviour may lie in the non-convex shape of these two areas, which
exacerbates the consequences of poor routing decisions.615

7. Conclusions

We have considered a multi-period garbage collection problem involving several
garbage types called fractions, such as organic waste, paper and cardboard, glass
and metal, and plastic. This study was motivated by a real-life problem arising
in Denmark. We have obtained data for six counties, two of which are rural,620

two are semi-rural (and were considered as a single area in our experiments),
and two are urban. The instances sizes are very large and can reach 11,656
nodes and 12,691 edges. Because of the nature of the fractions and variations
in volumes, not all of them have the same frequency. The purpose of the paper
was to assess the added cost in terms of traveled distance and vehicle fleet size625

of coordinating these collections such that each household would always have
its collection on the same day of the week.

Since the problem is of very large scale, we have developed an efficient con-
structive heuristic that does not resort to the application of computationally
expensive exchange mechanisms. Our heuristic was made up of four phases: 1)630

collection districts, each corresponding to a day of the week, are first created;
2) the districts are then assigned to specific weekdays based on a closeness cri-
terion; 3) they are then balanced in order to make a more efficient use of the
vehicles; 4) collection routes are then created for each district and each waste
fraction by means of the FastCARP heuristic. The objective minimized in this635

problem is hierarchical, the fleet size being more important than the routing
cost.

The heuristic was extensively tested over 125 instances made up of 25 graphs
for each of the five counties considered in the study. We show that coordinating
the collection days results in a routing cost increase of 12.4% and in an increase640

of 9.1% in the number of vehicles. The number of vehicles increased in only 59
of all instances. We observed a smaller cost increase in the larger instances, and
a larger increase in the instance set that has both many fractions and frequent
collections, both of which are complicating factors. The instance sets that use
more vehicles per fraction are those in which the percent increase in the number645

of vehicles is the smallest. Comparing the five geographical areas, we found that
the cost increase is larger in the smaller areas and in those that have irregular
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shapes. Deciding whether such cost increases are acceptable in order to provide
better service for the citizens is left to the counties.
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