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Mechanisms for division problems

with single-dipped preferences

Doudou Gong1,2∗ Bas Dietzenbacher2† Hans Peters2‡

16th July 2022

Abstract

A mechanism allocates one unit of an infinitely divisible commodity among agents

reporting a number between zero and one. Nash, Pareto optimal Nash, and strong

equilibria are analyzed for the case where the agents have single-dipped preferences.

One of the main results is that when the mechanism is anonymous, monotonic, stan-

dard, and order preserving, then the Pareto optimal Nash and strong equilibria coincide

and assign Pareto optimal allocations that are characterized by so-called maximal coali-

tions: members of a maximal coalition prefer an equal coalition share over obtaining

zero, whereas the outside agents prefer zero over obtaining an equal share from joining

the coalition.

Keywords: division problems, single-dipped preferences, mechanisms, Nash equilib-

rium, strong equilibrium

JEL classification: C72, D71

1 Introduction

We consider the problem of allocating one unit of an infinitely divisible commodity among
agents with single-dipped preferences. A single-dipped preference has a worst point, the dip,
and preference strictly increases in both directions away from the dip. Such a preference may
arise from maximizing a strictly quasiconvex utility function on a (budget) line, and reflects
that an agent prefers extremes over combinations – for instance, a university employee may
prefer either only teaching or only research over a combination of the two.
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‡E-mail: h.peters@maastrichtuniversity.nl.
1School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, 710072, China.
2Department of Quantitative Economics, Maastricht University, Maastricht, 6200 MD, The Netherlands.
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We take a mechanism design approach: each agent reports a number between zero and
one, and a mechanism is a function assigning an allocation of the commodity among the
agents, which is evaluated by the agents according to their preferences. Under a number of
conditions on mechanisms, we analyze the Nash, Pareto optimal Nash, and strong equilibria
for each single-dipped preference profile, and the resulting allocations, in the induced game.
Mechanisms are related to (social choice) rules: these assign an allocation to each profile of
preferences. In particular, a rule which only depends on the dips of the reported preferences,
gives rise to a mechanism.

Almost throughout, we assume that a mechanism is anonymous and monotonic. The
latter condition means that if an agent reports a higher or lower number, then that agent’s
share increases or decreases, if possible. The motivation for this monotonicity requirement is
that it provides the agents with ample possibilities to influence their shares – thus, making
the mechanism sufficiently sensitive to the strategies of the agents.

After preliminaries in Section 2, in Section 3 we discuss Nash equilibria of games induced
by a mechanism and single-dipped preference profiles. The main insight here is that in every
Nash equilibrium each agent plays 0 or 1, and we characterize all Nash equilibria (Theorem
3.5). If there are two agents then a Nash equilibrium always exists (Proposition 3.7), but
this is no longer true for more than two agents.

In Section 4 we consider Pareto optimal Nash equilibria, and we show that an additional
condition on a mechanism, namely that when every agent plays 0 or 1, the agents who play 0
receive 0 and the agents who play 1 equally share the commodity, is necessary and sufficient
for the existence of a Pareto optimal Nash equilibrium for all games, i.e., all preference
profiles. Moreover, in this case the Pareto optimal Nash equilibria are exactly those strategy
profiles where agents in a so-called maximal coalition play 1 and the other agents play 0 –
‘maximal’ means that as many agents as possible (given the restrictions of best reply and
Pareto optimality) play 1 and get a positive share. Under the further condition of order
preservation on a mechanism – meaning that playing a higher number than another agent
results in obtaining a higher share than that agent – these Pareto optimal Nash equilibria
are, moreover, strong equilibria (Aumann, 1959): no coalition can profitably deviate. As a
consequence, under the mentioned conditions on a mechanism, a selection – denoted by M

– of the Pareto social choice correspondence is implemented in strong equilibrium, namely
picking the Pareto optimal allocations that are characterized by so-called maximal coalitions:
members of a maximal coalition prefer an equal coalition share over obtaining zero, whereas
the outside agents prefer zero over obtaining an equal share from joining the coalition.

In Section 5 we provide an axiomatic characterization of this social choice correspon-
dence M . We show that M is the maximal correspondence satisfying minimal envy Pareto
optimality, equal division lower bound, and sharing index order preservation. This first con-
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dition requires that allocations are Pareto optimal and, within the set of Pareto optimal
allocations, only those are selected from at which the number of envious agents – agents who
prefer some one else’s share over their own – is as small as possible. The second condition
requires that each agent (weakly) prefers its share over an equal division of the commodity.
The third condition says that an agent who is willing to equally share the commodity with
more agents than some other agent, does not receive less than this other agent.

Sprumont (1991) shows that under a few natural conditions, the so-called uniform rule
is the unique strategy-proof (Gibbard, 1973; Satterthwaite, 1975) rule for division problems
with single-peaked preferences – a preference is single-peaked if there is a unique best point,
the peak, and preference decreases in both directions away from this peak. Bochet et al
(2021) – combining work of Bochet and Sakai (2009) and Thomson (2010) – show that
under similar assumptions as ours, equilibria (Nash, Pareto optimal Nash, strong) end up
in the allocation assigned by the uniform rule – see the concluding Section 6. While the
uniform rule for single-peaked preferences is strategy-proof, we show in Section 6 that no
selection from the implemented correspondence M for single-dipped preferences is strategy-
proof. Further, the uniform rule satisfies the first two of the three conditions characterizing
M , as described in the preceding paragraph.

Single-dipped and single-peaked preferences were already studied by Inada (1964). For
single-dipped preferences in division problems, see Klaus et al (1997), who characterize
Pareto optimal allocations (we use their result in Section 4), and study strategy-proofness of
rules. For strategy-proofness in problems with indivisible goods and single-dipped preferences
see Klaus (2001a,b) and Tamura (2022), and for probabilistic rules see Ehlers (2002). Doghmi
(2013) shows that Maskin monotonicity is still a necessary condition for implementation;
indeed, it is not difficult to show that the correspondence M is Maskin monotonic.

There is a relatively large literature on single-dipped preferences and public goods (also
sometimes called public bads), including Peremans and Storcken (1999), Barberà et al (2012),
Bossert and Peters (2014), Öztürk et al (2013, 2014), Manjunath (2014), Ayllón and Cara-
muta (2016), Tapki (2016), Yamamura (2016), Lahiri et al (2017), and Feigenbaum et al
(2020).

2 Preliminaries

In this section we introduce allocations, preferences, mechanisms, rules, and equilibria.
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2.1 Allocations, preferences, mechanisms, and equilibria

For n ∈ N with n ≥ 2, let N = {1, . . . , n} be the set of agents. Among these agents one unit
of a perfectly divisible commodity has to be distributed. The set of all allocations is denoted
by A =

{
x ∈ [0, 1]N

∣∣ ∑
i∈N xi = 1

}
. A subset of agents is also called a coalition.

An agent’s preference is a transitive and complete binary relation R on the interval [0, 1].
We denote by P strict preference, and by I indifference: αPβ if αRβ and not βRα, and
αIβ if αRβ and βRα, for α, β ∈ [0, 1]. By RN = (Ri)i∈N we denote a profile of preferences
(for N).

An allocation x ∈ A is Pareto optimal at a preference profile RN if there is no x′ ∈ A
such that x′iRixi for all i ∈ N and x′iPixi for at least one i ∈ N .

In this paper we focus on mechanisms in order to select allocations. A mechanism is a
map g : [0, 1]N → A. A preference profile RN and a mechanism g induce a non-cooperative
game (RN , g) as follows. Each agent i ∈ N has strategy set [0, 1]. A profile of strategies
r = (ri)i∈N ∈ [0, 1]N results in an allocation g(r) ∈ A, evaluated by each agent i via Ri. A
profile r∗ is a Nash equilibrium of the game (RN , g) if for all i ∈ N and ri ∈ [0, 1],

gi(r∗)Rigi(ri, r
∗
−i),

where r∗−i = (r∗j )j∈N\{i}. A Nash equilibrium r∗ is a Pareto optimal Nash equilibrium of the
game (RN , g) if g(r∗) is Pareto optimal at RN . A profile r∗ is a strong equilibrium of the
game (RN , g) if there are no ∅ 6= S ⊆ N and r′S ∈ [0, 1]S such that

gi(r′S , r∗N\S)Rigi(r∗) for all i ∈ S and gi(r′S , r∗N\S)Pigi(r∗) for some i ∈ S,

where r∗N\S = (r∗i )i∈N\S .
In most of this paper we focus on single-dipped preferences. A preference R is single-

dipped if there is a dip d(R) ∈ [0, 1] such that for all α, β ∈ [0, 1],

α < β ≤ d(R) ⇒ αPβ and α > β ≥ d(R) ⇒ αPβ.

The set of all single-dipped preferences is denoted by D, and DN is the set of all single-dipped
preference profiles.

A preference R is single-peaked if there is a peak p(R) ∈ [0, 1] such that for all α, β ∈ [0, 1],

p(R) ≥ α > β ⇒ αPβ and p(R) ≤ α < β ⇒ αPβ.

The set of all single-peaked preferences is denoted by P, and PN is the set of all single-peaked
preference profiles.
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2.2 Mechanisms versus rules

A mechanism is – indeed – a mechanical device that is used to non-cooperatively determine
an allocation, given a preference profile. A (social choice) rule is a map ϕ assigning to each
preference profile within a given set, an allocation. If such a rule ϕ on DN or on PN depends
only on the dips or only on the peaks of a preference profile (i.e., is dips-only or peaks-only),
then it can be identified with a mechanism according to our definition. An agent’s strategy
can then be interpreted as the agent reporting a dip or peak – not necessarily the true dip or
peak. In this sense, the peaks-only rules for single-peaked preference profiles studied in for
instance Sprumont (1991) or Bochet et al (2021) can be seen as mechanisms. On the other
hand, a property like Pareto optimality makes sense for rules (meaning that they assign
a Pareto optimal allocation to each preference profile), but not for mechanisms, which are
defined independently of preference profiles. In most of what follows, we impose the following
additional conditions on a mechanism g:

• anonymity : gi(rπ) = gπ(i)(r) for all r ∈ [0, 1]N and every permutation π of N , where
rπ = (rπ(i))i∈N .

• monotonicity : for all r ∈ [0, 1]N , i ∈ N and r′i ∈ [0, 1],

r′i > ri and gi(r) < 1 ⇒ gi(r′i, r−i) > gi(r),

r′i < ri and gi(r) > 0 ⇒ gi(r′i, r−i) < gi(r),

where (r′i, r−i) is obtained from r by replacing ri by r′i.

The set of all anonymous and monotonic mechanisms is denoted by G.
The monotonicity condition is closely related to the condition of ‘strict own-peak mono-

tonicity’ in Bochet et al (2021) when the latter is applied to rules that are peaks-only. The
difference is that the condition in Bochet et al (2021) allows that an agent i receives 0 when
that agent’s strategy ri is positive. Under our monotonicity condition this is not possible
(see Lemma 3.2).

We conclude this section with two examples of mechanisms in G.

Example 2.1 Let N = {1, 2} and let g : [0, 1]N → A be defined by for each r ∈ [0, 1]N ,

g(r) =
(

1 + r1 − r2

2
,
1− r1 + r2

2

)
.

Then g is anonymous and monotonic, and thus g ∈ G. 4
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Example 2.2 Let g : [0, 1]N → A be defined by for each r ∈ [0, 1]N and i ∈ N ,

gi(r) =





ri∑
j∈N rj

if
∑

j∈N rj ≥ 1

1− (n−1)(1−ri)∑
j∈N (1−rj)

if
∑

j∈N rj ≤ 1.

This mechanism corresponds to the ‘symmetrized proportional rule’ in Bochet et al (2021).
Again, g is anonymous and monotonic, and therefore g ∈ G. 4

In the next two sections we analyze Nash equilibria, Pareto optimal Nash equilibria, and
strong equilibria in games induced by single-dipped preference profiles and mechanisms in
G.

3 Nash equilibrium

Before stating the main results, we formulate two elementary lemmas concerning single-
dipped preferences and mechanisms, respectively. The first lemma recalls the well-known
fact (Inada, 1964) that if an agent with a single-dipped preference prefers α to β in [0, 1],
then this agent prefers α to each γ between α and β. This will be used several times in the
sequel.

Lemma 3.1 Let R ∈ D and let α, β ∈ [0, 1] with αRβ. Then αRγ for all γ ∈ [0, 1] with
min{α, β} ≤ γ ≤ max{α, β}.

Proof. If d(R) ≤ min{α, β}, then d(R) ≤ β ≤ α, so αRγ for all β ≤ γ ≤ α. If d(R) ≥
max{α, β}, then d(R) ≥ β ≥ α, so αRγ for all α ≤ γ ≤ β. If min{α, β} < d(R) <

max{α, β}, then we have αRγ for all min{α, d(R)} ≤ γ ≤ max{α, d(R)}, and αRβRγ for all
min{β, d(R)} ≤ γ ≤ max{β, d(R)}. Therefore, αRγ for all min{α, β} ≤ γ ≤ max{α, β}.

The next lemma shows that a monotonic mechanism assigns 0 to an agent only if its
strategy is 0, and assigns 1 to an agent only if its strategy is 1.

Lemma 3.2 Let g be a monotonic mechanism and let r ∈ [0, 1]N . Then ri = 0 for each
i ∈ N with gi(r) = 0, and ri = 1 for each i ∈ N with gi(r) = 1.

Proof. For each i ∈ N with gi(r) = 0, if ri 6= 0, then gi(r′i, r−i) = 0 for all 0 ≤ r′i < ri, which
contradicts monotonicity of g. For each i ∈ N with gi(r) = 1, if ri 6= 1, then gi(r′i, r−i) = 1
for all ri < r′i ≤ 1, which again contradicts monotonicity of g.

The following two lemmas are about properties of Nash equilibria for single-dipped pref-
erence profiles. We first show that for a monotonic mechanism and a single-dipped preference
profile, no agent receives its dip in a Nash equilibrium.
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Lemma 3.3 Let RN ∈ DN and let g be a monotonic mechanism. If a strategy profile
r∗ ∈ [0, 1]N is a Nash equilibrium of (RN , g), then gi(r∗) 6= d(Ri) for all i ∈ N .

Proof. Let i ∈ N . Assume, to the contrary, that r∗ ∈ [0, 1]N with gi(r∗) = d(Ri), is a
Nash equilibrium of (RN , g). Then we have gi(ri, r

∗
−i) = d(Ri) for all ri ∈ [0, 1], which is a

contradiction to monotonicity of g.

Next, we show that, in a Nash equilibrium, an agent’s strategy is 0 if that agent receives
less than its dip, and is 1 if that agent receives more than its dip.

Lemma 3.4 Let RN ∈ DN , let g be a monotonic mechanism, and let strategy profile
r∗ ∈ [0, 1]N be a Nash equilibrium of (RN , g). Then r∗i = 0 for all i ∈ N with gi(r∗) < d(Ri),
and r∗i = 1 for all i ∈ N with gi(r∗) > d(Ri).

Proof. Let i ∈ N with gi(r∗) < d(Ri). If gi(r∗) = 0, then r∗i = 0 by Lemma 3.2. If gi(r∗) > 0
with r∗i 6= 0, then from monotonicity, we have gi(ri, r

∗
−i) < gi(r∗) < d(Ri) for all 0 ≤ ri < r∗i .

This implies that gi(ri, r
∗
−i)Pigi(r∗), which is a contradiction to the assumption that r∗ is a

Nash equilibrium. Hence, r∗i = 0.
The case gi(r∗) > d(Ri) is analogous.

We now introduce some additional notation for a mechanism g ∈ G. For each S ⊆ N ,
define eS ∈ RN by eS

i = 1 for all i ∈ S, and eS
j = 0 for all j ∈ N \S. Then, by anonymity we

have gi(e∅) = gi(eN ) = 1
n for all i ∈ N , and there exist numbers p1(g), . . . , pn−1(g) ∈ [0, 1]

such that for each ∅ 6= S ( N and i ∈ S,

gi(eS) = ps(g),

where s = |S|. It follows that for each ∅ 6= S ( N and j ∈ N \ S,

gj(eS) = qs(g),

where sps(g) + (n − s)qs(g) = 1 for all s = 1, . . . , n − 1. When no confusion arises, the
notations ps(g) and qs(g) are abbreviated to ps and qs, respectively. For convenience, we
denote p0 = pn = q0 = qn = 1

n . Then, by monotonicity and Lemma 3.2, it holds that for
each i ∈ N and S ⊆ N \ {i},

ps+1 = gi(eS∪{i}) > gi(eS) = qs.

The following theorem characterizes the Nash equilibria in games induced by single-
dipped preference profiles and mechanisms in G.
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Theorem 3.5 Let RN ∈ DN , g ∈ G, and r∗ ∈ [0, 1]N . Then r∗ is a Nash equilibrium of
(RN , g) if and only if r∗ = eS for S ⊆ N such that psRiq

s−1 for all i ∈ S and qsRjp
s+1 for

all j ∈ N \ S.

Proof. For the if-part, assume that r∗ = eS for S ⊆ N such that psRiq
s−1 for all i ∈ S and

qsRjp
s+1 for all j ∈ N \ S. We prove that r∗ is a Nash equilibrium.

For each i ∈ S, we have r∗i = 1 and psRiq
s−1, which means that gi(1, r∗−i)Rigi(0, r∗−i).

With monotonicity, it holds that gi(0, r∗−i) ≤ gi(ri, r
∗
−i) ≤ gi(1, r∗−i) for all ri ∈ [0, 1]. Ac-

cording to Lemma 3.1, we conclude that gi(r∗)Rigi(ri, r
∗
−i) for all ri ∈ [0, 1]. For each

j ∈ N \ S, we have r∗j = 0 and qsRjp
s+1, which means that gj(0, r∗−j)Rjgj(1, r∗−j). From

monotonicity and Lemma 3.1 again, it holds that gj(r∗)Rjgj(rj , r
∗
−j) for all rj ∈ [0, 1]. So,

r∗ = eS is a Nash equilibrium.
For the only-if part, assume that r∗ is a Nash equilibrium. From Lemmas 3.3 and

3.4, we have r∗ = eS for some S ⊆ N . In view of gi(r∗)Rigi(0, r∗−i) for all i ∈ S and
gj(r∗)Rjgj(1, r∗−j) for all j ∈ N \S, it holds that psRiq

s−1 for all i ∈ S and qsRjp
s+1 for all

j ∈ N \ S.

Theorem 3.5 can also be used to show that a Nash equilibrium does not have to exist, as
for instance in the following example.

Example 3.6 Let N = {1, 2, 3} and let g ∈ G satisfy that p2 > p1. By this assumption
and monotonicity, it follows that q2 < q1 < 1

3 < p1 < p2. Consider RN ∈ DN such that
q2P1q

1P1p
2P1p

1P1
1
3 , p2P2q

2P2q
1P2

1
3P2p

1 and q1P3p
2. Then e∅ is not a Nash equilibrium in

view of p1P1
1
3 ; e{1} and e{3} are not Nash equilibria in view of p2P2q

1; e{2} is not a Nash
equilibrium in view of 1

3P2p
1; e{1,2} and e{1,3} are not Nash equilibria in view of q1P1p

2;
e{2,3} is not a Nash equilibrium in view of q1P3p

2; and eN is not a Nash equilibrium in view
of q2P1

1
3 . From Theorem 3.5 it follows that the game (RN , g) has no Nash equilibrium.

A possible mechanism g ∈ G to which this example applies is as follows. For each
r ∈ [0, 1]N and distinct i, j, k ∈ N let

gi(r) =
8 + 2ri − rj − rk + 2rirj + 2rirk − 4rjrk

24
.

Since g(1, 0, 0) = ( 10
24 , 7

24 , 7
24 ) and g(1, 1, 0) = ( 11

24 , 11
24 , 2

24 ), we have q2 = 2
24 < q1 = 7

24 < 1
3 <

p1 = 10
24 < p2 = 11

24 . 4

We conclude this section with the result that for two agents a Nash equilibrium always
exists. For the proof, see the Appendix.

Proposition 3.7 Let N = {1, 2}, RN ∈ DN and g ∈ G. Then the game (RN , g) has a Nash
equilibrium.
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4 Pareto optimal Nash equilibrium, strong equilibrium,

and implementation

In this section, we first consider Pareto optimal Nash equilibria, i.e., Nash equilibria resulting
in Pareto optimal allocations. Next, we strengthen this to strong equilibria: no subset of
agents can profitably deviate, in the sense that every member is at least as well off, and at
least one member is better off. Third, we discuss the related issue of implementation: which
social choice correspondence, i.e., multi-valued rule, collects exactly the Pareto optimal Nash
equilibria or strong equilibria for a given mechanism?

4.1 Pareto optimal Nash equilibrium

Pareto optimal allocations for single-dipped preference profiles were characterized by Klaus
et al (1997). For each RN ∈ DN , we denote by N+(RN ) = {i ∈ N | 1Pi0} the set of agents
who strictly prefer 1 to 0, by N0(RN ) = {i ∈ N | 0Ii1} the set of agents who are indifferent
between 0 and 1, and by N−(RN ) = {i ∈ N | 0Pi1} the set of agents who strictly prefer 0
to 1. The characterization by Klaus et al (1997) is as follows.

Lemma 4.1 Let RN ∈ DN . An allocation x ∈ A is Pareto optimal at RN if and only if

(i) If N+(RN ) 6= ∅, then xi = 0 for every i ∈ N \ N+(RN ), and for every i ∈ N+(RN )
either xi = 0 or xiPi0.

(ii) If N+(RN ) = ∅ and N0(RN ) 6= ∅, then x = e{i} for some i ∈ N0(RN ).

(iii) If N−(RN ) = N , then for every i ∈ N either xi = 1 or xiPi1.

We first introduce so-called maximal coalitions, which are useful to describe Pareto op-
timal Nash equilibria.

Definition 4.2 Let RN ∈ DN .

(a) The sharing index of an agent i ∈ N at RN is the number mi(RN ) defined by

mi(RN ) =

{
0 if i /∈ N+(RN )
max

{
k ∈ {1, . . . , |N+(RN )|} ∣∣ 1

kPi0
}

if i ∈ N+(RN ).

(b) A coalition S ⊆ N is a maximal coalition at RN if the following holds.

(i) If N+(RN ) 6= ∅, then S ⊆ N+(RN ) such that mi(RN ) ≥ |S| for every i ∈ S and
mj(RN ) ≤ |S| for every j ∈ N \ S.

9



(ii) If N+(RN ) = ∅ and N0(RN ) 6= ∅, then S = {i} for some i ∈ N0(RN ).

(iii) If N−(RN ) = N , and {j ∈ N | 1Rj
1
n} 6= ∅, then S = {i} for some i ∈ N with

1Ri
1
n .

(iv) If N−(RN ) = N , and {j ∈ N | 1Rj
1
n} = ∅, then S = ∅.

The collection of all maximal coalitions at RN is denoted by M(RN ).

4

The sharing index of an agent i ∈ N+(RN ) is the maximal size of a coalition of agents
strictly preferring one over zero, including i, such that equally sharing the commodity with
the members of this coalition is still preferable over receiving 0. For i /∈ N+(RN ), this is
zero. In Case (i) in (b), a maximal coalition consists of agents who strictly prefer 1 over 0 at
RN . Such a coalition is formed by starting with the agent(s) with maximal sharing index,
next adding agent(s) with second maximal sharing index, etc., until the size of the coalition
exceeds the sharing indices of the remaining agents. See Example 4.3 for an illustration.
In a similar spirit, in Case (ii), a maximal coalition consists of any arbitrary single agent
indifferent between 0 and 1. In Case (iii), where all agents strictly prefer 0 over 1, a maximal
coalition consists of an arbitrary single agent who (weakly) prefers 1 over 1

n . If there are no
such agents, then Case (iv) applies and the only maximal coalition is the empty coalition.

Example 4.3 Let N = {1, 2, 3} and let RN satisfy 1
3P10, 1

2Pi0 and 0Ri
1
3 for i = 2, 3. Then

N+(RN ) = N , m1(RN ) = 3, and m2(RN ) = m3(RN ) = 2. To construct a maximal coalition
we start with agent 1 and then add either agent 2 or agent 3, to obtain {1, 2} and {1, 3}
as maximal coalitions. Coalition {2, 3} is not maximal since m1(RN ) = 3 > 2 = |{2, 3}|,
and coalition N is not maximal since m2(RN ) = 2 < 3 = |N |. Also singleton coalitions
are not maximal: {1} is not maximal since m2(RN ) = 2 > |{1}|, {2} is not maximal since
m1(RN ) = 3 > |{2}|, and {3} is not maximal since m1(RN ) = 3 > |{3}|. 4

The basic reason why maximal coalitions play a role in our analysis, especially in the case
where N+(RN ) 6= ∅, is that a member of such a coalition prefers receiving an equal share
over receiving 0 and therefore would not deviate and leave the coalition; on the other hand,
there is no outside agent who would gain by joining the coalition. This will be made precise
in Theorem 4.5.

We first formulate an additional property for a mechanism g.

Standardness g is standard if g(eS) = 1
|S|e

S for every ∅ 6= S ⊆ N .

If g is standard, then ps = 1
s and qs = 0 for each s = 1, 2, . . . , n− 1. The mechanisms in

Examples 2.1 and 2.2 are standard, but the mechanism in Example 3.6 is not standard.
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We show that standardness of a mechanism is a necessary and sufficient condition for all
games based on this mechanism to have a Pareto optimal Nash equilibrium.

Lemma 4.4 Let g ∈ G and suppose that (RN , g) has a Pareto optimal Nash equilibrium for
each RN ∈ DN . Then g is standard.

Proof. For each S ∈ 2N \ {∅, N}, we consider RS
N ∈ DN such that d(RS

i ) = 0 for all i ∈ S

and d(RS
j ) = 1 for all j ∈ N \ S. Then N+(RS

N ) = S. From Lemmas 3.3 and 3.4, it follows
that the only Nash equilibrium in the game (RS

N , g) is r∗ = eS . From Lemma 4.1, we have
gj(r∗) = 0 for all j ∈ N \N+(RS

N ) = N \S. It follows that gi(r∗) = 1
|S| for all i ∈ S. Together

with g(eN ) = 1
|N | , we conclude that g(eS) = 1

|S|e
S for all S ∈ 2N \ {∅}. This implies that g

is standard.

Lemma 4.4 says that standardness of the mechanism is a necessary condition for a Pareto
optimal Nash equilibrium to exist in every game induced by this mechanism. The sufficiency
part follows from the following theorem, which is a main result of this paper.

Theorem 4.5 Let RN ∈ DN and let g ∈ G be standard. A strategy profile r∗ ∈ [0, 1]N is a
Pareto optimal Nash equilibrium of (RN , g) if and only if r∗ = eS for some S ∈M(RN ).

Proof. For the if-part, let S ∈ M(RN ). We prove that r∗ = eS is a Pareto optimal Nash
equilibrium.

Case (i): N+(RN ) 6= ∅.
Let i ∈ S. Then r∗i = 1 and gi(r∗) = 1

|S| . Since 1
|S| ≥ 1

mi(RN ) and 1
mi(RN )Pi0, we have

that 1
|S|Pi0, which implies that gi(r∗)Pigi(0, r∗−i). Monotonicity then implies gi(0, r∗−i) ≤

gi(ri, r
∗
−i) ≤ gi(r∗) for all ri ∈ [0, 1], and by Lemma 3.1, gi(r∗)Rigi(ri, r

∗
−i) for all ri ∈ [0, 1].

If i ∈ N+(RN )\S, then r∗i = 0 and gi(r∗) = 0. In view of |S|+1 > mi(RN ), it holds that
|S|+ 1 ≥ mi(RN ) + 1, i.e., 1

|S|+1 ≤ 1
mi(RN )+1 . Together with 0Ri

1
mi(RN )+1 , by Lemma 3.1,

we have 0Ri
1

|S|+1 , which implies that gi(r∗)Rigi(1, r∗−i). With monotonicity and Lemma 3.1
again, we can similarly verify that gi(r∗)Rigi(ri, r

∗
−i) for all ri ∈ [0, 1].

For i ∈ N \N+(RN ), in view of S ⊆ N+(RN ), we have i ∈ N \ S, r∗i = 0 and gi(r∗) = 0.
In view of 0Ri1, by Lemma 3.1, we have gi(r∗)Rigi(ri, r

∗
−i) for all ri ∈ [0, 1].

Thus, gi(r∗)Rigi(ri, r
∗
−i) for all i ∈ N and ri ∈ [0, 1], which implies that r∗ = eS is a

Nash equilibrium.

Case (ii): N+(RN ) = ∅ and N0(RN ) 6= ∅.
Let S = {i} with i ∈ N0(RN ). Then gi(r∗) = 1 and gj(r∗) = 0 for all j ∈ N \ {i}. For

agent i, in view of 1Ri0, by Lemma 3.1, it holds that gi(r∗)Rigi(ri, r
∗
−i) for all ri ∈ [0, 1]. For

each agent j ∈ N \ {i}, in view of 0Rj1, by Lemma 3.1 again, we have gj(r∗)Rjgj(rj , r
∗
−j)

for all rj ∈ [0, 1]. So, r∗ = e{i} is a Nash equilibrium.
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Case (iii): N−(RN ) = N .
If S = {i} for some i ∈ N , then 1Ri

1
n , Then r∗j = 0 and gj(r∗) = 0 for all j ∈

N \ {i}. In view of 0Pj1, by Lemma 3.1, we have gj(r∗)Rjgj(rj , r
∗
−j) for all rj ∈ [0, 1]. With

monotonicity, we have gi(ri, r
∗
−i) ≥ 1

n for all ri ∈ (0, 1]. In view of 1Ri
1
n , by Lemma 3.1

again, we have gi(r∗)Rigi(ri, r
∗
−i) for all ri ∈ [0, 1]. So, r∗ = e{i} is a Nash equilibrium.

If S = ∅, then 1
nPi1 for all i ∈ N . For each i ∈ N , if ri > 0, with monotonicity, we have

gi(ri, r
∗
−i) > gi(0, r∗−i) = 1

n . Together with 1
nPi1, by Lemma 3.1, we have gi(r∗)Rigi(ri, r

∗
−i)

for all ri ∈ [0, 1]. So, r∗ = e∅ is a Nash equilibrium.

Combining these three cases, we conclude that for each S ∈ M(RN ), r∗ = eS is a Nash
equilibrium. Lemma 4.1 implies that g(r∗) is Pareto optimal at RN .

For the only-if part, assume that r∗ is a Pareto optimal Nash equilibrium. From Theorem
3.5, it follows that r∗ = eS for some S ∈ 2N . We prove that S ∈M(RN ).

Case (i): N+(RN ) 6= ∅.
Assume, to the contrary, that S /∈ M(RN ). Let T ∈ M(RN ). First, we prove that

|S| = |T |.
Since g(eS) and g(eT ) are Pareto optimal at RN , from Lemma 4.1, we have 1

|S|Pi0 for all
i ∈ S, and 1

|T |Pi0 for all i ∈ T . Since eS (by assumption) and eT (from the if-part) are Nash
equilibria of (RN , g), we have 0Rj

1
|S|+1 for all j ∈ N \ S, and 0Rj

1
|T |+1 for all j ∈ N \ T . If

|S| < |T |, then there exists k ∈ T \ S such that 1
|T |Pk0 and 0Rk

1
|S|+1 . However, in view of

|S| < |T |, we have |S|+ 1 ≤ |T |, i.e., 1
|T | ≤ 1

|S|+1 . From Lemma 3.1, it follows that 0Rk
1
|T | ,

which is a contradiction. If |S| > |T |, we similarly obtain a contradiction. Thus, |S| = |T |.
Then, since S /∈ M(RN ) and |S| = |T |, there exist i ∈ S and j ∈ N \ S such that

mi(RN ) < mj(RN ). By Lemma 4.1, we have 1
|S|Pi0. It follows that |S| ≤ mi(RN ). So,

|S| < mj(RN ), i.e., 1
|S|+1 ≥ 1

mj(RN ) . In view of 1
mj(RN )Pj0, we have 1

|S|+1Pj0. This implies
that gj(1, eS

−j)Pjgj(eS), which contradicts the assumption that eS is a Nash equilibrium.
Thus, S ∈M(RN ).

Case (ii): N+(RN ) = ∅ and N0(RN ) 6= ∅.
From Lemma 4.1, g(eT ) is not Pareto optimal for all T ∈ 2N \ M(RN ). Thus, S ∈

M(RN ).

Case (iii): N−(RN ) = N .
If there exists i ∈ N such that 1Ri

1
n , then e∅ is not a Pareto optimal Nash equilibrium,

hence S 6= ∅. Since 0Pj1 for all j ∈ N , it follows that eT is not a Nash equilibrium for each
T ∈ 2N with |T | ≥ 2. Hence, |S| = 1. For j ∈ N such that 1

nPj1, it is easily seen that e{j}

is not a Nash equilibrium. Thus, S ∈M(RN ).
Finally, suppose that {i ∈ N | 1Ri

1
n} = ∅, i.e., 1

nPi1 for all i ∈ N . If T 6= ∅, then since
0Pi1 and 1

nPi1 for all i ∈ N , it follows that gi(eT\{i})Pigi(eT ) for all i ∈ T , which implies
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that eT is not a Nash equilibrium. So, S = ∅ ∈ M(RN ), and the proof of the theorem is
complete.

Theorem 4.5 shows that for a standard mechanism, the Pareto optimal Nash equilibria are
those strategy profiles in which all agents in a maximal coalition play 1 and all other agents
play 0. Since there exists at least one maximal coalition for every single-dipped preference
profile, Lemma 4.4 and Theorem 4.5 imply the result announced earlier.

Corollary 4.6 Let g ∈ G. There exists a Pareto optimal Nash equilibrium of (RN , g) for
every RN ∈ DN if and only if g is standard.

The next example shows that for a game based on a standard mechanism, besides Pareto
optimal Nash equilibria, there may exist Nash equilibria without Pareto optimal outcomes,
or Pareto optimal outcomes, not obtained in any Nash equilibrium.

Example 4.7 Let N = {1, 2} and let g ∈ G be as in Example 2.1.
(a) Consider RN ∈ DN such that 1P10P1

1
2 and 0P21P2

1
2 . Then, we have g1(0, 1)P1g1(1, 1)

and g2(0, 1)P2g2(0, 0). With monotonicity and Lemma 3.1, it follows that g1(0, 1)R1g1(r1, 1)
and g2(0, 1)R2g2(0, r2) for all r1, r2 ∈ [0, 1]. So, e{2} = (0, 1) is a Nash equilibrium. However,
g(e{2}) = (0, 1) is not Pareto optimal at RN . In fact, Theorem 4.5 implies that the unique
Pareto optimal Nash equilibrium is e{1} = (1, 0).

(b) Consider RN ∈ DN such that d(R1) = d(R2) = 0. Then x = g( 1
2 , 1

3 ) = ( 7
12 , 5

12 )
is Pareto optimal at RN , but there is no S ∈ 2N such that g(eS) = x. Thus, Theorem
3.5 implies that there is no Nash equilibrium r∗ such that g(r∗) = x. In fact, m1(RN ) =
m2(RN ) = 2, and hence the unique maximal coalition is N . From Theorem 4.5 (or direct
inspection), the unique Pareto optimal Nash equilibrium is eN = (1, 1). 4

4.2 Strong equilibrium

In this subsection we consider a further strengthening of Pareto optimal Nash equilibrium,
namely strong equilibrium (Aumann, 1959): no coalition can profitably deviate. We will
show that the Pareto optimal Nash equilibria and strong equilibria coincide if, besides anony-
mous, monotonic, and standard, the mechanism is order preserving.1

Order preservation A mechanism g is order preserving if gi(r) ≥ gj(r) for all r ∈ [0, 1]N

and i, j ∈ N with ri ≥ rj .

Theorem 4.8 Let RN ∈ DN and let g ∈ G be standard and order preserving. Then a
strategy profile is a Pareto optimal Nash equilibrium of (RN , g) if and only if it is a strong
equilibrium.

1A similar condition also occurs in Bochet et al (2021) under the name ‘peak order preservation’.
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Proof. We start with the only-if part. Let S ∈ M(RN ). By Theorem 4.5, it is sufficient to
verify that eS is a strong equilibrium. Assume, to the contrary, that there exist T ∈ 2N \{∅}
and rT ∈ [0, 1]T such that gi(rT , eS

N\T )Rigi(eS) for all i ∈ T and gj(rT , eS
N\T )Pjgj(eS) for

some j ∈ T . We consider three cases.

Case (i): N+(RN ) 6= ∅.
If S∩T 6= ∅, then for each i ∈ S∩T , it holds that gi(rT , eS

N\T ) ≥ 1
|S| in view of 1

|S|Pi0 from
Theorem 4.5 and gi(rT , eS

N\T )Rigi(eS) by assumption. By order preservation, it follows that
gj(rT , eS

N\T ) ≥ gi(rT , eS
N\T ) ≥ 1

|S| for all j ∈ S \ T . So, we have gi(rT , eS
N\T ) = 1

|S| = gi(eS)
for all i ∈ S, and gj(rT , eS

N\T ) = 0 = gj(eS) for all j ∈ N \ S, i.e., gk(rT , eS
N\T )Ikgk(eS) for

all k ∈ T , contradicting our assumption.
If S ∩ T = ∅, then we claim that gi(rT , eS

N\T ) ≤ 1
|S|+1 for each i ∈ T . If not, take

i ∈ T with gi(rT , eS
N\T ) > 1

|S|+1 . Then gj(rT , eS
N\T ) ≥ gi(rT , eS

N\T ) > 1
|S|+1 for all j ∈ S.

It follows that
∑

k∈T∪S gk(rT , eS
N\T ) > 1, which is not possible. In view of 0Ri

1
|S|+1 from

Theorem 4.5, together with Lemma 3.1, we have gi(eS)Rigi(rT , eS
N\T ) for all i ∈ T , which

contradicts our assumption.

Case (ii): N+(RN ) = ∅ and N0(RN ) 6= ∅.
In this case, S = {i} for some i ∈ N0(RN ). Then g(eS) = e{i}. Since 1Ii0 and 0Rj1

for all j ∈ N \ {i}, by Lemma 3.1 we have gk(eS)Rigk(rT , eS
N\T ) for all k ∈ T , which is a

contradiction to our assumption.

Case (iii): N−(RN ) = N .
If S = {i} for some i ∈ N , then 1Ri

1
n . It follows that gj(eS) = 0 for all j ∈ N \

{i}. Since e{i} is a Nash equilibrium, it holds that T 6= {i}. For each k ∈ T \ {i}, we
have gk(eS)Rkgk(rT , eS

N\T ) from 0Pk1 and Lemma 3.1. Together with our assumption, it
follows that gk(rT , eS

N\T ) = gk(eS) = 0 for all k ∈ T \ {i}. By order preservation, we have
gj(rT , eS

N\T ) = 0 for all j ∈ N \ {i}. So, g(rT , eS
N\T ) = g(eS), which is a contradiction.

If S = ∅, then 1
nPi1 for all i ∈ N . For each k ∈ T , in view of gk(rT , eS

N\T )Rkgk(eS) and
0Pk

1
nPk1, we have gk(rT , eS

N\T ) ≤ 1
n . By order preservation, it holds that gj(rT , eS

N\T ) ≤
gk(rT , eS

N\T ) ≤ 1
n for all j ∈ N \ T and k ∈ T . So, gk(rT , eS

N\T ) = gk(eS) = 1
n for all k ∈ T ,

which is a contradiction. This concludes the proof of the only-if part.

For the if-part, suppose that r∗ is a strong equilibrium of (RN , g). Obviously, r∗ is a
Nash equilibrium. By Theorem 3.5, there is a coalition S such that r∗ = eS . Since g is
standard, we have g(eS) = 1

|S|e
S if S 6= ∅. If S = ∅, then g(eS) = 1

neN .
If S = ∅, then, since eS is a Nash equilibrium, we have 1

nRi1 for all i ∈ N , which implies
that g(eS) = 1

neN is Pareto optimal.
If |S| ≥ 2, then, again since eS is a Nash equilibrium, 1

|S|Ri0 for all i ∈ S; in this case,
if xiRigi(eS) for some x ∈ A and all i ∈ N , then in particular xi ≥ 1

|S| for all i ∈ S, which
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implies x = g(eS) and, thus, g(eS) is Pareto optimal.
Finally, suppose that |S| = 1, say S = {n}.
If 1Pn0 then clearly g(eS) = (0, . . . , 0, 1) is Pareto optimal.
If 1In0 and there is some j 6= n with 1Pj0, then {j, n} can profitably deviate by rj = 1

and rn = 0, contradicting that eS is a strong equilibrium; hence, 0Rj1 for all j 6= n, so that
g(eS) = (0, . . . , 0, 1) is Pareto optimal.

If 0Pn1 and there is some j 6= n with 1Rj0, then {j, n} can profitably deviate by rj = 1
and rn = 0, contradicting that eS is a strong equilibrium; hence, 0Pj1 for all j 6= n, so that
g(eS) = (0, . . . , 0, 1) is Pareto optimal. This concludes the proof of the if-part.

4.3 Implementation

In this subsection we reformulate our main results in terms of implementation. A social
choice correspondence F is a map assigning to each preference profile RN ∈ DN a nonempty
set of allocations. If this set always consists of exactly one allocation, then F is a rule, as
defined earlier in Section 2. We say that a mechanism g implements F in Pareto optimal
Nash equilibrium if

F (RN ) = {g(r) ∈ A | r is a Pareto optimal Nash equilibrium of (RN , g)}

for every preference profile RN ∈ DN . Mechanism g implements F in strong equilibrium if

F (RN ) = {g(r) ∈ A | r is a strong equilibrium of (RN , g)}

for every preference profile RN ∈ DN . For each S ⊆ N define the allocation êS ∈ A by

êS =

{
1
|S|e

S if S 6= ∅
( 1

n , . . . , 1
n ) if S = ∅.

Define the social choice correspondence M on DN by

M(RN ) = {êS ∈ A | S ∈M(RN )}

for every RN ∈ DN . We now have the following corollary from Theorems 4.5 and 4.8.

Corollary 4.9 Let g ∈ G. If g is standard, then g implements M in Pareto optimal Nash
equilibrium. If g is standard and order preserving, then g implements M in strong equilib-
rium.
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5 An axiomatic characterization of the correspondence M

In this section we present an axiomatic characterization of the correspondence M , i.e., the
correspondence implemented in Pareto optimal Nash or strong equilibrium as in Corollary
4.9.

Unless stated otherwise, F is a social choice correspondence defined on DN . In order
to formulate the first axiom we define the concept of an envious agent. Let RN ∈ DN and
x ∈ A. An agent i ∈ N is (an) envious (agent) at RN and x if xjPixi for some j ∈ N . We
denote by E(RN , x) the set of all envious agents at RN and x. By PO(RN ) we denote the
set of all Pareto optimal allocations at RN .

The first axiom requires that F assigns Pareto optimal allocations and, among those,
only allocations with a minimal number of envious agents.

Minimal envy Pareto optimality x ∈ PO(RN ) and |E(RN , x)| ≤ |E(RN , y)| for all
RN ∈ DN , x ∈ F (RN ), and y ∈ PO(RN ).

The second condition requires that every agent (weakly) prefers an assigned allocation
over equal division. Under the same name, this condition occurs in Thomson (2010) for the
case of single-peaked preferences; it also occurs already in Pazner (1977) under the name
‘per-capita-fairness’.

Equal division lower bound xiRi
1
n for all RN ∈ DN , x ∈ F (RN ), and i ∈ N .

The third and final condition requires that a higher sharing index cannot result in a lower
share. A higher sharing index expresses more eagerness to receive a nonzero share, and this
should not result in a lower share.

Sharing index order preservation xi ≥ xj for all RN ∈ DN , x ∈ F (RN ), and i, j ∈ N

with mi(RN ) > mj(RN ).

Our characterization result says that M is the maximal correspondence with these three
properties.

Theorem 5.1 A social choice correspondence F satisfies minimal envy Pareto optimality,
equal division lower bound, and sharing index order preservation, if and only if F (RN ) ⊆
M(RN ) for all RN ∈ DN .

The proof of this theorem is based on a number of lemmas. We first show that M satisfies
the three axioms in the theorem.

Lemma 5.2 The social choice correspondence M on DN is minimal envy Pareto optimal.
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Proof. Let RN ∈ DN and S ∈ M(RN ). Then, by Corollary 4.9, êS is Pareto optimal.
Denote

µ(RN ) = min
y∈PO(RN )

|E(RN , y)|.

We have to show that |E(RN , êS)| = µ(RN ). To this end, we distinguish four cases.

Case (i): N+(RN ) 6= ∅.
Denote

S∗ = {i ∈ N+(RN ) \ S | mi(RN ) = |S|} .

We claim that E(RN , êS) = S∗.
To prove this claim, first observe that there is no envious agent in S since 1

|S|Ri
1

mi(RN )Pi0
for all i ∈ S, and there is also no envious agent in N \ N+(RN ) since 0Pi

1
|S| for all i ∈

N \N+(RN ). For the agents in N+(RN ) \ S, we consider the following three subcases.
(i.a) N+(RN ) \ S = ∅.
In this case, S∗ = ∅, and êS

i = 1
|S| = 1

mi(RN ) = 1
|N+(RN )| for all i ∈ S. This, together

with 1
mi(RN )Pi0 for all i ∈ S, implies that there is no envious agent in N+(RN ). Hence,

E(RN , êS) = ∅ = S∗.
(i.b) N+(RN ) \ S 6= ∅ and S∗ = ∅.
Let i ∈ N+(RN ) \ S. Then mi(RN ) < |S|, hence 1

mi(RN )+1 ≥ 1
|S| > 0. This and

0Ri
1

mi(RN )+1 , imply that 0Ri
1
|S| , hence there is no envious agent in N+(RN ) \ S. Hence,

again E(RN , êS) = ∅ = S∗.
(i.c) N+(RN ) \ S 6= ∅ and S∗ 6= ∅.
Every agent i ∈ S∗ is an envious agent in view of 1

|S|Pi0. If i ∈ N+(RN ) \ (S ∪ S∗),
then mi(RN ) < |S|, and similarly as in case (i.b), i is not envious. Hence, also in this case,
E(RN , êS) = S∗.

Hence, E(RN , êS) = S∗ in all three subcases.

To complete the proof for Case (i), we show that µ(RN ) = |S∗|.
Assume, to the contrary, that there exists x ∈ PO(RN ) such that |E(RN , x)| < |S∗|. If

there exists j ∈ S ∪ S∗ such that xj > 1
|S| , then

|{i ∈ S ∪ S∗ | xi = max
k∈N

xk}| ≤ |S| − 1.

Since 1
|S|Pi0 for all i ∈ S∪S∗, it follows that (max

k∈N
xk)Pixi for all i ∈ S∪S∗ with xi 6= max

k∈N
xk.

This means that at least |S∗|+1 agents in S ∪S∗ are envious at x, which is a contradiction.
Hence, xi ≤ 1

|S| for all i ∈ S ∪ S∗.
Suppose there exists j ∈ N+(RN ) \ (S ∪ S∗) with xj > 0. Since mj(RN ) < |S| and

0Rj
1

mj(RN )+1 , we have 1
mj(RN )+1 ≥ 1

|S| and 0Rj
1
|S| . Hence, since x ∈ PO(RN ), xj > 1

|S| . It
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follows that
|{i ∈ S ∪ S∗ | xi ≥ xj}| ≤ |S| − 1,

which implies that at least |S∗|+1 agents in S∪S∗ are envious at x, which is a contradiction.
Thus, xj = 0 and therefore

∑
i∈S∪S∗

xi = 1.

Next, suppose there exists j ∈ S∗ with 0 < xj < 1
|S| . By Lemma 4.1(i), and since

mj(RN ) = |S|, we have xj > 1
|S|+1 . Hence,

|{i ∈ S ∪ S∗ | xi = max
k∈N

xk}| ≤ |S|,

and the number of envious agents at x is at least |S∗|, contradicting the assumption |E(RN , x)| <
|S∗|. Thus, µ(RN ) = |S∗|, and the proof of Case (i) is complete.

Case (ii): N+(RN ) = ∅ and N0(RN ) 6= ∅.
In this case, S = {i} for some i ∈ N0(RN ), and |E(RN , êS)| = µ(RN ) = 0.

Case (iii): N−(RN ) = N and {j ∈ N | 1Rj
1
n} 6= ∅.

In this case, S = {j} for some j ∈ N such that 1Rj
1
n . Since E(RN , êS) = {j}, it follows

that µ(RN ) ≤ 1. We show that µ(RN ) = 1.
Consider any x ∈ PO(RN ). If xi = 1 for some agent i, then i is an envious agent.

Otherwise, from Lemma 4.1(iii), we have xjPj1 for all j ∈ N . Since ( 1
n , . . . , 1

n ) /∈ PO(RN ),
there exist distinct k, l ∈ N such that xk < xl. It follows that xkPlxlPl1, which means that
l is an envious agent. Hence, µ(RN ) = 1.

Case (iv): N−(RN ) = N and {j ∈ N | 1Rj
1
n} = ∅.

Then S = ∅, and |E(RN , êS)| = |E(RN , ( 1
n , . . . , 1

n ))| = 0 = µ(RN ).

This completes the proof of the lemma.

Lemma 5.3 The social choice correspondence M on DN satisfies equal division lower bound.

Proof. Let RN ∈ DN and S ∈ M(RN ). We show that êS
i Ri

1
n for all i ∈ N , by considering

four cases.

Case (i): N+(RN ) 6= ∅.
For each i ∈ S, 1

|S|Ri
1
n since 1

mi(RN )Pi0 and 0 < 1
n ≤ 1

mi(RN ) ≤ 1
|S| . For each i ∈

N+(RN ) \ S, 0Ri
1
n since 0Ri

1
mi(RN )+1 and 0 < 1

n ≤ 1
mi(RN )+1 . For each i ∈ N \N+(RN ),

0Pi
1
n . Thus, êS

i Ri
1
n for all i ∈ N .

Case (ii): N+(RN ) = ∅ and N0(RN ) 6= ∅.
In this case, S = {i} for some i ∈ N0(RN ). Clearly, êS

i Ri
1
n for all i ∈ N .

Case (iii): N−(RN ) = N and {j ∈ N | 1Rj
1
n} 6= ∅.
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In this case, S = {j} for some j ∈ N such that 1Rj
1
n . Since 0Ri1 for all i ∈ N \ {j}, we

have êS
i Ri

1
n for all i ∈ N .

Case (iv): N−(RN ) = N and {j ∈ N | 1Rj
1
n} = ∅.

Then S = ∅, and êS
i Ii

1
n for all i ∈ N .

Lemma 5.4 The social choice correspondence M on DN satisfies sharing index order preser-
vation.

Proof. Let RN ∈ DN and S ∈ M(RN ). Let i, j ∈ N with mi(RN ) > mj(RN ). Then i ∈
N+(RN ). If i ∈ S, then êS

i = 1
|S| ≥ êS

j ∈ {0, 1
|S|}. If i ∈ N+(RN ) \ S, then êS

i = 0 = êS
j .

Proof of Theorem 5.1 The if-part of the theorem follows from Lemmas 5.2–5.4 and the
observation that these lemmas also hold for any F with F (RN ) ⊆ M(RN ) for all RN ∈ DN .

For the only-if part, assume that F satisfies minimal envy Pareto optimality, equal divi-
sion lower bound, and sharing index order preservation. Let RN ∈ DN and x ∈ F (RN ). We
show that x ∈ M(RN ), by distinguishing four cases.

Case (i): N+(RN ) 6= ∅.
Let S ∈ M(RN ), and S∗ = {i ∈ N+(RN ) \ S | mi(RN ) = |S|}. By Lemma 4.1(i),

xi = 0 for all i ∈ N \N+(RN ). If xj > 0 for some j ∈ N+(RN ) \ (S ∪ S∗), then by Pareto
optimality and mj(RN ) < |S| it follows that xj > 1

|S| . By sharing index order preservation,
this implies xi > 1

|S| also for all i ∈ S∪S∗, but then
∑

i∈N xi > 1, a contradiction. Therefore,∑
i∈S∪S∗ xi = 1.
Denote S+ = {i ∈ S ∪ S∗ | xi > 0}. If |S+| > |S|, then sharing index order preservation

and 0Ri
1

|S|+1 for all i ∈ N+(RN ) with mi(RN ) = |S|, imply that
∑

i∈S∪S∗ xi > 1, which
is a contradiction. So, |S+| ≤ |S|, and therefore maxi∈S∪S∗ xi ≥ 1

|S| . Since µ(RN ) = |S∗|
by Lemma 5.2, minimal envy Pareto optimality requires that |S+| = |S| and xi = xj for all
i, j ∈ S+. In turn, this implies that x ∈ M(RN ).

Case(ii): N+(RN ) = ∅ and N0(RN ) 6= ∅.
Since in this case PO(RN ) = M(RN ), we have x ∈ M(RN ).

Case (iii): N−(RN ) = N and {j ∈ N | 1Rj
1
n} 6= ∅.

Equal division lower bound implies xi ≤ 1
n for each i ∈ N with 1

nPi1. Equal division
lower bound and Pareto optimality imply xi ≤ 1

n or xi = 1 for each i ∈ N with 1Ri
1
n . Since

( 1
n , . . . , 1

n ) /∈ PO(RN ), this implies that xj = 1 for some j ∈ N such that 1Rj
1
n . Hence,

x ∈ M(RN ).

Case (iv): N−(RN ) = N and {j ∈ N | 1Rj
1
n} = ∅.

In this case, M(RN ) = {( 1
n , . . . , 1

n )}, and therefore minimal envy Pareto optimality
implies that there are no envious agents at x. If y ∈ PO(RN ) with y 6= ( 1

n , . . . , 1
n ), then

there are i, j ∈ N such that yi < 1
n < yj . Since 0Pj

1
nPj1, we have yiPjyj , which means that
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player j is envious at RN and y, and thus y 6= x. Thus, x = ( 1
n , . . . , 1

n ) ∈ M(RN ). This
completes the proof of the theorem. ¤

The following example shows that the axioms in Theorem 5.1 are logically independent.

Example 5.5

(a) Let n = 3 and let R̃N ∈ DN be a preference profile with d(R̃i) = 1
3 and 1P̃i

1
2 P̃i0 for all

i ∈ N . Define F by F (R̃N ) = {(1, 0, 0)} and F (RN ) = M(RN ) for all RN ∈ DN \ {R̃N}.
Then F satisfies equal division lower bound and, since m1(R̃N ) = m2(R̃N ) = m1(R̃N ) = 2,
also sharing index order preservation. However, E(R̃N , (1, 0, 0)) = {2, 3}, E(R̃N , (1

2 , 1
2 , 0)) =

{3}, and both (1, 0, 0) and ( 1
2 , 1

2 , 0) are Pareto optimal at R̃N , so that F violates minimal
envy Pareto optimality. Note that M(R̃N ) = {( 1

2 , 1
2 , 0), ( 1

2 , 0, 1
2 ), (0, 1

2 , 1
2 )}, so that F *M .

(b) Let n = 2 and let R̃N ∈ DN be a preference profile with d(R̃1) = 1, d(R̃2) = 1
2 , and

0P̃21. Define F by F (R̃N ) = {(1, 0)} and F (RN ) = M(RN ) for all RN ∈ DN \ {R̃N}. Then
F does not satisfy equal division lower bound. Since m1(R̃N ) = m2(R̃N ) = 0, F satisfies
sharing index order preservation. Since (1, 0) is Pareto optimal at R̃N , E(R̃N , (1, 0)) = {1},
and at every Pareto optimal allocation at R̃N there is exactly one envious player, F satisfies
minimal envy Pareto optimality. Note that M(R̃N ) = {(0, 1)}, so that F *M .

(c) Let n = 4 and let R̃N ∈ DN be a preference profile with d(R̃i) = 1
4 and 1P̃i

1
3 P̃i0 for

i = 1, 2; and d(R̃i) = 1
4 , 1P̃i

1
2 P̃i0, and 0P̃i

1
3 for i = 3, 4. Then m1(R̃N ) = m2(R̃N ) = 3

and m3(R̃N ) = m4(R̃N ) = 2. Define F by F (R̃N ) = {(0, 0, 1
2 , 1

2 )} and F (RN ) = M(RN ) for
all RN ∈ DN \ {R̃N}. Then F is not sharing index order preserving. Note that M(R̃N ) =
{( 1

2 , 1
2 , 0, 0)}. Since |E(R̃N , ( 1

2 , 1
2 , 0, 0))| = |{3, 4}| = |{1, 2}| = |E(R̃N , (0, 0, 1

2 , 1
2 ))|, and

(0, 0, 1
2 , 1

2 ) is Pareto optimal at R̃N , we have that F satisfies minimal envy Pareto optimality.
Also, F satisfies equal division lower bound, but F (R̃N ) *M(R̃N ). 4

6 Concluding remarks

We have shown that in division problems with single-dipped preferences, the Pareto optimal
Nash and strong equilibria of games induced by a fairly general class of mechanisms, result
in Pareto optimal allocations characterized by maximal coalitions.

The obvious counterpart, the case of single-peaked preferences, is extensively studied in
Bochet et al (2021). The result that is most closely related to our approach is their Theorem
2, which applies to peaks-only rules – these are equivalent to mechanisms in our sense. Under
conditions on rules (mechanisms g), partly similar to ours, they show that the Pareto optimal
Nash equilibria and strong equilibria in a game (RN , g) coincide and result in the uniform
allocation, for every RN ∈ PN . An allocation x ∈ A is the uniform allocation at RN ∈ PN
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if there is a λ ∈ [0, 1] such that

xi =





min{p(Ri), λ} if
∑

i∈N p(Ri) ≥ 1

max{p(Ri), λ} if
∑

i∈N p(Ri) ≤ 1.

The uniform allocation is the allocation assigned by the uniform rule (single-valued social
choice correspondence) U , characterized by Sprumont (1991). At the uniform allocation,
either all agents obtain at most their peaks or all agents obtain at least their peaks, or both,
and thus the uniform allocation is is indeed Pareto optimal (it is ‘same-sided’).

Sprumont (1991) shows that the uniform rule is the unique anonymous, Pareto optimal,
and strategy-proof rule. Recall that a rule F is strategy-proof if Fi(RN )RiFi(R′i, RN\{i})
for every preference profile RN , agent i ∈ N , and preference R′i, where preferences are
chosen within a specific domain, for instance P or D. The following example shows that,
in the single-dipped case, rules obtained by selecting from M are not strategy-proof. Let
F : DN → A such that F (RN ) ∈ M(RN ) for every RN ∈ DN .

Example 6.1 Let RN ∈ DN such that 0Pi1Ri
1
n for all i ∈ N . Then M(RN ) = {{i} | i ∈

N}, and therefore F (RN ) = e{j} for some j ∈ N (cf. Theorem 4.5). Consider R′j ∈ D such
that 0P ′j1 and 1

nP ′j1. Then M(R′j , R−j) = {{i} | i ∈ N \{j}}, and therefore Fj(R′j , R−j) = 0,
so that Fj(R′j , R−j)PjFj(RN ). Hence, F is not strategy-proof. 4

The uniform rule for single-peaked preference profiles is Pareto optimal and envy-free (at
the uniform allocation no agent envies any other agent), thus trivially satisfies minimal envy
Pareto optimality formulated for single-peaked preferences. It also satisfies equal division
lower bound (Thomson, 2010). It is not hard to see that these conditions do not uniquely
characterize the uniform rule, but it is not obvious what the analogue of sharing index order
preservation for single-peaked preferences is.

A natural extension of our analysis and the analysis in Bochet et al (2021) is to other
domains of preferences, notably if both single-dipped and single-peaked preferences in a
profile are allowed.

Appendix: Proof of Proposition 3.7

By ps+1 > qs for all s = 0, 1, . . . , n− 1, we have p1 > 1
2 > q1. We consider three cases.

(a) Suppose that p1P1q
1. Then, by Lemma 3.1, p1R1

1
2 .

(a1) First suppose that q1R2p
1. Then, by Lemma 3.1, q1R2

1
2 . It follows that g1(1, 0)R1

g1(0, 0) and g2(1, 0)R2g1(1, 1). With monotonicity and Lemma 3.1 again, it holds that
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g1(1, 0)P1g1(r1, 0) and g2(1, 0)P2g2(1, r2) for all r1, r2 ∈ [0, 1]. So, r∗ = (1, 0) is a Nash
equilibrium.

(a2) Second, suppose that p1R2q
1. Then, by Lemma 3.1, p1R2

1
2 .

(a2.1) If 1
2P1q

1 and 1
2P2q

1, then g1(1, 1)P1g1(0, 1) and g2(1, 1)P2g2(1, 0). From mono-
tonicity and Lemma 3.1, it holds that g1(1, 1)R1g1(r1, 1) and g2(1, 1)R2g2(1, r2) for all
r1, r2 ∈ [0, 1]. So, r∗ = (1, 1) is a Nash equilibrium.

(a2.2) If q1R1
1
2 , together with p1R2

1
2 , then g1(1, 0)R1g1(0, 0) and g2(1, 0)R2g2(1, 1). With

monotonicity and Lemma 3.1 again, it holds that g1(1, 0)R1g1(r1, 0) and g2(1, 0)R2g2(1, r2)
for all r1, r2 ∈ [0, 1]. So, r∗ = (1, 0) is a Nash equilibrium.

(a2.3) If q1R2
1
2 , then similar to (a2.2), we can prove that r∗ = (0, 1) is a Nash equilibrium.

(b) Suppose that p1I1q
1. Then, p1R1

1
2 and q1R1

1
2 .

(b1) If p1P2q
1, then p1R2

1
2 . So, g1(0, 1)P1g1(1, 1) and g2(0, 1)P2g2(0, 0). With mono-

tonicity and Lemma 3.1, it holds that g1(0, 1)R1g1(r1, 1) and g2(0, 1)R2g2(0, r2) for all
r1, r2 ∈ [0, 1]. So, r∗ = (0, 1) is a Nash equilibrium.

(b2) If q1R2p
1, then q1R2

1
2 . Similar to (b1), we can prove that r∗ = (1, 0) is a Nash

equilibrium.
(c) Suppose that q1P1p

1. Then, by Lemma 3.1, q1R1
1
2 .

(c1) First, suppose that p1R2q
1, then similar to (a1), it follows that r∗ = (0, 1) is a Nash

equilibrium.
(c2) Second, suppose that q1P2p

1. Then, q1R2
1
2 .

(c2.1) If 1
2P1p

1 and 1
2P2p

1, then g1(0, 0)P1g1(1, 0) and g2(0, 0)P2g1(0, 1). With mono-
tonicity and Lemma 3.1, it holds that g1(0, 0)R1g1(r1, 0) and g2(0, 0)R2g2(0, r2) for all
r1, r2 ∈ [0, 1]. So, r∗ = (0, 0) is a Nash equilibrium.

(c2.2) If p1R1
1
2 , together with q1R2

1
2 , we have g1(1, 0)R1g1(0, 0) and g2(1, 0)R2g1(1, 1).

With monotonicity and Lemma 3.1, it holds that g1(1, 0)R1g1(r1, 0) and g2(1, 0)P2g2(1, r2)
for all r1, r2 ∈ [0, 1]. So, r∗ = (1, 0) is a Nash equilibrium.

(c2.3) If, finally, p1R2
1
2 , then similar to (c2.2), it can be proved r∗ = (0, 1) is a Nash

equilibrium. ¤
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