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Abstract 

There is increasing interest in using data-driven unsupervised methods to identify structural underpinnings of common 

mental illnesses, including Major Depressive Disorder (MDD) and associated traits such as cognition. However, studies are 

often limited to severe clinical cases with small sample sizes and most do not include replication. 

Here, we examine two relatively large samples with structural magnetic resonance imaging (MRI), measures of lifetime 

MDD and cognitive variables: Generation Scotland (GS subsample, N = 980), and UK Biobank (UKB, N = 8900); for 

discovery and replication, using an exploratory approach. Regional measures of FreeSurfer derived cortical thickness (CT), 

cortical surface area (CSA), cortical volume (CV) and subcortical volume (subCV) were input into a clustering process, 

controlling for common covariates. The main analysis steps involved constructing participant K-nearest neighbour graphs, 

and graph partitioning with Markov Stability to determine optimal clustering of participants. Resultant clusters were i) 

checked whether they were replicated in an independent cohort, and ii) tested for associations with depression status, and 

cognitive measures. 

Participants separated into two clusters based on structural brain measurements in GS subsample, with large Cohen’s d 

effect sizes between clusters in higher order cortical regions, commonly associated with executive function and decision 

making. Clustering was replicated in the UKB sample, with high correlations of cluster effect sizes for CT, CSA, CV and 
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subCV between cohorts across regions. The identified clusters were not significantly different with respect to MDD case-

control status in either cohort (GS subsample: pFDR = 0.2239 − 0.6585; UKB: pFDR = 0.2003 − 0.7690). Significant differences 

in general cognitive ability were, however, found between the clusters for both datasets; for CSA, CV, subCV (GS subsample: 

d = 0.2529 − 0.3490, pFDR < 0.005; UKB: d = 0.0868 − 0.1070, pFDR < 0.005). 

Our results suggest that there are replicable natural groupings of participants based on cortical and subcortical brain 

measures, which may be related to differences in cognitive performance, but not to the MDD case-control status. 

Keywords— Major Depressive Disorder, Cognition, Machine Learning, Clustering, Markov Stability, Structural 

Neuroimaging 

Abbreviations: CHAMP, Convex Hull of Admissible Modularity Partitions; CIDI-SF, Composite International 

Diagnostic Interview – Short Form; CSA, cortical surface area; CT, cortical thickness; CV, cortical volume; DSM, Diagnostic 

and Statistical Manual of Mental Disorders; DSy, digit-symbol coding; GS, Generation Scotland; ICV, intracranial volume; 

k-NN, K-nearest neighbour; KW, Kruskal-Wallis; LM, logical memory; Matrix, matrix reasoning; MDD, Major Depressive 

Disorder; MHV, Mill Hill Vocabulary; ML, Machine Learning; MRI, magnetic resonance imaging; NMI, normalised mutual 

information; Pairs Match, Pairs Matching; ProsMemory, Prospective Memory; RT, reaction time; SCID, Structured Clinical 

Interview for DSM-IV Disorder; subCV, subcortical volume; UKB, UK Biobank; VF, phonetic verbal fluency C-F-L; VI, 

variation information; VNR, verbal numerical reasoning; WAIS-IIIUK, Wechsler Adult Intelligence Scale UK – Third Edition  

 

Introduction 

Major Depressive Disorder (MDD) is a heritable and disabling psychiatric condition associated with depressed 

mood and changes in cognitive function (Malhi and Mann, 2018), resulting in a significant reduction in the quality 

of life and a substantial burden on the individual, family and society. Many previous studies have reported 

structural and functional brain alterations associated with depression (Drevets et al., 2008; Jiang et al., 2019). 

Moreover, psychiatric conditions (including MDD) have been shown to be associated with cognitive alterations 

(De Nooij et al., 2020). Both psychiatric conditions and cognitive functions are found to have underlying 

neurobiological mechanisms. With recent advances in brain imaging, computational as well as mathematical 

techniques, there is increasing interest in developing objective measures that could help classify MDD status and 

associated traits such as cognition using neuroimaging data. Studies from many different research groups have 

indicated structural brain differences in MDD using large robust samples. MDD-related cortical thinning was 

found in orbitalfrontal cortex (Schmaal et al., 2017), medial prefrontal cortex (Treadway et al., 2015), temporal 

(Zhao et al., 2017), subgenual anterior cingulate cortex (Anderson et al., 2020), lingual gyrus (Suh et al., 2019), 

precentral (Bos et al., 2018) and par orbitalis (Merz et al., 2018) regions. Some studies also reported lower surface 

areas in lingual, fusiform, parahippocampal gyrii (Couvy-Duchesne et al., 2018), and subcallosal regions (Wei et 

al., 2020), as well as cortical volume reduction in prefronal cortex, orbitalfrontal cortex (Grieve et al., 2013), 

subcallosal regions (Wei et al., 2020), temporal pole, insula lobe (Amidfar et al., 2020) and subgenual anterior 

cingulate cortex (Niida et al., 2019). While some research indicated MDD-related reduction in thalamus (Schmaal 

et al., 2016; Webb et al., 2014; Ye et al., 2020), amygdala (Qi et al., 2018), and hippocampus (Nugent et al., 2013), 

the MDD case-control volumetric differences in subcortical regions have been found to be insignificant in some 

other studies (Bos et al., 2018; Shen et al., 2017). Furthermore, white matter microstructure (Chen et al., 2017; 

Shen et al., 2017; van Velzen et al., 2020), functional connectivity (Qiao et al., 2020; Ran et al., 2020) 
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abnormalities were also found in MDD patients. Although MDD-related brain differences were found in several 

literature, these studies usually reported small to very small effect sizes. Previous machine learning (ML) studies 

with structural brain features also show potential for unbiased diagnostic classification (Lebedeva et al., 2017; 

Patel et al., 2015; Qiu et al., 2014). Features derived from structural magnetic resonance imaging (MRI) have 

shown promise for MDD case-control classification, with linear or non-linear supported vector machine classifiers 

achieving accuracies of >70% (Gao et al., 2018). However, the ability of ML to determine case-control status 

using such features remains uncertain, especially when most existing studies have been conducted on relatively 

small datasets (N < 100), with limited independent replication. In addition, the majority of existing studies focus 

on clinically ascertained cases and therefore the results may not be generalisable to population or community-

based samples (Stolicyn et al., 2020). 

While supervised learning methods focus on the core question of whether differences in brain measures 

characteristic of MDD are sufficient to accurately classify MDD cases from healthy controls, unsupervised 

learning methods focus on determining whether natural groupings based on brain differences are relevant for 

MDD. We considered this as a potentially useful approach, since results from unsupervised learning methods, 

could in turn help us further refine and better understand the disorder. Moreover, clustering has been shown to be 

an important tool in other areas of medicine, such as in understanding Alzheimer’s disease (Alashwal et al., 2019) 

and different psychiatric disorders (Marquand et al., 2016). Recently other studies have also attempted similar 

unsupervised clustering analysis approaches on structural (Zhou et al., 2019) and functional imaging data 

(Drysdale et al., 2017; Tokuda et al., 2018) as a way to identify potential imaging-based data-driven depression 

subtypes. 

In the current study, we applied unsupervised spectral clustering, as an exploratory approach, to data from a 

relatively large sample of well characterized individuals (MDD cases and controls drawn from a community-based 

sample, Generation Scotland (Smith et al., 2012), with structural imaging measures, depression phenotyping, and 

cognitive data). Our rationale was to explore if the effects are observable using unsupervised spectral clustering. 

Our aim was to identify natural groupings of individuals, characterised by maximally distinct patterns of structural 

brain properties. We then attempted replication of the clustering in an independent sample with imaging data (UK 

Biobank (UKB) (Miller et al., 2016)), using regional between-cluster effects as a basis for evaluating replication. 

Finally, we investigated whether these natural imaging-based groupings are related to distinct clinical and cognitive 

features of the participants, focussing on those phenotypes that are consistent across cohorts. 

Participant graphs were constructed for each FreeSurfer-derived structural metric of cortical thickness (CT), 

cortical surface area (CSA), cortical volume (CV) and subcortical volume (subCV) subsets separately. Firstly, 

imaging variables were controlled for age, sex, intracranial volume (ICV) and MRI site, and then normalized. K-

nearest neighbour (k-NN) graphs were then constructed based on pairwise distances between each pair of 

participants, and finally clustering was conducted using a dynamic graph-based Louvain modularity algorithm 

(Blondel et al., 2008). This was chosen to optimize the Markov Stability (Schaub et al., 2012a) as a measure of 

the clustering quality instead of the standard modularity measure (Newman, 2006), which has been shown to 

result in over-partitioning for graphs with strong local structure, such as the k-NN graph (Schaub et al., 2012b). 

By optimizing Markov Stability, large communities can be revealed at longer Markov times, thus solving the 

problem of over-partitioning. As such, this method can reveal stable natural groupings within a cohort. 
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Our main aims were i) to determine whether there was a natural clustering of participants based on structural 

imaging features, and whether these were replicated in an independent cohort, and, as an exploratory step, ii) to 

assess whether the clustering results were associated with depression status or cognitive features in both cohorts. 

Methods and Materials 

Data acquisition and pre-processing 

Generation Scotland dataset 

Generation Scotland (GS subsample) is a community-based dataset with imaging data, reported previously 

(Habota et al., 2019; Navrady et al., 2018; Romaniuk et al., 2019; Rupprechter et al., 2020; Smith et al., 2012; 

Stolicyn et al., 2020). Demographic details of these participants, and for the replication cohort (UKB) are 

presented in Table 1. Ethical approval for the GS subsample was obtained from the NHS Tayside committee on 

research (reference 14/SS/0039). 

T1 imaging of N = 1070 participants from GS subsample, scanned between June 2015 and May 2019, were 

performed at 2 sites (N = 544 from Aberdeen and N = 526 from Dundee). Structural measures were derived from 

T1 images with FreeSurfer version 5.3 (Dale et al., 1999; Fischl et al., 1999, 2004). Mean CT, CSA and CV were 

derived for 68 cortical regions defined by the Desikan-Killiany atlas (Desikan et al., 2006). Volumes of 21 

subcortical structures – including left and right accumbens, amygdala, caudate nucleus, hippocampus, pallidum, 

putamen, thalamus and four cerebellar regions – were also extracted with FreeSurfer. In total, N = 980 participants 

remained after quality control - removing participants with any missing values, as well as participants whose 

intracranial volume (ICV) measure and global cortical measures, i.e. overall cortical volume (sum of regional 

cortical volumes), overall surface area (sum of regional surface areas), were more than three standard deviations 

away from the sample mean (Stolicyn et al., 2020). Details of MRI acquisition and quality control process are 

described in Supplementary A.1.2 and A.1.3. Participants whose demographic information was missing were also 

removed. There were 225 FreeSurfer-derived features available for each participant (204 cortical and 21 

subcortical features). Standard Z-score normalization was performed prior to graph construction. 

For the GS subsample, there were N = 980 participants in total, of whom N = 302 were cases with lifetime 

(current or past) MDD. Diagnosis were established using the Structured Clinical Interview for DSM-IV Disorders 

(SCID) (First, 1997), and were based on criteria from the Diagnostic and Statistical Manual of Mental Disorders 

(DSM) (American Psychiatric Association, 2000) (Supplementary A.2.1). Participants were classed as currently 

depressed if they had an ongoing depressive episode, and as past MDD if they were not depressed at the time of 

MRI scan but had at least one depressive episode previously (Stolicyn et al., 2020). Participants were classed as 

recurrent if they had had more than one depressive episode. Data for each participant therefore included MDD 

status according to the SCID diagnosis described above, single versus recurrent episodes (single: N = 116, 

recurrent N = 186). 
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The cognitive measures were derived from the following tasks: Wechsler Adult Intelligence Scale UK – Third 

Edition (WAIS-IIIUK) logical memory (LM) part I & II (sum of immediate/delayed recall) (Wechsler et al., 1998), 

WAIS-IIIUK digit-symbol coding (DSy) (Wechsler), phonemic verbal fluency C-F-L (VF) (Lezak, 1995), Mill Hill 

Vocabulary (MHV) (Raven et al., 2003) and matrix reasoning tests (Matrix) (Ritchie et al., 1993). Additionally, 

age, sex, MRI scan site (Aberdeen or Dundee) and Intracranial Volume (ICV) were available and controlled for 

as described below. Table 1a shows the GS subsample participants characteristics. 

 

UKB dataset 

The UK Biobank obtained ethical approval from the NHS Research Ethics Committee (reference11/NW/0382), 

and our current study was approved by the UKB Access Committee (Project #4844). All participants in both the 

GS subsample and UK Biobank gave written informed consent. 

Data used were the raw T1-weighted volumes were from the second release of UKB MRI data (Jan 2017). All 

scans were acquired at the same 3T scanner (Siemens Skyra) at one single site (Cheadle). Information on the 

acquisition parameters can be found in the UK Biobank online Brain Imaging Documentation 

(https://biobank.ctsu.ox.ac.uk/crystal/docs/ brain_mri.pdf). As with GS subsample, the T1 volumes were 

processed at the University of Edinburgh with FreeSurfer version 5.3 using default settings, and brain measures 

were extracted according to the Desikan-Killiany atlas (Desikan et al., 2006). CT, CSA and CV were computed 

for the 68 cortical regions, alongside volumes of 21 subcortical structures. FreeSurfer parcellations were visually 

assessed for a variety of errors (Cox et al., 2019b; Stolicyn et al., 2020). Major errors included zero or partial 

output, substantial skull strip issues or tissue identification errors. Where no major errors were present, 

parcellations were examined for minor errors including erroneous boundary placement, minor skull stripping 

issues, and minor tissue omission. Participants with missing values, missing demographic information, as well as 

those who were outliers in ICV and global cortical measures (as above for GS subsample) were removed, resulting 

in a dataset with N = 8900 participants in total, see Supplementary A.1.4.  

Diagnosis of lifetime depression was based on participant responses in the online version of the Composite 

International Diagnostic Interview - Short Form (CIDI-SF) (Kessler et al., 1998) and made according to the DSM 

diagnostic criteria (Stolicyn et al., 2020), see Supplementary A.2.2. Data for each participant included lifetime 

MDD according to the DSM diagnostic criteria. 

The cognitive measures were derived from the following tests: Verbal Numerical Reasoning test (VNR, UKB 

Field ID: 20016.2.0), Reaction Time test (RT, UKB Field ID: 20023.2.0, log-transformed), Pairs Matching test 

(Pairs Match, UKB Field ID: 399.2.2, log (x+1) transformed) and Prospective Memory test (ProsMemory, UKB 

Field ID: 20018.2.0) (Fawns-Ritchie and Deary, 2020). While it would have been optimal to match the tasks more 

closely to those in our GS subsample, Matrix pattern completion and symbol digit substitution tasks were 

introduced later and therefore were not conducted concurrent with the imaging assessment for the N= 8900 

participants in this study. In a recent investigation however, we note that he current 4 cognitive variables that were 

concurrent with imaging correlated well with other more detailed cognitive tasks within the UKB and with 

standard validated psychometric indicators of g (Fawns-Ritchie and Deary, 2020). Additionally, age, sex and 
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Intracranial Volume (ICV) were available and controlled for as described below. Table 1b shows the UKB 

participants characteristics. 

 

 Cognitive function g-factor extraction 

In addition to the measures from individual tasks, we also derived a measure of general cognitive function - g-

factor for participants within each cohort (Deary et al., 2010; Johnson and Bouchard Jr, 2005) and assessed the 

association between the clusters and the derived g-factor. The measure of general cognitive ability (g-factor) was 

a well replicated phenomena in psychological sciences (Deary et al., 2010; Warne and Burningham, 2019). 

Previous research have shown that the g-factor derived from entirely different sets of cognitive tests correlated 

well with each other, given that the set of cognitive tasks covers a sufficiently broad cognitive domain (Johnson et 

al., 2004, 2008b). 

The g-factor here is the first factor score from factor analysis employed using the factoran function in 

MATLAB 2020a. For GS subsample, the g-factor was based on measures from the matrix reasoning test (Ritchie 

et al., 1993), verbal fluency test (Lezak, 1995), Mill Hill vocabulary test (Raven et al., 2003), logical memory 

(Wechsler et al., 1998) and digit-symbol coding tests (Wechsler). Proportion of variance explained by g-factor in 

GS subsample was 26.0%. For UKB, g-factor was computed using measures from all the available UKB cognitive 

tasks stated above using the same process as in GS subsample. Proportion of variance explained by the g-factor 

in UKB was 14.7%. Details of the loadings can be found in Supplementary A.8, Table A.4a and Table A.4b. 

 Correction for covariates 

Correction for covariates was performed by residualizing each brain measure with respect to sex, age, MRI site 

and ICV using linear regression models (Alfaro-Almagro et al., 2021; Becher, 1992; Dukart et al., 2011; Kostro 

et al., 2014; More et al., 2021; Snoek et al., 2019). We additionally conducted a Kruskal-Wallis (KW) test to 

confirm that no group differences remained on the basis of these covariates between identified clusters for both 

GS subsample and UKB (see Supplementary A.6, Table A.1 and Table A.2). 

Graph construction 

We applied a dynamical graph community detection approach to assess clustering of participants, which involved 

graph construction as the first step. Without known graph geometry, the graph was determined by the type of 

construction and the distance function chosen for the pairwise distance matrix based on the structural variables 

and the type of construction. 
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Defining distance between participants 

The pairwise distance matrix D is defined as Dij = d(xi,xj), where xi and xj are vectors of regional measures (CV, 

CSA, CT or subCV) per participants in the data and d(·,·) is the distance function to be specified. We used the 

standard Euclidean distance: 

to determine similarity between participants.  

Euclidean distance was chosen as other distance functions typically have more assumptions and constraints on 

the dataset. For example, cosine dissimilarity is typically used for non-centered and time-varying data which was 

not the case here. As a preprocessing step, we applied standard Z-score normalisation to all measures before 

calculating the pair-wise Euclidean distances to avoid bias in features with broad value ranges. 

 

K-nearest neighbour Graph Construction 

We constructed k-nearest neighbour (k-NN) graphs from the pairwise-distance matrices computed above. In the k-

NN graph, each data point (in this case, participant) is connected to the k closest other data points, as found in the 

distance matrix, D. It can be formulated as: 

 

where dij is the direct distance from node i to node j, and di
(k) is the distance of the k-th nearest neighbour from node 

i. The resulting graph is binary and undirected. Different values of k were tested in order to determine the optimal 

model for the respective graph construction by verifying the Markov Stability measure on the networks. 

Optimal graph partitioning 

We used Markov Stability, instead of modularity, as the objective function for the Louvain algorithm for 

community detection in our graphs (i.e. optimal clustering) (Schaub et al., 2012a). Contrary to other common 

community detection methods (e.g k-means clustering, hierarchical clustering or graph modularity optimisation), 

Markov Stability adopts a dynamics-based framework to uncover community structure. Graph partitions can be 

ranked and compared at each optimization time-step which helps identify stable, optimal partitions (Delvenne et 

al., 2013). We briefly describe the Louvain algorithm and the Markov Stability measure below. Liu et al. validated 

the Markov Stability method on several real datasets by comparing with other popular clustering methods in Liu 

et al., and it had achieved the best normalised mutual information (NMI) values on average (Liu and Barahona, 

2020). Moreover, while the number of clusters are required for initialisation for other clustering methods, this 

clustering technique can perform the clustering in a completely unsupervised manner. 
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The Louvain algorithm 

The Louvain method is a greedy algorithm for graph community detection which typically optimises modularity 

of the graph partitions. The modularity is used widely to measure the strength of division of a network into clusters. 

Details and formulation of modularity is included in Supplementary A.3. In the first phase, each node (data point) 

is assigned its own group, and hence the clusters are defined by individual nodes. Then, for each node i, we evaluate 

the modularity increment of removing i from its community and putting it into the community of j. At each step, 

the movement that leads to the largest increase in modularity is chosen. The algorithm repeats the same process 

until no further movement of nodes can lead to an increase in modularity (Blondel et al., 2008). At this stage, the 

local maximum is achieved. 

The second phase consists of forming a new network from the communities found during the first phase, i.e. 

treating the communities in the original graph as nodes in the new network. The sum of weights of edges, wk, 

within the same community is represented as a self-loop for that community, while edges between new nodes are 

defined by the sums of respective weights of inter-community links. This can be interpreted as a coarse version 

of the original graph. The process in the first phase is then applied to the new network. The two phases are then 

repeated until modularity is optimized and a hierarchy of communities is produced, and this marks the end of a 

Louvain run (Blondel et al., 2008). 

In our study, we applied the Louvain algorithm with optimisation of Markov Stability measure instead of 

modularity measure for more optimal community detection. We describe the concept of Markov Stability below.  

Markov Stability 

Markov Stability is a measure of quality of graph community structure (Delvenne et al., 2010). Although 

modularity is the default measure of partitioning quality in the Louvain algorithm, optimising modularity can lead 

to over- or under-partitioning of the graph, and detection of less natural groupings (Fortunato and Barthelemy, 

2007; Schaub et al., 2012b). Compared to modularity, optimising Markov Stability takes into account the different 

time scales within the partitioning algorithm (in our case the Louvain algorithm), with finer communities detected 

as optimal at earlier partitioning time-steps, and larger communities at later time-steps – which leads to more 

natural groupings. Markov Stability measure is based on running random walks on the graph and recording which 

groupings appear most natural for each time scale according to the walk process, with length of each walk 

determined by the time scale (Delvenne et al., 2013, 2010). Details of the Markov Stability calculation are 

described in (Delvenne et al., 2010; Lambiotte et al., 2014). Further details on relation of Markov Stability to 

modularity, as well as how modularity can be replaced with Markov Stability in the Louvain algorithm, can be 

found in section A.4 in the supplementary material. 

Assessing clustering robustness 

Since several runs of the Louvain algorithm are needed to define optimal partitions, we completed 100 runs of the 

Louvain Algorithm for each time-step. 
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Consistency of graph partitioning at each time-step between different Louvain algorithm runs was measured 

by the average Variation Information (VI) between all pairs of partitions from different runs, evaluated as: 

    

with 

 I(P,P’) = H(P) + H(P’) − H(P,P’) (2.4) 

where I(P,P’) is the mutual information, and H(P), H(P’) and H(P,P’) are Shannon entropies used to measure the 

amount of information contained in partitioning P. Division by H(P,P’) is for normalization. In the following 

sections, we denoted variational information across different Louvain runs by VI, and denoted variational 

information across different timesteps by VI(t,t’). 

For each Louvain run, a different initial condition (i.e. the order of nodes being scanned during each merging 

step in the first phase) was chosen, so the effect of perturbation on partitioning results could be assessed. We 

assessed the consistency of partitions at each chosen time-point and persistence of the number of communities 

over the time scale to choose optimal partitions (Delmotte et al., 2012). When more than one partition was 

considered as stable over a time scale, the clustering partition that remained stable for the longest time period was 

selected as the most stable. 

Stability postprocessing 

Stability post-processing applied in the current study is conceptually similar to the Convex Hull of Admissible 

Modularity Partitions (CHAMP) method described in Weir et al. (Weir et al., 2017). The Louvain algorithm with 

stability optimisation was run 100 times with 500 time-steps on each run (the 500 time-steps were logarithmically 

spaced from 1 to 100), on the k-NN graphs constructed with k = 5,7,9,11. For each of the 500 time-steps, an 

optimal graph partitioning was defined across the entire 100 Louvain runs. As a final post-processing step, the 

defined optimal graph partitions for each time-step were updated by considering partitions in all other time-steps. 

Details of the post-processing function can be found in Supplementary A.5. 

Assessing clustering consistency 

We applied Normalized Mutual Information (NMI) to assess consistency between optimal partitions identified 

when different k values were used for constructing the graphs. NMI measures the information shared by 2 

partitions, Ci and Cj. In other words, it measures to what extent knowing about Ci reduces the uncertainty about Cj. 

The NMI is defined as (Kvålseth, 2017): 
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where H(P) is again, the Shannon entropy. If the 2 partitions are independent, the NMI is 0. If the 2 partitions are 

exactly the same, then NMI is equal to 1. Another alternative we proposed is the accuracy measure, which is 

formulated as: 

 

 

Assessing reproducibility and relation of clusters to cognition and MDD 

After stability optimisation and testing for robustness and consistency, we assessed the reproducibility of the 

partitioning results and tested associations of clusters from the stable partitions with variables of interest. 

To evaluate whether clustering was similar in GS subsample and UKB, we computed Pearson correlations 

between the cluster effects Cohen’s d values in GS subsample and in UKB for regions in each of the four 

modalities. For computing the Cohen’s-d values, we took the values of each FreeSurfer region across participants 

and then calculated the standardised mean differences between the two participant clusters identified for each 

modality. Cohen’s-d values indicated the level of contribution of each regional measure to the separation between 

clusters, hence a strong correlation of Cohen’s-d values between GS subsample and UKB would indicate that 

each measure had a similar contribution to the between-cluster separation in both cohorts, i.e. a measure with 

large Cohen’s-d in GS subsample would have large Cohen’s-d in UKB and vice versa. 

To assess associations with MDD and cognitive tasks, the KW test was used since the variables were not 

normally distributed. For cognition, we initially tested association with the general cognitive ability (g-factor) and 

then the individual cognitive tasks separately for both cohorts. For individual tasks, in GS subsample this involved 

testing associations with LM, DSy, VF, MHV, Matrix tasks and in the UKB association with VNR, RT, Pairs 

Match and ProsMemory tasks. The Benjamini-Hochberg procedure was used to correct the p-values across the 

tasks for each cohort (Benjamini and Hochberg, 1995). 

 

Results 

Participant clusters based on brain measures 

Clustering results in GS subsample 

As an illustration of how the optimal partitions were chosen, we took the partitioning of the 5-NN graph with 

regional surface area features in the GS subsample dataset as an example (Figure 1). Figure 1 illustrates participant 

partitioning throughout the time scale, after controlling for covariates. It shows that partitions with 5, 3 and 2 

clusters, had large plateaus with few VI(t,t’) spikes within the plateaus, while partitions with 3 and 2 clusters also 
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had low variational information (VI) (across algorithm runs). This indicates that the key partitions were those with 

3 and 2 clusters. Similar procedures were used to inspect the other k-NN graphs for different modalities. 

Notably, the data were consistently partitioned into two clusters across different k-NN graphs (fig. 2). Strong 

similarity between partitions from different k-NN graphs for CT and CV is illustrated by high NMI (> 0.7) 

between 2-cluster partitions of the 11-NN and 2-cluster partitions of either 5-NN, 7-NN or 9-NN graphs (Table 

2). Although we see slightly decreased NMI for CSA and subCV, high accuracies (CSA: ≥89.6% ; subCV: ≥94.7%) 

still indicate strong similarity between partitioning results within each of the four modalities. To show that the 

resulting clusters based on different metrics were not highly dependent on each other, we computed the NMI 

between the clusters. The NMI between the clusters based on different modalities was presented in Supplementary 

A.9, Table A.5a. The low NMI among clusters are also consistent with the increasing numbers of studies reporting 

low correspondence between these modalities, particularly for area and thickness in terms of genetic influences 

and associated phenotypes (Panizzon et al., 2009; Winkler et al., 2010; Cox et al., 2018; Grasby et al., 2020). 

Figure 2 shows the summary of modules merging along the time scale and reaching an equilibrium of two 

clusters for all four k-NN graphs. The variational information, V I, across Markov time for different k-NN graphs 

was low for clustering into 2 and 3, which implied that these partitions were stable (Figure 2). Since the plateau at 

the 2-cluster partition was the largest (i.e. the algorithm stays at the 2-cluster partition for the largest time period 

and which is consistent across different k-NN settings), we therefore concluded that the 2-cluster partition was the 

most stable partition to assess for associations with the clinical and cognitive phenotypes. 

We computed differences in brain measures between the two clusters identified in the 11-NN graph in Cohen’s 

d effects for GS subsample. The regions with largest Cohen’s d for each modality were as follows: CT - right 

hemisphere (RH) supramarginal (d = 1.662); CSA - left hemisphere (LH) rostral middle frontal (d = 1.387); CV 

- LH superior frontal (d = 1.461); subCV - RH ventral diencephalic volume (d = 1.762). Overall, regions with 

large effect sizes included superior, medial and orbitofrontal regions, temporal and parietal cortices, and 

subcortically in ventral diencephalic volume, as well as thalamus and hippocampus. Full results are reported in 

Supplementary B.1.1, Table B.1 – B.4. 

 

Replication of clustering results in UKB 

Similar to GS subsample, two clusters were identified within each of the feature modalities (CT, CSA, CV and 

subCV) for UKB data. 

The data were again optimally partitioned into two clusters across different k-NN graphs. Strong similarity 

between the partitions from different k-NN graphs for CT, CSA and CV was found with high NMI (> 0.7) between 

the 2-cluster partitions of the 5-NN and the 2-cluster partitions of either 7-NN, 9-NN or 11-NN graphs (Table 3). 

For subCV, we also saw high accuracies (subCV: ≥ 92.9%). The NMI between the clusters based on different 

modalities was presented in Supplementary A.9, Table A.5b. 

Similar to the GS subsample, we computed differences in brain measures between the two clusters identified 

in the 5-NN graph in Cohen’s d effects for UKB. The regions with largest Cohen’s d for each modality were as 

follows, CT: RH inferior parietal (d = 1.536); CSA: LH superior frontal (d = 1.090); CV: LH precuneus (d = 

1.058); subCV: RH ventral diencephalic volume (d = 1.416). Cluster-related differences were highly correlated 
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between GS subsample and UKB datasets: correlation coefficients were 0.9392, 0.9226, 0.9241 and 0.7931 

respectively for CT, CSA, CV and subCV modalities, see Figure 3. The top 20 cortical regions and top 10 

subcortical regions driving the clusters’ separations as well as the corresponding Cohen’s d for each of the four 

clustering analyses are listed in Table 4. These results indicate that the natural groupings of participants, as well 

as the regional measures which best separate the identified clusters, were similar across the GS subsample and 

UKB datasets. Among those top regions, there were at least 70% overlap between the two cohorts. The 

overlapping regions included ventral diencephalic volume, thalamus and hippocampus for subcortical regions, 

and superior, medial and orbitofrontal regions, as well as parietal regions for cortical metrics. 

Details of effect sizes for the clustering results based on all 4 modalities for both cohorts are reported in 

Supplementary B.1.1, Table B.1 – B.4. All effect sizes were positive, which implies that across all 4 feature 

modalities regional measures in one cluster were larger compared to the other cluster, independent of sex, age and 

ICV differences. Figure 4 shows that the effect sizes were positive for all regions when clustering was based on 

CSAs. Figures for other modalities can be found in Supplementary B.2, Figure B.1 – B.3. 

For both the GS subsample and the UKB, those regions contributing the most to cluster separation included 

lateral orbitofrontal, post central, precentral, precuneus, rostral middle frontal, superior frontal, superior parietal 

and supramarginal areas in both hemispheres. Large effect sizes were noted for these regions (GS subsample: d = 

0.8682 − 1.662, UKB: d = 0.7761 − 1.536), including some regions where d > 1.2, giving confidence in the 

separation of the clusters (Lakens, 2013; Sullivan and Feinn, 2012). Those regions contributing least to between 

cluster separation (most consistent across individuals) were the caudal anterior cingulate cortex, entorhinal cortex, 

frontal pole and temporal pole in both hemispheres, and parahippocampal gyrus in the left hemisphere (GS 

subsample: d = 0.2095 − 0.6893, UKB: d = 0.2498 − 0.6389). 

Association between clusters and MDD and cognitive variables in GS 

subsample and UKB 

As stated in the method sections, the KW test was used as the test statistics to determine statistical significance of 

between-cluster differences for MDD and cognitive variables in GS subsample and UKB, and the p-values were 

FDR corrected. 

 

Association of clusters with MDD in GS subsample 

The clusters were found to have no significant association with the presence of an MDD diagnosis in any of the 

two-cluster results derived from the four different modalities (CT: pFDR = 0.2239; CSA: pFDR = 0.3777; CV: pFDR = 

0.2295; subCV: pFDR = 0.6585). We also tested whether the clusters were associated with the severity of depression 

in GS subsample by only including recurrent cases (N = 186) in the MDD group, and found that this was also not 

significant (CT: pFDR = 0.9353; CSA: pFDR = 0.4020; CV: pFDR = 0.9184; subCV: pFDR = 0.6906). Information about 

the effect sizes between clusters as well as the effect sizes between cases and controls is included in Supplementary 

B.1.2, Table B.5 – B.8. 
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Association of clusters with cognitive measures in GS subsample 

Table 5 shows the corrected p-values and effect sizes of associations between the cognitive tasks and the clustering 

result for CT, CSA, CV and subCV modalities. The general cognitive ability (g-factor) was found to be 

significantly associated with the clustering based on CSA (d = 0.2771, pFDR = 8.69e − 5), CV (d = 0.3490, pFDR = 

5.27e − 6) and subCV (d = 0.2529, pFDR = 0.0022) but not CT. As for individual tasks, the Digit Symbol Coding 

(DSy), and Matrix Reasoning (Matrix) tests were found to be significantly associated with the clustering based 

on CSA (DSy: d = 0.3181, pFDR = 4.26e−5, Matrix: d = 0.3229, pFDR = 1.56e − 5), CV (DSy: d = 0.4161, pFDR = 

2.08e − 8, Matrix: d = 0.4450, pFDR = 1.81e − 10) and subCVs (DSy: d = 0.4036, pFDR = 4.19e − 7, Matrix: d = 

0.3057, pFDR = 3.88e − 4). In addition, those two tasks were found to be significantly associated with the clustering 

based on CT (DSy: d = 0.3455, pFDR = 1.68e − 5, Matrix: d = 0.1971, pFDR = 0.0051). Significant positive effect 

sizes in FreeSurfer measures (for all of CT, CSA, CV and subCV) were related to positive effect sizes in cognitive 

measures, and these results were independent of sex, age and ICV differences. These results suggest that 

participant clusters defined by larger imaging measures may be characterised by better cognitive performance. 

 

Associations of clusters with MDD status and cognitive measures in UKB 

As in the GS subsample, clusters in UKB were found to have no significant associations with lifetime MDD 

diagnosis (CT: pFDR = 0.7690; CSA: pFDR = 0.3059; CV: pFDR = 0.2003; subCV: pFDR = 0.6703). The absence of a 

direct one-to-one correspondence between the cognitive tasks in GS subsample and the UKB precluded a direct 

replication of the test-specific cognitive findings in GS subsample using UKB data. However, due to the 

advantages of cross-battery stability conferred by computing a g-factor (Fawns-Ritchie and Deary, 2020; Johnson 

et al., 2004, 2008b), we replicated the group differences in g-factor. The g-factor were found to be significantly 

associated with clustering based on CSA (d = 0.0868, pFDR = 2.05e−4), CV (d = 0.1070, pFDR = 1.24e − 5), subCV 

(d = 0.0919, pFDR = 4.48e − 5), and also for CT (d = 0.0573,pFDR = 0.0318). As for individual tasks, the score for 

Verbal Numerical Reasoning (UKBID:20016.2.0, Fluid Intelligence) was also found to be significantly associated 

with clustering based on CSA (d = 0.0999, pFDR = 5.19e − 5), CV (d = 0.1091, pFDR = 1.17e − 5), subCV (d = 

0.0923, pFDR = 4.48e−5) and CT (d = 0.0502, pFDR = 0.0318). There are also significant associations of clusters 

based on subCV with reaction time (d = −0.0716, pFDR = 0.0011), and clusters based on CV and CT with 

prospective memory (CV: d = 0.0483,pFDR = 0.0468, CT: d = 0.0485, pFDR = 0.0489) (see Table 6). 
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Discussion 

Summary of results 

Overall Summary 

In the current study, we employed an exploratory approach and performed unsupervised spectral clustering with 

k-NN graphs, which were based on pairwise distances in structural brain measures derived with FreeSurfer. We 

aimed to determine the presence of natural groupings of participants and their relation to lifetime MDD and 

cognitive ability. The results identified a natural split of the data into two main clusters for each of the four 

modalities studied, where clustering results for separate modalities were independent of each other. We replicated 

the natural groupings of participants into two main clusters in each modality in an independent dataset (UKB) 

based on the highly correlated cluster-related differences between the two cohorts, with correlation coefficients 

0.9392, 0.9226, 0.9241 and 0.7931 respectively for CT, CSA, CV and subCV modalities. Moreover, the results 

were not driven by common covariates, namely, sex, age, MRI site and ICV. It was found that the strongest 

contributors to the cluster separation were the ventral diencephalic volume, thalamus and hippocampus for 

subcortical regions (d = 1.0891−1.7621) and superior, medial and orbitofrontal regions, along with temporal and 

parietal regions for cortical metrics (d = 0.8192 − 1.6617). 

The clusters identified were not related to lifetime MDD status in either data set. We also did not find 

associations with the more severe MDD cases by taking only those with recurrent MDD in the GS subsample (see 

Sections 3.2.1 and 3.2.3). While we found no relationship with MDD, there was however significant relationships 

with cognition base on the general cognitive ability (g-factor) in both GS subsample and UKB (Johnson et al., 

2008a). The clusters also showed significant relationships with some other specific tests mainly in the domains of 

reasoning (Matrix Reasoning in GS subsample and Verbal Numerical Reasoning in UKB) and processing speed 

(WAIS-IIIUK Digit Symbol Coding score in GS subsample and Reaction Time Task in UKB). Results suggest that 

the participant clusters defined by larger FreeSurfer measures are in general characterised by better cognitive 

performance. Apart from MDD status and cognitive abilities, assessing associations of clusters with other variables 

(for example brain age, stress and social economic status) could also be an interesting future research direction. 

A key feature of our work is the use of covariates to ensure that the clusters are not driven by important factors 

such as age, head size and sex. Prior to our study, Zhou et al. employed supervised feature selection on N = 3,297 

brain morphometric measures that approximately represented the 3D neuroanatomical integrity of the participants’ 

brains in the UKB as well as N = 4,316 demographic, clinical, biological specimen, imaging, genomic, and 

questionnaire variables for N = 9,914 subjects (Zhou et al., 2019). Although using different clustering methods 

(k-means clustering and hierarchical clustering), Zhou et al. also carried out clustering analysis on all derived 

neuroimaging measures and also obtained two clusters, of which one cluster showed larger values in all of their 

top 20 neuroimaging variables. Contrary to the results of our study, their resulting clusters did show differences 

regarding in mental health variables, including depressive symptoms. However, they did not adjust for basic 

covariates and found a significant association of clusters with sex, so that the significant between-cluster 
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differences found in mental health variables, including depressive symptoms, might be driven by the significant 

sex disparity between the clusters. That the current study and Zhou et al.’s study show mixed results regarding 

associations with mental health variable may therefore be related to different methodological approaches. 

 

Interpretation of between-cluster effect sizes 

The calculated effect sizes, i.e. the Cohen’s d coefficients, represent the degree of separation between the 

individuals in the two clusters for each brain region. Most regions had medium to high effect sizes, which indicates 

that the two clusters were clearly separated (Lakens, 2013; Sullivan and Feinn, 2012). 

The greatest effect sizes were seen for CT in RH supramarginal area in GS subsample (d = 1.662) and for CT 

in RH inferior parietal area in UKB (d = 1.536) in cortical measures as well as right ventral diencephalic volume 

for both GS subsample (d = 1.762) and UKB (d = 1.416) in subcortical measures. The top regions between GS 

subsample and UKB had a high percentage of overlap, as shown in Table 4. Details of between-cluster effects can 

be found in Supplementary B.1.1, Tables B.1 – B.4. 

In general, for both cohorts, as well as across different cortical metrics, we note that those regions with larger 

effect sizes tended to be those which are commonly associated with higher cognitive functions such as executive 

function and decision making (e.g. precuneus, rostral middle frontal gyrus, superior frontal gyrus, lateral 

orbitofrontal gyrus and superior temporal gyrus) (Barbey et al., 2012; Camilleri et al., 2018). These results are in 

line with prior work on brain regional correlates of intelligence (Cox et al., 2019a, 2018), and add further reference 

– via an unsupervised clustering method – that these higher-order cortical regions are related to cognitive ability 

beyond influences of gross head size, age and sex. 

We note that, Cox et al. found that the frontal pole contributed the most to intelligence (Cox et al., 2019a), 

while in the current study the frontal pole was found to have one of the smallest between-cluster effect sizes. We 

consider that this difference likely originates from substantial differences in software, anatomical labelling, and 

analysis methods. Cox et al. employed the UKB-processed FSL FIRST and FSL FAST parcellations, whereas this 

study used FreeSurfer derived metrics. This is important since there is currently no consensus regarding the 

definitions of the posterior extent of the frontal pole from structural neuroimaging data and both of these methods 

uses different atlas definitions (see Bohland et al., 2009; Cox et al., 2014). Further, Cox et al. implemented 

structural equation models (SEM) targeting the associations between individual ROIs and the g-factor directly, 

while clustering analysis as used here in general does not directly test associations between ROI measures and 

other variables. Moreover, the clustering analysis in this study was methodologically driven by structural brain 

measures and not cognitive ability measures. 

Limitations 

A non-hypothesis driven graph clustering analysis can generally help to discover population subtypes based on 

non-linear relationships between independent variables. For clinical studies, the drawback is that the identified 

subtypes (clusters) are not guaranteed to be clinically relevant. In our case, we found that the partitioning results 

were not associated with MDD status as measured in the current samples. However, we note that our samples were 
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relatively healthy, with few individuals having current depression (most cases met criteria for lifetime MDD rather 

than current MDD). It is possible that using these diagnostic criteria may have contributed to lack of association 

of clustering results with MDD status. Previous studies of MDD case-control classification, where high accuracies 

(i.e. ≥ 85 %) were achieved, typically had sample size smaller than 100 and involved clinically ascertained current 

MDD cases, in some cases with severe or treatment-resistant depression (Johnston et al., 2015; Mwangi et al., 

2012; Patel et al., 2015). 

In terms of the lack of MDD-related differences between the clusters in the context of previous supervised 

studies, we cannot exclude the possibility that this may be due to sample differences (our samples are relatively 

well community-based samples), or that our unsupervised method may not be sensitive enough in its current form 

to detect these brain features of typically small to very small effect sizes. 

Moreover, we also performed clustering analysis without controlling for any covariates as an initial testing of 

our method. We found that the resulting clusters were associated with MDD status based on CT, CSA and CV 

measures for GS subsample and CT, CSA, CV subCV measures for UK Biobank (see Supplementary A.7, Table 

A.3a and Table A.3b) but they were also strongly driven by sex, age, ICV and scan site. Since we were not 

specifically interested in sex, age or site effects, these regressed out of the brain measures prior to the main analysis. 

We note however, that without residualisation we do indeed see the expected clustering related to these 

characteristics. We cannot exclude the possibility however that residualisation may have removed some effects 

related to MDD. 

In spite of the relative invariance of g to cognitive test battery content, we note that sufficient breadth of 

cognitive domains is an important consideration in deriving a comparable g-factor. For example, it might be 

considered that GS tests were more nonverbal and fluid when compared to the verbal and crystallised abilities in 

UKB. Thus, although there were verbal and crystallised elements in the UKB VNR test, that the UKB tests used 

here were subsequently shown to be relatively good g measures, it is possible that the g measures extracted across 

the two cohorts showed imperfect correspondence. Nevertheless, our finding that the natural clustering showed 

g-differences in both cohorts further militates against this as a substantial confounder of our results. 

The current study involved using information from MRI scans based on FreeSurfer parcellations according to 

the Desikan-Killiany atlas. We note that greater information in the form of raw voxel-wise data may be a better 

representation of the brain structure and may improve the clustering quality. This would, however, significantly 

increase the computational cost. Future research could also apply clustering analysis on functional MRI data. 

Conclusion 

We employed a novel unsupervised clustering algorithm to find natural participant groupings within two large 

independent datasets of brain structural measures. A natural grouping of two clusters was identified in the first 

dataset (GS subsample) for each of the four studied modalities, and was replicated in the second dataset (UKB). 

The main regions driving cluster separation were ventral diencephalic volume, thalamus and hippocampus, 

superior, medial and orbitofrontal regions, along with temporal and parietal regions in both GS subsample and 

UKB datasets. Although the clusters were not related to lifetime MDD, they were found to be associated with 
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general cognitive ability (g-factor, computed based on multiple cognitive tasks) in both cohorts, and also with 

specific reasoning tasks, namely the Matrix Reasoning and Digit Symbol Coding tasks in GS subsample and Fluid 

Intelligence Score in UKB. Regions with relatively high cluster-related effect sizes were the higher order cortical 

regions, commonly associated with executive function and decision making. Future work could focus both on 

development and application of machine learning methods to voxel-wise and multimodal brain imaging data as 

well as looking at associations with other clinically-relevant metrics. 
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Table 1 Participants Characteristics for the two studied cohorts. 
 

Table 1a Participants Characteristics for the GS subsample dataset 
 

Table 1b Participants Characteristics for the UKB dataset

GS subsample Mean(SD) N 

Age 59.94(9.787) 980 

Sex(F:M) 602:378 980 

Site(Aberdeen:Dundee) 516:464 980 

ICV* (in cm^3) 1397 (224.2) 980 

MDD(Control:Cases) 677:302 979 

DSy 68.86(14.98) 879 

VF 43.05(11.89) 879 

MHV 31.69(4.065) 879 

Matrix 8.325(2.411) 879 

LM 31.67(7.250) 873 
 

Note: The ICV here was not standardised for each site. DSy: Digit-

symbol Coding, VF: Verbal Fluency Total Score, MHV: Mill Hill 

Vocabulary, Matrix: Matrix Reasoning, LM: Logical Memory. 

 

UKB Mean(SD) N 

Age 62.47(7.464) 8900 

Sex(F:M) 4682:4218 8900 

Site Manchester 8900 

ICV (in cm$^3$) 1519(147.8) 8900 

MDD(Control:Cases) 3865:1658 5523 

VNR 6.8811(2.097) 8484 

RT (in log x) 6.3582(0.1687) 8796 

Pairs Match (in log (x+1)) 1.288(0.6473) 8836 

Prospective Memory(1:0) 7885:936 8821 

 

Note: VNR: Verbal Numerical Reasoning. RT: Reaction Time. 

Pairs Match: Pairs Matching. For the prospective memory test, 1 

means recall at the first attempt and 0 otherwise.

 

Note: N is the number of participants for whom data is available. Age is in years. Measures for DSy/ VF / MHV / Matrix / LM 

and VNR represent raw task scores. The x in RT and Pairs Match represent raw task scores. 
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Table 2 NMI between 2-cluster partitions of the different k-NN graphs and the 2-cluster partitions of the 11-NN 

graph in GS subsample for each of cortical thickness (CT), cortical surface area (CSA), cortical volume (CV) and 

subcortical volume (subCV) measures.  

 

Similarity Measure 5-NN Graph 7-NN Graph 9-NN Graph 

CT NMI (Accuracy) 0.7405(95.5%) 0.8014(96.6%) 0.7796(95.9%) 

CSA NMI (Accuracy) 0.5618(89.7%) 0.5951(89.6%) 0.7776(96.1%) 

CV NMI (Accuracy) 0.7375(95.5%) 0.8284(97.4%) 0.8581(97.9%) 

subCV NMI (Accuracy) 0.6664(94.9%) 0.7558(95.9%) 0.7194(94.7%) 
 

 

Note: The high NMI and accuracies (except for CSA where small fluctuations were seen) indicate that the clustering results of different 

graphs are similar and hence that the partitioning result is meaningful.  
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Table 3 NMI between 2-cluster partitions of the different k-NN graphs and the 2-cluster partitions of the 5-NN 

graph in UKB for each of cortical thickness (CT), cortical surface area (CSA), cortical volume (CV) and subcortical 

volume (subCV) measures.  

 

Similarity Measure 7-NN Graph 9-NN Graph 11-NN Graph 

CT NMI(Accuracy) 0.7883(96.7%) 0.7760(96.6%) 0.7325(95.5%) 

CSA NMI(Accuracy) 0.7592(96.0%) 0.7128(95.9%) 0.7038(95.8%) 

CV NMI(Accuracy) 0.7623(96.3%) 0.7163(95.2%) 0.6441(92.7%) 

subCV NMI(Accuracy) 0.6221(93.4%) 0.6310(92.9%) 0.6290(92.9%) 
 

Note: The high NMI and accuracies indicate that the clustering results of different graphs are similar and hence that the partitioning 

result is meaningful.  
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Table 4 Top 20 regions in CT, CSA and CV, and top 10 regions in subCV driving the separation between the 

clusters for each of the four modalities in both cohorts.  

Top Regions in each cohort GS subsample Cohen's d UKB Cohen's d 

Cortical Thickness 

rh.supramarginal 1.6617 rh.inferiorparietal 1.5359 

rh.inferiorparietal 1.6615 lh.supramarginal 1.4962 

lh.superiorfrontal 1.6055 rh.precuneus 1.4790 

lh.inferiorparietal 1.5852 rh.supramarginal 1.4502 

rh.precentral 1.5828 lh.superiorfrontal 1.4499 

rh.superiorfrontal 1.5617 lh.inferiorparietal 1.4262 

lh.supramarginal 1.5517 lh.precuneus 1.3948 

rh.superiortemporal 1.4962 lh.rostralmiddlefrontal 1.3930 

lh.precuneus 1.4942 rh.superiorparietal 1.3923 

rh.precuneus 1.4922 rh.superiorfrontal 1.3916 

lh.caudalmiddlefrontal 1.4836 lh.precentral 1.3665 

rh.superiorparietal 1.4666 lh.superiorparietal 1.3369 

lh.precentral 1.4665 lh.caudalmiddlefrontal 1.3297 

rh.caudalmiddlefrontal 1.4011 rh.precentral 1.2939 

rh.postcentral 1.3938 lh.postcentral 1.2761 

lh.superiorparietal 1.3852 rh.superiortemporal 1.2668 

lh.postcentral 1.3813 rh.rostralmiddlefrontal 1.2667 

lh.superiortemporal 1.3561 lh.superiortemporal 1.2567 

rh.rostralmiddlefrontal 1.3506 rh.caudalmiddlefrontal 1.2554 

lh.rostralmiddlefrontal 1.3395 rh.middletemporal 1.2468 

Cortical Surface Area 

lh.rostralmiddlefrontal 1.3871 lh.superiorfrontal 1.0902 

rh.superiorfrontal 1.3132 rh.superiorfrontal 1.0301 

rh.rostralmiddlefrontal 1.3077 lh.rostralmiddlefrontal 1.0281 

rh.middletemporal 1.2980 rh.rostralmiddlefrontal 1.0034 

lh.superiorfrontal 1.2216 rh.superiortemporal 0.9897 

lh.lateralorbitofrontal 1.2098 lh.lateralorbitofrontal 0.9896 

lh.superiortemporal 1.2075 lh.precuneus 0.9742 

rh.superiortemporal 1.2065 lh.superiortemporal 0.9596 

rh.inferiortemporal 1.1435 rh.lateralorbitofrontal 0.9054 

rh.precuneus 1.1261 rh.middletemporal 0.9047 

rh.inferiorparietal 1.1009 rh.precuneus 0.8879 

lh.precuneus 1.0989 rh.fusiform 0.8317 

lh.middletemporal 1.0980 lh.postcentral 0.8288 

lh.fusiform 1.0861 rh.medialorbitofrontal 0.8186 

lh.inferiortemporal 1.0761 lh.fusiform 0.8068 

lh.postcentral 1.0752 rh.inferiortemporal 0.8035 

lh.lateraloccipital 1.0652 lh.middletemporal 0.8031 

lh.supramarginal 1.0649 rh.postcentral 0.7926 

rh.superiorparietal 1.0327 lh.insula 0.7890 

lh.precentral 1.0322 lh.superiorparietal 0.7771 

Cortical Volume 

lh.superiorfrontal 1.4611 lh.precuneus 1.0578 

rh.superiorfrontal 1.4606 rh.superiorfrontal 1.0278 

lh.lateralorbitofrontal 1.4279 lh.superiorfrontal 1.0213 

rh.precuneus 1.3651 rh.precuneus 1.0201 

rh.superiortemporal 1.2925 lh.lateralorbitofrontal 0.9902 

lh.precuneus 1.2347 rh.superiortemporal 0.9554 

lh.superiortemporal 1.1974 lh.rostralmiddlefrontal 0.9449 

lh.rostralmiddlefrontal 1.1870 lh.precentral 0.9142 

lh.supramarginal 1.1595 lh.superiortemporal 0.9087 

rh.insula 1.1360 rh.precentral 0.9072 

lh.insula 1.1316 rh.rostralmiddlefrontal 0.9070 

rh.rostralmiddlefrontal 1.1303 rh.lateralorbitofrontal 0.8954 

lh.lateraloccipital 1.1243 lh.insula 0.8720 

rh.lateralorbitofrontal 1.1239 rh.inferiorparietal 0.8444 

rh.inferiorparietal 1.0981 lh.postcentral 0.8406 

rh.superiorparietal 1.0974 rh.superiorparietal 0.8341 
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lh.precentral 1.0793 lh.supramarginal 0.8265 

rh.precentral 1.0691 lh.superiorparietal 0.8171 

lh.superiorparietal 1.0581 rh.lateraloccipital 0.7796 

rh.middletemporal 1.0376 lh.inferiorparietal 0.7776 

Subcortical Volume 

Right.VentralDC 1.7621  Right.VentralDC 1.4164  

Left.VentralDC 1.6753  Left.VentralDC 1.2586  

Brain.Stem 1.6241  Brain.Stem 1.2144  

Right.Thalamus.Proper 1.4319  Left.Cerebellum.White.Matter 1.0156  

Right.Cerebellum.Cortex 1.2596  Right.Cerebellum.White.Matter 1.0027  

Left.Cerebellum.Cortex 1.2545  Right.Putamen 0.9641  

Left.Thalamus.Proper 1.2382  Left.Putamen 0.8870  

Right.Hippocampus 1.1968  Right.Pallidum 0.8345  

Left.Cerebellum.White.Matter 1.1537  Right.Hippocampus 0.8142  

Right.Cerebellum.White.Matter 1.1153  Right.Thalamus.Proper 0.7929  
 

 

Note: The overlapping regions across cohorts are in bold text. lh: left hemisphere, rh: right hemisphere. 
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Table 5 p-values and Cohen’s d values (in brackets) for cluster effects on each cognitive performance measure 

for the four measure modalities in GS subsample.  

 

Structural brain measure modality DSy VF MHV Matrix Memory g-factor 

CTs 1.68e-5∗(0.3455) 0.0914(-0.1431) 0.3291(-0.0591) 0.0051∗(0.1971) 0.2418(0.1337) 0.2220(0.1154) 

CSAs 4.26e-5∗(0.3181) 0.6627(0.0717) 0.1172(0.1092) 1.56e-5∗(0.3229) 0.2092(0.0965) 8.69e-5∗(0.2771) 

CVs 2.06e-8∗(0.4161) 0.9541(0.0239) 0.4300(0.0909) 1.81e-10∗(0.4450) 0.0106∗(0.2075) 5.27e-6∗(0.3490) 

subCVs 4.19e-7∗(0.4036) 0.3231(0.0867) 0.7565(0.0022) 3.88e-4∗(0.3057) 0.3155(0.1085) 0.0022∗(0.2529) 

 

Note: DSy=WAIS-III Digit Symbol Coding, VF = Verbal Fluency, MHV = Mill Hill Vobaulary, Matrix=Matrix Reasoning total correct, 

g-factor = general intelligence coefficient derived from cognitive variables. p-values were FDR-corrected. Significant positive effect sizes 

in FreeSurfer measures were related to positive effect sizes in cognitive measures.  
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Table 6 p-values and Cohen’s d values (in brackets) for cluster effects on each cognitive performance measure 

for the four measure modalities in UKB.  

 

Structural brain measure modality VNR RT Pairs Match ProsMemory g-factor 

CTs 0.0318∗(0.0502) 0.5595(-0.0230) 0.3748(-0.0258) 0.0489∗(0.0485) 0.0318∗(0.0573) 

CSAs 5.19e-5∗(0.0999) 0.7270(0.0049) 0.1637(-0.0298) 0.5052(0.0178) 2.05e-4∗(0.0868) 

CVs 1.17e-5∗(0.1091) 0.8778(-0.0055) 0.1324(-0.0308) 0.0468∗(0.0483) 1.24e-5∗(0.1070) 

subCVs 4.48e-5∗(0.0923) 0.0011∗(-0.0716) 0.5062(0.0121) 0.5062(0.0156) 4.48e-5∗(0.0919) 

 

Note: VNR = Verbal Numerical Reasoning. RT = Reaction Time. Pairs Match = Pairs Matching. ProsMemory = Prospective Memory. 

g-factor = general intelligence coefficient derived from all cognitive variables. p-values were FDR-corrected. Similar to GS subsample, 

significant positive effect sizes in UKB FreeSurfer measures were related to positive effect sizes in cognitive measures, except for reaction 

time task. 
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We thoroughly study the existence and replicability of natural groupings of subjects from structural MRI 

measurements and their relationship to cognition and Major Depressive Disorder (MDD). To do this, we employ 

an advanced clustering algorithm to nearest neighbour networks of structural similarities, corrected for age and 

gender. We find replicable clusters across two large datasets which are associated with cognit ion but find no 

associations with MDD. 

 

 


