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Existing variants of vehicle routing problems (VRPs) have limited capability in describing 
real-world drone delivery scenarios in terms of drone physical restrictions, mission 
constraints, and stochastic operating environments. To that end, this paper proposes a specific 
drone delivery model with recharging (DDP-R) characterized by directional edges and 
stochastic edge costs subject to wind conditions. To address it, the DDP-R is cast into a Markov 
Decision Process (MDP) over a graph, with the next node chosen according to a stochastic 
policy based on the evolving observation. An edge-enhanced attention model (AM-E) is then 
suggested to map the optimal policy via the deep reinforcement learning (DRL) approach. 
AM-E comprises a succession of edge-enhanced dot-product attention layers which is designed 
with the aim of capturing the heterogeneous node relationship for DDP-Rs by incorporating 
adjacent edge information. Simulation shows that edge enhancement facilitates the training 
process, achieving superior performance with less trainable parameters and simpler 
architecture in comparison with other deep learning models. Furthermore, a stochastic drone 
energy cost model in consideration of winds is incorporated into validation simulations, which 
provides a practical insight into drone delivery problems. In terms of both non-wind and 
windy cases, extensive simulations demonstrate that the proposed DRL method outperforms 
state-of-the-art heuristics for solving DDP-R, especially at large sizes.   

I. Introduction 

Rapid developments in drone technology opened the way for a wide range of civilian applications, e.g., traffic 
surveillance, medical delivery, and general warehouse, which comprise an important component of the Intelligent 
Transport System (ITS). Meanwhile, worldwide authorities began to authorize flights beyond visual line of sight 
(BVLOS) to test the safety of opening up the technology to the wider industry. Integrating drones into ITS offers 
increased flexibility and efficiency to transportation, which brings high societal and economic benefits. 

Despite their advantages, the introduction of drones as new couriers into the logistics market implies new 
challenges in terms of logistics planning due to their limited onboard battery and load capacity. The Vehicle Routing 
Problem (VRP) is a generic optimization class for modelling multi-vehicle logistics with the objective of seeking the 
best route for a fleet of vehicles to serve a set of customers. The short duration of a Li-Po battery-equipped drone 
courier could be met by modelling the delivery as Capacitated Vehicle Routing Problem (CVRP), a variant of VRP 
that describes scenarios where a vehicle starts and ends multiple routes at one common depot without exceeding its 
limited carrying capacity. However, in CVRP, the drone must continuously return to a common depot to renew its 
battery, resulting in low efficiency. Deploying recharging facilities expands the mission execution area and is also 
eco-friendly. The routing problem considering recharging is termed as the Electric Vehicle Routing Problem (EVRP) 
[1], also known as the Green Vehicle Routing Problem, and was originally proposed for electric cars similarly suffering 
from limited battery capacity. Furthermore, in addition to the Amazon ‘beehive’ delivery pattern, where all drones 
pick up parcels from a shared giant centre, a delivery request is likely to have its own pickup and delivery locations, 
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such as those in a medical delivery service [2]. This type of route planning problem can be described as Pickup and 
Delivery Problems (PDP), another variant of VRP characterized by pairing and precedence relationships. To address 
the unmanned aerial logistics while both considering recharging facilities and heterogeneous pickup and delivery 
requirements, a combination of EVRP and PDP is investigated in this paper. Moreover, compared to ground-based 
vehicles, UAVs are severely affected by weather conditions, especially airflow, introducing stochastic factors to the 
execution environment. Accommodating this uncertainty in planning tends to increase the quality of routes by 
reducing risks and stabilizing deliveries.  

To summarize, the drone delivery problem with recharging (DDP-R) considered in this paper is essentially an 
optimization problem that finds the best routes for serving pickup and delivery tasks while taking into account load 
and battery constraints as well as the randomness introduced by weather. Due to its NP-hard and stochastic nature, 
conventional methods including exact and heuristic algorithms struggle to efficiently address this routing problem[3]. 
Recently, there has been increasing attention on Deep Reinforcement Learning (DRL) for solving combinatorial 
optimization problems, which has delivered promising results on the basic VRP and some of its variants. To this end, 
this paper explores learning techniques for solving the drone delivery problem considered.  

Since most DRL-based approaches are proposed for typical VRPs and have few actual applications for stochastic 
environments, two key challenges are accordingly identified on the above-mentioned drone delivery problem. Firstly, 
nodes in the DDP-R involve more heterogeneous roles, consisting of pickup tasks, delivery tasks, charging stations, 
and the depot. Current network architectures are not intended to capture their sophisticated characteristics and 
connections. Secondly, routing problems with drones are vulnerable to weather. Performance degradation is likely to 
happen due to discrepancies between the deterministic planning model and the actual stochastic system in presence of 
wind.  

To address these challenges, we develop a routing simulator for DDP-Rs in the presence or absence of winds and 
propose a novel neural network architecture with a stronger ability of description. To summarize, the main 
contributions are as follows:  

1) To the best of our knowledge, this paper is the first attempt to solve the DDP-Rs via the RL method. Through 
the comparison of state-of-the-art algorithms, the proposed DRL-based planning method is shown to provide high-
quality solutions (within a 2% gap to optimal solutions) and demonstrates robustness in the presence of stochastic 
winds. 

2) A policy neural network called Attention Model with Edges (AM-E) is proposed for solving DDP-Rs, where an 
edge feature matrix is additionally considered to offer the network greater description power in terms of elaborate 
node connectivity extensively without increasing its computational complexity. 

3) Compared to existing works, the drone delivery problem studied in this paper is formulated from a more 
practical perspective considering pickup-delivery tasks, the effect of varying wind, and the presence of recharging 
stations. After describing the problem in the form of Markov Decision Processes (MDPs), a good policy is sought by 
devising the evolution of the environment, masking scheme, and reward function. 

The rest of the paper is organized as follows: Section II provides an overview of related works based on 
conventional methods and learning techniques. Section III gives an explicit description of the routing problem of 
concern, including drones’ energy consumption model. This is followed by the proposed DRL-based in Section IV. 
Section V presents details of the demonstration experiments, in which the experimental settings are described and the 
evaluation results under deterministic and stochastic cases are presented. Section VI offers conclusions of this study 
and outlines a brief plan for future research. 

II.Related works 

In this section, we introduce readers to existing works that have addressed vehicle routing problems using 
conventional methods or using learning-based methods, with a focus on its two variants: pickup and delivery problems 
with recharging and stochastic routing problems.  

A. Exact and heuristic methods 
Since the VRP is an NP-hard problem, either EVRP or PDP is a generalization of the VRP, thus are equally 

considered NP-hard in the strong sense [4]. Due to the complexity of the problem, studies using exact approaches are 
rarely found in literature, and most of them adopt branch-and-bound algorithms or their variants. A branch and cut 
algorithm is proposed in [5] to solve the EVRP. Similarly, a branch-price-and-cut algorithm was used in [6] to solve 
the EVRP with time windows. Various branch-and-price algorithms were designed, targeting specific extended 
versions of EVRP, e.g., with heterogeneous stations, partial charging policy, and non-linear charging rate [7]. In terms 
of PDP, extra bounding procedures or column generation schemes are introduced to the basic branch-and-bound 
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algorithm to meet the pickup-delivery constraints [8][9]. It is worth mentioning that based on these methods, some 
commercial solvers, such as CPLEX and GUROBI, are broadly employed to find the optimal solution for small-sized 
VRPs and their variants. However, for large-scale problems, exact methods suffer from computational complexity of 
the problem. 

One trend in solving VRPs is to use metaheuristics, with the purpose to tackle the problem approximately but 
efficiently. Typical metaheuristics include neighbourhood search, simulated annealing [10], tabu search, evolutionary 
metaheuristics [11] and genetic algorithms [12]. Rastani et al. [13] integrated an optimal repair procedure in a large 
neighbourhood search heuristic method for solving the load-dependent EVRP with time windows. Another adaptive 
large neighbourhood search method was proposed in [14] to solve PDP based on the destroy and re-create principle. 
Particularly, stated as the first solution to PDP with electric vehicles, a granular tabu search algorithm is developed in 
[15] by restricting the neighbourhood of search by creating a promising arc. Although these heuristic methodologies 
perform well in offline situations, most of them cannot be directly employed in real-time or dynamic cases, since they 
fail to efficiently deal with the unforeseen changes, i.e., incoming requests. In terms of stochastic routing problems, 
the problem is modelled as a stochastic VRP, which is then handled by simulation-based optimization techniques for 
maximizing the expected objective function. However, the increase of complexity due to stochastic factors makes the 
problem even harder to be solved in real time.  

B. Learning-based approaches 
In recent years, great potential has been found to employ DRL to resolve routing problems. To use DRL, the route 

is constructed by appending next visit nodes, formulated as a sequential Markov decision making process. Graph-
based policy networks and Seq2Seq networks are found in the literature to map the state space to action probabilities. 

The Pointer Network (PtrNet) is the first seminar work to cope with the routing problem via learning, which solves 
TSP via recurrent neural networks (RNN) [16]. The PtrNet is firstly implemented in a supervised manner and later 
extended into an RL framework [17]. Furthermore, the work in [18] generalizes the application of PtrNet to a wider 
range of CO such as CVRP, where element embeddings could be dynamic. After that, more effective deep learning 
(DL) architectures are proposed to represent problem statements by combining the transformer-based attention model 
[19][20] or graph embedded structure [21][22], showing outperforming results in comparison with heuristic methods. 
A stage has arrived where deep neural networks (DNNs) can effectively extract useful information from customer 
configurations and obtain high-quality policies for typical routing problems through reinforcement learning. 

Extending to variants of the vehicle routing problem, such as pickup and delivery problem (PDP) or electric vehicle 
routing problem (EVRP), the above-mentioned networks could be directly employed with redesigned reward scheme 
and mask policy. However, this is less effective for distinguishing different types of nodes and identifying their 
relationship for specific variants. To that end, Li et al. [23] propose a heterogeneous attention model for PDP, in which 
seven types of attention layers are sophisticatedly designed to consider different roles played by nodes while taking 
the precedence constraint into account. Lin et al. [22] incorporate the model of [18] with a graph-embedding 
component to yield the global information of the graph for EVRP with time windows. Nevertheless, most solutions 
of PDP and EPDP are still focusing on heuristic approaches, which heavily depend on human expertise, leaving much 
room for improving solution quality.  

On the other hand, the routing problem with stochastic model parameters has received increasing attention. Instead 
of assuming cost and customers are static and known a priori, taking into account the randomness of planning 
parameters leads to a higher quality of the solution. Since RL provides promising tools to optimize policies with 
stochastic state transitions,  Bono et al. [24] developed an online representation of problem states enabling real-time 
planning based on the latest observation of vehicles. Machine learning techniques have also been used to build a 
probabilistic energy consumption model [25], achieving more energy-saving and reliability for routes. 

III.Problem Statement 

This section formulates the drone delivery problem with recharging (DDP-R) and introduces a stochastic drone 
energy consumption model in consideration of varying wind conditions. 

A. Drone delivery problem with recharging 
Suppose a drone delivery scenario where there are  customer requests and each of them is decomposed into a 

pickup task  and a delivery task . A drone is sent from the depot point with a fully charged battery and 
finally returns to the depot after accomplishing all tasks. During mission execution, the drone can get charged at any 
recharging station . The aim of solving the drone delivery problem is to find a route that minimizes the energy 
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cost while subjecting to constraints regarding the delivery mission and drone properties. Further assumptions used in 
this study are listed below: 

 Each customer request is labelled with a predefined load weight.  
 The drone only processes one request at one time. 
 Only fully recharging is considered in this study. 
 The recharge stations could be visited infinite times. 
 The depot also serves as the recharging station during mission execution. 

 

 
 

Fig. 1. Drone delivery with recharging 

For a better understanding of constraints considered in the DDP-R, the Mixed Integer Programming (MIP) model 
of the DDP-R with its detailed information and corresponding notation is provided in Appendix A. 

B. Drone’s Energy consumption model with the wind effect 
For drone delivery, estimating energy requirements performs an essential role in route planning. Unlike ground 

vehicles, the drone’s energy cost can be strongly affected by weather conditions, especially the wind speed and 
direction as they directly impact the flight kinematic model. Nonetheless, most route optimization models only 
incorporate energy consumption implicitly via a pre-defined limited drone duration or range. With the aim of better 
emulating the real-world drone delivery scenarios, we build a stochastic energy consumption model considering 
varying wind conditions, inspired by the work in [26] and [27]. 

1. Energy consumption without wind 
The total aerodynamic power required for drone flight comprises four parts: parasite power, induced power, profile 

power and power required to climb [27]: 
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where  is the airspeed,  is the flight angle,  is induced factor (usually equal to 1.15, see [27]), body drag force 

 , thrust  ,  is the downwash coefficient,  is the 

rotor dis area,  is the blade tip speed,  is the rotor solidity ratio and  is the blade drag coefficient. Details about 

determining , , ,  and  are given in Appendix B along with an overview of notations.  

The overall power during flight includes the aerodynamic power (conditioned by the power efficiency )  

and the hotel power (the power required to supply internal electronics) : 
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Fig. 2. The flight profile for the VTOL drone delivery, consisting of four phases: takeoff, level flight, hovering 

and landing. 
 
For delivery problems, we identify the flight process as having four phases: take-off, level flight, hovering and 

landing. A typical flight profile is shown in Fig 2. To estimate the total energy demand, the power demand for each 
phase is weighted with an associated duration: 

1
, 0 |, 0 )

 

Where | is the wind speed, ,  indicates the time for takeoff and landing,  is time for hovering,  is 

time for level flight, and  is the total duration. In this paper, we consder the drone with vertical take-off and 

landing (VTOL), indicating that the ascent angle = 90  and the descent angle . 

Given the altitude of level flight  and the UAV ground speed  (  with no wind), the time for level flight 

is = , and the time for takeoff and landing is = , where  is the vertical speed.  

 
 

 
   Fig. 3. Energy consumptions for a 10km flight with airspeed and package weight varying. In the first figure, 

three cases are considered with package weight  respectively. In the second figure, a contour map 
of energy consumption is depicted with regard to airspeed and package weight. In simulations, no wind is considered, 
altitude for level flight , hovering time , and vertical speed is assumed as a constant . 

2. Energy consumption in presence of wind 
According to the above model, energy cost for a specific delivery is defined by three variables: package weight 

, airspeed , and the flight time . Further assume that the drone is directed by a constant ground speed 
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command, the airspeed is then obtained by integrating the velocity of wind and the ground speed command, which is 
derived from the drone kinematic model: 

 

where ,  and  indicate the ground speed, airspeed and wind speed respectively,  is the course 

angle,  is the heading angle of the UAV, and  is the wind course angle. Due to the constant ground speed, the 
airspeed could be derived as 

=  

In terms of wind modelling, we establish a stochastic wind model in which a constant wind is combined with a 
random turbulence flow. The constant wind speed is randomly generated via a Weibull distribution, which is widely 
used to describe wind variation [28]. The scale parameter and shape parameter in wind Weibull distributions indicate 
the mean value of wind speed and distribution shape, respectively. The direction of the constant wind is assumed to 
follow a uniform distribution from = 0  to = 360 . The turbulence wind component is generated through the 
well-known Von Karman turbulence model [29].  

To analyze the distribution of energy consumption under varying wind conditions, we conduct a series of Monte 
Carlo simulations given a single-way waypoint task, where the distance to the target position is 10 , and the flight 
is unloaded. After running simulations of 10000 rounds each with different airspeeds and average wind speed, the 
statistical figure of the energy consumption is depicted in Fig 4. 

 

  

Fig. 4. Statistical distribution of energy consumption for a  flight with the wind. In Monte Carlo simulations, 
the shape parameter of the wind Weibull distribution is set as . 

The 90% confidence intervals of energy consumption are calculated and depicted as the shaded areas in Fig. 4, 
where the energy cost value will fall inside with the probability of 90% when the average wind speed is  or 

. As shown from the figure, these two shaded areas are both unignorable. We can also find out that when 
airspeed increases, the UAV could resist the wind to some degree, leading to a smaller variance. However, even with 

 airspeed, winds having an average speed  could also cause a difference in the energy cost up to 

 for a  path segment, and the deviation even becomes larger as wind speed increases. This implies that 
ignoring variances in energy consumption caused by random wind conditions will degrade the performance of planned 
routes and even lead to task failures. This emphasizes the importance to introduce the stochastic energy consumption 
model into planning to make the results more wind resistant. 

IV. Reinforcement learning model 

This section describes details about the formulation of the stochastic drone delivery problem with recharging 
(stochastic DDP-R) in the form of MDPs and the design of a DRL-based algorithm to solve the problem formulated. 
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The architecture of the policy network, the masking policy and the RL training method are also introduced in this 
section. 

A. Markov decision process for DDP-Rs 
For the purpose to handle randomness, we model the stochastic DDP-R as sequential MDPs. This idea, borrowed 

from path planning algorithms, is naturally well suited for stochastic problems, enabling us to update the route based 
on the evolution of available information.  

A generic MDP consists of four components: state space , action space , immediate reward function  

and state transition probability . Specifically, for the DDP-R described above, these components are defined 
as follows: 

State: The global state  is factored into the drone state  (location, remaining energy) and the mission state 

 including locations and status of customer requests, recharging stations and the depot. The mission state is further 

decomposed into the vertex features  (location) and the edge features  (distance, connectivity).  

 

where 

 

where ) and  is the coordinate of the drone and the vertex ,   is the state of charge level of the drone, 
 is the weight of the package,  is the distance between vertex  and , and  is a binary variable, indicating 

directional connectivity from vertex  to vertex .  
It is noted that there are two possible route ends: 

a. All customer requests have been served. 
b. Planning steps reach the maximum step limitation. 

When the route comes to an end, the drone is forced to go back to the depot and the state arrives at the goal state 
. 

Action: The action indicates the next movement of the UAV, represented by the corresponding vertex: 
. It could be the depot, a task or a recharge station. With the purpose of improving the exploration efficiency, the set 

of actions is partitioned into valid and invalid sets and a masking policy is employed to mask invalid actions. The 
details of the action masking policy will be introduced in Section 5.3. 

Reward: The reward function determines the return value obtained from the environment after the system acts. 
The design of the reward mechanism is critical, which directly guides the training of the RL agent. In the DDP-R 
problem studied, our aim is set to minimize the overall energy consumed, which accumulates the energy cost on each 
path edge. We define an energy cost function  for the drone traversing an edge , which depends on 1) the payload , 
3) wind conditions . Thus, the reward associated with each travel is set as the negative energy cost of the travel under 
the configuration : 

 

However, with a negative reward function like this, there is an incentive for the UAV to stay at the depot forever 
to avoid all costs. To encourage the UAV to serve more tasks, an additional negative reward is imposed for tasks left 
pending when the drone is back at the depot. Specifically, a constant penalty variable  is imposed for every task 

that is left unfinished at the end of the episode, which is denoted as a terminal reward : 

0 otherwise
   
    

where  counts the number of pending tasks when the state arrives at . 
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Transition: A transition function describes how states are updated, represented by the probability  that 

the current state  is converted to the next state  by taking the action . When the UAV travels to the vertex  after 
choosing action , the drone’s state and the mission state get updated according to the type of node the drone 
visited. 

1) If the targeted vertex is a task, the status of the drone is updated according to its new location and the energy 
consumption for the journey, using the model described in Section 3.2; 

2) If the targeted vertex is a recharge station or the depot, the mission status remains unchanged, while the location 
of the drone moves to the targeted vertex and the energy level of the UAV returns to full. 

B. Edge-enhanced attention model 
The policy network adapts the original Attention Model (AM) [19] for a better description of the considered DDP-

Rs using a dot-product attention layer with edges, which is inspired by embedding techniques in Graph Neural 
Network (GNN). Most policy networks, as discussed in Section 2, were designed for homo-vertex problems such as 
classical TSPs and CVRPs, with only one depot serving as the starting and terminal point. However, in DDP-Rs, there 
are four different types of nodes (i.e., pickup tasks, delivery tasks, depot, and recharging stations), coupled with 
heterogeneous connections subject to the drone’s payload limitation and the pickup-delivery precedence constraint. 
To describe the connectivity status of nodes, we build up an adjacent matrix, which together with the distance matrix 
forms edge features. The adjacent matrix is constituted of binary element  which describes the connectivity from 

the node  to the node . For further elaboration, a toy example is given in Fig. 5, which contains 2 delivery tasks, 1 
depot and 1 charging station. If we define the node order as the depot, stations, pickup tasks and delivery tasks, its 
adjacent matrix will be constructed as the binary matrix in Fig. 5. For instance, the first row in the matrix indicates 
that departing from the depot, the UAV is only expected to pick up parcels or get recharged for long distance cruise 
instead of flying back or going to delivery destinations, while the first column indicates the vehicle can only return 
back to the depot from the delivery destinations and rechargings. In terms of recharging stations, they are indirectly 
connected with all other nodes except from themselves. For pickup nodes, they are only connected to their 
corresponding delivery locations and recharging facilities, while for delivery tasks, they could direct to any other 
pickup positions with the the empty vehicle except from its corresponding pickup task since the parcel has just been 
delivered.  

To summarize, the logic behind the connectivity matrix comprises: the edge between paired requests is a one-way 
flight from pickup locations to delivery locations, the drone is not able to load another parcel while loaded, and the 
empty drone is not expected to fly to any delivery destinations.  

 

  
Fig. 5. An example of the adjacent matrix in DDP-Rs. According to delivery logic and payload constraint, the 

connectivity matrix is defined as shown in the figure.  
 

With the aim to efficiently capture the complex node relationship in DDP-Rs and enhance the network’s 
description ability, the establishment of an adjacent matrix could be regarded as a manual process of feature extraction. 
To adapt edge features into a policy neural network model, we develop an edge-enhanced dot-product attention layer 
(Fig.7) and integrate it into the Attention Model.  
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1. Edge-enhanced dot-product attention layer  
Exploring edge information in the graph neural network, this paper is not the first trial. Gong et al. [30] have built 

a generic framework to sufficiently exploit edge features. The framework can consolidate both graph convolutional 
networks (GCN) and graph attention networks (GAT), extending the one-dimensional adjacent matrix to multi-
dimensional edge features. Based on the idea of [30], Wang et al. [31] and Hussain et al. [32] instantiates the edge 
augmentation with GAT and the transformer network respectively.  

Though the intention of using extra edge features is to enhance the performance, these edge-integration networks 
do not always perform superiorly. Simulations in [31] revealed that edge-featured GAT (EGAT) even has a slight 
performance degradation compared to GAT when executing node-sensitive tasks (e.g., Cora, Citeseer) though 
achieving higher accuracy on edge-sensitive tasks (e.g., trading network classifications). As analyzed in [31], this is 
due to the fact that in EGAT, edge features are updated by integrating its adjacent edges. These features, however, are 
most likely to be useless in node-sensitive tasks, and interferences may occur because of the intensive updating. To 
avoid the interference from other adjacent edges, we adopt another architecture of edge integration for the concerned 
routing problem which is identified as node-sensitive. The difference is illustrated in Fig. 6. The EGAT model in [31] 
couplingly embeds the node features  and the edge feature  by each GAT layer, while the proposed EGAT only 
updates the node features retaining edge features same for each layer. To implement the model, we propose an edge-
enhanced dot-product attention layer which facilitates the network model to use edge features without updating it 
frequently.  
 

 
 

Fig. 6. Two edge-enhanced GAT architectures. (add more explanation) 
 

The attention mechanism performs a message passing process over nodes of a graph, during which weights are 
added when integrating neighbourhood elements. In the proposed edge-enhanced attention layer, edge features are 
taken into account when calculating weights and merging values. Specifically, an attention layer originally integrates 
the value of the node’s neighbours , and weights them using the compatibility of its query  with the key of the 

neighbour . To take advantage of edge information, we integrate the embedded edge feature into the compatibility 
and also merge it into the value of neighbours, as illustrated in Fig.7.  

 
Fig. 7. (left) Scaled dot-product attention. (right) Edge-enhanced scaled dot-product attention. In edge-enhanced 

scaled dot-product attention, edge features are projected and then merged into the original value vector and the 
compatibility vector, i.e, the scaled dot-product of query and key vectors.  



10 
 

 
Formally, the key, value and query for each node are computed by projecting node embedding : 

. 

where  and ,  and  are designable dimensions.  

In addition to node projection, edge embedding  are also linearly projected, constructing the edge component 

for the compatibility and the value of each edge: 

. 

Here learnable parameter  is used to generate a 1-dimensional edge compatibility matrix , and  

 has the same dimensions as the node weight . 
The compatibility is then calculated as the sum of its edge component and the dot product of the query from node 

 and the key from node . From the compatibilities, we compute the attention weights  using a softmax 

function:  

 

Finally, the vector  that is received by node  is the weighted sum of the node value  and the edge value : 

 

To enhance the capability of expression and also benefit the stability of the attention learning process, the single-
layer attention is then extended to the multi-head attention network. Specifically, we compute  attention layers with 

independent parameters, using = ,  and then concatenate their outputs to the single -dimensional vector. 

The final multi-head attention value for the node is: 

( ) ( ) ( )
 

where  represents concatenation, and superscript  indicates parameters obtained by the th attention mechanism. 

2. The encoder-decoder architecture 
Fig. 8 depicts the overall architecture of our policy network, called Attention Model with Edges (AM-E). AM-E 

inherits the encoder-decoder structure of the Transformer model, which is recoginized as the most competitive neural 
sequence transduction model [33]. Taking a toy instance (2 deliver requests, 1 recharging station, and 1 depot) for 
example, the vertex features [ ] and edge features  are first passed to the dash line-blocked attention 

module after being initially embedded. Then the encoded features are recursively updated by the attention module  
times until we get the output of the encoder: the embedded node features [ ]. Afterwards, using drone 

features  as the query vector and masking unavailable nodes, we could finally get the policy output [ ], 
which is the policy probability of each node. 
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Fig. 8. AM-E policy network 

Regarding the encoder, a similar structure to the Transformer [33] is adopted, which provides a mapping from 
nodes’ raw features to a richer embedding space, through which the node’s own features, the features of its neighbours, 
and the features of edge connected with neighbours are all represented. Specifically, mission features ] are 

initially embedded to a larger dimension  via the node-wise linear projection. The projection parameters are only 
shared among features of the same category (pickup nodes, delivery nodes, recharging nodes and the depot). Then the 

embeddings 
( )

 are recursively updated by  multi-head attention layers, each consisting of three operations: multi-

head attention, feed forward and normalization (see [19] for details on the rest of the encoder). 
The decoder of the policy network leverages the node embedding from the encoder and generates a probability 

vector  for selecting nodes at each step. To achieve this, the graph is augmented with a special context node  to 
represent the decoding context. Herein, the context of the DDP-R consists of the embedding of the graph and the 
current state of the drone: 

( )
( )

( )
( )

( )  

where the context ( ) is the concatenation of an aggregated node embedding ( )
( )

: 

( )
( ) =

1 ( )
 

and ( ) is the linear projection of the drone state : 

( )
( ) ( ). 
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Then, the context embedding is computed using a multi-head attention mechanism, with a single query ( ) from 

the context node, and the keys and values from the node embedding of the encoder: 

( )
( )

( )
( ) ( )  

Given the context embedding output ( )
( )

, we add one final attention layer to compute the output probabilities, 

for which we only compute the compatibilities with ( ) ( )
( )

 and 
( )

. The compatibility is then 

clipped within  using a tanh, which is followed by the masking policy described in Section 4.3: 

( ) =
( )

otherwise

    
      

Finally, after a SoftMax function, each node is scored with a probability as the final output, given as, 

( )

( )
 

 

C. Masking scheme 
With the purpose to improve exploration efficiency and ensure the feasibility of solutions, the set of actions is 

masked by a designed masking scheme to exclude infeasible routes. According to the battery capacity constraint and 
the pickup-delivery precedence constraint, an action  is labelled as valid only if all of the following conditions 

are satisfied: 
1. If  represents a pickup or delivery task, the task must not have been served, and the UAV has enough energy 

to cover the trip to the vertex  and return to the closest charging station.  

2. If  represents a charging station (or the depot), it should be reachable from the vertex where the UAV is 

currently located within its remaining battery capacity. 
3. If the previous node visited is a pickup task, all other nodes except charging stations, the depot, and the 

corresponding delivery task are masked. 
4. If the previous node visited is a delivery task, or if the UAV just departs from the depot, all delivery tasks would 

be masked. 
5. If the last node visited is a charging station (or the depot), all station nodes and the depot node would be masked. 

Regarding task nodes, it depends on what type of node was visited before the charging station (or the depot) and then 
execute masking according to point 3 and point 4. 

D. Training method 
Shown as Algorithm1, we train the policy network using the REINFORCE algorithm with baselines. The baseline 

is chosen as rollout or critic according to whether the problem is deterministic or stochastic. In detail, at the beginning 
of each episode, one batch of new samples is stochastically generated. Then routes are sequentially sampled according 
to the probability output from the policy network and rewards are collected. Moreover, we get the expected reward 

 from the critic network or the rollout baseline network, which is used to calculate the advantage component of 
the gradients. Backpropagation is then adopted to update the policy network and the critic network for the critic 
baseline. Regarding the use of rollout baseline, at the end of each episode, the parameter of the baseline policy network 
will be replaced by that of the policy network if the performance of the latter is significantly superior. 

 
Algorithm 1 REINFORCE learning algorithm 

Input: number of epochs , batch size  
foreach training = 1,2, ,  do 
     generate instances of batch size ; 



13 
 

     foreach instance = 1,2, ,  do /* ran in parallel */ 

          sample trajectory using policy ; 

          receive the accumulative reward of the trajectory ; 
          if rollout baseline then 

               receive baseline reward   using GreedyRollout policy ; 

          else if critic baseline then 
               estimate values of initial states using critic ; 
          end 
     end  
     estimate mean Policy Gradient on the batch of trajectories: 

      ); 

     if rollout baseline then 
          update policy parameters ; 
          if : 

               replace  using ; 
          end 
     else if critic baseline then 
          estimate the mean gradient of the MSE of critic on the batch of trajectories: 

           = ; 

           update policy parameters  and critic parameters ; 
     end 
end 

V.  Numerical Simulations 

To verify the effectiveness and evaluate the performance of the proposed AM-E model, we conduct simulations 
for solving DDP-R problems in the presence and absence of winds. In this section, we will introduce our experimental 
setup, and investigate the performance of the proposed method in comparison to the original AM and other state-of-
the-art solutions. 

 All experiments are carried out on a 16-cores Intel E5-2620 v4 CPU, a Tesla K80 GPU or a Tesla V100 GPU. 

A. Experimental Setup 
1) Simulated Environment: A simulated environment is built to imitate missions of the DDP-R, from which we 

can sample trajectories and get rewards back to train networks or evaluate the planning models. For initialization, 
pickup tasks, delivery tasks, charging stations, and the depot are randomly located on a  mission area. 
The distance between every two nodes is set as the Euclidean distance. In simulations, the airspeed of the UAV is set 
to a constant  and a battery capacity of  is assumed. The energy cost on each edge is decided by the 
energy consumption model presented in Section 3.2, which is supposed to be deterministic if no wind or stochastic 
with the wind. Parameters of the constant wind component (i.e. direction and speed) are generated following the 
distribution model in Section 3.2 and assumed to remain unchanged for each path segment.  

2) Network Structure: For the proposed AM-E model, the node embedding, edge embedding, and context 
embedding are all one-layer element-wise liner projections with dimension 128. The multi-head graph attention 
network consists of heads computing key vectors and value vectors of dimension = 16. The number 
of sequential multi-attention modules is 3. In the feed-forward layer, the node features are passed through node-wise 
projections of one hidden sublayer with the ReLu activation and 512 hidden units. 

3) Training Parameters: We adopt the Adam Optimizer to train the network with a constant learning rate 10 . 
We run training for 100 epochs for each problem. In one epoch, we process 1.28 million instances in 2500 iterations 
with a batch size of 512. Each epoch takes around 15 mins for DDP20-R (K80), 42 mins for DDP40-R (K80), and 28 
mins for DDP80-R (V100). 

B. Validation of edge feature enhancement 
To test the efficacy of edge enhancement for solving DDP-Rs, we carried out a comparison study among three 

neural network models: the proposed AM-E model, the original Attention Model (AM) [19], and the heterogeneous 
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attention model [23]. As mentioned, the heterogeneous attention model is designed for pickup and delivery problems 
(PDP) featuring a better performance by considering heterogeneous roles in PDP. It does not exactly match the DDP-
R studied in this paper because of the presence of recharging stations, so an extension is made that two more types of 
attention layers are added regarding pickup-recharge relations and delivery-recharge relations respectively.  

The learning curves of the above three models are depicted in Fig. 9.  The total number of trainable parameters 
and the training time for one episode are summarized in Table1. Simulation results in terms of the basic Travel Sales 
Problems (TSPs) and the concerned DDP-Rs are shown in Table 2. 

 

 
Fig. 9. Learning curves for solving the DDP-R with 10 delivery requests and 3 recharge stations.  
 

Table 1 Total trainable parameters of models and running time for one epoch. Programs all ran in Tesla V100. 
Time is measured over the entire training set and averaged. 

 
AM 

model  
Heterogeneous 

AM model 
AM-E 
model 

Trainable parameters 693632 1086848 746112 
Running time 4min50s 8min18s 6min07s 

 
Table 2 Comparison among AM, AM-E and heterogeneous AM models, results indicated with * are reported by 

[19].  

Task Optimal AM model 
Heterogeneous 

AM model  
AM-E model 

TSP20 3.83* 3.84 (0.33%)* 3.84 (0.33%)* 3.84 (0.33%) 
TSP50 5.69* 5.82 (2.28%)* 5.82 (2.28%)* 5.81(2.11%) 
TSP100 7.76* 8.19 (5.49%)* 8.19 (5.49%)* 8.08(4.12%) 

DDP10-R3 1.483  1.590(7.36%) 1.527(2.97%) 1.526(2.90%)  
DDP20-R3 2.688 2.864(6.55%) 2.788(3.72%) 2.790(3.79%) 
DDP40-R3 - 5.286(2.66)  5.170(0.41%) 5.149(0.00%)  

 
From Table 2, in the case that all settings are identical except for model architectures, the AM-E and heterogeneous 

attention model show superiority over AM in solving DDP-Rs, while no significant difference is shown for TSPs with 
homogeneous and fully connected nodes. It should be noted that the heterogeneous attention model degenerates to the 
AM in solving the TSP, so we refer to the same results in the table. 

For further comparison, the proposed AM-E model achieves comparable and even slightly better performance than 
the heterogeneous attention model with about a 32% reduction in parameters. In the heterogeneous attention model, 8 
extra types of attention layers are added to the original one for solving DDP-Rs. Even though parameters of all keys 
and values are shared, the query matrices of attention layers are kept independently, which introduces a large number 
of extra trainable parameters to the model and almost doubles the running time for one episode. More trainable 
parameters always imply more computational amount and larger memory requirement. In the proposed AM-E model, 
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we only use one extra edge matrix to capture the node relationships, which requires much less trainable parameters 
and avoids complex network formulation while retaining comparable performance. 

C. DDP-Rs without winds 
In the first experiment, we test the performance of the proposed AM-E model for solving deterministic DDP-R 

without considering the wind. The experiment is carried out with 3 different dimensions (the number of delivery 
requests  while the number of charging stations is fixed to 3) and compared to the original AM 
model and deterministic baseline methods.  

The first baseline in comparison is obtained by Gurobi, a mathematical optimization solver, to provide the exact 
optimal solution for evaluation. To avoid unaffordable computing time, we set a 100-second time limit for the Gurobi. 
Under these limitations, Gurobi sometimes fails to obtain a feasible solution, so we also count the success rate for the 
Gurobi baseline. The second baseline comes from Google’s Or-tools backed by a CP-SAT solver, which is usually 
seen as the most advanced heuristic solver. We gather Or-tools solutions of different qualities using the 1-second, 10-
second, and 50-second solving time respectively.  

Regarding the DRL implmentations, we introduce the original AM model as another baseline. For the 
heterogeneous AM model, since the proposed AM-E model outperforms it in terms of both solution qualities and 
computing efficiencies as demonstrated by simulations in the last section, so we remove the hetegenerous AM model 
from the following comparison studies. With regard to the proposed AM-E model and the baseline AM model, we 
apply two decoding strategies for evaluation: 1) Greedy, always select the action with maximum probability at each 
step; 2) Sampling, sample  routes for each instance according to the probability distribution and choose the 
one with minimum cost. The simulation results are summarized in Table 3.  

 
Table 3 Costs and computing time for solving deterministic DDP-Rs 

 

From Table 3, Gurobi fails to obtain a feasible solution in some instances within 100 seconds, and the proportion 
of these cases becomes larger as the problem size increases. Or-tools obtains high-quality solutions to small size 
problems but scales poorly since the time required for searching a high-quality route explodes as the number of 
delivery requests increases. Comparing these two DRL-based methods, the proposed AM-E model shows a 
performance improvement over its basic form, the AM model, both for greedy decoding and sampling decoding. 
Overall, AM-E has better scalability, and efficiently produces high-quality routes for all three dimensions. 

D. DDP-Rs in presence of winds 
Next, the robustness of the proposed model is tested against stochastic edge cost in DDP-Rs under varying wind 

conditions. Regarding stochastic energy costs, if the drone’s onboard battery is used up before it gets recharged, a 
penalty  will be imposed on the overall cost. The approaches are tested in a stochastic environment with the 
mean wind value . Since the DRL agent performs as an online policy, it is expected to continuously adjust 
the route according to its current battery level. However, the Gurobi and Or-tools, as offline planning methods, use 
predefined routes with less flexibility. Thus, in order to prevent battery exhaustion, a margin of safety is implemented 
to these baselines, i.e., the amount of available battery capacity used in planning is reduced by a specific percentage.  

To ascertain the best value of the margin of safety, we obtain expected costs and actual costs via Or-tools using 
different margins for solving S-DDP10-R3 and S-DDP40-R3, presented in Fig 10. As seen in Fig 10, small margins 
turn out to be risky, resulting in large biases between expected and actual costs, whereas overly large margins are 

Method 
DDP10-R3 DDP20-R3 DDP40-R3 

Cost Gap Time(s) Cost Gap Time(s) Cost Gap Time(s) 

Gurobi(optimal) 
1.483 ± 0.004 

(99.88%)  
0.13% 2.436 

2.688 ± 0.016 
(98.90%)  

0.00% 4.306 
4.925 ± 0.380 

(88.00%) 
- 46.064 

Or-tools (1s) 1.493 ± 0.036  0.81% 1.0 3.438 ± 0.034 27.90% 1.0 - - - 

Or-tools(10s) 1.481 ± 0.036 0.00% 10.0 2.752 ± 0.005 2.38% 10.0 10.007 ± 6.172 98.59% 10.0 

Or-tools(50s) - - - 2.726 ± 0.261 1.41% 50.0 6.452 ± 0.068 28.04% 50.0 

AM (Greedy) 1.590 ± 0.004 7.36% 0.109  2.864 ± 0.006 6.55% 0.181 5.286 ± 0.008 4.90% 0.280 

AM(Sample1280) 1.521 ± 0.004 2.70% 0.141  2.741 ± 0.005 1.97% 0.251 5.094 ± 0.007 1.09% 0.380 

AM-E(Greedy) 1.526 ± 0.005 3.04% 0.063 2.790 ± 0.006 3.79% 0.121 5.149 ± 0.007 2.18% 0.416 

AM-E (Sample1280) 1.487 ± 0.004 0.41% 0.131 2.709 ± 0.005 0.79% 0.286 5.039 ± 0.007 0.00% 0.465  
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conservative, resulting in higher costs for frequent charging station visits. A margin of safety of around 20-30% 
provides the best planning results with the lowest costs in actual executions.  

 

 
Fig. 10. Expected costs and actual costs with different margins of safety  

 

Table 4 Costs and computing time for solving stochastic DDP-Rs 

 
Table 4 compares the proposed AM-E model, AM model and offline planning baselines with the 20% and 30% 

margin of safety. It is noted that the results of Gurobi are excluded from the comparison for solving S-DDP40-R3 due 
to its high failure rate. Like deterministic cases, Or-tools gains solutions of lower costs for small-size deliveries while 
DRL methods perform better with scenarios of 20 requests or 40 requests. Setting certain margins for battery usage is 
the strategy mostly used in industrial applications, and it successfully guarantees a certain degree of robustness for 
these deterministic baselines, as shown in the Table. However, how to define the margin value while operating in 
varying wind fields is a tricky question. It might either become risky or conservative. As an alternative solution, the 
DRL approaches to avoid this problem by continuously adjusting the route according to the UAV’s remaining energy.  

Overall, the proposed method obtains high-quality routes and arrives at the solutions in a very short time. The 
improvement becomes more significant when handling larger scales, demonstrating the AM-E with better scalability 
than Gurobi or Or-tools, as also seen by its stable performance and quick processing times. Again, AM-E offers better 
solutions than AM without consuming more time. Moreover, since the DRL-based method possesses the ability to 
respond to environmental changes, it is expected to perform better in dynamic scenarios compared to the deterministic 
approaches which require replanning of the whole routes.  

VI.Conclusion and Future Work 

In this study, a new variant of the vehicle routing problem has been investigated, which is proposed to target the 
drone application for parcel delivery. The routing model includes recharging operations and considers the effect of 
varying winds. Specifically, we have built a simulated environment with a stochastic energy consumption model under 
varying winds to imitate real-world delivery scenarios, in which the energy-constrained UAV could be recharged in 
the middle of mission execution. To address the delivery problem efficiently, a DRL-based method with an AM-E 

Method 
S-DDP10-R3 S-DDP20-R3 S-DDP40-R3 

Cost Gap Time(s) Cost Gap Time(s) Cost Gap Time(s) 

Gurobi (margin 20%) 1.783 ± 0.816 
(99.90%) 

5.69% 0.416 
3.161 ± 1.185  

(97.80%) 
1.38% 8.354 

6.423 ± 2.674 
(41%) 

- 48.846 

Gurobi (margin 30%) 1.716 ± 0.600 
(99.89%) 

1.72% 0.503 
3.145 ± 1.138 

(98.30%) 
0.87% 11.239  

6.209 ± 2.418 
(52%)  

- 71.887 

Or-tools (margin 20%) 1.839 ± 0.672 9.01% 1.0 3.418 ± 1.581 9.62% 10.0 6.495 ± 3.431 11.98% 50.0 

Or-tools (margin 30%) 1.687 ± 0.300 0.00% 1.0 3.341 ± 1.255 7.15% 10.0 6.097 ± 3.045 5.12% 50.0 

AM(Greedy) 1.781 ± 0.007 5.57% 0.102 3.234 ± 0.012 3.72% 0.192 5.937 ± 0.019 2.36% 0.350 

AM-E(Greedy) 1.744 ± 0.009 3.38% 0.071 3.118 ± 0.011 0.00% 0.133 5.800 ± 0.019 0.00% 0.343 
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network model has been presented and demonstrated with high-quality solutions. AM-E model is composed of a novel 
edge-enhanced dot-product attention layer via merging edge features into the information propagation, offering the 
network a stronger ability to describe the complex relationship among heterogeneous nodes. With the designed 
masking policy and reward function, the AM-E model has been trained and evaluated via the simulated environment. 
Results showed the AM-E is fast, robust and has better scalability compared to three baseline heuristic methods and a 
state-of-the-art deep learning model. 

The extension to multi-drone cases is desired by most real-world applications. Given that the ability of the single 
drone is limited and with advances in autonomous technologies, many realistic applications prefer the collaboration 
of multiple UAVs, which tends to be more efficient and flexible. Future research opportunities involve the extension 
of the current work to the delivery problem with multiple UAVs, where a decentralized planning algorithm integrated 
with inter-drone communication will mainly be investigated.   

In addition, the training dataset used in this work is entirely produced numerically. Generalizing the trained 
network to the real logistic application remains a concern. We plan to collect more realistic data from UAV delivery 
operations for validation. Building a more refined simulation environment that considers time windows, quality of 
service, and dynamic events are included in future research plans. 

Appendix 

A. Mixed Integer Programming model for DDP-Rs 
With the objective to minimize the energy cost, the concerned DDP-Rs claimed in Section 3.1, are formulated into 

Mixed Integer Programming (MIP). The indices, sets, parameters and decision variables in the MIP model are defined 

as follows: 

Table A.1 the notations used in the MIP model 

Indices and Sets 

,  indices of nodes 

/  set of pickup/delivery nodes, ℙ = {1,2, … ,�}, � = {� + 1,� + 2, … ,2�} 

 set of recharging stations 

 set of the depot node and its one copy, � = {��,��
� } 

 set of all nodes,  ℕ =  � ∪ ℙ ∪� ∪ ℂ 

Decision parameters 

 1 if vehicle travels from node � to node �; 0 otherwise 

 state of charge (SoC) (%) when leaving node � 

 vehicle departure time at node � if the vehicle comes from node � 

Parameters 

 node for the UAV depot 

 node for the copy of the UAV depot 

 electric energy (kWh) needed to travel from node � to node � 

 lower bound of SoC constraints (%) 

 upper bound of SoC constraints (%) 

 maximum battery capacity (kWh) 

 travel time from node � to node � 

 a big positive value 

The proposed MIP model is as follows: 

 

                                              Subject to: 
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= 0 

= 0 

} 

} 

 

 

 

 

 

 

 

 

 

 

B. Energy consumption model [27] 
Let denotes the number of rotors,  the number of blades per rotor, and  the radius of the rotors. The 

total area on which air is moved by the rotors  is calculated as 

 

The speed of the blade tips  depends on the thrust to be exerted and the physical property of the blades. Therefore, 

let  denote the rotor mean chord and  the mean lift coefficient, the blades speed follows 

=  

Likewise, the disc solidity ratio  is defined as . The blade drag coefficient  depends on primarily and 

typically increases with the blade lift coefficient and thrust coefficient. For simplicity, this parameter is set constant 

as = 0.075. 

Finally, the downwash  is determined by solving 

 

whereby  is the angle of attack which is calculated by . 

 

Table 4 Parameter values used in the drone energy consumption model 
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Term Symbol Value 

Tare weight [kg] ����� 10.886 

Air density [kg/m3] � 1.225 

Acceleration of gravity [m/s2] � 9.807 

Frontal surface area [m2] � 0.15 

Hotel power during flight [kW] ������  0.1 

Battery capacity [kWh] ����� 1.5 

Engine efficiency � 0.9 

Number of rotors ������ 8 

Number of blades ������  3 

Rotor radius [m] � 0.4 

Air drag ������  0.3 

Blade drag ��� 0.075 

Rotor mean chord � ̅ 0.1 

Blade lift ���  0.4 

Lifting power markup ���� 1.15 
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