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Abstract: The Arkavathi River, one of the major tributaries of the Cauvery River in southern India, 

is a major source of drinking water and agricultural irrigation to villages and townships in the 

region. Surface water quality distribution and characteristics of the Arkavathi Reservoir catchment 

and command area were evaluated using multivariate statistical analysis on 29 water quality 

parameters collected across 30 monitoring stations over a two-year, three-season period. Factor 

analysis (FA), agglomerative hierarchical clustering (AHC), analysis of variance (ANOVA) and t-

tests were used to reveal strong links between parameters and to reveal significant variations in 

their concentration levels with respect to monsoon seasons and sampling locations across the sub-

watersheds. Results from factor analysis showed strong groupings of specific parameters across 

seasons, while results from clustering revealed distinct clusters of sampling points around the river, 

upstream from the reservoir (where human activity is high), in the command area downstream from 

the reservoir (where irrigation activity is similar), in hilly regions towards the northeast of the study 

area and in the scrubland regions. Based on multivariate analysis findings, specific 

recommendations are made for water quality improvement in the reservoir catchment and 

command area. 

Keywords: water contaminants; sub-watershed; reservoir management; catchment area; surface 

water quality; factor analysis; clustering; ANOVA 

 

1. Introduction 

Water, being one of the vital components of life, is under more scrutiny in recent 

decades due to urbanization, industrial and agricultural activities, and improper 

management at various levels causes deterioration in water quality, in turn affecting its 

use for all human activities [1,2]. Deterioration of surface water quality in reservoirs and 

lakes is of particular significance when they are used for crop irrigation and more-so for 

drinking purposes, as evident in the present case of the Arkavathi River, which feeds into 

the Cauvery River, which is one of the main sources of drinking water for the region. For 

an effective water management strategy, it is therefore imperative to collect and analyze 

reliable data for spatio–temporal variations of surface water contaminants across 

monsoons and sub-watersheds in reservoir catchment and command areas, which in turn 

can be used to identify pollution sources and propose remedial measures to improve 

water quality.  
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1.1. Multivariate Analysis of Surface Water 

Various contaminants, along with sediments, through runoff are carried through the 

tributaries of the Arkavathi River (total flow length of about 210 kms) at various locations 

and further into the Cauvery River, which is the main source of water supply to many 

townships in the southern Indian state of Karnataka. The quality of vegetation in the 

command area of the Arkavathi Reservoir (also known as the Harobele Reservoir) is 

affected by the water quality due to various stressors such as untreated domestic sewage, 

effluents from agricultural runoff, etc. Surface water samples were collected to analyze 

various characteristics of water quality in the six sub-watershed areas (Section 2.1) and 

were analyzed with the aid of appropriate multivariate statistical tools (Section 3) to 

derive meaningful conclusions about various parameters within each of these datasets 

and to propose remedial solutions.  

One of the most-applied multivariate methods in watershed studies is principal 

components analysis (PCA), which uses correlations among multiple water quality 

constituents to effectively reduce the number of parameters [3]. For example, in [4], the 

potential pollution sources affecting the Jinsha River watershed in western China from 

2016 to 2018 were investigated using an improved method in combination with 

correlation analysis and absolute principal component score multiple linear regression 

receptor modelling. The multivariate statistical techniques presented good adaptability 

for the analysis of pollution sources in this river watershed, and the results were useful 

for the protection and management of the watershed eco-environment. To determine 

relationships between physical and chemical water quality parameters, PCA and CCA 

(canonical correlation analysis) have been widely used in studies such as those in restored 

wetlands in northeast Denmark [5] and in the Llobregat River in northeast Spain [6]. 

Though PCA has been widely used in such studies, factor analysis (FA) has been found 

to be better-suited if the main objective is to identify parameters of water quality that are 

related to each other and to separate them from each other. FA has been applied to surface 

water quality data, for example, for a river basin in Turkey during two different 

hydrological periods of low- and high-flow periods [7], where the source of pollution 

changed from agricultural uses to land use during high-flow periods.  

Cluster analysis (CA) has also been widely used, sometimes in conjunction with 

PCA/FA for assessing variation of contaminants across either locations or seasons. In a 

longitudinal analysis study, pollution profiles of 40 rivers in India were created based on 

the levels of biochemical oxygen demand (BOD) [8]. CA was used to represent groups of 

rivers with similar levels of pollutants. Another similar application of CA was to evaluate 

dam water quality, for example that of northcentral Algeria [9], where clusters of 

sampling sites reflected differences between water quality at different locations. There 

have been studies demonstrating the usefulness of multivariate statistical approaches for 

analyzing temporal variations in water quality for effective river water quality 

management [10–14]. In [13], the authors assessed the surface water quality data for 16 

physical and chemical parameters collected from 22 monitoring sites during the years 

from 1998 to 2001. PCA was used to extract the parameters that were most important in 

assessing seasonal variations of river water quality. The analysis showed that parameters 

that are most important in contributing to water quality variation during one season may 

not be important during another season, except for dissolved organic carbon and electrical 

conductance, which were always the most important parameters in contributing to water 

quality variations over all four seasons.  

One-way and two-way ANOVA have been used to extract temporal and spatial 

variations of water quality [15], mainly to show the reliability of results from CA and FA 

[16]. However, two-way, and particularly three-way, ANOVA have not been widely 

applied in this context. To obtain a comprehensive view of variations across years, seasons 

and locations, we need to combine all the above tools in a meaningful way. In this study, 

we have used a combination of factor analysis, clustering, two-way and three-way 

ANOVA and t-tests to reveal interesting annual spatio–seasonal variations and groupings 
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of different parameters in order to identify potential sources of pollution and remedial 

measures for effective water management in the catchment and command area. 

Multivariate statistical analyses of surface water quality datasets in different 

environmental settings have been proven to be effective for deriving meaningful 

associations, relationships between various quantities and environmental factors and in 

assessing spatio–temporal variations, as seen from some of the relevant studies discussed 

above. In our present study, FA is used comprehensively to derive relationships between 

parameters across seasons and to reconfirm the clustering of sampling locations, which 

are derived through AHC. Spatial variations are not only confirmed through AHC but 

also through three-way ANOVA, which includes, apart from spatial, seasonal and annual 

variations in parameter values. Most of the literature has focused on individual use of 

these tools, which provides a limited view of the relationships between surface water 

parameters. Additionally, most articles invariably focus on either one or the dual aspects 

of seasonal and locational variations. In this article, we combine annual, seasonal and 

spatial variations in a significant study area that involves reservoir catchment and 

command areas. The above methodology of FA–AHC–ANOVA and t-tests highlights 

some very interesting relationships amongst parameters and spatio–temporal variations 

across the study area. Additionally, the articles in the literature that focus on seasonal 

aspects do so in a monthly or a traditional seasonal approach [17,18]. However, we have 

collected samples and analyzed them based on monsoon seasons typical for this part of 

the world. This gives insight into the monsoon effects with respect to concentration levels 

and groupings between physico–chemical and biological parameters, which is vital for 

water management and water usage monitoring programs in this part of the world. 

1.2. Geogenic Contamination Analysis of Groundwater 

The quality and quantity of surface and groundwater is influenced by geogenic and 

anthropogenic factors. Pollution of groundwater primarily results from substances that 

naturally occur in groundwater and the mineral environment and/or by all types of point 

and diffuse sources of pollution [19]; therefore, groundwater requires regular monitoring. 

In a study related to global water pollution and human health [20], the authors discussed 

water pollution issues related to various pollutant source classifications such as 

agriculture, geogenic, biogenic, mining, hazardous waste, and urban wastewater in 

industrial, developing, and emerging countries. One of the important conclusions of this 

study was that geogenic contaminants act as diffuse sources of toxic elements at regional 

scales, inflicting chronic diseases on large populations of all continents. To solve this 

problem, the authors suggested using geochemical modeling of hydrogeochemical data 

and spatial analysis to improve the geogenic problem. Monitoring of the quality of 

groundwater is based on water chemistry analysis to identify the nature of pollutants. In 

one study [21], reaction path modelling was used to investigate the evolution of water 

chemistry in shallow to deep crystalline aquifers, with a special focus on fluoride. The 

water–rock interaction led to Ca-enrichment due to the dissolution of Ca phases 

originating from the Ca-HCO3 water type. Magnesium was mainly contributed to the 

aqueous solution through biotite dissolution, whereas chlorite dissolution played a 

subordinate role throughout the whole rock-dissolution process. This study became a 

valuable tool for environmental applications to understand the geochemical processes 

occurring in aquifers of interest and to predict the fate of pollutants in different geological 

settings. In another study [22], geochemical modelling was used to understand the release 

and fate of pollutants in crystalline aquifers. It was concluded that the geochemical 

behavior of groundwater depends on several geogenic processes that cause hazardous 

enrichment of natural waters, even in remote areas far from anthropogenic sources. In this 

work, arsenic pollution was addressed by studying water–rock interactions and applying 

reaction-path modelling as a tool to understand the rock-to-water release of arsenic and 

the fate of this natural pollutant in crystalline aquifers. comparison of theoretical trends 

and experimental data showed that SO4, Fe and As groundwater concentrations in which 
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no arsenic anomalies were observed were explained by the dissolution of the considered 

granitic rock.  

A multivariate, nonparametric approach has been successfully applied for estimating 

the probability of exceeding the local natural background level of arsenic in the aquifers 

of the Calabria region (southern Italy) [23]. In this study, the concept of the natural 

background level was used to distinguish between natural and anthropogenic 

contributions to concentrations of specific contaminants as a groundwater management 

and protection tool. It was concluded that, based on the triangular plots of major anions 

and major cations, 165 of the 337 groundwater samples from crystalline-metamorphic 

water groups could be attributed to the Ca-HCO3 chemical type, followed by Na-HCO3 

(110 samples), Na-Cl (33 samples) and Mg-HCO3 (23 samples) hydro–chemical facies. 

These compositions reflected the typical groundwater evolution from shallow to deep 

crystalline-metamorphic aquifers [23]. In a recent study [24], the hydrogeological features, 

main sources of geogenic hazardous substances, dominant hydrogeochemical processes 

and key factors controlling the occurrence of high arsenic (As ≥ 10 μg/L), high fluoride (F  

≥  1 mg/L) and high iodine (I  ≥  100 μg/L) in groundwater were discussed. Four basic 

genetic types of geogenic contaminated groundwaters (GCGs) were proposed by 

summarizing the characteristics of the distribution and major hydrogeochemical 

processes, namely leaching–enrichment, burial–dissolution, compaction–release and 

evaporation–concentration types. The complex genetic mechanisms of GCGs were 

integrated into a new theoretical framework to analyze their genesis and predict their 

spatial and temporal distribution.  

In our present work, the following methodology was followed to analyze 

groundwater samples. The total study area was divided into six sub-watersheds for 

surface water sampling based on the drainage features of the area. The 

monitoring/sampling stations were located based on practical considerations. A total of 

33 groundwater samples were collected for each of the three monsoon seasons over a 

period of two years. The samples were collected and subjected to various physical, 

chemical and biological characteristics as per the Bureau of Indian Standards [25] and as 

explained briefly in the supplementary material. Piper Trilinear diagrams were generated 

to interpret the groundwater chemistry, and the conclusions are noted in Section 3.4. 

1.3. Significance of the Present Study 

This work highlights the significance of multivariate analysis in analyzing surface 

water quality of reservoir catchment and command areas, with the focus on variations 

across sub-watershed locations, monsoons and years. This study is significant especially 

due to the type of region we analyzed, as it has a good variety of landcover, including 

forest, scrubland and irrigated land and a variety of land uses, such as domestic, 

agricultural and quarrying activities, as discussed in Section 2.3. The geological features, 

as given in Section 2.2, and the chemical analysis of groundwater, as given in Section 3.4, 

make this region interesting for analyzing the quality of both surface water and 

groundwater. This work brings out important relationships amongst water quality 

parameters and valuable information on spatio–seasonal variations for effective 

watershed management, thereby improving water quality for agricultural and drinking 

purposes in this significant region of southern India.  

2. Materials and Methods 

2.1. Study Area 

The Arkavathi River, with a total flow length of about 210 kms, originates in the 

Nandidurga Hills (13°22′11” N and 77°41′5” E) of Karnataka state at an altitude of 1467 m 

amsl (above mean sea level) and flows through various parts of the region before draining 

into the Cauvery River, which is one of the most prominent rivers in southern India. The 

study area covered approximately 1572 km2 with a total perimeter 245.72 kms and is 
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located between 12°20′ to 12°54′ N and 77°15′ to 77°44′ E (Figures 1–5). The flow system of 

the main Arkavathi River from the point of its entry into the study area at Manchanabele 

Reservoir (12°52′19” N and 77°20′5” E) till its exit with a waterfall at Chunchi village 

(12°21′5” N and 77°26′ 46” E) is geologically structurally controlled. The Arkavathi River 

has a flow length of 65 kms from Manchanabele (720 m amsl) up to the Chunchi waterfalls 

(540 m amsl) and has a total fall in gradient of 180 m, i.e., an average fall in gradient of 2.8 

m per km of flow length. The flow path of the subsidiary drainages is also linear. A total 

area of 62.32 km2 (cultivable command area), which is part of sub-watershed SW6, is 

irrigated with Arkavathi Reservoir water. The study area is demarcated into six sub-

watersheds, which are named accordingly (Table 1) based on the drainage features of the 

area. The geology map of the study area is given in Figure 2. Contour maps, a digital 

elevation model map (prepared using RS and GIS), a slope map and a drainage map are 

given as online supplementary materials. 

Table 1. Details of sub-watersheds. 

Sub-Watershed Local Name of Sub-Watershed Area (km2) 

SW1 Ramanagara sub-watershed 348.69 

SW2 Suvarnamukhi sub-watershed 420.25 

SW3 Mavathurkere sub-watershed 369.70 

SW4 Kodihalli sub-watershed 175.06 

SW5 Kanakapura sub-watershed 168.96 

SW6 Harobele sub-watershed 89.39 

 Total 1572 

 

Figure 1. Location map of Arkavathi catchment and command area, southern India. 
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Figure 2. Geology map of the study area. (Courtesy: Geology Map Survey of India). 
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Figure 3. Soil erosion map of the study area. 
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Figure 4. Land use and landcover map of the study area. 
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Figure 5. Location of sample collection/monitoring points in the study area. 

2.2. Geology and Geomorphological Features 

A large extent of the Arkavathi Reservoir catchment and part of its command area, 

particularly the western parts, with a geomorphic display of abundant hills, hill ranges, 

inselbergs, intermittent valleys, rock-cut valleys, etc., is a type of area generally referred 

to as ‘Closepet Granites’. The Geology map of the study area (Figure 2) and a soil erosion 

map (Figure 3) are given here for reference. The hills at the eastern peripheral parts of the 

area are the southern extension of the granite belt [26]. This long but narrow intrusive rock 

body is composed of diorites, granodiorites and grey granites, and forms a divide between 

the Ponnaiyar River catchment to the east and the Vrishabhavati stream system of the 

Arkavathi sub-basin to the west. Suvarnamukhi, a subsidiary drainage of the 

Vrishabhavati stream, is born in the western part of this granite belt. The gneissic rocks of 

the younger gneissic complex are drained mainly by the Vrishabhavati stream system in 

the northcentral part of the area, which is bound by the Closepet Granites. The western 

part of the area, parallel to the southern-flowing Vrishabhavati stream, forms a 

longitudinal contact between the massive Closepet Granite body to the west and the 

young Gneissic group of rocks to the east. The Closepet Granites are of both grey and pink 

varieties and are coarse-grained and porphyritic. Granites are poorly jointed and are 

weathered to an average depth of 15 m in the valley zone. The depth of weathering thins 

out as we move towards the pediment part of the terrain. 
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Granite to the west and southern extension of the granite belt forms a moderately 

undulating topography. A small extent of the Arkavathi Reservoir command area also 

forms part of the gneissic terrain. Most of the gneissic terrain forms a pediplain with 

considerably weathered rock. The depth of weathering ranges up to 30 m. The gneissic 

rocks are easterly dipping, and the dip angle of the mineral foliation ranges from between 

65° and 80°. Dip joints are more prominent. These gneissic rocks are fractured at the 

contact with granites, and the presence of pegmatites and quartz veins in gneisses are 

common. 

A large part, excluding the part constituting hills and the hill range, forms the 

pediment zone. The presence of pediplains becomes transitionally significant from third-

order streams and onwards. The thickness of soil is dependent upon the type of landscape. 

Red gravelly to loamy soils 0.3 to 1.5 m thick are commonly seen in the pediment part of 

the terrain, whereas the thickness ranges up to 2.5 m in the pediplain. While the hill range 

in the granite belt to the east of the southerly flowing Arkavathi River is N–S oriented, the 

hills west of the river (i.e., right bank catchment part) are E–W to ESE–WSW oriented. The 

height of the hills in the granite terrain ranges between 680 and 1043 m above mean sea 

level (amsl). These hills are massive and steep, and many are monoliths, with most of 

them attaining a height of more than 950 m amsl. The entire study area is a highly 

tectonically disturbed zone. South of 13° latitude, the Closepet Granite is flanked on its 

east by a ‘broad gravity low’ with its center near the town of Kanakapura (latitude 

12°32′36” N and longitude 77°25′2” E). 

2.3. Land Use and Landcover of the Study Area 

The study area is mainly composed of fertile land where kharif and rabi crops are 

grown (Figure 4). It also comprises scrub forest, land with scrub, agricultural plantations 

and an equal area of barren rocky sheetrock. A small portion of the area is occupied by 

moist, dry deciduous, dense and open forest. Though not significant, mining/industrial 

wasteland forms a minor part of the study area. Vegetation forms a major portion of the 

study area, along with a few villages and small towns. Sub-watershed areas SW1 and SW2 

have townships along the Arkavathi River, where some cultivation takes places using the 

river water. This is true to some extent in SW5 as well. Human activity is increased in 

these three areas. SW3 and SW4 are predominantly forest and hilly areas with less human 

activity. However, SW4 has a significant number of quarries. SW6 is the command area 

and is rich in nutrients since it is mostly agricultural/irrigation land. A total area of 62.32 

km2 (cultivable command area), which is part of sub-watershed (SW6), is irrigated with 

Arkavathi Reservoir water. Further details regarding land use and landcover are given in 

Table 2 below. 

Table 2. Details of land use and landcover of the study area. 

Description Area (km2) Percentage of Area 

Agricultural Plantation 111.26 7.07 

Barren Rocky/Stony Waste/Sheet-Rock Area 95.26 6.06 

Degraded Forest 22.45 1.42 

Fallow Land 12.53 0.79 

Forest Plantations 4.72 0.3 

Gully/Ravine Land 0.73 0.04 

Industrial Area 6.46 0.41 

Kharif + Rabi (Double Crop) 264.89 16.85 

Kharif Crop 547.91 34.85 

Land With Scrub 139.72 8.88 

Land Without Scrub 0.82 0.05 

Mining/Industrial Wasteland 11.03 0.7 

Mixed Vegetation 10.72 0.68 
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Moist and Dry Deciduous Dense Forest 58.06 3.69 

Moist and Dry Deciduous Open Forest 20.90 1.32 

Rabi Crop 0.31 0.02 

Scrub Forest 169.40 10.77 

Tree Groves 11.46 0.72 

Town/Cities 17.81 1.13 

Village 25.87 1.64 

River/Stream 11.54 0.73 

Lakes/Tanks 28.06 1.78 

Total area 1572 100 

2.4. Sample Collection and Testing 

Water samples were collected from 30 monitoring points over a study period of two 

years covering three prominent seasons of Pre-Monsoon, Monsoon and Post-Monsoon 

(Figure 5). To analyze the surface water quality of the area, we identified the sub-

watersheds using Survey of India (SOI) Topographic Maps at 1:50,000 scale—57 H5, 57 

H6, 57 H7, 57 H9, 57 H10 and 57 H11. Surface water samples within these sub-watersheds 

were then collected for further analysis. Two-liter polyethylene bottles/cans were 

thoroughly cleaned and were used to collect samples from the sampling locations. To 

avoid impurities on the surface of streams, the samples were drawn away from turbulence 

due to the banks and few centimeters below the water surface. For microbiological 

analysis of water samples, glass containers were used that could withstood 160 °C 

sterilization and would not produce or release any harmful chemicals that would inhibit 

biological activity, induce mortality or encourage growth. Samples for bacteriological 

examination were collected in clean, sterilized, narrow-mouthed, neutral glass bottles of 

250 mL, 500 mL or 1000 mL capacity. The bottles were sterilized in a hot air oven at 100 

°C for one hour. The sampling bottles were not opened except at the time of sampling. 

The detailed sampling (BIS, Part 1: Sampling [25]) and testing procedures for each of the 

contaminants along with the full dataset are given in the online Supplementary Materials 

section. 

The samples were subjected to various physical, chemical and bacteriological tests as 

per the procedure given in [25] (Bureau of Indian Standards: Public Safety Standards of 

the Republic of India: Chemical: Environmental Protection and Waste Management: Part 

1 to 63), as explained briefly in the Supplementary Materials. For example, to test for 

dissolved oxygen (DO), sampling and sample preservation were done as prescribed in BIS 

[25], Part 38: Dissolved Oxygen. The min–max ranges of the concentration levels of these 

parameters are provided in Table 3 for both years of the study. 

Table 3. Seasonal variation of surface water quality parameters (min–max values) in the study area. 

Parameters 
Min–Max Range for Year 1 Min–Max Range for Year 2  

Pre-Monsoon Monsoon Post-Monsoon Pre-Monsoon Monsoon Post-Monsoon 

pH 5.7–8.3 6.9–8.7 7.1–8.5 6.1–8.4 7.7–9.2 7.4–8.5 

Temp (°C) 28- 29 27 24–24 27 27 24–26 

DO (mg/L) 3.8–6.4 3.4–6.8 4–6.3 2.2–6.14 3–6.6 2.7–4.1 

BOD5 (mg/L) 2–15 1.6–6 3.2–9.1 2.1–15 2.2–12.8 5.5–16 

COD (mg/L) 8–36 4.8–10.5 5.9–16.9 6.8–40 3.7–22 10.2–30 

Total Suspended Solids 

(TSS) (mg/L) 
2–13.9 1.6–8.2 3.5–9.2 1.9–15 3–11.2 6–11.5 

Turbidity (NTU) 0.5–1.4 0.4–2.2 0.5–1.5 0.4–2.3 0.4–1.3 1–1.7 

Total Dissolved Solids 

(TDS) (mg/L) 
99–841 0.81–791 301–799 101–860 99–850 498–879 

Conductivity EC 

(µmhos/cm) 
220–1241 125–1217 465–1230 148–1250 399–1327 766–1353 
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Sodium Na+ (mg/L) 25–122 28–110 35–126 28–159 51–120 71–143 

Potassium K+ (mg/L) 2.1–22.8 3–21 3.5–25 3.9–27 3–25 4.7–26 

Calcium Ca2+ (mg/L) 9–119 10–90 14–92 18–111 10–101 59–96 

Magnesium Mg2+ (mg/L) 3.7–34 1.7–33.6 1.9–31 2–36 6–74 8–29 

Total Hardness as CaCO3 

(mg/L) 
81–439 42–430 209–432 89–450 55–428 275–541 

Chlorides Cl− (mg/L) 31–205 28–182 35–210 33–305 35–221 130–275 

Bicarbonate HCO3
− 

(mg/L) 
90–275 80–281 95–276 92–305 90–285 161–281 

Flouride F− (mg/L) 0.01–0.35 0.002–0.008 0.03–0.2 0.012–0.45 0.01–0.25 0.06–0.3 

Nitrate NO3
−

 (mg/L) 1.0–3.9 0.8–3.2 1.4–15.7 1.1–8.1 0.9–8.6 2.7–18.2 

Phosphate [PO4]
3−

 

(mg/L) 
0.01–0.31 0.02–0.52 0.02–0.9 0.01–0.48 0.05–0.45 0.1–0.28 

Sulphate SO4
2−

 (mg/L) 8.5–49 6–28 13–44 6.8–67 11–26 12–46.7 

Hexavalent Chromium 

Cr+6 (mg/L) 
Nil 0–0.008 0.003–0.007 0.006–0.008 Nil–0.006 0.005–0.09 

Iron Fe2+ (mg/L) 0.02–0.22 0.01–0.4 0.06–0.44 0.006–0.45 0.03–0.01 0.07–0.43 

Copper Cu (mg/L) Nil–0.001 0–0.005 0.003–0.006 0.002–0.004 Nil–0.004 0.003–0.008 

Lead Pb (mg/L) Nil 0–0 0.03–0.1 0.002–0.002 Nil–0.004 0.02–0.1 

Nickel Ni (mg/L) Nil–0.001 0–0.004 0.001–0.004 0.001–0.002 Nil–0.004 0.001–0.004 

Zinc Zn2+ (mg/L) 0.001–0.1 0.01–0.09 0.007–0.1 0.003–0.12 0.02–0.14 0.008–0.19 

Total Alkalinity as CaCO3 

(mg/L) 
87–315 80–310 225–445 98–354 90–295 228–476 

Total Coliform/100 mL 59–301 14–156 96–190 45–298 18–214 97–199 

Fecal Coliform/100 mL 11–81 0–12 9–45 9–84 2–33 12–56 

2.5. Data Suitability 

The KMO (Kaiser–Meyer–Olkin) (Kaiser, 1974) measure of sampling adequacy tests 

how well-suited the data are to perform FA. It measures the proportion of variance among 

parameters that might be common variances. KMO [27] returns a value between 0 and 1. 

If the value is closer to 1, it means that the data are better qualified for FA. In most of our 

analyses, we got a KMO value in the range of 0.6–0.7. Bartlett’s test of sphericity compares 

the correlation matrix to an identity matrix, i.e., it checks for redundancy between 

parameters. In this case, Bartlett’s test was very highly significant (<0.001), and, therefore, 

FA was appropriate. FA, clustering, ANOVA and t-tests were performed using the IBM 

SPSS statistical software [28] and XLSTAT Excel add-on data analysis package [29]. 

2.6. Multivariate Analysis 

2.6.1. Factor Analysis 

Principal factor analysis (PFA) is a dimension-reduction technique and was used as 

an extraction method [30–32] to reduce the large number of parameters while retaining 

most of the information contained in the original dataset. Factor analysis (FA) is a model-

based statistical technique to bring out relationships between measured parameters and 

latent factors, which are unobserved parameters that are believed to be the cause of the 

measured values of observed parameters. The assumption is that correlations between 

observed parameters are due to the causal influence of one or more factors (latent 

parameters). Each principal component is identified with its eigenvalue and eigenvector. 

The eigenvalue for each component (or factor, in the case of FA) measures the variance in 

all the parameters that are accounted for by that component. Factors can be better 

interpreted with rotation, a process which increases the loading of different parameters 

on the extracted factors while reducing their loading on the rejected factors. There are 

different methods of rotation, which can mainly be divided into two categories. 

Orthogonal rotations such as varimax are useful if factors are expected to be unrelated, 

while oblique rotations such as oblimin are more applicable if some correlation between 
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the extracted factors is expected. Further details on the outcome of FA are given in the 

results (Section 3.1 below). 

2.6.2. Cluster Analysis 

Cluster analysis has been used with good success in various studies of water quality 

around the world. It is usually used in conjunction with other multivariate analyses as a 

spatial clustering tool [33] or for assessing seasonal and spatial variability of water quality 

[34]. In this study, the distance between datapoints was calculated by the Euclidean 

distance in m-dimensional space, and agglomerative hierarchical clustering (AHC) was 

used for clustering. An agglomeration criterion such as unweighted pair–group average 

was used to minimize and form clusters. Here, we clustered the dataset based on 

observations, i.e., the points at which samples were collected; this was done across all the 

parameters. 

2.6.3. Two-Way and Three-Way ANOVA and t-Tests 

Analysis of variance (ANOVA) is a statistical tool that tests the hypothesis of whether 

there are any differences in the means of a group of datasets or not [35,36]. The null 

hypothesis in ANOVA is that the means of subjects are the same in different groups, and 

the alternative hypothesis is that there is a statistically significant difference in the 

means—either between one group compared to all others or between multiple groups 

within the study. On the other hand, for comparing whether the means of only two groups 

are related or not, the t-test is used. Since sampling was conducted across three seasons 

over two years, a total of six datasets for each parameter were expected for analysis. 

Attention was drawn to some of the prominent parameters discovered in FA to avoid 

repetition of analysis of similar parameters or similar groups of parameters. The repeated 

measures considered in two-way ANOVA were the two factors of “season” and “year” 

together, while three-way ANOVA was used to consider the additional aspect of 

“sampling location”. The repeated measures method was used because the data from the 

same set of samples were used but across different seasons and different years. 

3. Results and Discussion 

3.1. Factor Groupings 

The total variance explained for the dataset of the Pre-Monsoon season of the first 

year in terms of variability (%) per factor is 41.70, 13.50, 9.76, 6.39 and 3.25 for the first five 

factors, whose eigenvalues were > 1. The cumulative variance for these first 5 factors is 

74.6%, and for the first 12 factors it is 82.34%, as shown in the scree plot in Figure 6. We 

used varimax rotation to increase the loading of different parameters on the extracted 

factors. We then found that five new rotated factors (D1 through D5) accounted for a 

cumulative variation of approximately 75%, as shown in Table 4. 
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Figure 6. Scree plot for surface water: Pre-Monsoon, first year (varimax rotation). Red line depicts 

the cumulative variability, that is accounted for by the Factors, with its axis on the right-hand side. 

Table 4. Percentage of variation after varimax rotation. 

 D1 D2 D3 D4 D5 

Variability (%) 23.901 21.003 13.103 8.453 8.139 

Cumulative % 23.901 44.904 58.007 66.460 74.599 

Table 5 gives the component matrix or factor loadings for each of the five rotated 

factors for the Pre-Monsoon season. The corresponding matrices for the monsoon and 

Post-Monsoon seasons for Year 1 are given in Table A1 in Appendix A. The values in bold 

in Table 5, when read down through each column, indicate the groupings of the 

parameters that influenced the corresponding factor to a similar extent. During the Pre-

Monsoon season, Factor 1 (D1) was influenced by parameter groupings TDS–EC, Cations 

K+, Ca2+, Mg2+, Total Hardness, Cl−, HCO3
− and Total Alkalinity. These parameters loaded 

strongly on D1 and hence are related to each other and can be grouped together. This 

grouping was largely carried forward during the monsoon season, but during the Post-

Monsoon period, TDS and EC formed a separate grouping on D4, while Na+, K+, Ca2+, 

Mg2+, Cl−  and HCO3
−  formed a distinct group based on their loading on D2. For both 

years, TDS and EC consistently loaded together on the same factor across all seasons. The 

more salts dissolved in the water, the higher the value of EC. Hence, TDS and EC grouped 

together. Similar is the case with BOD5–COD and Total Coliform–Fecal Coliform and the 

group of Cations (Na+, K+, Ca2+, Mg2+), Total Hardness, HCO3
− and Total Alkalinity. The 

granitic material of the study area contains mineral feldspar, which is composed of 

sodium, potassium and calcium, hence the grouping of these ions. 

Table 5. Factor pattern or the rotated component matrix for the Year 1 Pre-Monsoon dataset. 

Parameter Rotated Factor 
 D1 D2 D3 D4 D5 

pH −0.023 −0.564 0.185 −0.054 −0.123 

DO −0.166 −0.402 −0.334 −0.450 0.081 

BOD5 0.160 0.915 0.199 0.210 0.097 

COD 0.326 0.813 0.149 −0.022 0.065 

TSS 0.082 −0.155 0.794 −0.092 −0.193 

Turbidity −0.080 0.257 0.286 0.782 0.228 

TDS 0.800 0.205 0.320 0.017 0.261 

Conductivity 0.833 0.092 0.302 0.157 0.157 
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Na+ 0.558 0.393 0.049 0.105 0.717 

K+ 0.389 0.174 0.045 −0.191 0.387 

Ca2+ 0.737 0.239 0.325 −0.117 −0.139 

Mg2+ 0.591 0.418 0.338 −0.022 0.273 

Total hardness as CaCO3 0.693 0.387 0.440 0.065 0.048 

Cl− 0.582 0.364 0.379 0.018 0.427 

HCO3
− 0.895 0.230 0.039 −0.166 0.213 

F− 0.264 0.917 −0.018 0.020 0.171 

NO3
− 0.355 0.152 0.716 0.352 0.038 

[PO4]
3− −0.541 0.033 0.262 0.019 0.042 

SO4
2− 0.355 0.867 0.138 −0.049 0.127 

Fe2+ −0.219 −0.055 −0.131 0.869 0.048 

Zn2+ 0.210 0.207 0.735 0.053 0.014 

Total alkalinity as CaCO3 0.877 0.113 0.072 −0.136 0.031 

Total coli form/100 mL −0.056 0.671 0.403 0.221 0.255 

Fecal coliform/100 mL 0.098 0.472 0.460 0.330 0.365 

SAR 0.037 0.182 −0.247 0.251 0.761 

Note: * Values in bold for each parameter correspond to the factor for which the squared cosine is 

the largest [30]. 

BOD5 (for 5 days) and COD were consistently grouped together across all the 

seasons. This is because BOD is the oxygen demand of organic matter in water, whereas 

COD is the oxygen demand of organic and inorganic matter. We also noticed that pH and 

DO loaded negatively with BOD5 and COD during Pre-Monsoon, and this negative 

linkage incrementally changed from the Pre- to Post-Monsoon seasons. High COD 

concentrations indicate organic and inorganic pollution [37]. Increased nutrient 

concentration leads to increased organic matter concentration, and the consequent 

respiration and degradation of organic matter reduces DO concentration [38]. There was 

another interesting grouping of BOD5 and COD with Total and Fecal Coliforms in Pre-

Monsoon, which reduced significantly during the Monsoon season and again became 

slightly more positively linked during the Post-Monsoon season. This was due to the 

population density of Fecal Coliform in the river being directly proportional to the degree 

of sewage pollution, which was reflected by BOD5 levels [39]. Though heavy metals were 

largely nonexistent due to a smaller number of industrial sites, Fe2+ and Zn2+ formed a 

group and loaded together during the Monsoon and Post-Monsoon seasons. Turbidity 

and Fe2+ loaded together on the same factor consistently across seasons since iron content 

in the form of colloidal particles contributes to turbidity [40]. FA not only allows us to 

track the evolution of these groupings/relationships through the season, but, as shown in 

Figure 7, it also validates the clustering of datapoints based on the sampling locations 

across the study area. It confirms the clusters formulated through AHC (Section 3.2, 

Figure 8) by plotting the observation points onto the rotated factor axes D1, D2 as shown 

in Figure 7. 



Water 2022, 14, 2359 16 of 27 
 

 

 

Figure 7. Observation points on the rotated factor axes obtained through FA for Pre-Monsoon, Year 

1 water samples. 

3.2. Clustering 

While samples from sub-watersheds SW1 and SW6 formed clear clusters, the 

clustering is varied in other sub-watersheds. Sampling locations W9, W10, W14, W17, 

W18 and W19 formed a distinct cluster during Pre-Monsoon and Monsoon seasons since 

these sampling points are located in hilly areas in sub-watersheds SW3, SW4, SW5 and 

partially in SW2. Dendrogram representations revealed, as shown in Figure 8 for Pre-

Monsoon season of Year 1 and Figures A1 and A2 in Appendix A for the Monsoon and 

Post-Monsoon seasons, respectively, that the locations W1, W2, W3, W4, W5, W7 and W20 

formed a subcluster not only during the Pre-Monsoon season of Year 1, but also during 

the Post-Monsoon season due to these samples being upstream from the reservoir and 

around the main Arkavathi River. W21, W22 and W23 formed smaller subclusters over all 

the seasons. W26, W27, W28, W29 and W30 formed a subcluster due to their location in 

the command area downstream from the reservoir (sub-watershed SW6), with irrigation 

activities being similar in these locations. Another interesting subcluster formation was of 

W6, W11 and, W12 and W8, W13, W15 and W16 (due to these locations being covered 

with scrub) across all three seasons. This is confirmed further by the distance to the cluster 

centroids, where points W6, W11 and W12 have similar distances to the centroids, while 

W8, W13, W15 and W16 have different distances to the same cluster centroid. For Year 2 

observations, the clusters largely remain the same. For example, W9, W10, W14, W17, W18 

and W19 form a distinct cluster during the Pre-Monsoon and Monsoon seasons. However, 

W9 and W10 form a separate cluster during the Post-Monsoon season. The other 

subclusters also largely follow patterns similar to those of Year 1. 
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Figure 8. Dendrogram of sampling/observation points for the Pre-Monsoon season of Year 1. 

3.3. Two-Way and Three-Way ANOVA: Effects due to Years, Seasons and Locations 

For comparing differences between years, two-way ANOVA [35,36] was applied to 

compare the means between seasons and across the two years, as shown in Figure 9 below. 

The mean concentration levels across seasons and years and the corresponding F-statistics 

are given in Table A2 in Appendix A. For DO, the F-statistic was F(1,29) = 69.16 for the 

variation between years (considered over all seasons), which was very highly significant 

at p < 0.001, while the seasonal variation (considered across both years) had F(2,58) = 56.51, 

which was also very highly significant with p < 0.001. This showed that when the effects 

of both seasonal and yearly variation were considered, the DO levels were significantly 

different across seasons and years. Similarly, the mean BOD5 levels were different across 

seasons (5.069 mg/L, 3.275 mg/L and 8.467 mg/L) with F(1,29) = 139.997 and p < 0.001 and 

across the two years (4.474 mg/L and 6.733 mg/L) with F(2,58) = 55.608 and p < 0.001. 

Similarly, mean levels of other parameters such as TDS, TSS, NO3
− , Na+ and Total 

Hardness were statistically different across seasons and years. We found that most of the 

physical and chemical parameters were diluted and displayed lower concentrations 

during the Monsoon season versus during Pre- or Post-Monsoon seasons. Additionally, 

in cases such as that of Mg2+ and F−, results showed that, while Monsoon levels were 

substantially different to that of Pre- and Post-Monsoon levels, there was no difference in 

concentration levels of F−  between Pre- and Post-Monsoon levels in the case of both 

years. The mean Total Coliform levels were different across seasons (148.517 MPN/100 

mL, 95.45 MPN/100 mL and 152.65 MPN/100 mL) with F(2,58) = 21.97 and p = 0.01, and 

across the two years (128.04 MPN/100 mL and 136.37 MPN/100 mL) with F(1,29) = 38.44 

and p < 0.001; also, the effect of interaction between seasons and years was strong with 

regard to the mean levels of Total Coliform, with F(2,58) = 4.25 and p = 0.019. In the case 

of Total Coliform levels, however, paired t-tests between pairs of seasons for both years 

showed that, while Monsoon levels were substantially different from those of Pre- and 

Post-Monsoon levels, there were no difference in concentration levels of Total Coliform 

between Pre- and Post-Monsoon season in the case of both years. 
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Figure 9. Mean levels of parameters of surface water samples across three seasons and two years. 

On applying three-way ANOVA (to consider the effect of sampling locations), we 

observed that there were some differences in mean levels of most of the parameters across 

different sub-watersheds. BOD5, Na+,NO3
−, Fe2+,HCO3

−, K+,F−, SAR and COD all showed 

significant (p < 0.05) differences between concentration levels across the six sub-watershed 

locations (Figure 10, Table A3 in Appendix A). Further, the parameters BOD5, Total 

Hardness, NO3
−, K+, Ca2+, F−, SAR and COD showed statistically strong differences in 

mean values when interactions between year, location and seasons were considered 
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together. Since organic-pollution-loading in water bodies increases from upstream to 

downstream from the reservoir, BOD5 and COD of water samples increased, while DO 

decreased as we moved along from SW1 to SW6 due to addition of sewage and other 

domestic activities along the river course. Since nitrate is the representation of oxidized 

organic matter in water and is one of the main components of fertilizers used in irrigation, 

and its presence increases BOD5, nitrates varied similar to BOD5 with respect to location, 

especially during the Post-Monsoon season. Due to run-off, TDS was especially high in 

SW6, indicating potential soil erosion in upper sub-watersheds. This is supported by the 

soil erosion map (see online Supplementary Materials), which indicates high soil erosion 

in SW3, SW4 and SW5. The presence of iron in natural waters can be attributed to the 

dissolution of rock and minerals containing biotite as part of the weathering process. We 

observed that iron content was higher in the forest and hilly areas SW3, SW4 and SW5. 

Similarly, Mg was high in SW4 and SW6. 
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Figure 10. Mean levels of parameters of surface water samples across three seasons, two years and 

six sub-watersheds. 

3.4. Groundwater Quality of the Study Area—Piper Trilinear Diagrams 

The objective of groundwater analysis is to understand the groundwater chemistry, 

the impact of land use and landcover changes on quality of groundwater, and to suggest 

suitable measures to improve groundwater quality. This is important as local populations 

depend on groundwater to supplement surface water. A total of 33 groundwater samples 

were collected for each of the three monsoon seasons over a period of two years. Based on 

the results of the analysis, Piper Trilinear diagrams were generated to interpret the 

groundwater chemistry and the conclusions were noted. Graphical interpretation of 

groundwater quality of the study area is necessary since it contains minerals that are to 

be assessed for the irrigation suitability. A Piper Trilinear diagram is useful for bringing 

out the chemical relationships between groundwater samples in more definite terms than 

available with other plotting methods [41]. This plot helps in understanding and 

identifying the water composition in different classes. The triangular plots of major anions 

and major cations have been successfully used in the interpretation of results of 

groundwater from aquifers of the Calabria region (southern Italy) [23]. Piper Trilinear 

diagrams generated for groundwater for the three seasons and over the two years of study 

are presented in Figure 11a–f. They reveal the analogies, dissimilarities and different types 

of water in the study area as identified and listed in Table 6. It can be concluded from the 

below results that during the Pre-Monsoon and Monsoon seasons, most of the samples 

consist of calcium and magnesium bicarbonate waters, which is typically shallow, fresh 

groundwater, and a few samples are of calcium and magnesium sulfate waters, which is 

typically gypsum groundwater. During the Post-Monsoon season of both the years, all 

samples are of calcium and magnesium bicarbonate waters, which is typically shallow, 

fresh groundwater. This indicates that Ca and Mg are dominant in the groundwater of the 

study area during the study period. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 11. Piper Trilinear diagram of groundwater samples for Pre-Monsoon, Monsoon and Post-

Monsoon seasons of first (a–c) and second (d–f) year, respectively. 

Table 6. Characterization of groundwater of the study area based on Piper Trilinear diagrams. 

Subdivision 

of the 

Diamond 

Characteristics of 

Corresponding Subdivision 

of Diamond-Shaped Fields 

Percentage of Samples in Each Category 

Pre- 

Monsoon 

(Year 1) 

Monsoon 

 

(Year 1) 

Post-

Monsoon 

(Year 1) 

Pre- 

Monsoon 

(Year 2) 

Monsoon 

 

(Year 2) 

Post-

Monsoon 

(Year 2) 

1 Alkaline earth (Ca+ Mg) 100 93.93 100 100 96.96 100 

2 
Alkalies exceed alkaline 

earths 
0 6.01 0 0 3.33 0 

3 

Weak acids (CO3 + HCO3) 

exceed strong acids (SO4 + 

Cl) 

78.78 81.81 100 81.81 75.75 100 

4 
Strong acids exceed weak 

acids 
21.21 18.18 0 18.18 24.24 0 

5 
Magnesium bicarbonate 

type 
78.78 75.75 100 81.81 72.72 100 

6 Calcium-chloride type 0 0 0 0 0 0 

7 Sodium-chloride type 0 0 0 0 0 0 

8 Sodium-bicarbonate type 0 0 0 0 0 0 

9 
Mixed type (No cation–

anion exceeds 50%) 
21.21 24.24 0 18.18 27.27 0 
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4. Conclusions 

In this study, we carried out a comprehensive multivariate statistical analysis of the 

concentration levels of physical, chemical and biological parameters in surface water 

samples collected from six sub-watersheds of the Arkavathi Reservoir catchment and 

command area over a period of two years (2013 and 2014) and three seasons of monsoon 

(Pre-Monsoon, Monsoon and Post-Monsoon). We also conducted chemical analysis of 

groundwater of the study area and classified the groundwater based on Piper Trilinear 

diagrams. The present study demonstrates the applicability of FA–AHC–ANOVA as a 

significant analysis tool for effective watershed management to improve water quality in 

rivers and reservoir catchment and command areas. This work forms a basis for further 

exploration of variations of such surface water contaminants in different terrains and 

watersheds worldwide. A few specific, significant recommendations follow: 

1. Considering the many townships along the Arkavathi River in SW1, domestic 

sewage needs to be treated effectively at the border region of SW1 and SW5 and 

within SW6, especially during the Post-Monsoon season. 

2. Usage of fertilizers, especially in the agricultural lands in command area SW6, should 

be closely monitored and controlled. 

3. Erosion control plans need to be put in place in SW3, SW4 and SW5, as indicated by 

high TDS in SW6. 

4. Quarry activities in SW4 and SW3 need to be monitored for potential contamination 

of smaller streams. 
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Appendix A 

 

Figure A1. Dendrogram of sampling/observation points for the Monsoon season of Year 1. 

 

Figure A2. Dendrogram of sampling/observation points for the Post-Monsoon season of Year 1. 

Table A1. Factor pattern or the rotated component matrix for Monsoon and Post-Monsoon seasons 

of Year 1. 

 Monsoon Post-Monsoon 
 D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 

pH −0.015 −0.379 0.225 −0.031 −0.134 −0.011 −0.212 −0.030 −0.089 −0.509 

DO 0.008 −0.523 −0.428 0.157 −0.383 −0.267 −0.103 0.747 −0.003 0.017 

BOD5 0.190 0.325 0.269 0.164 0.739 0.477 0.073 −0.012 0.169 0.811 

COD 0.057 0.052 −0.410 −0.003 0.694 0.509 0.063 −0.006 0.182 0.783 

TSS 0.046 −0.621 −0.044 0.032 0.105 0.695 0.333 −0.379 0.105 0.291 
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Turbidity −0.039 −0.117 0.965 0.084 0.161 0.860 0.258 −0.043 0.186 −0.070 

TDS 0.889 −0.047 0.059 −0.076 0.213 0.272 0.296 0.029 0.888 0.201 

Conductivity 0.895 −0.057 0.065 −0.080 0.209 0.274 0.297 0.022 0.888 0.198 

Na+ 0.518 0.726 −0.001 −0.142 0.283 0.436 0.744 0.297 0.125 0.307 

K+ 0.640 0.164 −0.219 −0.054 −0.080 −0.088 0.523 −0.144 0.411 0.349 

Ca2+ 0.863 −0.186 −0.003 −0.199 0.205 0.107 0.699 −0.269 0.126 −0.217 

Mg2+ 0.697 0.158 −0.162 0.264 −0.331 0.242 0.769 0.028 0.176 0.144 

Total hardness as CaCO3 0.935 −0.067 −0.006 0.011 −0.085 0.762 0.386 −0.074 0.287 0.219 

Cl− 0.796 0.446 −0.093 0.076 0.237 0.322 0.849 0.042 0.092 0.055 

HCO3
− 0.775 0.239 −0.270 −0.395 0.051 0.035 0.896 −0.045 0.190 0.166 

F− 0.203 0.479 −0.249 −0.413 0.318 0.765 0.279 −0.150 0.082 0.243 

NO3
− 0.523 −0.347 0.135 0.039 0.286 0.601 0.156 0.150 0.158 0.673 

[PO4]
3− −0.275 −0.362 0.350 0.174 0.022 0.715 0.027 0.053 0.011 0.325 

SO4
2− 0.668 −0.364 0.071 0.045 −0.308 0.760 0.443 −0.045 −0.031 0.109 

Fe2+ −0.172 0.026 0.793 0.090 −0.089 0.690 −0.154 0.186 0.096 0.618 

Zn2+ 0.120 0.097 0.551 0.340 −0.157 0.794 0.277 −0.329 0.109 0.310 

Total alkalinity as CaCO3 0.734 0.082 −0.234 −0.430 0.035 0.769 0.340 0.023 0.321 0.095 

Total coliform/100 mL −0.113 −0.180 0.172 0.872 −0.014 0.742 −0.133 0.033 0.172 0.378 

Fecal coliform/100 mL −0.094 0.039 0.082 0.952 0.144 0.713 −0.062 0.268 0.185 0.575 

SAR −0.282 0.775 0.110 0.005 0.103 0.352 0.168 0.544 0.058 0.399 

Note: Values in bold for each parameter correspond to the factor for which the squared cosine is the 

largest [30]. 

Table A2. Mean concentration levels of a few parameters across seasons and years, and the 

corresponding F-statistic. 

 Pre-Monsoon Monsoon 
Post-

Monsoon 

F-Statistic for 

Seasons 
Year 1 Year 2 

F-Statistic 

for Years 

F-Statistic for 

Interaction 

between 

Seasons and 

Years 

Parameter 

Mean 

concentration 

level (mg/L) 

Mean 

concentration 

level (mg/L) 

Mean 

concentratio

n level 

(mg/L) 

(F(2,58) at p < 

0.001) 

Mean 

concentration level 

(mg/L) 

Mean 

concentratio

n level 

(mg/L) 

(F(1,29) at p 

< 0.001) 

(F(2,58) at p < 

0.001) 

TDS 571.27 523.72 666.15 14.58 563.48 610.61 29.22 20.59 

TSS 5.065 4.230 7.72 36.033 5.11 6.23 101.73 24.56 

NO3
− 2.804 1.987 9.58 52.8 4.28 5.31 79.25 22.61 

Na+ 90.22 80.82 96.83 22.22 83.53 95.04 37.37 8.676 (p = 0.001) 

Total 

Hardness 
242.017 201.688 347.83 47.04 249.29 278.4 53.02 31.02 

Mg2+ 15.397 11.74 15.74 9.2 (p = 0.01) 13.32 15.26 27.01 7.437 

F− 0.112 0.038 0.105 12.21 (p = 0.01) 0.073 0.097 22.6 13.97 

Ca2+ 61.73 62.03 69.68 4.93 (p = 0.01) 59.05 69.91 76.73 22.35 

HCO3
− 199.88 190.78 209.43 4.91 (p = 0.01) 193.156 206.91 28.34 9.48 

K+ 11.14 10.44 14.17 24.55 (p = 0.01) 10.52 13.31 47.17 18.16 

Table A3. Tests of between-subject effects of surface water when location is considered. 

Source Measure 
Type III Sum of 

Squares 
df Mean Square F Sig. 

Partial Eta 

Squared 

Location 

DO 13.500 5 2.700 1.348 0.279 0.219 

BOD5 465.845 5 93.169 7.239 0.000 0.601 

TDS 806,893.156 5 161,378.631 1.105 0.384 0.187 

TSS 92.440 5 18.488 1.680 0.178 0.259 

Na+ 54,851.996 5 10,970.399 6.212 0.001 0.564 

Total Hardness 229,868.853 5 45,973.771 1.436 0.247 0.230 
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NO3
− 558.440 5 111.688 9.626 0.000 0.667 

Fe2+ 0.796 5 0.159 9.461 0.000 0.663 

HCO3
− 196,681.589 5 39,336.318 3.328 0.020 0.409 

K+ 2739.124 5 547.825 6.748 0.000 0.584 

Ca2+ 17,471.293 5 3494.259 1.581 0.203 0.248 

F− 0.397 5 0.079 5.260 0.002 0.523 

Mg2+ 2795.772 5 559.154 2.026 0.111 0.297 

Total Coliform 95,860.353 5 19,172.071 2.136 0.096 0.308 

SAR 38.724 5 7.745 6.947 0.000 0.591 

COD 1677.707 5 335.541 7.483 0.000 0.609 

Error 

DO 48.084 24 2.003    

BOD5 308.906 24 12.871    

TDS 3,505,192.488 24 146,049.687    

TSS 264.095 24 11.004    

Na+ 42,387.315 24 1766.138    

Total Hardness 768231.299 24 32,009.637    

NO3
− 278.471 24 11.603    

Fe2+ 0.404 24 0.017    

HCO3
− 283,709.877 24 11,821.245    

K+ 1948.345 24 81.181    

Ca2+ 53,035.943 24 2209.831    

F− 0.362 24 0.015    

Mg2+ 6623.993 24 276.000    

Total Coliform 215,430.875 24 8976.286    

SAR 26.758 24 1.115    

COD 1076.217 24 44.842    
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