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INTRODUCTION
The standard treatment for locally advanced rectal cancer (LARC) is neoadjuvant 

long-course chemoradiotherapy (CRT) followed by complete surgical resection of 

the rectum and its surrounding mesorectal compartment (total mesorectal excision 

or ‘TME’) [1–4]. The main aim of CRT is to downstage the tumor prior to surgery, which 

leads to a complete pathological tumor response (i.e. no residual tumor cells are found 

in the surgical specimen) in up to 15-27% of the cases [5, 6]. This has sparked debate on 

the justification of invasive surgery in these patients [7], as TME has a high morbidity, 

significant mortality risk (2-8%, rising up to 30% in elderly patients [8, 9]), and often 

results in a temporary or permanent colostomy. 

Recent studies have shown that patients that have no detectable tumor on post-

treatment imaging (clinical complete response) may also be managed with active 

surveillance (“Watch-and-Wait” (W&W)) instead of surgery. W&W has been shown to 

result in similar overall survival as radical surgery [10–16], but leads to better functional 

outcome and quality of life [7, 16–19]. Achieving a complete response is therefore 

nowadays an increasingly important goal for patients. 

If we could predict at the start how well patients will respond to chemoradiotherapy, 

this could create opportunities to further personalize treatment and improve patient 

outcomes. In patients likely to respond well, neoadjuvant treatment may be intensified 

to increase their chance of a complete response. Likewise, potentially harmful CRT 

may be avoided in patients that are not expected to benefit from it. Patients with 

smaller (cT1-2 or early stage cT3) tumors typically show higher complete response 

rates (up to 30-50%) [20–22]. These early tumors are currently treated with immediate 

surgery without CRT with good prognostic outcomes. If treatment response can be 

reliably predicted, CRT may become a viable alternative for these patients in the 

future. To date, offering CRT to small tumors to achieve W&W is still experimental and 

only performed in trial settings [23, 24]. Nevertheless, it is a development that further 

stresses the need for accurate response prediction. The ultimate goal here is to offer 

more patients a chance on organ-preservation.

The role of imaging for response prediction

Anatomical imaging techniques such as magnetic resonance imaging (MRI) and 

computed tomography (CT) play a key role in the staging and treatment stratification 

of oncologic patients by offering detailed information on the location, size, and 
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spread of tumor lesions. The introduction of ‘functional’ molecular imaging has further 

transformed the field of oncological imaging. Functional MRI sequences such as 

diffusion-weighted imaging (DWI) and dynamic contrast enhanced (DCE or ‘perfusion’) 

imaging allow visualization and quantification of biological tumor properties such as 

tumor cell structure [25, 26] and angiogenesis [26, 27]. Metabolic tumor activity can 

be studied using 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) 

[25, 28]. Hybrid PET/CT and more recently introduced PET/MRI systems integrate the 

benefits of functional imaging with high-resolution anatomical imaging within a single 

acquisition [28, 29]. Another important evolution has been the clinical introduction of 

modern post-processing and artificial intelligence (AI) techniques such as ‘Radiomics’. 

With Radiomics, large numbers of quantitative imaging ‘features’ are extracted from 

routinely acquired imaging studies [30, 31]. These features can be used to describe a 

radiological phenotype of a disease and provide new insights into underlying tumor 

characteristics such as for example tumor heterogeneity, a feature that has often been 

associated with tumor aggressiveness and response outcomes [32–35]. Parameters 

derived from anatomical imaging, functional imaging and Radiomics have increasingly 

been studied in recent years as ‘biomarkers’ with the potential to assess response 

to neoadjuvant treatment in rectal cancer. Promising results have for example been 

reported for tumor volume measurements [36–38], metabolic tumor parameters 

derived from FDG-PET/CT [25, 39, 40], heterogeneity features from Radiomics [41], 

and for the ‘apparent diffusion coefficient’ (ADC; the main quantitative DWI measure) 

[42–51] as predictors of response. 

Multiparametric imaging

‘Multiparametric‘ imaging refers to a combined approach where the information from 

different anatomical, functional and/or post-processing techniques is integrated aiming 

to achieve a more comprehensive understanding of underlying tumor processes than 

what can be achieved using any single technique on its own. Evidence on the use of 

multiparametric imaging for treatment response prediction in rectal cancer is sparse. 

Most available image biomarker studies in rectal cancer concern relatively small scale 

and single-center studies with a focus on a single imaging technique. Results between 

individual studies are conflicting and little is known about the complimentary value 

of combining different techniques. Another important gap is that results of previous 

single-center works have scarcely been validated in external cohorts or in multicenter 

study settings. Whether previously obtained results are reproducible and generalizable 

towards other centers and populations therefore remains largely unknown. Finally, 

imaging features should be compared and combined with other clinical information 
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and clinical radiological staging parameters to gain a better insight into the added 

value of quantitative and multiparametric imaging in a clinical setting.

AIM OF THIS THESIS
The overall aim of this thesis is to study the value of multiparametric imaging to 

predict response to neoadjuvant treatment in rectal cancer and determine the optimal 

combination of clinical predictors, functional imaging ‘biomarkers’ and modern post-

processing methods.

The main study questions are:

1.  What is the value of imaging features derived from anatomical MRI, diffusion-

weighted MRI and FDG-PET/CT  to predict neoadjuvant treatment response?

2.  What is the complementary value of these parameters when combined with other 

basic clinical patient information and staging outcomes?

3.  Can we develop a generalizable image-based prediction model using multicenter 

imaging data from everyday clinical practice? 

OUTLINE OF THIS THESIS
Chapter 2 summarizes the current evidence on the clinical applications and utility of 

DWI for rectal cancer, including the current status of DWI for the purpose of response 

prediction.

Chapter 3 combines quantitative imaging features derived from PET/CT, anatomical 

MRI and diffusion-weighted MRI to investigate their potential complementary value 

for predicting treatment response to neoadjuvant chemoradiotherapy.

Chapter 4 focuses on local tumor heterogeneity and assesses whether advanced local 

image texture descriptors are beneficial to study response on PET/CT, MRI and DWI.

Chapter 5 evaluates the effects of variations in acquisition, hardware and inter-reader 

differences on the reproducibility of quantitative imaging features derived from 

anatomical and diffusion-weighted MRI in a large multicenter MRI rectal cancer cohort.
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In Chapter 6, findings from previous chapters were integrated and used to develop 

and externally validate a multiparametric response prediction model combining both 

clinical and quantitative imaging variables in a multicenter study setting.
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ABSTRACT
This review summarizes current applications and clinical utility of diffusion-weighted 

imaging (DWI) for rectal cancer and in addition provides a brief overview of more 

recent developments (including intravoxel incoherent motion imaging, diffusion 

kurtosis imaging, and novel postprocessing tools) that are still in more early stages of 

research. 

More than 140 papers have been published in the last decade, during which period 

the use of DWI have slowly moved from mainly qualitative (visual) image interpretation 

to increasingly advanced methods of quantitative analysis. So far, the largest body 

of evidence exists for assessment of tumour response to neoadjuvant treatment. In 

this setting, particularly the benefit of DWI for visual assessment of residual tumour in 

post-radiation fibrosis has been established and is now increasingly adopted in clinics. 

Quantitative DWI analysis (mainly the apparent diffusion coefficient) has potential, both 

for response prediction as well as for tumour prognostication, but protocols require 

standardization and results need to be prospectively confirmed on larger scale. The 

role of DWI for further clinical tumour and nodal staging is less well-defined, although 

there could be a benefit for DWI to help detect lymph nodes. Novel methods of DWI 

analysis and post-processing are still being developed and optimized; the clinical 

potential of these tools remains to be established in the upcoming years.
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INTRODUCTION
Over the last decade, more than 140 papers have been published on diffusion-weighted 

imaging (DWI) for rectal cancer varying from small, purely technical and pre-clinical studies 

to multicentre clinical patient studies in cohorts of up to 128 patients. Increasing evidence 

shows that DWI provides added benefit compared to conventional morphological 

sequences, in particular for the assessment of treatment response. The routine use of 

DWI for rectal cancer restaging was recently also recommended in the expert consensus 

guidelines of the European Society of Gastrointestinal Abdominal Radiology [1] and DWI 

is increasingly incorporated in clinical rectal MRI exams worldwide. Figure 1 illustrates 

how the research on rectal DWI has evolved over the years and what have been the main 

topics under investigation. 

Figure 1. Overview of the cumulative number of studies published on DWI and rectal 
cancer in the last decade. The majority focused on response assessment to CRT, initially 
followed by studies on DWI for staging though now overtaken by studies focusing on new 
techniques. Over time the focus of research has shifted from simple qualitative evaluation 
to increasingly advanced quantitative methods, which is also reflected by the increased 
proportion of studies focusing on the development of novel DWI models such as intravoxel 
incoherent motion (IVIM) and diffusion kurtosis imaging (DKI). Technical/Quality papers 
indicate papers that focusing on image quality or protocol development.
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Initially, the main focus of research was the role of DWI for qualitative (visual) assessment 

of rectal cancer for either staging or response assessment. This focus has slowly 

shifted towards more quantitative methods of DWI assessment, including a large 

number of studies on the use of the apparent diffusion coefficient (ADC), the main 

quantitative measure of DWI. More recently, several papers have been published on 

more advanced DWI models and post-processing methods such as histogram analysis, 

intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI), and automated 

DWI tumour segmentation. 

This paper aims to give an overview of the various clinical applications of DWI and 

discuss their potential role for rectal cancer imaging.

PRIMARY RECTAL CANCER 
STAGING
Rectal tumour detection

The main goal of MRI for rectal cancer is staging rather than tumour detection, since 

typically the presence of tumour has already been established by endoscopy or CT-

colonography [2]. It is probably therefore that only a few studies have focused on DWI 

for the primary detection of rectal cancer [3–10]. Nevertheless, published reports have 

shown consistently good results for DWI to detect rectal tumours. In a recent meta-

analysis, albeit focusing on colorectal tumours in general and not specifically on rectal 

cancer, pooled sensitivity, specificity and area under the curve (AUC) were 95%, 93% 

and 0.98, respectively [11]. The few studies that did specifically focus on rectal cancer 

detection found similar high sensitivities of 86-100%, specificities of 84-100%, and 

AUCs of 0.96-0.99 [3–6]. These results indicate that overall, the detection level of DWI is 

high, with a low risk for false positive findings, although these may occur, e.g. because 

DWI can also result in high signal in non-malignant colorectal polyps [6, 7]. In practice, 

DWI may mainly be helpful in some specific more difficult cases, to help direct the eye 

of the radiologist, e.g. in the case of small tumours (see Figure 2) or when tumours are 

obscured by large amounts of faeces. DWI is less useful for the detection of mucinous 

rectal tumours as due to their high mucin content, these tumours show less restricted 

diffusion and assessment is limited by T2 effects [12]. They typically show a relatively 

low signal on high b-value DWI with corresponding high signal on the ADC-map [12]. 

Mucinous type rectal tumours are generally better appreciated on routine T2W-MRI 

because their high mucin content results in markedly high T2 signal intensity [13, 14].



575588-L-bw-Schurink575588-L-bw-Schurink575588-L-bw-Schurink575588-L-bw-Schurink
Processed on: 8-4-2022Processed on: 8-4-2022Processed on: 8-4-2022Processed on: 8-4-2022 PDF page: 25PDF page: 25PDF page: 25PDF page: 25

DIFFUSION-WEIGHTED IMAGING IN RECTAL CANCER: CURRENT APPLICATIONS 
AND FUTURE PERSPECTIVES

25

Tumour staging

DWI appears to have only a minor role in the primary staging of rectal tumours. Two 

groups studied the added benefit of DWI for T-staging of rectal cancer, compared to 

routine staging using T2W-MRI [15, 16]. They found no clear benefit: for T1-2 tumours 

sensitivity was 64-90% for DWI vs. 60-80% for T2W-MRI and specificity was 83-100% 

for DWI vs. 78-92% for T2W-MRI; for T3-4 tumours sensitivity was 50-100% for DWI vs. 

50-100% for T2W-MRI and specificity was 83-100% for DWI vs. 77-100% for T2W-MRI. 

Differences in staging performance all lacked statistical significance. To the best of 

our knowledge, no papers have specifically focused on using DWI for other primary 

staging outcomes such as mesorectal fascia (MRF) involvement and extramural venous 

invasion (EMVI).

Lymph node staging

Nodal staging, remains one of the most challenging tasks for radiologists [17]. 

Traditionally, nodal staging relied heavily on nodal size as the main criterion. Additional 

morphological criteria such as nodal border, shape and signal intensity have been 

shown to be helpful and are now commonly employed, although these criteria may be 

difficult to evaluate in very small nodes [18–20]. Two meta-analyses reported suboptimal 

sensitivities and specificities in the range of 55-78% for nodal staging with standard 

(T2-weighted) MRI [21, 22]. The use of DWI for lymph node staging is appealing, since 

owing to the high cellular density of lymphoid tissue, nodes should typically be well 

Figure 2. T2-weighted MRI (a) and b1000 s/mm2 DWI images (b) of a male patient 
with a small tumour (white arrowhead) that is hard to detect and initially missed on 
T2-weighted MRI, but is clearly visible on DWI.
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detectable on DWI (see Figure 3). Indeed, a 10-83% increase in the overall number 

of detected lymph nodes has been reported when using DWI compared to T2W-MRI 

to detect pelvic lymph nodes [23–26]. The value of visual DWI evaluation for nodal 

characterization is less apparent. Two studies each reported a positive-predictive 

value of only 52% when using a high signal on DWI as a criterion for malignancy, 

indicating that use of DWI entails a risk for overstaging [20, 23]. One study looked at 

the morphology of lymph nodes on DWI and found that a more heterogeneous signal 

on DWI was associated with malignancy [27], an observation that has also previously 

been reported for nodes on T2W-MRI [18, 19] and may be less attributable to the use 

of DWI itself. This single-centre result has so far not been validated by other groups.

The majority of studies on DWI for characterizing rectal nodes focused on quantitatively 

measuring nodal ADC values [23, 28–31]. An overview of these studies is presented 

in Table 1. Most studies reported significantly higher ADC values (indicating a lower 

cellular density) for benign nodes than for malignant nodes [28–31]. Sensitivities and 

specificities to characterize nodes based on the ADC (using retrospectively determined 

threshold values) ranged from 67-88% and 60-97% respectively, which is only slightly 

higher than previously reported values [21, 22, 24, 32]. Moreover, reported ADC values 

vary across studies (using different MR vendors and protocols) and show considerable 

overlap between malignant and benign nodes. Also, feasibility and reproducibility of 

nodal ADC measurements has been reported as a potential drawback, owing to the 

Figure 3. Pre-treatment, primary staging T2-weighted (a) and DWI b1000 s/mm2 (b) 
images of a female patient with a spiculated tumour in the mid-rectum. Note how the 
various mesorectal lymph nodes (arrowheads) are very easily detectable on DWI.
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typical small size of rectal nodes combined with the suboptimal resolution on ADC-

maps, which can make it hard to delineate the nodes to measure their ADC [24, 33]. 

Two studies specifically reported that ADC could not be measured in a subset (21-27%) 

of the nodes identified on DWI because they were either too small or due to local 

image distortions [23, 24]. Along the same line, two groups omitted measurements 

on lymph nodes smaller than 2 mm in diameter, as delineations were technically too 

challenging in these nodes [29, 32].

TUMOUR RESPONSE ASSESSMENT
As illustrated in Figure 1, the major focus of research in rectal DWI has been the 

assessment of response to neoadjuvant treatment. This specific focus follows a recent 

paradigm shift in the treatment of rectal cancer, based on current evidence that in 

patients that show a (near-)complete response to chemoradiotherapy (CRT) organ-

preserving treatments such as ‘watch-and-wait’ may be considered as safe alternatives 

 Table 1. Overview of studies that compared the mean ADC values of benign and malignant nodes in 
rectal cancer, both in the primary staging setting, as well as for restaging of nodes after CRT.

Author (year)  (ref) N 
(pt)

N 
(nodes)

ADC 
benign 
nodes

ADC 
malignant 
nodes

p= Cut-
off

AUC Sens Spec

Primary staging

Yasui (2009)    [28] 46 163 1.85 ± 0.53 1.36 ± 0.42 0.001 1.44 0.79 75 74

Cho (2013)   [29] 34 114 1.10 ± 0.22 0.90 ± 0.15 < 0.0001 1.00 0.73 78 67

Zhao (2014)   [30] 72 454 0.91 ± 0.19 0.77 ± 0.12 <0.01# - - 88 97

Cerny (2016)   [31] 24 44 1.38 ± 0.32 1.10 ± 0.19 0.0012 - 0.76 - -

Heijnen (2013)   [23] 21 102 1.15 ± 0.24 1.04 ± 0.22 0.1 1.07 0.64 67 60

Restaging after CRT

Kim (2015)  [32] 53 115 1.13 ± 0.23 1.36 ± 0.27 <0.0001 1.25 0.74 66 74

Lambregts (2011)  [24] 30 115 1.19 ± 0.27 1.43 ± 0.38 <0.001 1.25 0.66 53 82

NB. Statistically signifi cant (P<0.05) results are printed in bold. 
# For Zhao (2014), results are presented on a per patient (N+ v.s. N0 stage) basis, all other concern node-by-node 
analyses.
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to major surgery [34]. This shift in treatment management increases the demand for an 

accurate radiological response evaluation. 

Different methods of response evaluation have been studied varying from visual DWI 

assessment to quantitative volumetric or ADC measurements, some with the addition 

of post-processing steps such as histogram analysis. An imaging example illustrating 

these various methods is provided in Figure 4.

Visual (qualitative) response assessment 

Routine MRI has well-known difficulties to discern viable tumour within post-treatment 

fibrosis, which is reflected by its poor performance (sensitivity of only 19% in a recent 

meta-analysis [35]) to differentiate between patients with a complete response (i.e. 

sterilized fibrosis) and patients with residual tumour. Increasing evidence suggests that 

Figure 4. Pre- (upper row) and post-CRT (bottom row) T2-weighted (a,e), b1000 s/mm2 
DWI (b,f) and ADC images (c,g) of a patient with a midrectal tumour that responded 
well to CRT (Histopathology after surgery indicated a very good response with predo-
minant fibrosis and only rare residual tumour cells; Mandard tumour regression grade 
of 2). The images illustrate the different ways DWI can be used to assess response: on 
pre-CRT a clear high signal mass can be appreciated on DWI (b), after CRT only a small 
high signal remnant is visible within the fibrosis on DWI indicating a small residual 
tumour (f). The tumour volume on DWI decreased from 13.2 cm3 to 0.26 cm3, while 
the ADC value increased from 0.91∙10-3 mm2/s, to 1.20∙10-3 mm2/s. Concordantly the 
histograms show that the distribution of ADC values within the tumour has shifted 
towards more high ADC values, indicating a good response.
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DWI is better equipped to make this differentiation (overview of studies provided in 

Table 2). Fibrotic tissue consists of loose connective fibres resulting in relatively minor 

diffusion restriction. Moreover, the high collagen content in fibrosis typically has a 

very short T2 relaxation time, leading to low signal on the ADC-map as well as the 

DW images [43]. In contrast, areas containing persistent viable tumour typically show 

restricted diffusion resulting in a high signal on high b-value DWI. Reported AUCs 

for DWI range between 0.70 and 0.96, compared to 0.67-0.85 for standard MRI, with 

a statistically significant effect in the majority of reports [36–42]. One recent study 

combined morphologic patterns of response on T2W-MRI with distinct signal patterns 

on DWI (specific locations of focal diffusion restriction within different patterns of 

fibrosis).

With this approach, the authors reached a sensitivity of 94% and specificity of 77% to 

differentiate patients with residual tumour from patients with a complete response 

[44], results that remain to be validated by other groups.

Table 2. Overview of studies that compared the performance of DWI and T2W imaging to visually assess 
complete response to CRT

Author (year)  (ref) N (pt) T2W DWI

AUC Sens Spec PPV NPV AUC Sens Spec PPV NPV

Kim (2009)* [36] 40 0.67 50 78 46 80 0.85 87 83 66 94

Lambregts (2011)* [37] 120 0.67 11 94 18 82 0.79 57 93 71 89

Park (2011)*  [38] 45 0.81 0.44 84 88 38 0.94 96 79 96 87

Song (2012)* [39] 50 - 71 67 94 25 - 88 42 92 55

Sassen (2013)* [40] 70 0.76 25 94 64 88 0.80 55 96 72 93

Marouf (2015) [41] 19 - 60 33 - - - 79 80 - -

Foti (2016)  [42] 31 - 20 100 100 88 - 80 100 100 97

NB. Presented results are the average of two readers except for [37], who used 3 readers, and [41] who did not mention 
the number of readers.
*In studies [36–40] a statistically signifi cant improvement in results was observed for at least one of the readers after add-
ing DWI images compared to T2W alone for assessing complete response to CRT.
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Tumour restaging

Most published reports on DWI for tumour response assessment focused on the 

general differentiation between a favourable response (i.e. complete or good re- 

sponse) vs poor response. In a meta-analysis by van der Paardt et al. pooled sensitivity 

for predicting response (defined as either ypT0, ypT0-2 or T-downstaging compared 

to primary staging) was significantly higher for studies that included DWI in the MR 

protocol compared to studies that did not (83.6% vs 50.4%) [35]. A second meta-

analysis by Wu et al. included studies focusing both on visual DWI analysis as well as 

studies focusing on ADC (with no subanalyses between these two groups) making 

it difficult to draw conclusion about the one or the other [45]. To the best of our 

knowledge, so far no studies exist on visual use of DWI for further yT substaging. One 

study recently proposed a new 3-point MR based tumour regression grade (mrTRG) 

incorporating both T2W-MRI and DWI for evaluating response after CRT. Both the 

accuracy for assessing response and interreader agreement improved significantly 

compared to the more well-known 5-point mrTRG score which uses T2W-MRI only 

[46]. A single report by Park and colleagues evaluated the use of DWI in addition to 

T2W-MRI to predict tumour clearance of the MRF after neoadjuvant CRT [38]. The 

authors reported a significantly improved performance after the addition of DWI (AUC 

0.92-0.96) compared to use of only T2-weighted MRI (AUC 0.77-0.85). 

Nodal restaging

A small number of papers reported on the diagnostic value of visual lymph node 

assessment using DWI in the restaging setting. Lambregts et al performed a node-by-

node analysis of 157 nodes detected on DWI post-CRT and found that nodal signal 

intensity on DWI did not differ between yN- and yN+nodes (AUC 0.52 and 0.64 for two 

readers) [24]. Two groups assessed the use of DWI to predict lymph node eradication 

(i.e. yN0 stage) after CRT on a patient basis [47, 48]. Van Heeswijk et al reported that the 

visual absence of nodes on DWI after CRT was a highly reliable predictor of a negative 

nodal status (sensitivity 100%), but the presence of nodes on post-CRT DWI was an 

unspecific finding, which could indicate either the presence of benign or malignant 

nodes, resulting in a low specificity of only 14%, again illustrating the limited capacity 

of DWI to visually characterize lymph nodes [47]. Ryu et al used a confidence level 

score to predict lymph node eradication after CRT with and without DWI and found no 

improvement in diagnostic performance for DWI compared to T2W-MRI with AUCs in 

the same range of 0.77-0.80 [48].
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Quantitative response assessment

DWI tumour volumetry 

Table 3 summarizes the findings of four studies that assessed the value of measuring 

tumour volumes on high b-value DW images to diagnose a complete response. Similar 

good results were found for the DWI tumour volume after CRT and the relative change 

in DWI tumour volume after CRT (∆volume) with AUCs of 0.84-0.93 [49–52]. In the three 

studies that compared DWI to T2W-MRI, DWI volumetry significantly outperformed 

T2W-volumetry [49–51]. Pre-treatment volumes showed only moderate performance 

with AUCs of 0.57-0.77 for both T2W-MRI and DWI, indicating that volumetry is of 

limited value for pre-treatment response prediction.

Tumour ADC

ADC has been extensively studied as an imaging biomarker to assess and predict 

response. A summary of these studies, in particular the studies focusing on pre-CRT 

ADC, post-CRT ADC and ∆ADC, is presented in Table 4.  

Table 3. Overview of studies that have compared DWI and T2W tumour volumetry 
to predict a complete response to CRT.

Author (year) (ref) N= T2W AUC DWI AUC

Pre-CRT volume

Curvo-Semedo (2011) [49] 50 0.57 0.63

Lambregts (2014)  [50] 112 0.73 0.77

Post-CRT volume

Curvo-Semedo (2011)   [49] 50 0.70 0.93*

Lambregts (2014)   [50] 112 0.82 0.92*

Sathyakumar (2016)  [51] 64 - 0.88

∆Volume

Curvo-Semedo (2011)   [49] 50 0.84 0.92

Lambregts (2014)   [50] 112 0.78 0.86

Sathyakumar (2016)   [51] 64 - 0.84

Ha (2013)  [52] 100 0.79 0.91*

* =  DWI volumetry performed signifi cantly (P<0.05) better than T2W volumetry for predicting 
complete response to CRT.

NB.  For all studies, manual tumour segmentations were performed slice-by-slice on T2W and 
DWI by experienced readers.
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Regardless of the definition of response used in these reports (i.e. good or complete 

response), all studies reported an increase in mean tumour ADC after CRT [36, 39, 

42, 49, 51–58, 60–90], which is thought to be due to radiation-induced cellular 

damage and necrosis [91, 92]. The disruption of cell membranes reduces the diffusion 

restriction and therefore increases the ADC. Both the final post-CRT ADC and the 

relative increase in ADC (∆ADC%) were typically higher in the favourable response 

groups, with statistically significant results in the majority of studies [36, 42, 52–55, 57, 

58, 60–65, 67–72, 79–81, 83, 84]. In addition, several studies found significantly higher 

pre-CRT ADC values in the unfavourable response groups [42, 53–56, 63–66, 73–75, 78, 

79], although a similar number of studies did not find a significant difference in pre-

CRT ADC between response groups [51, 52, 58, 59, 61, 62, 64, 67–70, 72, 75–77, 80–82, 

84, 87–89]. A high ADC is believed to be associated with tissue necrosis, which in turn 

leads to decreased tissue perfusion and hypoxia, making tumours less susceptible to 

CRT effects [93, 94].

In addition, six groups investigated the prognostic value of measuring changes in 

ADC early during CRT.  The groups of Jacobs et al and Cai et al reported significant 

differences between good and poor responders in mean tumour ADC in week 3 and 

weeks 3-5, respectively [63, 66]. Published results for the first 2 weeks of CRT have so 

far been inconsistent: some authors already found significant differences in ADC at 

these very early timepoints [55, 64], while others could not reproduce this [59, 66, 75].

Altogether, the majority of studies that investigated ADC as a biomarker to assess or 

predict response to treatment found significant results at one or more time points, 

although a subgroup (21%) of studies could not produce any statistically significant 

results [49, 51, 76, 77, 86–90]. As a critical note, most study cohorts presented so far are 

small and single centre, and reported ADC and cut-off values show large variation and 

overlap between studies and have never been validated in prospective study cohorts. 

This stresses the need for standardization and multicentre validation studies. With 

this in mind, a meta-analysis by Joye et al concluded that based on current evidence 

the results look promising but need work with pooled sensitivities and specificities to 

predict complete response of 69 and 68% for pre-CRT ADC, 78 and 72% for post-CRT 

ADC, and 80% and 78% for ∆ADC% [95]. Because of the limited number of studies 

and the small study sizes, no conclusions can be drawn yet with respect to the added 

benefit of performing ADC measurements (early) during CRT treatment.



575588-L-bw-Schurink575588-L-bw-Schurink575588-L-bw-Schurink575588-L-bw-Schurink
Processed on: 8-4-2022Processed on: 8-4-2022Processed on: 8-4-2022Processed on: 8-4-2022 PDF page: 35PDF page: 35PDF page: 35PDF page: 35

DIFFUSION-WEIGHTED IMAGING IN RECTAL CANCER: CURRENT APPLICATIONS 
AND FUTURE PERSPECTIVES

35

Histogram analysis

While most studies investigated only mean tumour ADC values, some evaluated the 

added benefit of performing histogram analysis. With histogram analysis, the whole 

spectrum of ADC values within the tumour is analyzed, allowing extraction of not only 

mean (or median) values but also additional parameters such as the minimum and 

maximum, standard deviation and different percentile ranges. Based on the limited 

evidence available so far, these parameters do not seem to offer a clear additional 

benefit. Of the papers that have reported an association between ADC histogram 

metrics (in particular 10th-25th percentile ranges) and response [60, 84, 85], the 

majority also reported that histogram parameters did not significantly outperform 

median or mean ADC values [60, 85]. Two other reports by van Heeswijk et al and 

Chidambaram et al failed to produce any significant correlation between histogram 

ADC measurements and the final treatment, although these reports did not find any 

significant results for mean ADC values either [96, 97].  

Lymph node ADC

Two of the studies included in Table 1 compared the mean ADC values of benign and 

malignant nodes in the restaging setting [24, 32]. Both reported a significantly higher 

ADC for malignant nodes, and interestingly an identical optimal cut-off value of 1.25 

∙ 10-3 mm2/s to differentiate between benign and malignant nodes. However, both 

groups also reported that adding ADC measurements to size-based assessment on 

routine T2W-MRI yielded no statistically significant diagnostic gain, suggesting that 

from a clinical point of view the benefit of measuring nodal ADCs may be limited.

DWI FOR FOLLOW-UP AFTER 
TREATMENT
There is limited evidence that DWI may help diagnose locally recurrent disease during 

follow-up after primary treatment. Two groups assessed the value of DWI to detect 

pelvic recurrences post-surgery. High AUCs of 0.87-0.99 were found for MRI + DWI, 

though results were not significantly different compared to using only standard MRI 

[98, 99], except for less experienced, resident readers in one of the two reports [99]. 

In addition, it was reported that DWI may aid in very specific cases with multiple local 

recurrent sites, or for the detection of small and/or anastomotic tumours. Two other 

reports compared the use of MRI with and without DWI for follow-up of rectal cancer 
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patients treated with (local excision or wait-and-see) [100, 101]. Although both found 

no overall improvement in diagnostic performance to detect local tumour regrowths 

in terms of AUC, adding DWI did offer some potential benefits. In one report, adding 

DWI improved the sensitivity of MRI and lowered the rate of inconclusive MRI outcomes 

[100]. Both studies also suggested that DWI may aid in detecting recurrences earlier 

during follow-up [100, 101]. 

DWI AS A PROGNOSTIC MARKER
Over the last few years there has been a growing interest for the use of quantitative 

DWI parameters as prognostic imaging biomarkers to predict various outcomes 

ranging from clinical TNM-stage, to histopathological or immunohistochemical 

markers, and measures of long-term outcome such as disease-free survival. Although 

a comprehensive discussion of the results of these studies with this wide range of 

outcomes is beyond the scope of this paper, a brief overview is provided in Table 5 

and discussed below.

The majority of reports published so far focused on the correlation of DWI with relatively 

simple clinical prognostic markers (such as TN-stage) and histopathological markers 

such as the tumour differentiation grade, with the aim to differentiate tumours with a 

more or less favourable overall prognostic profile. Around half of these reports found 

significant correlations between DWI-derived parameters and clinical or histopathology 

outcomes [96, 102–111]. Of those studies that found significant results, the majority 

reported low ADC values for the unfavourable outcome groups (e.g. higher TN-stage, 

lower differentiation grade, MRF+ stage and extranodal tumour deposits), and high 

ADC values for the more favourable outcome groups, suggesting that tumours with 

a more dense cellular structure (low ADC) tend to show a more aggressive growth 

pattern. As discussed in the previous section (on “Quantitative response assessment”), 

these low ADC tumours have also been associated with a more favourable outcome 

in terms of response to treatment by some groups [42, 53–56, 63–66, 73–75, 78, 79]. 

This might suggest that the same factors that give rise to a generally more aggressive 

tumour profile may also render tumours more susceptible to anticancer treatment. 

However, given the ambiguous results published so far (with approximately 50% of 

studies lacking statistically significant findings), this hypothesis remains to be further 

tested before any definite conclusions can be drawn. 
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Table 5. Overview of studies that investigated the relationship between DWI and prognostic outcomes.

Total number of 
studies [total No 
of patients]

No studies with positive 
outcome* (refs)

No studies with negative 
outcome* (refs)

Clinical outcomes

AJCC-stage 1  [n= 52] - 1 [102] 

T-stage# 12  [n= 650] 5 [102–106] 7 [96, 105, 107–111]

N-stage# 11  [n= 609] 5 [102, 103, 106, 109, 111] 6 [96, 104, 105, 107, 108, 110]

Mesorectal fascia 
involvement

6  [n= 307] 2 [103, 109] 4 [96, 102, 104, 108]

Extramural Venous 
Invasion

1  [n= 52] 1 [102] 4 -

M-stage 3  [n= 124] 1 [105] 2 [96, 107]

Histopathological outcomes

Differentiation grade 8  [n= 421] 5 [102, 108–111] 3 [96, 104, 107]

Extranodal tumour 
deposits

1  [n= 49] 1 [104] -

Lymphovascular 
invasion

5   [n= 264] 2 [103, 107] 3 [104, 108, 109]

Neural invasion 2   [n= 95] - 2 [104, 107]

Laboratory and immunohistochemical outcomes

P21 1   [n= 49] - 1 [104]

P53 1  [n= 49] - 1 [104]

Her2/neu 1  [n= 49] - 1 [104]

CD44 1   [n= 49] - 1 [104]

Ki-67 4  [n= 314] 4 [104, 110, 112, 113] -

AgNOR 1  [n= 49] 1 [104] -

Hif-1α 1  [n= 91] 1 [110]     -

VEGF 1  [n= 91] 1 [110] -

Cell count 1   [n= 17] - 1 [113]

Total nucleic area 1  [n= 17] - 1 [113]

Average nucleic area 1  [n= 17] - 1 [113]

Microvessel density 1  [n= 17] 1 [113] -

KRAS status 1  [n= 51] 1 [114] -

CEA 4  [n= 252] 1 [110] 3 [102, 103, 109]

CA19-9 2   [n= 101] 1 [104] 1 [102]

Long term outcomes

Disease free survival 1  [n= 61] 1 [115] -

3 year local 
recurrence rate

1   [n= 128] 1 [116] -

3 year distant 
relapse-free survival

1  [n= 128] 1 [116] -

Local or distant 
recurrence

2   [n= 101] 1 [115] 1 [108]

* Positive outcome indicates that ≥1 of the DWI parameters under investigation (e.g. mean ADC, ADC histogram parameters or 
parameters derived from, IVIM, DKI, or DWI texture) had a signifi cant correlation with the studied outcome.

# All authors used pathological T- and N-stage as the outcome except for ref [109], that used mrT- and mrN-stage.

Note: All presented studies included mean ADC as an input variable. References [96, 102, 103, 105–107, 111, 113, 114] 
additionally included more advanced parameters related to DKI [103, 105, 111], IVIM [102, 107, 113, 114], texture [106] or 
histogram parameters [96, 103, 106]
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Some studies looked at more advanced DWI parameters derived from IVIM imaging 

(discussed in more detail in section on “Recent advances” below) [102, 107]. Higher IVIM 

perfusion related parameters were associated with poorer TN-stage, differentiation 

grade, lymphovascular invasion and extramural venous invasion. 

In an attempt to better understand the relation between DWI-parameters and 

underlying tumour biology, several investigators have studied the relationship between 

DWI-parameters and immunochemical marker expressions related to cell proliferation/

apoptosis (p21, p53, Ki-67, AgNOR), vascularization (VEGF), cell adhesion (CD44, 

CEA) and hypoxia (Hif1-α). So far, evidence mainly comes from single centre studies. 

Approximately half of these studies found significant correlations between tumour 

ADC and the studied marker, which mainly consisted of either proliferation related 

biomarkers (Ki-67, AgNOR) or biomarkers related to perfusion (VEGF, microvessel 

density) and hypoxia (Hif1-α) [104, 110, 112–114].

Finally, a small subset of studies focused on the correlation between DWI-derived 

parameters and long-term outcome, suggesting that lower ADC values are associated 

with shorter disease-free survival and higher recurrence rates [115, 116]. Future research 

is needed to confirm these findings.

RECENT ADVANCES
Methods of DWI analysis have rapidly evolved over the years. Whereas traditionally DWI 

analysis was limited to visual image interpretation or “simple” ADC measurements, 

more complex methods of DWI acquisition, multiexponential diffusion quantification 

models and novel DWI post-processing tools have recently been introduced. To 

provide a comprehensive overview of these new methods is beyond the scope of the 

current paper, but a brief overview is provided below and illustrated in Figure 5.

Intravoxel incoherent motion (IVIM)

Traditionally, ADC is calculated using a monoexponential fit of ≥2 b-value DWI images 

(typical in the range of b = 0 to b = 1000). Instead of using a monoexponential fit, 

the IVIM model uses a biexponential fit that separates effects of (micro-)perfusion 

(measurable in the low b-value range) and true diffusion effects (measurable at higher 

b-values). This effect is schematically illustrated in Figure 5 [117]. The IVIM model 

separates the true diffusion coefficient D from two perfusion related parameters 
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Figure 5. Traditional DWI models use a mono-exponential fit of two or more b-value 
images between b=0 and b=1000 to calculate the ADC value as the slope of a 
straight line between these points. At low b-values (b<200) the signal decay will, 
however, deviate from this line as it is not only affected by tissue diffusion, but also 
by microperfusion effects (the IVIM or ‘intravoxel incoherent motion’ effect). Another 
phenomena is the deviation of the signal curve when applying very high b-values (b 
> 1000-1500). This effect is caused by non-Gaussian diffusion as a result of complex 
structures (such as cell membranes, organells etc) that hinder diffusion. The degree 
of non-Gaussian behaviour is referred to as the kurtosis effect. Formula’s to calculate 
the various parameters described in the Figure are as follows: Monoexponential ADC: 
S/S0 = exp(-b∙ADC); IVIM: S/S0 = f∙exp(-b(D+D*))+(1-f)exp(-b∙D); Kurtosis: S/S0 = 
exp(-b∙Dapp + b2∙Dapp2∙Kapp2/6); where S = signal intensity with (S) and without (S0) 
diffusion-weighting; b = b-value (s/mm2) used; ADC = apparent diffusion coefficient 
(mm2/s; observed diffusion); D = diffusion coefficient (mm2/s; true diffusion in the 
tissue; depends on cell density); D* = pseudo diffusion coefficient (mm2/s; depends 
on mean capillary segment length and average blood velocity in a voxel); f = the 
perfusion fraction (indicates the fractional volume (%) of capilary blood flowing within 
a voxel); Dapp = apparent gaussian diffusion coefficient (mm2/s; diffusion coefficient 
under a Gaussian assumption); Kapp = apparent kurtosis (describes how much the 
measured diffusion departs from the assumed gaussian distribution; a measure for 
heterogeneity).
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called the pseudodiffusion D* and perfusion fraction f [118]. The potential benefit of 

IVIM is that it can provide parameters related to tissue microcirculation and perfusion 

in addition to cellularity, without the need for exogenous contrast agents (such as 

required for dynamic contrast-enhanced perfusion imaging).

Some encouraging first results have been shown for IVIM in rectal cancer to predict 

response [60, 61, 72], for differentiating between metastatic (N+) and non-metastatic 

(N-) lymph nodes [119], and to predict prognostic markers such as TNM-stage [102, 

113], tumour differentiation grade [102], lymphovascular invasion [107], micro-vessel 

density [113] and KRAS status [114]. Potential drawbacks of the IVIM method are its 

test-retest reproducibility [120] and that measurements may be significantly influenced 

by scan parameters such as the echo time [121]. There is currently no consensus on 

how IVIM analysis should best be performed, as is also illustrated by the different 

imaging protocols used in the current literature [60, 61, 72, 102, 107, 113, 114, 119]. 

Moreover, results as to whether IVIM parameters provide added benefit compared to 

simple mean ADC measurements have so far been conflicting.

Diffusion kurtosis imaging

In addition to the perfusion effects that can be captured by the IVIM model, DKI takes 

into account effects of non-Gaussian diffusion (see Figure 5). In a free medium, diffusion 

is assumed to follow a Gaussian distribution. Since tissue contains barriers like cell 

membranes and vessels that influence the diffusivity, this assumption does not hold 

true for tissues. Especially for high b-values (>b1000) non-Gaussian diffusion effects 

can be observed. This non-Gaussian behaviour can be expressed in terms of kurtosis, 

which can be seen as a measure of a tissue’s degree of heterogeneity [122]. The DKI 

model separates the signal into the apparent diffusion coefficient Dapp (assuming 

a Gaussian distribution) and an apparent diffusional kurtosis Kapp which expresses 

how much the measured signal departs from the assumed Gaussian distribution. A 

potential downside is that, similar to IVIM, DKI uses multiple model-based parameters 

and is therefore relatively susceptible to measurement inaccuracies [123, 124].

Evidence for DKI so far is limited. Two studies investigated diffusion kurtosis for 

response prediction in rectal cancer. Although these reports were in agreement in 

the sense that both found significant differences in ∆Dapp% after CRT between good 

and poor responders, results with respect to other studied parameters (e.g. pre-CRT 

DKI measures) were contradictory and the authors could not produce a statistically 

significant benefit for DKI parameters compared to routine DWI parameters (i.e. 
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ADC) to predict response [57, 125]. In other (preliminary) reports, the diffusion 

kurtosis coefficient has shown promise as a prognostic marker to predict metastases 

[105], tumour differentiation grade [103, 111], T-stage [103], N-stage [103, 111], 

lymphovascular invasion and involvement of the mesorectal facia [103].

Automated DWI post-processing methods

Tumour segmentation is an important aspect of the workflow to be able to extract 

quantitative tumour parameters. Unfortunately, manual segmentation of rectal 

tumours is labour intensive, time consuming and often requires a relatively high level 

of experience. Given the high lesion-to-background ratio of tumours on DWI, it is a 

potentially suitable technique for automated (or semi-automated) segmentation 

methods. One study investigated the accuracy and time needed for tumour 

segmentation on DWI, using a semi-automated region growing algorithm with 

and without manual adjustments. The semi-automated method (with some manual 

adjustments) had excellent agreement with full manual segmentation and resulted 

in a significant reduction in delineation time for the radiologist [126]. Another group 

investigated a deep learning segmentation approach, incorporating information from 

both T2-weighted MRI and DWI to train a convolutional neural network to perform 

fully automated segmentation. The algorithm resulted in segmentations that were very 

comparable to those performed manually by expert readers with a good dice similarity 

index (DSI: a measure indicating the spatial overlap of voxels within the segmentations 

on a scale from 0 to 1) of 0.70 [127]. Although these automated segmentation methods 

will need to be further optimized and validated, they appear promising and will likely 

be helpful to reduce the workload of radiologists in future research and clinics.

CONCLUSIONS AND CLINICAL 
RECOMMENDATIONS
DWI in rectal cancer is an emerging topic of research and is now also increasingly 

finding its way to clinical practice. Over the last decade, use of DWI has evolved 

from qualitative visual image interpretation to increasingly advanced methods of 

quantitative analysis. So far the largest body of evidence exists for assessment of tumour 

response to neoadjuvant treatment. In this setting, particularly the benefit of DWI for 

visual assessment of residual tumour in post-radiation fibrosis has been established 

and is now increasingly adopted and highly recommended for clinical use. Promising 
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results have also been reported for quantitative DWI analysis (mainly ADC), both 

for response prediction as well as for overall tumour prognostication, but protocols 

require standardization and results will need to be prospectively confirmed on larger 

scale. Until then, clinical evaluation of DWI should be limited to visual (qualitative) 

assessment with no role for quantification in current daily practice. The role of DWI for 

further clinical tumour and nodal staging is less well-defined but appears to be limited, 

although there could be a benefit for DWI to help detect lymph nodes. Novel methods 

of analysis as well as new post-processing tools are still being developed; the role of 

these tools remains to be established in the upcoming years. 
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ABSTRACT
OBJECTIVES

To explore the value of multiparametric MRI combined with FDG-PET/CT to identify 

well-responding rectal cancer patients before the start of neoadjuvant chemoradiation.

METHODS

Sixty-one locally-advanced rectal cancer patients who underwent a baseline FDG-PET/

CT and MRI (T2W+DWI) and received long course neoadjuvant chemoradiotherapy 

were retrospectively analyzed. Tumours were delineated on MRI and PET/CT from 

which the following quantitative parameters were calculated: T2W volume and 

entropy, ADC mean and entropy, CT density (mean-HU), SUV maximum and mean, 

metabolic tumor volume (MTV42%) and total lesion glycolysis (TLG). These features, 

together with sex, age, mrTN-stage (“baseline parameters”) and the CRT-surgery 

interval were analyzed using multivariable stepwise logistic regression. Outcome 

was a good (TRG 1-2) versus poor histopathological response. Performance (AUC) to 

predict response was compared for different combinations of baseline +/- quantitative 

imaging parameters and performance in an ‘independent’ dataset was estimated 

using bootstrapped leave-one-out cross-validation (LOOCV).

RESULTS

The optimal multivariable prediction model consisted of a combination of baseline 

+ quantitative imaging parameters and included mrT-stage (OR 0.004, P<0.001), 

T2W-signal entropy (OR 7.81, P=0.0079) and T2W volume (OR 1.028, P=0.0389) as the 

selected predictors. AUC in the study dataset was 0.88 and 0.83 after LOOCV. No PET/

CT-features were selected as predictors.

CONCLUSIONS

A multivariable model incorporating mrT-stage and quantitative parameters from 

baseline MRI can aid in identifying well-responding patients before the start of treat-

ment. Addition of FDG-PET/CT is not beneficial.
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INTRODUCTION
Current standard treatment for locally advanced rectal cancer (LARC) consists of long-

course neo-adjuvant chemoradiotherapy (CRT) followed by surgery. In 15-25% of these 

patients, no residual tumour is found in the resection specimen [1, 2]. This has raised 

the question whether for this group surgery may be avoided [3, 4]. Organ-preserving 

treatments like the ‘watch-and-wait’ approach (W&W) are nowadays increasingly 

considered as an alternative to surgery, with good reported functional outcome, 

disease-free and overall survival [5–9]. 

At this point there is no pre-therapy classification method to predict how patients will 

respond to CRT. Although this information would currently not likely impact treatment, 

predicting response before the start of therapy could have a clinical impact in the future: 

in patients likely to respond well, neoadjuvant treatment may be further intensified to 

increase the chance of organ preservation, while in predicted non-responders futile 

CRT may be avoided. Pre-treatment response prediction may furthermore help create 

opportunities to select small and low-risk tumours (now typically managed with surgery 

without neoadjuvant treatment) to undergo CRT in case of a predicted good response, 

with the specific aim to achieve organ preservation [10]. These developments urge the 

need for accurate predictive biomarkers. 

There is a growing interest in the value of imaging as a potential source for these 

biomarkers, with numerous reports exploring the potential of metabolic imaging 

(FDG-PET/CT) [11–14] and MRI with the addition of functional imaging sequences 

such as diffusion-weighted imaging (DWI) [15–19]. Most studies so far have focused 

on single-modality imaging and included only one or a few imaging markers. 

Linking multiparametric data from PET and MRI may be beneficial to provide a more 

comprehensive insight into underlying tumour biology. The few reports that have 

investigated such a multimodality PET/CT + MRI assessment in rectal cancer, suggested 

its potential, in particular when applying sequential imaging (pre- and post-CRT) and 

for higher-order (Radiomics) imaging variables [15, 23]. 

This study aims to further explore the value of combining baseline FDG-PET/CT and 

multiparametric MRI to identify before onset of treatment those patients that will 

respond well to neoadjuvant chemoradiation.

Methods

This study was approved by the local institutional review board. Informed consent was 

not required due to the retrospective nature of this study. 
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Patients 
From 2008-2015 a cohort of 104 locally advanced (≥T3 and/or N+) rectal cancer 

patients was identified from the local institutional database of the department of 

Radiation Oncology of Maastricht University Medical Center (Maastro Clinic), that 

underwent both routine MRI for primary tumour staging and an additional FDG-PET/

CT at baseline (prior to any treatment), either as part of a previous study protocol 

(trial number NCT00969657) or for standard of care radiotherapy planning. From 

this cohort, 61 patients were selected based on the following inclusion criteria: (1) 

treatment consisting of long-course CRT followed by surgery or W&W, and (2) 

sufficient information to establish the treatment response outcome (histopathology or 

≥2 years of clinical follow-up in case of W&W-surveillance). The standard CRT protocol 

consisted of 50.4 Gy with concurrent capecitabine-based chemotherapy. Patients who 

received a non-standardized treatment, had insufficient quality imaging or mucinous 

tumour histology were excluded (see Figure 1). 

Baseline (pre-treatment) imaging

MRI

MRIs were performed at 1.5 Tesla (Intera (Achieva) n=43 or Ingenia n=18, Philips 

Healthcare) and included a T2W-sequence in 3 orthogonal directions, and an axial 

DWI-sequence including b-values b=0 and b=1000 s/mm2. Apparent diffusion 

coefficient (ADC) maps were calculated by fitting a mono-exponential decay function 

to the b=0 and b=1000 s/mm2 images. The axial T2W-MRI and DWI were angled in 

identical planes, perpendicular to the tumour axis. Further protocol details are given 

in Table 1. Patients received no spasmolytic or bowel preparation/filling.

FDG-PET/CT
18F-FDG PET/CT was performed on a Siemens Biograph 40 TruePoint PET/CT scanner 

(SIEMENS medical). A bolus of 2-deoxy-2-[18F]fluoro-D-glucose (18F FDG, from here on: 

FDG) of 2.5MBq/kg (n=52) or 4.0MBq/kg (n=9) was administered intravenously, after 

a 6-hour fast (blood glucose level <10mmol/L). Scanning started after an incubation 

time of 60 (±5) minutes, with 5 minutes per bed position, and ran from the skull base 

to upper-thighs (reconstructed to 3mm slice thickness, 4.07mm in-plane resolution). A 

non-enhanced CT scan (120 KVp, 113-297 mAs with automatic dose modulation) was 

acquired for attenuation correction, anatomical correlation and radiotherapy planning 

(reconstructed to 3mm slice thickness, 0.98mm in-plane resolution).
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Figure 1. Patient in- and exclusion flowchart. CRT: chemoradiotherapy; LARC: locally-
advanced rectal cancer (≥T3 and/or N+) RTx: radiotherapy; TRG: tumour regression 
grade (Mandard’s); W&W: watch-and-wait. * Predominantly mucinous tumours were 
excluded because these typically exhibit distinctly different characteristics on PET and 
MRI and show a different response to CRT.

n=13

n=21

n=5

n=4

Non-standard neoadjuvant treatment

n=16; CRT < 45 Gy

n= 1;  short course R Tx (5x5Gy)
n= 1;  palliative w/o follow up

Incomplete/inadequate imaging
n=3; no DWI sequence available 

n=5; severe artefacts on T2

n=5; severe artefacts on DWI

n=61 
patients included

n= 3;  adjuvant chemo administered pre-surgery

n=1; delayed surgery due to metastasized disease

n=2; TRG not reported
No valid standard of reference

n=1; patient waived surgery
n=1; W&W recurrence <2 years after CR T

 mucinous tumour*

n=104 
LARC patients with

pre-therapy PET/CT and MRI

Quantitative MRI and PET/CT parameters

The image analysis workflow is illustrated in Figure 2. PET/CT and MR images were 

transferred to an offline workstation for tumour segmentation, performed using 

dedicated software (3D Slicer, version 4.8.1). Feature extraction was performed using 

the open-source software PyRadiomics (version 2.1.2) [24]. 
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Table 1. MRI protocol  

T2-weighted Diffusion-weighted

Echo time (ms) 130-150 65.74-84.88

Repetition time (ms) 3427-16738 2480-5545

Echo train length 25-28 53-87

Slice thickness (mm) 3-5a 5

Slice gap (mm) 3.3-7.03 4-6.02

In-plane resolution (mm) 0.78125 1.25-1.71875

Number of averages 2-6 3-10

b-values (s/mm2) - 0, 1000b

Fat-suppression - STIR (n=32), SPIR (n=7), 
SPAIR (n=22)

STIR: Short-TI Inversion Recovery; SPIR: Spectral Presaturation with Inversion Recovery; 
SPAIR: Spectral Attenuated Inversion Recovery.
a n= 23 patients were scanned with 5 mm and n=38 with 3 mm axial slice thickness
b  Protocols included 3-7 b-values ranging from b0 to b2000 s/mm2, but for the purpose of this 

study only the b=0 and b=1000 s/mm2 series were used for analyses and to calculate the 
ADC map.

Figure 2. Schematic study outline
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A board-certified radiologist (DL, >9 years of rectal MRI experience) manually 

delineated whole-tumour volumes on the axial T2W-MRI and b1000-DWI, respectively, 

to calculate the following features: volume on T2W (T2Wvolume, mesh-volume in 

PyRadiomics), entropy of the T2W signal intensity histogram (T2W-signalentropy), volume 

on DWI (DWIvolume, mesh-volume in PyRadiomics), mean ADC (ADCmean), and entropy of 

the ADC intensity histogram (ADCentropy). 

Metabolic tumour volumes (MTV42%) on PET/CT were semi-automatically segmented 

by one of the researchers experienced in PET segmentation (NS) by placing a volume 

of interest (VOI) over the tumour while taking care to avoid inclusion of physiologic 

uptake in the bladder. From this VOI the metabolic tumour volume was calculated 

using a threshold of 42% of the maximum standardized uptake value (SUVmax), 

according to methods previously described [25–27]. The MTV42% was used to calculate 

the mean standardized uptake value (SUVmean) and total lesion glycolysis (TLG; defined 

as SUVmean x MTV42%). The MTV42% segmentation was transferred to CT to calculate the 

mean Hounsfield unit (HU) (CT-HUmean). 

The specific MRI and PET features described above were chosen as they represent 

relatively straightforward (1st order) variables reflecting tumour size, heterogeneity, 

cellularity and metabolism, which have all shown potential in previous reports and 

which are relatively simple to reproduce [16, 28–32]. 

Baseline patient characteristics

The following clinical baseline patient characteristics were documented: sex, age, and 

T- and N-stage derived from routine clinical staging with MRI (further referred to as 

mrT-stage and mrN-stage). The latter were dichotomized as mrT3c-4 vs. mrT1-3b and 

mrN+ vs. mrN0, respectively.

Response to chemoradiotherapy (standard of reference)

The primary outcome was the histopathological tumour regression grade (TRG) 

by Mandard [33]. Patients were classified as good responders (TRG1-2) or poor 

responders (TRG3-5). For W&W-patients, a recurrence-free follow-up of ≥2 years was 

used as a surrogate endpoint of a complete response. For the purpose of this study, 

these patients were considered complete responders (TRG1) and classified in the 

good responders group. 
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Statistical analysis

Statistical analysis was performed using R software (version 3.4.3; R Foundation for 

Statistical Computing, 2017). 

The value of the quantitative MRI and PET/CT features and baseline patient 

characteristics to predict a good response was analyzed by multivariable logistic 

regression, consisting of a forward stepwise feature selection method based on the 

Akaike Information Criterion (AIC). The AIC describes model quality as a tradeoff 

between model fit and model complexity (i.e., the number of variables). A lower AIC 

indicates a better model, and is achieved by a better goodness of fit or fewer variables 

[34, 35]. The analysis workflow is summarized as follows:

- As described above, only a limited number of parameters (T2Wvolume, T2W-

signalentropy, DWIvolume, ADCmean, ADCentropy, MTV42%, SUVmax, SUVmean, TLG, CT-HU, mrT-

stage, mrN-stage, age, sex) were assessed to limit overfitting. These parameters 

were defined before the onset of the study based on previous literature showing 

their potential promise as predictors of response [16, 28–31]. The interval between 

the last radiotherapy fraction and the final response evaluation (dichotomized as 

≤10 vs. >10 weeks) was added as an additional variable, as longer intervals have 

been reported to result in higher response rates and could thus act as a potential 

confounder [36]. 

- When two features showed a strong correlation (Pearson’s correlation coefficient 

ρ>=0.8), only one was entered in the feature selection process to reduce effects of 

multicollinearity.

- The multivariable modelling process was repeated separately for different subsets 

and combinations of baseline and/or imaging variables (baseline only, MRI only, 

PET/CT only, baseline+MRI, baseline+PET/CT, baseline+PET/CT+MRI). To limit 

effects of overfitting, the number of variables selected for each model was set to a 

maximum of 1 feature per 10 patients in the smallest outcome group (3 features in 

total). 

- Predictive performance of each model was assessed by calculating the area under 

the receiver-operating curve (AUC). Since our cohort size did not allow splitting 

of the data in a test and validation set, performance in an ‘independent’ dataset 

was estimated by performing leave-one-out cross-validation (LOOCV) with 500 

bootstrap samples (to calculate confidence intervals). LOOCV involves building 

a model using the original dataset multiple times, while excluding one different 
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patient each time to predict the outcome. The cross-validated AUC is determined 

on the collective of these different predictions, and approximates the AUC in 

independent data. 

To provide a complete overview of all investigated features, additional univariable 

logistic regression analysis was performed for each baseline and quantitative imaging 

variable. This was done independent of the multivariable analysis. P-values <0.05 were 

considered statistically significant.

RESULTS
Patient characteristics

Baseline patient characteristics are reported in Table 2. In total, 54/61 patients 

underwent surgery: 6 (10%) had a TRG1, 18 (30%) TRG2, 19 (31%) TRG3, 11 (18%) TRG4 

and 0 (0%) TRG5. The remaining seven patients (12%) were monitored with W&W and 

had a sustained clinical complete response (median follow-up of 59 months, range 

26-89). This resulted in 31 good responders (51%, TRG 1-2) and 30 poor responders 

(49%, TRG 3-5). 

Comparison of different baseline and imaging models and their combinations

Results of the stepwise feature selection process including the different combinations 

of baseline patient characteristics, MRI and PET/CT variables are shown in Table 3A. 

The best fitting model (based on the smallest AIC) was the baseline + MRI model. The 

model PET/CT-only model had the poorest fit and addition of PET/CT features to the 

‘baseline only’ or ‘baseline + MRI’ model was not beneficial. AUCs were 0.81 (baseline 

only), 0.70 (MRI only), 0.50 (PET/CT only), 0.88 (baseline + MRI), 0.81 (baseline + PET/

CT) and 0.88 (baseline + MRI + PET/CT), respectively. 

Optimized multivariable model

The optimized baseline + MRI model is summarized in Table 3B, and included mrT-

stage (OR 0.004; 95%CI: 0.00 – 0.09 for cT3c-4 vs. cT1-3b), T2W-signalentropy (OR per 

IQR 4.33; 95%CI: 1.47 – 12.77) and T2Wvolume (OR 1.028 per cm3; 95%CI: 1.00 – 1.05). 

The model had an AUC of 0.88 to predict good responders within our dataset, with a 

sensitivity of 0.68 (95%CI: 0.49 – 0.83) when the ROC threshold was set at a specificity 

of 0.90. With leave-one-out cross-validation the found AUC was 0.83 (95%CI 0.70-0.96) 

with a sensitivity of 0.61 (95%CI: 0.42 – 0.78) at a specificity of 0.90. 
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Table 2.  Baseline characteristics of study population

Baseline + staging Male / Female 47 (77%) / 14 (23%)

Age mean (sd) 68 (9)

MRI-based T-stage (mrT-stage)

  Early stage (mrT1-3b)

    mrT1-2 5 (8%)

    mrT3a 0 (0%)

    mrT3b 34 (56%)

  Advanced stage (mrT3c-4b)

    mrT3c 15 (25%)

    mrT3d 1 (2%)

    mrT4a 2 (3%)

    mrT4b 4 (7%)

MRI-based N-stage (mrN-stage)

    mrN0 16 (26%)

    mrN1 30 (49%)

    mrN2 15 (25%)

Treatment post-CRT

    Surgery 54 (88%)

    W&W 7 (12%)

Outcome TRG (Mandard)

    1a 13 (21%)

    2 18 (30%)

    3 19 (31%)

     4 11 (18%)

    5 0 (0%)

Good response (=TRG1-2) / 
Poor response (=TRG3-5)

31 (51%) / 30 (49%)

Treatment intervals RT treatment duration    37 (36 – 51)

(median No days and 
interquartile range)

Time from MRI to start of CRT  27 (9)

Time from PET to start of CRT  7 (2)

Time between PET and MRI  20 (9)

Time from last RT fraction to sur-
gery (n=54 patients)  

71 (8)

Time from last RT fraction to W&W 
inclusion (n=7 patients)

56 (4)

CRT: chemoradiotherapy; W&W: watch-and-wait follow-up; TRG: tumour regression grade; 
RT: radiotherapy
a  7/13 patients were followed up according to a watch-and-wait program and had a sustained 
clinical complete response for at least 2 years (median follow-up 59 months, range 26-89). 
This was used as a surrogate endpoint for a pathological complete response (TRG1). 
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Supplementary Table 1 illustrates the results of the univariable analysis (which 

was performed independently of the multivariable feature selection process) and 

correlation analysis for all baseline and imaging variables. Since there was a strong 

correlation between DWIvolume and T2Wvolume (ρ =0.96), SUVmax and SUVmean (ρ =0.99) 

and MTV42% and TLG (ρ =0.80), only T2Wvolume, SUVmean and TLG were entered in the 

multivariable selection process described above.

Table 3. Multivariable stepwise logistic regression analysis

A. Comparison of baseline + imaging models

Candidate variable subset AIC
AUC
(training dataset)

Selected variables

I. Baseline patient 
characteristics

67.9 0.81
mrT-stage (mrT1-3b vs. mrT3c-4d),
Time to surgery (≤10 vs. >10 weeks)

II. MRI 83.7 0.70 T2W-signalentropy (per unit), ADCentropy (per unit)

III. PET/CT 86.5 0.50 -a

IV. Baseline + MRI 58.0 0.88
mrT-stage (mrT1-3b vs. mrT3c-4d) 
T2W-signalentropy (per unit), T2Wvolume (per cm3)

V. Baseline + PET/CT 67.9 0.81
mrT-stage (mrT1-3b vs. mrT3c-4d), 
Time to surgery (≤10 vs. >10 weeks)

VI. Baseline+ MRI + PET/
CT

58.0 0.88
mrT-stage (mrT1-3b vs. mrT3c-4d), 
T2W-signalentropy (per unit), T2Wvolume (per cm3)

B. Optimal prediction model (baseline + MRI model)

Modality Selected Variable Odds Ratio (95% CI) P-value

Baseline mrT-stage (mrT1-3b vs. mrT3c-4d) 0.004 (0.00017 - 0.092) <0.001

MRI T2W-signalentropy (per unit) 7.810 (1.713 - 35.612) 0.0079

T2Wvolume (per cm3) 1.028 (1.001 - 1.054) 0.0389

AUC (training dataset) 0.88

AUC (LOOCV) 0.83 (bootstrap 95%CI: 0.70 - 0.96)

AIC = Akaike Information Criterion, which refl ects the relative effi ciency of a statistical model compared to other 
models, with a lower value indicating a more effi cient model. AUC: area under the receiver operating characteristic 
curve. LOOCV = Leave-one-out cross-validation. CI: confi dence interval.
aNo variables were selected as predictors when only PET/CT variables were offered to the model.
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DISCUSSION
This study explores the value of combining quantitative imaging features from baseline, 

pre-treatment FDG-PET/CT and MRI with common baseline patient characteristics to 

predict response to neoadjuvant CRT in rectal cancer. Our findings demonstrate that a 

multivariable model incorporating mrT-stage, combined with (semi-) quantitative MRI 

features (T2W-signalentropy and tumour volume) can aid in identifying good responders 

before the start of treatment, with an estimated predictive performance of AUC 0.83. 

Addition of FDG-PET/CT variables was not beneficial. 

Our results indicated mrT-stage as the strongest baseline predictor of response, with a 

higher mrT-stage resulting in a lower probability of achieving a good response. This is 

in line with previous studies, including a pooled analysis of >3000 patients that showed 

that higher T-stage is negatively associated with complete response rates after CRT 

[1]. More recent large retrospective cohort studies by Joye et al. and Al-Sukhni et al. 

confirmed T-stage to be amongst the main baseline predictors of response [37, 38]. 

In these two previous works, contradictory results were reported for the predictive 

value of N-stage: while Joye et al. reported higher N-stage to be associated with a 

favourable response, Al-Sukhni reported the opposite. mrN-stage was not identified 

as a significant predictor in our study. These conflicting findings are likely related to 

the known inaccuracies of imaging for lymph node staging [39, 40]. Al-Sukhni et al. 

also found a longer interval between CRT and surgery to be associated with a higher 

probability of response, which is consistent with several other reports [36, 41–45]. 

For this reason we chose to include time to surgery as a potential confounder in our 

analyses (although it can clearly not be used as a pre-therapy predictor). While it 

was indeed associated with response, it was not amongst the strongest parameters 

ultimately included in the optimal predictive model. 

In addition to mrT-stage, only the MRI-based quantitative features significantly 

contributed to the optimal prediction model. A positive predictive effect was 

observed for T2W-signalentropy, indicating that tumours with a higher entropy (i.e. a 

more heterogeneous texture) have a higher probability of achieving a good response. 

Similarly, a recent prospective study by Shu et al. found entropy on pre-CRT T2W 

MRI to be higher in patients who achieved a complete response after CRT [28]. In 

contrast, Meng et al. found lower pre-treatment T2W entropy to be associated with 

complete response [46], while a third report by De Cecco et al. found no significant 

differences at all in baseline tumour entropy between response groups [47]. Although 
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in literature tumour heterogeneity is generally regarded as a factor associated with 

tumour aggressiveness, the precise relation between heterogeneity (as assessed on 

imaging) and response to treatment is not well understood. In addition, variations in 

methodology concerning patient selection, image processing, outcome definition and 

statistics may have contributed to inconsistent findings between reports. The baseline 

tumour volume (T2Wvolume) was the third independent predictor included in the model, 

though its effect was relatively small. This is in line with data from previous studies 

that reported suboptimal performance for pre-therapy tumour volumetry to predict 

response [48–56]. 

Interestingly, our study showed limited predictive value for baseline PET and DWI 

variables. This confirms previous evidence showing disappointing or conflicting results 

for pre-treatment response prediction based on DWI (using mainly ADC) and PET 

(SUVmean and SUVmax) [16, 17]. In a systematic review by Joye et al., sub-optimal pooled 

predictive performance was reported in the pre-treatment setting for both PET (SUVmax 

pooled sensitivity 0.78; pooled specificity 0.35) and DWI (ADCmean pooled sensitivity 

0.69; pooled specificity 0.68) [17]. More positive results for PET or DWI were mainly 

reported when (sequential) imaging data acquired during and/or after completion of 

CRT, rather than at baseline was used [16, 17, 19]. To our knowledge, only two other 

groups have performed a multivariable analysis combining pre-treatment PET/CT 

and MRI to predict rectal tumour response. Joye et al. combined PET/CT and DWI 

features measured before, during and after CRT, together with volume on T2W-MRI. 

Their multivariable model reached an AUC of 0.83 to predict a good response (ypT0-

1N0). However, only features dependent on post-treatment measurements (post-CRT 

and ΔCRT) were selected as predictors and no pre-treatment features were included, 

again indicating the limited value of PET- and DWI in the pre-therapy setting [15]. The 

second study, by Giannini et al. specifically focused on image texture and combined 

first-order and second-order texture features derived from pre-treatment PET, DWI 

and T2W-MRI together with PET volume. Their multivariable model reached an AUC 

of 0.86 in which notably 5 out of 6 selected variables were based on PET. However, 

this good result was achieved in a test dataset without further (cross-)validation [23]. 

Validation is required to estimate the performance of a model in actual clinical practice 

(unseen data), since the accuracy as established in a test dataset will likely be an 

overestimation. Unfortunately, our current dataset was too small to allow splitting of 

the data into a test and validation set. Therefore, we chose to simulate validation on an 

‘independent’ dataset by performing leave-one-out cross-validation (LOOCV), which 

resulted in an AUC of 0.83. Apart from the relatively small size, our study is limited 
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by its retrospective nature. As a consequence, variations in scanning protocols (in 

particular MRI) and hardware used over time may have introduced heterogeneity not 

related to the treatment outcome. The study further used a single-reader design for 

image segmentation, which does not account for inter-observer variations, particularly 

for the manual (MRI) delineations. These effects are expected to be limited, however, 

based on previously reported excellent inter-reader reproducibility [48, 49, 51]. Along 

the same line, some of the baseline characteristics included in the analyses were based 

on radiological staging (mrT-stage and mrN-stage) which are also known to be subject 

to interobserver variations. An in-depth analysis of such effects, however, was beyond 

the scope of the current study. Histopathologic response evaluation was not available 

for all patients due to the inclusion of W&W patients, for which the surrogate endpoint 

to establish the treatment outcome was a recurrence-free follow-up of at least 2-years 

(median 59 months). Since locoregional regrowths indicating incomplete response 

occur almost exclusively within these first two years, we believe this can be considered 

an acceptable endpoint in these cases [5]. Future validation and replication of this 

work may be limited by the fact that PET/CT is typically not routinely performed as a 

first-line staging modality. Finally, for this study we deliberately chose to explore the 

predictive value of only a selective number of relatively well-known and reproducible 

variables (reported to be of potential value in previous literature), to prevent over-

fitting of a large number of features to a small sample size. As a result, alternative 

useful predictors may have been neglected. This would be an interesting area for 

further research in larger datasets (using Radiomics or deep learning approaches) and 

should also include a more comprehensive integration of imaging features with other 

clinical, immunological, histological and genetic variables. 

CONCLUSION AND CLINICAL 
OUTLOOK
Prediction of response to neoadjuvant treatment is an increasingly relevant issue in 

rectal cancer, especially given the growing interest in organ-preserving treatment 

programs. Our findings demonstrate that a model incorporating (semi-)quantitative 

imaging features from routine staging MRI combined with mrT-stage can aid in 

identifying patients likely to show a good response to neoadjuvant chemoradiation. 

Addition of PET/CT variables was not beneficial, indicating that pre-treatment PET/CT 

(which is currently not typically used as a first-line modality for rectal cancer staging) 
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probably has a limited added value for pre-therapy response prediction. These results 

are an encouragement for further development of clinical response prediction models 

incorporating routine pre-therapy MR imaging in rectal cancer, which will need to be 

further studied and validated in large prospective patient cohorts.
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ABSTRACT
OBJECTIVE

To investigate whether quantifying local tumour heterogeneity has added benefit 

compared to global tumour features to predict response to chemoradiotherapy using 

pre-treatment multiparametric PET and MRI data

METHODS

Sixty-one locally advanced rectal cancer patients treated with chemoradiotherapy and 

staged at baseline with MRI and FDG-PET/CT were retrospectively analyzed. Whole-

tumour volumes were segmented on the MRI and PET/CT scans from which global 

tumour features (T2Wvolume/T2Wentropy/ADCmean/SUVmean/TLG/CTmean-HU) and local texture 

features (histogram features derived from local entropy/mean/standard deviation 

maps) were calculated. These respective feature sets were combined with clinical 

baseline parameters (e.g. age/gender/TN-stage) to build multivariable prediction 

models to predict a good (Mandard TRG1-2) versus poor (Mandard TRG3-5) response 

to chemoradiotherapy. Leave-one-out-cross validation (LOOCV) with bootstrapping 

was performed to estimate performance in an ‘independent’ dataset. 

RESULTS

When using only imaging features, local texture features showed an AUC=0.81 versus 

AUC=0.74 for global tumour features. After internal cross-validation (LOOCV), AUC to 

predict a good response was highest for the combination of clinical baseline variables 

+ global tumour features (AUC=0.83), compared to AUC=0.79 for baseline + local 

texture and AUC=0.76 for all combined (baseline + global + local texture).

CONCLUSION

In imaging-based prediction models, local texture analysis has potential added value 

compared to global tumour features to predict response. However, when combined 

with clinical baseline parameters such as cTN-stage, the added value of local texture 

analysis appears to be limited. Overall performance to predict response when 

combining baseline variables with quantitative imaging parameters is promising and 

warrants further research.
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INTRODUCTION
In the era of organ preservation, the assessment of response of rectal cancer to 

neoadjuvant chemoradiotherapy (CRT) has become an increasingly important issue. 

Early- and pre-treatment prediction of response is gaining interest as this could allow 

further optimization of treatment based on the anticipated treatment response. The 

ultimate aim is to further increase response rates and avoid ineffective and potential 

harmful treatments in those who are unlikely to benefit.

Several studies have investigated the potential of imaging to predict response, with 

promising – albeit somewhat inconsistent – results for quantitative imaging biomarkers 

derived directly from either MRI (including functional sequences like diffusion and 

perfusion MRI) [1–5] or 2-[18F]-fluoro-2-deoxy-D-glucose-PET (FDG-PET) [1, 4, 6]. So far, 

there are only few reports that have combined different imaging modalities to build 

multiparametric response prediction models. These studies have varying success rates 

(AUCs ranging from 0.51 – 0.94), which is likely related to the large methodological 

differences between studies and variations in outcome parameters used [7–11].

In addition to these reports, several groups have focused on more advanced para-

meters derived from image post processing, in specific parameters related to image 

texture as a measure of tumour heterogeneity [12–21]. This makes sense from a 

histopathological perspective, as tumours are typically not homogeneous but show 

spatial variations in cellular microarchitecture, necrosis, vascularization and gene 

expression [22]. Increased intra-tumoural heterogeneity has often been suggested as 

a potential prognostic factor in oncology as it has been related to the emergence of 

resistant subpopulations of cells that drive resistance to treatment [12, 23, 24]. A similar 

relation has been reported for rectal cancer, as several pathology reports have shown 

an association between tumour heterogeneity and response to neoadjuvant treatment 

[25, 26]. 

Image texture analysis offers opportunities to non-invasively study tumour hetero-

geneity, although quantifying heterogeneity at a microstructural level using medical 

imaging is challenging due to the large difference in scale between MRI and histology. 

Hence, texture analysis in medical imaging is most often applied to the tumour as 

a whole, rendering only global measures of heterogeneity such as mean tumour 

entropy and uniformity. These measures do not specifically take into account the 

local variations within the tumour (local heterogeneity), as a result of which potentially 

important predictive information may be overlooked or averaged out [12].



575588-L-bw-Schurink575588-L-bw-Schurink575588-L-bw-Schurink575588-L-bw-Schurink
Processed on: 8-4-2022Processed on: 8-4-2022Processed on: 8-4-2022Processed on: 8-4-2022 PDF page: 82PDF page: 82PDF page: 82PDF page: 82

CHAPTER 4

82

The goal of this study is to investigate whether quantifying local tumour heterogeneity 

has added benefit compared to global tumour features to predict response to CRT 

using pre-treatment multiparametric PET and MRI data. 

MATERIALS AND METHODS
This study was approved by the local institutional review board and informed consent 

was waived due to the retrospective nature of this study.

Patients and outcome definition

The study cohort consisted of 61 locally advanced (>= T3 and/or N+) rectal cancer 

patients, derived from a previously published single institute study cohort [13]. All 

patients were treated with neoadjuvant chemoradiotherapy (50.4Gy with concurrent 

capecitabine-based chemotherapy), underwent pre-treatment MRI+DWI and FDG-

PET/CT, and sufficient information was available to establish the final treatment 

response (histopathology after surgery or >2 years clinical follow-up to confirm a 

sustained clinical complete response in patients undergoing watch-and-wait (W&W)). 

Final response was documented according to the 5-point histopathological tumour 

regression grade (TRG) by Mandard [27]. Patients with TRG1-2 were categorized as 

‘good responders’. Patients with TRG 3-5 were categorized as ‘poor responders’. 

Watch-and-wait patients (n=7) with a sustained clinical complete response for >2 years 

were considered TRG1 for the purpose of this study. 

Imaging and image segmentation

MRI was acquired at 1.5T (Intera Achieva n=43 or Ingenia n=18, Philips Healthcare). 

Imaging and image segmentation were performed according to previously published 

protocols [13] provided in detail in Table 1. In short, the protocol consisted of T2-

weighted sequences with 3-5 mm slice thickness in 3 planes, and an axial echo planar 

imaging (EPI) DWI sequence with b-values 0-1000 s/mm2 and slice thickness 5 mm, 

angled in the same plane as the axial T2W-MRI. No bowel preparation or spasmolytics 

were given. Apparent diffusion coefficient (ADC) maps were derived from the DWI 

images by fitting the data to a mono-exponential decay function. 18F-FDG-PET/CTs 

(3 mm slice thickness) were acquired on a Siemens Biograph 40 TruePoint PET/CT 

scanner (SIEMENS Healthineers AG) 60 minutes after an intravenous bolus of 18F-FDG 

with an activity of either 2.5 MBq/kg (n=52) or 4.0 MBq/kg (n=9) after 6 hours fasting 

and with a full bladder. Attenuation correction was performed using a non-enhanced 
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CT scan with automatic dose modulation. Standardized uptake values (SUV) were 

calculated according to the recommendations of the Quantitative Imaging Biomarker 

Alliance [28]. 

For each patient volumes of interest (VOI) covering the whole tumour volume were 

segmented by a board-certified expert radiologist on the T2W and b1000-DWI MRI. 

PET images were segmented using semi-automated segmentation (using a threshold 

of 42% of the maximum SUV) [13, 29–31]. These segmentations were then transferred 

to the corresponding ADC-maps and unenhanced CT images.

Table 1: MRI protocol

T2-weighted Diffusion-weighted

Echo time (ms) 130-150 65.74-84.88

Repetition time (ms) 3427-16738 2480-5545

Echo train length 25-28 53-87

Slice thickness (mm) 3-5a 5

Slice gap (mm) 3.3-7.03 4-6.02

In-plane resolution (mm) 0.78125 1.25-1.71875

Number of averages 2-6 3-10

b-values (s/mm2) - 0, 1000b

Fat-suppression - STIR (n=32), SPIR (n=7), SPAIR 
(n=22)

STIR: Short-TI Inversion Recovery; SPIR: Spectral Presaturation with Inversion Recovery; 
SPAIR: Spectral Attenuated Inversion Recovery.
a n= 23 patients were scanned with 5 mm and n=38 with 3 mm axial slice thickness
b  Protocols included 3-7 b-values ranging from b0 to b2000 s/mm2, but for the purpose of this 

study only the b=0 and b=1000 s/mm2 series were used for analyses and to calculate the 
ADC map.

Reprint of Table 1 [13]
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Quantitative modelling of local texture

Local texture features were extracted from the segmented tumour VOIs of each 

imaging modality/sequence using the following steps:

1.  Normalization: because T2W-MRI and b1000-DWI images are expressed 

in arbitrary units that can differ between study visits, protocol settings and 

subjects, these images were normalized (mean pixel intensity=300 and standard 

deviation=100). ADC, SUV and CT were processed using their original units.

2.  Local texture maps: For each imaging type 3 local texture maps (entropy, mean 

and standard deviation) were derived from the VOIs using PyRadiomics [32] with 

a neighborhood of 5x5x5 pixels. Bin widths of 20, 20, 0.05, 0.5 and 50 were used 

for T2W-MRI, b1000-DWI, ADC, SUV and CT respectively. A visualization of the 

extracted local entropy is depicted in Figure 1. 

3.  Histogram metrics: From each local texture map histogram features (10th, 25th, 

50th, 75th, 90th percentile, mean and standard deviation) were derived to describe 

the distribution of local texture features within the tumour.

This resulted in 21 features per image type/sequence, i.e. 63 MRI features (T2W-

MRI, b1000-DWI and ADC) and 42 PET/CT features (SUV and CT). In addition, clinical 

baseline parameters (mrT-stage, mrN-stage, age, gender and interval between last 

Figure 1. Example of local entropy heatmaps in a 66 year old male patient with a large 
(clinically T4aN1) rectal tumour. Red areas correspond to a high local entropy whereas 
blue areas represent areas of low local entropy.

CTSUVADCB1000T2

CT entropySUV entropyADC entropyB1000 entropyT2 entropy
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radiotherapy fraction and final response evaluation), and global tumour measures 

(tumour volume, mean entropy, mean tumour ADC, mean SUV, total lesion glycolysis 

(TLG) and mean Hounsfield units) were collected, that were available from a previously 

published study in the same patient cohort [13].

Statistical analysis:

The analysis workflow comprised 4 main steps. First, when two or more features showed 

a strong correlation (Pearson’s ρ>0.8) only the feature with the lowest mean absolute 

correlation was retained for further analysis to reduce effects of multicollinearity. 

Second, multivariable logistic regression models were trained with the remaining 

feature set using forward stepwise feature selection. The modelling process was 

repeated separately for (1) global imaging features only (including separate sub-

analyses using only MRI or PET/CT data respectively), (2) local texture features only 

(including MRI-only and PET/CT only sub-analyses), (3) global imaging features + 

clinical baseline parameters, (4) local texture features + baseline parameters, and 

(5) global + local texture features + clinical baseline parameters combined. Third, to 

prevent effects of overfitting, the maximum numbers of selected features for each 

model was set to 3 (i.e. 1 per 10 patients in the smallest outcome group). Finally, 

the performance of the different models was compared using Akaike’s Information 

Criterion (AIC), as a measure of the ‘goodness-of-fit’ of the model taking into account 

model complexity [33, 34], and by calculating the area under the receiver operator 

curve (AUC) to predict a good (TRG1-2) versus poor (TRG3-5) response. Confidence 

intervals for the training AUC were calculated using the DeLong method [35]. For the 

models combining clinical baseline parameters with imaging features an estimate of 

the model’s performance on unseen data was obtained by using bootstrapped leave-

one-out cross validation (LOOCV AUC; 5000 bootstrap samples to calculate LOOCV 

AUC confidence intervals), in line with methods previously reported [13]. 

RESULTS
Patient characteristics

Of the 61 study patients, 47 were male, median age was 69 years (range 46-88). In total 

13 patients were TRG1 (6 after surgery (10%) and 7 undergoing W&W (11%)), 18 TRG2 

(30%) , 19 TRG3 (31%) , 11 TRG4 (18%) and 0 TRG5 (0%), resulting in a total of 31 good 

responders (TRG1-2) and 30 poor responders (TRG3-5). 
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Quantitative modelling of local texture

A correlation matrix for the total feature set and exclusion of features with Pearson’s 

ρ>0.8 is provided in Supplementary Table 1. Results of the multivariable regression 

models are summarized in Table 2. 

When looking at imaging features only, local texture features performed better than 

global tumour features based on the AIC (AIC=68 vs. AIC=82), resulting in a training 

AUC of 0.81 (95%CI 0.70 – 0.91) for the local texture features and AUC of 0.74 (95%CI 

0.61 – 0.87) for the global tumour features. Similarly, in the MRI-only or PET/CT only 

analyses, local texture features performed better (AUC 0.73 for MRI and 0.78 for 

Table 2. Multivariable logistic regression analysis

Imaging only - Local texture versus global tumour models

Model AIC AUC (training) Selected features

Local texture 68 0.81 (0.70 – 0.91) CT_mean_75perc, ADC_entropy_10perc, 
T2_standarddeviation_mean

Local texture MRI-only 76 0.73 (0.60 – 0.85) ADC_entropy_10perc

Local texture PET/CT-only 74 0.78 (0.66 – 0.90) CT_mean_75perc, 
CT_standarddeviation_10perc

Global tumour 82 0.74 (0.61 – 0.87) T2_entropy, ADC_entropy, SUV_mean

Global tumour MRI-only 83 0.70 (0.57 – 0.84) T2entropy, ADC_entropy

Global tumour PET/CT-only 87 0.50 (0.50 – 0.50) -

Combined models including clinical baseline variables

Model AIC AUC (training) AUC (LOOCV)

Clinical baseline + local 
texture

60 0.87 (0.78 – 0.96) 0.79 (0.46 – 0.90)

Clinical baseline + global 
tumour

58 0.88 (0.80 – 0.97) 0.83 (0.70 – 0.96)

Clinical baseline + global 
tumour + local texture

56 0.89 (0.81 – 0.98) 0.76 (0.57 – 0.90)

AIC Akaike Information Criterion, a measure for ‘goodness of fi t’ with lower values indicating a better fi t. AUC 
area under the receiver operator curve. LOOCV leave-one-out cross-validation.
NB: 95% confi dence intervals (CI) are given in parentheses. CIs for the training AUC were determined using the 
DeLong method. The 95% CIs of the LOOCV AUC were determined using 500 bootstrap samples.
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PET/CT) than global features (AUC 0.70 and 0.50 respectively), though for MRI the 

difference was small. When imaging features were combined with baseline clinical 

parameters (e.g. T- and N-stage), performance for local versus global texture features 

was similar (AIC=60 vs AIC=58; AUC=0.87 vs AUC=0.88). Adding local texture features 

to the combination of baseline + global tumour features did not result in improved 

performance (AIC=56 and AUC=0.89). After leave one out cross-validation, the model 

incorporating clinical baseline + global tumour features achieved the highest AUC of 

0.83 (95% CI 0.70-0.96) to predict a good response, though differences with the other 

models were small (Table 2). 

DISCUSSION
The aim of this study was to investigate whether there is added value in quantifying 

local tumour texture (heterogeneity) compared to global tumour features on baseline 

MRI and 18-F-FDG-PET/CT to predict response to neoadjuvant treatment in rectal 

cancer. Results indicate that, when including only imaging-parameters, local texture 

features show a better performance compared to global tumour features to predict a 

good response with AUCs of up to 0.81 (versus 0.74 for global features) when tested 

within our own study dataset. While global tumour PET/CT features did not show 

any predictive performance (AUC 0.50, no significant features), local texture PET/CT 

features did perform substantially better with an AUC of 0.78. However, the selected 

local PET/CT features were all derived from CT imaging indicating a limited role for PET. 

When local texture features were combined with clinical baseline parameters (such as 

the cT-and cN-stage) addition of local texture features did not improve the predictive 

performance of the model compared to addition of global tumour features, neither 

on the training data nor after internal cross-validation, indicating that from a clinical 

point of view local texture features may be of limited added benefit. Performance 

for the combination of clinical baseline parameters and global tumour features was 

encouraging, with an AUC of 0.83 to predict a good response after internal cross-

validation. 

In rectal cancer, there are multiple previous reports correlating image texture features 

with response to neoadjuvant treatment [7, 13–19, 21, 36–48]. Some of these studies 

focused on relatively simple first and second order features derived from histogram 

analysis and gray-level co-occurrence matrices (GLCM) [7, 13, 41, 42, 46], while others 

assessed advanced features by applying more sophisticated Radiomics modelling 
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[14–19, 21, 38–40, 43–45, 47–50]. Overall, studies incorporating higher order features 

into their analysis tended to achieve a higher performance to predict response (AUCs 

of 0.69-0.97) versus those using only simpler first and second order features (AUCs 

0.51-0.89). Although this difference in performance can be attributed to many factors, 

it might be a hint supporting the hypothesis of our current study that assessing spatial 

(local) variations within the tumour may be beneficial, as higher order features tend to 

take the local texture throughout the tumour into account (for example, often used 

radiomics features such as gray level size zone matrix features summarize the size and 

number of local homogeneous patches throughout the tumour). In our current image-

based analysis local texture features indeed showed a better predictive performance 

compared to global tumour measures (AUC 0.81 vs. 0.74).

Our analysis suggests that among the local texture features, those derived from the 

ADC-map, CT and T2W-MRI provide the best predictive value as these were amongst 

the selected features in the forward selection process. With respect to CT, there have 

only been a limited number of reports focusing on rectal tumour response prediction 

using CT texture analysis [43, 45, 48, 50], which is probably related to the fact that CT 

is not routinely used for the local staging of rectal cancer. Bibault et al. derived 1683 

texture features from planning CTs of which 28 features (first order histogram, and 

2D and 3D second order gray-level co-occurrence matrix features) were significantly 

correlated with pathological complete response and were combined with clinical 

T-stage to train a deep neural network. The performance of the resulting network (AUC 

0.72) was compared to classical methods such as linear regression analysis (AUC 0.59) 

and support vector machines (AUC 0.62) [48]. However, since the selected features 

were not specified by the authors it is not possible to directly compare these findings 

to our current results. In a second study Hamerla et al. tried to reproduce the findings 

of Bibault, but with limited success (balanced accuracy score of 0.50) [43]. In another 

study by Chee et al. good responding patients showed significantly lower entropy, 

higher uniformity and lower standard deviation on baseline CT images [50]. As a critical 

note, our results with respect to CT should perhaps be interpreted with some caution, 

because of the low-dose quality of our CT scans (that were merely acquired for PET 

attenuation correction), which are inherently more heterogeneous due to increased 

noise levels. Therefore, these findings should still be confirmed in future studies using 

diagnostic quality CTs. Based on our findings, the contributing role of PET appears to 

be limited. From a clinical point of view, the impact of this negative result is probably 

small, as PET is generally not routinely performed as part of the diagnostic workup for 

the local staging of rectal cancer.
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Similar to our current findings, promising results have been previously reported for 

DWI texture features, in particular those derived from ADC maps, to predict response 

to CRT in rectal cancer. Reported AUCs when using these features in addition to 

other MRI features range between 0.69-0.97 [15, 17, 19, 36]. Most of these studies 

combined features derived from DWI/ADC with other modalities such as T1-weighted, 

T2-weighted and/or DCE-MRI and showed better performance when incorporating 

these features in a multiparametric model compared to models using features derived 

from only a single modality [17, 19, 36]. In contrast, there are also some reports in 

which ADC texture features were not included amongst the selected predictors when 

entered into a multivariate model together with other imaging features [7, 13, 18, 

21]. For T2-weighted features (either alone or in combination with clinical variables) 

AUCs ranging between 0.71-0.93 have previously been reported to predict response, 

though methods of image analysis, image post-processing and statistical analysis 

differ substantially between reports [14, 16, 39, 46, 47, 49]. In addition to rectal cancer, 

there have been numerous reports focusing on image-based prediction models of 

tumour response and outcome in other target organs such as head and neck [51], 

breast [52], liver [53], lungs [54], and bladder and prostate [55]. Reported model 

performance and image modalities used vary widely between reports an there are 

major methodological differences between the various studies, making it difficult to 

draw any general conclusions yet on the value of such models in oncologic settings.

There are some limitations to our study design. Due to the retrospective design 

and small study cohort, only a limited number of features (max 3) were used in the 

multivariable analysis to prevent overfitting, which limited our analyses to simpler 

models. We assessed local texture for each modality individually (using histogram 

metrics), which does not take into account the local spatial correlation between 

different imaging modalities. Such analysis would require that cross-modality images 

are accurately registered on a voxel-basis, which is a challenge on its own as image 

registration can also introduces new uncertainties [56]. Finally, although all images 

were resampled to a common pixel spacing, T2W images were in part acquired with 

5mm instead of the standard 3mm slice thickness, which may have had an influence 

on the extracted feature values. Since the majority of features included in our final 

prediction models were derived from other modalities than T2W MRI, we believe this 

potential effect will likely be small

In our current study we correlated local texture patterns on imaging to one “global” 

measure of the final tumour response (TRG). For future research it would be interesting 
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to gain more in depth insights into how local therapeutic effects as assessed on imaging 

correlate to underlying response effects on corresponding histopathology. In addition, 

recent technical advances such as the introduction of integrated MR-linear accelerator 

systems into the clinical setting create new opportunities for day to day monitoring 

of global and local tumour changes during treatment [57]. Such developments can 

significantly increase our understanding of how local texture features can be related 

to local treatment outcome which might provide a basis for further personalized 

treatment (e.g. targeted boosting strategies) in the future.

In conclusion, this study has shown that it is possible to quantify local tumour 

heterogeneity using local texture maps derived from baseline MRI and FDG-PET/

CT imaging. When entered in multivariate prediction models using only imaging 

data, quantification of local texture features offered a better performance to predict 

response compared to “simple” global tumour measures, with features derived from 

MRI and CT being the main predictors and no clear role for PET. When combined with 

clinical baseline parameters (such as T- and N-stage) the added value of local texture 

versus global tumour analysis was limited, indicating that from a clinical perspective 

the added benefit of such more advanced image analysis will likely be small. Predictive 

performance of our optimal model – combining clinical baseline variables with global 

imaging features – was encouraging, warranting further research in this direction on a 

larger scale.
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ABSTRACT
OBJECTIVES

To investigate sources of variation in a multicenter rectal cancer MRI dataset focusing 

on hardware and image acquisition, segmentation methodology and Radiomics 

feature extraction software.

METHODS

T2W and DWI/ADC MRIs from 649 rectal cancer patients were retrospectively acquired 

in 9 centers. Fifty-two imaging features (14 first-order/6 shape/32 higher-order) were 

extracted from each scan using whole-volume (expert/non-expert) and single-slice 

segmentations using two different software packages (PyRadiomics/CapTk). Influence 

of hardware, acquisition and patient-intrinsic factors (age/gender/cTN-stage) on ADC 

was assessed using linear regression. Feature reproducibility was assessed between 

segmentation methods and software packages using the intraclass correlation 

coefficient. 

RESULTS

Image features differed significantly (p<0.001) between centers with more substantial 

variations in ADC compared to T2W-MRI. 64.3% of the variation in mean ADC was 

explained by differences in hardware and acquisition, compared to 0.4% by patient-

intrinsic factors. Feature reproducibility between expert and non-expert segmentations 

was good to excellent (median ICC 0.89-0.90). Reproducibility for single-slice versus 

whole-volume segmentations was substantially poorer (median ICC 0.40-0.58). 

Between software packages, reproducibility was good to excellent (median ICC 0.99) 

for most features (first-order/shape/GLCM/GLRLM) but poor for higher-order (GLSZM/

NGTDM) features (median ICC 0.00-0.41).

CONCLUSIONS 

Significant variations are present in multicenter MRI data, particularly related to 

differences in hardware and acquisition, which will likely negatively influence sub-

sequent analysis if not corrected for. Segmentation variations had minor impact 

when using whole volume-segmentations. Between software packages, higher-order 

features were less reproducible and caution is warranted when implementing these in 

prediction models. 
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SOURCES OF VARIATION IN MULTICENTER RECTAL MRI DATA AND THEIR EFFECT 
ON RADIOMICS FEATURE REPRODUCIBILITY.

INTRODUCTION 

Over the past decade more than 100 papers have been published on the use of MR 

imaging biomarkers to predict various clinical outcomes in rectal cancer such as treatment 

response and survival [1–3]. Imaging biomarkers range from relatively simple measures 

(tumor size and volume) [1, 2] to ‘functional’ measures derived from imaging sequences 

such as diffusion-weighted imaging (DWI) and dynamic contrast-enhanced MRI [4]. 

More recently, the focus of research has shifted towards more advanced post-processing 

techniques such as Radiomics used to extract large numbers of quantitative features 

to construct a radiological phenotype of the studied lesion [2, 5]. Common Radiomics 

features include ”first-order” histogram features (e.g. mean, standard deviation), shape 

features (e.g. volume, sphericity), and more complex higher-order texture features (e.g. 

gray-level co-occurrence matrix features) that describe patterns within the image. 

While imaging biomarker studies have shown promising results to predict oncologic 

outcomes, several authors have voiced concern about the poor reproducibility and 

repeatability of these studies [6–8], related to small/underpowered single-center study 

designs, lack of independent model validation, and poor reproducibility of imaging 

features [6–8]. Important factors affecting reproducibility are data variations introduced 

by differences in acquisition, post-processing, and statistical analysis [9]. This is especially 

relevant for multicenter studies where data is generated using different hardware, 

software, and acquisition protocols, and where data is often evaluated by different 

readers. These variations are often referred to as “center effects” [10] and defined as 

“non-biological systematic differences between measurements of different batches of 

experiments” [11] that can negatively affect the performance of multicenter models [12].

Studies investigating sources of variation in imaging data have so far mainly focused 

on CT and PET and only one of 35 studies in a systematic review on Radiomic feature 

reproducibility focused on MRI [9]. Some recent studies have explored variations in 

quantitative MRI analysis, though mainly in phantoms [13–16] or small (<48 patients) 

single-center [13, 17, 18] or bi-institutional [19] patient cohorts. The current study aimed 

to add to these previous data by analyzing a large representative sample of rectal MRIs 

acquired at multiple institutions in the Netherlands to gain insight into how variations 

in “real life” clinical MRI data can affect Radiomics studies. In specific, the goal was to 

investigate sources of variation focusing on hardware, image acquisition, and effects of 

post-processing related to segmentation methodology and feature extraction software.
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MATERIALS AND METHODS
Patients

For this retrospective study we analyzed a dataset of rectal MRI scans (scanned between 

2012-2017) previously collected as part of an ongoing IRB-approved retrospective 

multicenter study on prediction of response to neoadjuvant treatment, including 

patients from nine different centers in the Netherlands (1 tertiary oncologic referral 

center, 1 academic and 7 non-academic centers). Inclusion criteria for this previous 

study were: (1) biopsy-proven rectal adenocarcinoma, (2) neoadjuvant treatment 

(chemoradiotherapy or 5x5Gy radiotherapy with a long waiting interval) followed by 

surgery or watch-and-wait (W&W), (3) availability of baseline staging MRI (including 

T2W-MRI and DWI) and (4) availability of clinical outcome to establish response. From 

this initial cohort of 742 patients, 93 were excluded for reasons detailed in the in-/

exclusion flowchart in Figure 1, leaving a total study population of 649 patients. The 

overall study methodology is illustrated in Figure 2.

Figure 1. In- and exclusion flowchart

Included for analysis:
n=649

Non-diagnostic image quality: n=43

Severe geometric mismatch between 
T2W-MRI and DWI: n=7

Predominantly mucinous tumor type: n=18

Concommitant abscesses around
the rectum: n=6

Multiple tumors in field-of-view: n=9

Tumor not completely covered in 
field-of-view (T2W-MRI and/or DWI): n=10

Considered for inclusion:
n=742 rectal cancer patients
from previous study cohort
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ON RADIOMICS FEATURE REPRODUCIBILITY.

Imaging and image processing steps

All images were acquired according to routine practice in the participating centers 

using various vendors and acquisition protocols. The transverse T2W-MRI and 

apparent diffusion coefficient (ADC) maps were selected for analysis, as these were 

most commonly reported in previous rectal cancer image biomarker studies [2]. ADC-

maps were calculated from the DWI-series with a mono-exponential fit of the signal 

intensity using all available b-values (varying from 2-7 b-values per sequence; b-values 

ranging between b0-b2000). Negative ADC values (<0) or ADC values larger than 3 

standard deviations from the mean (>mean+3SD) were marked invalid. As T2W pixel 

values are represented on an arbitrary scale, these images were normalized to mean=0 

and standard deviation=100. All images were then resampled to a common pixel 

spacing of 2x2x2mm.

To explore effects of segmentation methodology, three types of tumor segmentations 

were generated using 3D-slicer (version-4.10.2). Segmentations were generated on 

high b-value DWI, using the T2W-MRI as an anatomical reference, and then copied to 

the T2W-MRI and ADC-maps. First, a non-expert reader (JvG or NS; resident-level with 

no specific expertise in reading rectal MRI) segmented the rectal tumors by applying 

the “level-tracing” algorithm on DWI and manually adjusting it to exclude obvious 

artefacts or non-tumor tissues (e.g. adjacent organs or lymph nodes). Second, a board-

certified radiologist (DL; with >10 years of experience in rectal MRI) manually revised 

these segmentations, taking care to precisely delineate the tumor boundaries slice-

Figure 2. Study overview Two types of data variation between centers were analyzed: 
center-specific variations (related to hardware and image acquisition protocols, and 
case-mix) and methodology-related sources of variation (related to segmentation and 
feature extraction methodology). ICC=intra-class correlation coefficient.
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Single slice

Tumor segmentation
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52 features extracted 
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- 6 shape
- 32 higher order
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by-slice. Third, a single-slice segmentation was derived from this expert-segmentation 

including the axial slice with the largest tumor surface area. These three segmentations 

will be further referred to as: (1) non-expert, (2) expert, and (3) single-slice segmentation.

Imaging features were extracted using PyRadiomics (version-v3.0). To explore 

effects of feature extraction methodology, features (for the whole-volume expert-

segmentations) were additionally extracted with similar software settings using a 

different open-source software package, CapTk (version-1.8.1). Only features defined 

in both software packages were extracted, including 52 features in total: 14 first-order, 

6 shape, and 32 higher-order (7 gray-level co-occurrence matrix (GLCM), 16 gray-level 

size zone matrix (GLSZM), 4 gray-level run-length matrix (GLRLM), and 5 neighboring 

gray-tone difference matrix (NGTDM)). 

Analysis of sources of variation:

1. Center variations (case-mix, hardware, and image acquisition)

To investigate potential effects of “case-mix” differences, baseline patient characte-

ristics were compared between centers using the Kruskal-Wallis test for age, T-stage 

and N-stage, and Chi-squared test for sex. 

As a first exploratory step, we derived 6 basic imaging features (minimum, maximum, 

mean, standard deviation, entropy, and tumor volume) for each patient for both the 

T2W-MRI and ADC maps. The distribution of these features within our cohort was 

then visualized for each center separately using notched boxplots. To test whether 

the medians of the derived features were significantly different between patients 

from different centers we used Kruskal-Wallis; to identify which specific centers 

have different feature distributions, a post-hoc pairwise Mann-Whitney U-test was 

performed with Bonferroni correction to account for multiple testing. Supplementary 

Materials 1 describes a sub-analysis exploring whether differences between centers 

can be harmonized retrospectively by adjusting the b-values for ADC-calculation or by 

performing data normalization using reference organs or z-transformation.

Using multivariable linear regression, we further explored effects of variations in 

hardware (vendor/scanner model, field strength) and acquisition parameters (slice 

thickness, acquired in-plane resolution, repetition time, echo time, number of signal 

averages, maximum b-value, number of b-values, signal-to-noise ratio) on ADC, and 

compared these to various patient-intrinsic (baseline and clinical outcome) parameters 

previously reported to be correlated with ADC (including sex, age, cT-stage, cN-stage, 

response to chemoradiotherapy and tumor volume [1, 2, 20]). “Center” (i.e. hospital) was 

investigated as a final parameter to account for unknown variations not covered by the 

other variables (e.g. patient preparation and undocumented acquisition parameters). 
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Analyses were performed using R version-3.6.1, and p-values <0.05 were considered 

statistically significant. Further details on the regression analysis are provided in 

Supplementary Materials 2.

2. Image segmentation

Imaging features were compared between the expert, non-expert, and single-

slice segmentations using the two-way absolute agreement intra-class correlation 

coefficient (ICC), with ICC<0.50 indicating poor agreement, 0.50≤ICC<0.75 moderate 

agreement, 0.75≤ICC<0.90 good agreement, and ICC>0.90 excellent agreement [21].

3. Feature extraction software

Imaging features derived with PyRadiomics (using expert segmentations) were 

compared to those derived using CapTk using the two-way absolute agreement ICC 

and the same cut-offs for agreement detailed above [21]. 

RESULTS
Sources of variation

1. Center variations (patient-mix, hardware, and image acquisition)

Baseline characteristics of the 649 study patients (417 male, median age 65 years) 

are provided in Table 1. There were no significant differences in cT-stage, age, and 

sex distribution between the nine centers (p=0.11-0.69), except for cN-stage that 

was significantly higher in one center (p<0.001). An overview of the main variations in 

hardware and acquisition protocols is provided in Table 2. The distribution of basic first-

order feature values per center and post-hoc analyses illustrating differences between 

individual centers are depicted in Figure 3. All tested features differed significantly 

between centers (Kruskal-Wallis p<0.001) on both T2W-MRI and ADC. Pairwise 

comparisons between individual centers revealed that mainly ADC mean, minimum 

and maximum showed significant differences between the majority of the centers, 

while for T2W-MRI features, and ADC standard deviation and entropy, differences were 

limited to 2-4 individual centers. Data variations between centers did not improve after 

b-value harmonization and remained significant after applying different retrospective 

normalization methods, though normalization using inguinal lymph nodes as a 

reference organ did have a positive effect in reducing data variations as outlined in 

Supplementary Materials 1. Tumor volumes were mostly comparable between centers 

and only differed significantly between a minority of individual centers.
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Table 2. Overview of main variations in hardware and acquisition protocols 
between the 9 participating centers

Hardware

Total number of scanners n=26

Total number of scanner models n=13

Vendor type

Philips Healthcare (used in 6 centers) n=11 (incl. 4 different scanner 
models)

Siemens Healthineers (used in 5 
center) 

n=12 (incl. 7 different scanner 
models)

GE Healthcare (used in 2 centers) n=3 (incl. 2 different scanner 
models)

Field strength

1.5 T n=19

3.0 T n=7

Acquisition protocol

Parameter T2W-MRI
median (range)

DWI
median (range)

TR (ms) 4235 (866-16738) 5475 (948-11000)

TE (ms) 108 (60-250) 80 (37-117)

Flip angle (°) 150 (90-173) 90 (70-180)

NSA 2 (1-6) 5 (1-15)

Slice thickness (mm) 3 (3-5) 5 (2.7-8)

Pixel spacing (mm) 0.63 (0.29-1.48) 1.63 (0.63-3.52)

Field of view (mm) 200 (150-400) 320 (160-520)

Total number of b-values N/A 3 (2-7)

Lowest b-value N/A 0 (0-50)

Highest b-value N/A 1000 (600-2000)

NSA: Number of signal averages, T: Tesla, TE: Echo Time, TR: repetition time
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Figure 3. Center variations
A. Visualization of the distribution of 6 basic (first-order + volume) imaging features 
within our study cohort, grouped by center. The imaging features were extracted 
from the rectal tumors on the ADC map (upper row) and T2W-MRI (bottom row), 
respectively. The boxplots show the distribution of the feature values for all patients 
within each center, with the notches in each box plot representing the 95% confidence 
intervals of the median feature value within a center. Kruskal-Wallis tests showed that 
for all features these median values were significantly different between the centers 
(p<0.001). B. Additional post-hoc pairwise significance tests to explore which specific 
centers had significantly different feature values, with pink indicating no significant 
differences between centers and green indicating a significant difference (darker 
green corresponding to higher level of significance). Bonferroni correction was used 
to account for multiple testing.

ADC

T2

Mean Minimum Maximum Standard deviation Entropy Volume

B. Pairwise comparison between individual centers

arb. unit arb. unit arb. unit arb. unit arb. unit

Mean EntropyStandard deviationMaximumMinimum

ADC

T2

Volume

cm3

10-3mm/s2 cm3arb. unitarb. unit10-3mm/s210-3mm/s2

A. Overall di�erence between centers
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Table 3. Factors attributing to mean tumor ADC

Factors: Proportion of variance in ADC 
predicted by these factors 

(LOOCV R2)

A. Hardware and acquisition parameters: 64.3%

- Repetition time (TR)*
- Echo time (TE)*
- Flip angle
- Pixel Bandwidth 
- In plane resolution*
- Slice thickness
- Number of signal averages (NSA)*
- Maximum b-value*
- Number of b-values*
- Signal to noise ratio (SNR)*
- Scanner model*
- Magnetic fi eld strength

B. Patient-intrinsic parameters 0.4%

- Age
- Sex
- cT-stage (assessed on baseline MRI)
- cN-stage (assessed on baseline MRI)
- Response to chemoradiotherapy (complete versus incomplete response)
- Tumor volume

C. Center 32.5%

Umbrella variable to account for any additional unknown variations between 
centers (e.g. patient preparation protocols, types of coils used, fat suppression 
techniques, etc.) Signifi cant parameters: center

All (A + B + C) combined 63.5%

Signifi cant parameters: center, age, TR, TE, in plane resolution, slice thickness, 
NSA, maximum b-values, number of b-values, scanner model, SNR

Further details of the regression analysis can be found in Supplementary Materials 2. The 
LOOCV R2 value is a leave-one-out cross-validated goodness-of-fi t measure indicating the 
proportion of the variance in the dependent (i.e. ADC) variable that can be explained by the 
independent variables using a linear regression model. 

*  Indicate the variables that were signifi cant with a p-value < 0.05 based on a likelihood ratio 
test. For continuous variables, all polynomial terms were tested jointly. 
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The results of the regression models developed to investigate the influence of 

hardware, acquisition, and patient-intrinsic (baseline and clinical outcome) parameters 

on mean tumor ADC are reported in Table 3. Acquisition parameters had the strongest 

association with ADC and on their own were able to explain 64.3% of the variation 

in ADC present in the data. Patient-intrinsic parameters (e.g. age, gender, TN-stage, 

treatment response) had a negligible effect on ADC and were able to explain only 

0.4% of the variation in ADC. The umbrella variable “Center” was able to explain 

32.5% of the variation in ADC. When combining all factors in one model, the model 

explained 63.5% of the data variation, with acquisition and hardware parameters as the 

main predictors.

Figure 4. Effects of image segmentation and feature extraction methodology
Feature reproducibility for ADC (upper row) and T2W-MRI (bottom row) using 
different segmentation methods (A) and feature extraction packages (B). Each column 
corresponds to the percentage of features showing excellent (dark green, ICC>0.90), 
good (green, 0.90>ICC>0. 75), moderate (orange, 0.75>ICC>0.5) or poor (red, 
ICC<0.5) agreement. In total, 52 features were analyzed, including 14 first-order, 6 
shape, 7 Gray-Level Co-occurrence Matrix (GLCM), 4 Gray-Level Run-Length Matrix 
(GLRLM), 16 Gray-Level Size Zone Matrix (GLSZM) and 5 Neighboring Gray-Tone 
Difference Matrix (NGTDM) features.
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2. Image segmentation

The results of the reproducibility analysis using different segmentation strategies are 

depicted in Figure 4A. Reproducibility between expert and non-expert segmentations 

was good-excellent for the majority of features (first-order, shape, and higher-order) 

with ICC values ranging between 0.72-0.99 (median 0.90) for T2W-MRI and 0.53-0.99 

(median 0.89) for ADC. Compared to the expert whole-volume segmentations, the 

extracted single-slice segmentations resulted in considerably lower reproducibility 

with an ICC of 0.00-0.94 (median 0.40) for T2W-MRI and ICC of 0.00-0.97 (median 0.58) 

for ADC, with poor results for shape, GLSZM, and NGTDM features. 

3. Feature extraction software

The influence of feature extraction software is depicted in Figure 4B. The majority of 

first-order, shape, GLCM and GLRLM features showed good-excellent reproducibility 

with similar results for features derived from T2W-MRI or ADC with ICCs ranging 

between 0.00-1.00 (median 0.99) for both modalities. In contrast, the majority of 

GLSZM and NGTDM features were poorly reproducible with ICCs of 0.00-0.56 (median 

0.00) for T2W-MRI and ICCs 0.01-0.99 (median 0.41) for ADC.

DISCUSSION
The results of this study show that variations in quantitative imaging (Radiomics) in 

a large clinical multicenter dataset of rectal MRIs were more substantial for DWI/

ADC than for T2W-MRI and mainly related to hardware and acquisition protocols 

(i.e. “center effects”). Effects of segmentation methodology and feature extraction 

software on feature variation were less significant, particularly for the more basic first-

order and shape-related features that showed overall good reproducibility

An exploratory analysis on the feature distribution of 6 basic imaging features (first-

order + volume) showed significant variation between patient populations coming 

from different centers, with more significant differences for ADC than for T2W-MRI. 

Tumor volume was the most robust feature with most comparable results between 

centers. This is in line with a previous report on the repeatability of MRI features in 

a small cohort (n=48) of patients with brain glioblastoma, which showed that shape 

features (including volume) resulted in higher repeatability than features derived from 

T2W-MRI pixel intensities [18]. Similarly, shape features were found to have the highest 

repeatability and reproducibility on T2W-MRI of cervical cancer [22].
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Since ADC data showed the largest variations, we developed a linear regression 

model to investigate in-depth which factors influence mean tumor ADC. The majority 

(>60%) of the ADC variation could be predicted using only hardware and acquisition-

related parameters while patient-intrinsic (clinical and tumor) features alone predicted 

only 0.4% of the variation in ADC. This suggests that—when building multicenter 

prediction models—any potential relation between clinical outcomes and ADC 

will likely be obscured when no correction is performed to account for acquisition 

and hardware differences. This is a very relevant issue when incorporating ADC in 

retrospective multicenter studies without protocol standardization. Even in controlled 

prospective study designs with harmonized acquisition protocols, variation in ADC can 

still be a limiting factor as coefficients of variation range as high as 4-37% depending 

on the measured organ [23, 24]. Differences in acquisition settings have previously also 

been shown to substantially reduce inter- and intra-scanner reproducibility of T2W-MRI 

radiomics features, with particularly poor results for higher-order features [13, 16].

Several methods have been suggested to correct for data variations between centers. 

A first option is to discard features that are poorly reproducible across centers, with the 

advantage of creating simpler models (though with the drawback of losing potentially 

valuable information) [12]. Two alternative options are normalization in the image 

domain (e.g. z-transform or within patient normalization using reference tissues) or 

feature domain (e.g. ComBat harmonization). These techniques have been shown to 

significantly improve T2W-MRI feature reproducibility [18], and to successfully correct 

for “batch-effects” (similar to “center-effects”) in genomic studies [12]. The latter 

approach has recently been adopted for Radiomics with promising results [25]. In our 

exploratory analysis described in Supplementary Materials 1, data normalization using 

lymphoid tissue (benign inguinal lymph nodes) as a reference organ had a positive 

effect to reduce ADC data variations between centers, though differences remained 

statistically significant and the benefits of this approach will need to be further 

investigated in studies where features are tested against a clinical outcome. The fourth 

option is to use statistical models that specifically take center effects into account 

(e.g. random/mixed-effect models [10]). These various options all have their strengths 

and weaknesses and evidence-based guidelines on the preferred (combination of) 

methods to handle center effects in multicenter Radiomics research are so far lacking 

and urgently needed. 

Regarding image segmentation methodology, we found poor reproducibility for 

higher-order features (e.g. GLSZM and GLRLM) but overall good reproducibility for 



575588-L-bw-Schurink575588-L-bw-Schurink575588-L-bw-Schurink575588-L-bw-Schurink
Processed on: 8-4-2022Processed on: 8-4-2022Processed on: 8-4-2022Processed on: 8-4-2022 PDF page: 111PDF page: 111PDF page: 111PDF page: 111

111

SOURCES OF VARIATION IN MULTICENTER RECTAL MRI DATA AND THEIR EFFECT 
ON RADIOMICS FEATURE REPRODUCIBILITY.

simpler features (e.g. first-order, GLCM) similar to previous reports [9, 26, 27]. The 

features derived from single-slice segmentations showed the poorest reproducibility, 

which is in line with previous single-center reports [28, 29], indicating that—though 

less cumbersome—single-slice methods are not recommendable. Interestingly, 

feature reproducibility was good-excellent between expert and non-expert readers, 

indicating that input from expert-radiologists is not necessarily required. This is in 

line with a previous report where a Radiomics model was trained to predict response 

to chemoradiotherapy in rectal cancer and achieved similar performance regardless 

of whether segmentations were performed by expert (AUC 0.67-0.83) or non-expert 

readers (AUC 0.69-0.79) [30]. This is reassuring given the tremendous workload 

associated with image segmentation, especially when analyzing large volumes of 

imaging data. Another potential solution to reduce this workload could be to use 

computer algorithms to (semi-)automatically generate tumor segmentations [31]. 

There have been some promising reports showing that computer algorithms may 

generate segmentations similar to manual tumor delineations [31, 32], provided that 

image quality is good [33]. 

When comparing feature reproducibility using different software packages, we found 

that the majority of first-order, shape, GLCM and GLRLM features showed good to 

excellent reproducibility whereas the majority of higher-order features (GLSZM and 

NGTDM) were poorly reproducible. This is in line with earlier findings that higher-

order features are generally less reproducible than first-order and shape features [9] 

which can probably be partly attributed to technical differences in the implementation 

of features and/or image processing by different software and computational 

algorithms. This underlines the importance of accurately reporting software versions, 

and preferably using packages with standardized feature definitions such as those 

defined by the image biomarker standardization initiative (IBSI). Considering the poor 

reproducibility of the higher-order features in our dataset, caution should be taken 

when incorporating more advanced features into clinical prediction models. 

The main novelty of the current study lies in its multicenter aspect. Although previous 

studies have already identified acquisition parameters [13, 15, 16], segmentation [19] 

and post-processing methods [15, 18] as factors affecting feature reproducibility, these 

studies have so far mainly been performed on non-MRI data or in small patient cohorts 

or phantoms. The extent to which these effects influence feature reproducibility and 

may obscure correlations with common clinical outcomes in a representative “real life” 

clinical cohort of MRI data acquired at various institutions has not been previously 
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reported. There were, however, some limitations to our study design in addition to its 

retrospective nature. As the data was acquired and anonymized to comply with privacy 

regulations, only basic acquisition information could be extracted from the DICOM 

headers. Other potential sources of variation, such as coil use, fat suppression, MRI 

software version, and patient preparation, therefore, remain underexposed. In addition, 

all segmentations were done on the high b-value DWI (and then copied to the other 

modalities). Although care was taken to take the anatomical information of T2W-MRI 

into account during the segmentations, ideally a separate segmentation would have 

been performed on T2W-MRI. This, however, was not feasible to accomplish within an 

acceptable timeframe. Finally, several data-processing choices (e.g. resampling voxel-

size, bin-width, gray-level discretization, and T2W-MRI normalization) were made 

which may have influenced the extracted features [34–36]. Although some of these 

steps may have introduced some bias in our analyses a more detailed analysis on the 

impact of these choices was beyond the scope of this paper.

In conclusion, this study has shown that significant variations between centers are 

present in multicenter rectal MRI data with more substantial variations in DWI/ADC 

compared to T2W-MRI, which are mainly related to hardware and image acquisition 

protocols (i.e. “center effects”). These effects need to be accounted for when analyzing 

multicenter MRI datasets to avoid that potential correlations with the clinical outcome 

under investigation are overlooked. Image segmentation has relatively minor effects 

on image quantification provided that whole-volume segmentations are performed. 

Expert segmentation input is not necessarily required to acquire stable features, which 

could shift the daunting task of image segmentation from expert-radiologists to less 

experienced readers or even (semi-)automatic software algorithms. Higher-order 

features were less reproducible between software packages and caution is therefore 

warranted when implementing these into clinical prediction models. 
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ABSTRACT
AIM

To develop and validate a multiparametric imaging model to predict response to 

neoadjuvant treatment in rectal cancer using a clinically representative heterogeneous 

multicenter dataset of baseline staging MRIs.

METHODS

Primary staging MRIs (T2W-MRI and DWI/ADC) of 509 rectal cancer patients treated 

with neoadjuvant chemoradiotherapy (CRT) were collected from nine centers. 

Response outcomes were defined as (1) complete versus incomplete response, or 

(2) good (Mandard tumor regression grade, TRG1-2) versus poor response (TRG3-5). 

Models to predict these outcomes were developed based on combinations of the 

following variable groups: 

1.  non-imaging: age/sex/tumor-location/tumor-morphology/CRT-surgery interval 

2.  basic imaging staging: cT-stage/cN-stage/mesorectal fascia involvement, derived 

from either (2a) the original staging reports, or (2b) re-evaluation staging by a 

dedicated expert

3.  advanced imaging staging: variables from 2b combined with cTN-substaging/

depth of invasion/extramural vascular invasion/tumor length

4.  quantitative imaging: volume + first-order histogram features derived from T2W-

MRI and DWI/ADC using whole-tumor delineations. 

Prediction models were developed with data from 6 centers (n=412) using logistic 

regression with LASSO feature selection, and internally validated using repeated 

(n=100) random hold-out validation. The best performing model was tested on an 

external validation cohort (3 centers; n=97).

RESULTS

After external validation, the best performing model (including non-imaging 

and advanced staging variables) achieved an area under the receiver-operating 

characteristic curve (AUC) of 0.60 (95%CI 0.48-0.72) to predict complete response 

and AUC 0.65 (95%CI 0.53-0.76) to predict a good response. Quantitative imaging 

variables did not contribute to improved model performance. Basic staging variables 

consistently achieved lower performance compared to advanced image staging 

variables.
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DISCUSSION

Overall model performance to predict response to chemoradiotherapy was moderate. 

Best results were obtained with advanced image-based staging variables, highlighting 

the importance of accurate staging according to current guidelines. No added value 

was found for quantitative imaging features in this heterogeneous multicenter dataset.

INTRODUCTION
Locally advanced rectal tumors are typically treated with neoadjuvant chemoradio-

therapy (CRT) aiming to downstage the tumor prior to surgery to achieve a more 

effective oncological resection, thereby reducing the risk for a local recurrence [1]. In 

up to 15-27% of the cases a complete tumor remission may be achieved as a result of 

CRT [2]. This has contributed to the recent paradigm shift in rectal cancer treatment 

towards organ preservation (e.g. “watch-and-wait” or local treatment of small tumor 

remnants) for selected patients with clinical evidence of a very good or complete 

tumor response after CRT. For these organ-preservation approaches, the morbidity 

and mortality risks associated with major surgery are avoided, with good reported 

clinical outcomes regarding the quality of life and overall survival [3, 4]. Predicting the 

response to CRT and thus the chance of achieving organ-preservation before the start 

of treatment, i.e. at baseline, may open up new possibilities to further personalize 

neoadjuvant treatment strategies depending on the anticipated treatment benefit, 

particularly for smaller tumors that do not necessarily require CRT for oncological 

reasons.

In recent years, an increasing volume of research indicates a possible role for imaging 

in this setting [5–9]. Promising results have been reported for clinical staging variables 

(MRI-based TN-stage) [6, 7], tumor volume [10–12], and functional imaging parameters 

(e.g. from diffusion-weighted imaging (DWI) [8, 9] or dynamic contrast enhanced MRI 

(DCE) [13]) to predict rectal tumor response on baseline MRI, and more recently also 

for more advanced quantitative variables derived using modern post-processing tools 

such as radiomics [5]. However, available evidence so far mainly comes from single-

center studies focusing on a limited number of imaging variables. Multicenter studies 

incorporating clinical, functional as well as advanced quantitative imaging data are 

scarce [14, 15]. Moreover, the effects of multicenter data variations related to image 

acquisition and diagnostic staging differences between observers so far remain largely 

uninvestigated. Prediction studies on larger multicenter patient cohorts with imaging 

data acquired and analyzed as part of everyday clinical routine are therefore urgently 
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needed to develop a more realistic view of the potential role of image-based treatment 

prediction models in general clinical practice.

In this retrospective multicenter study, we set out to develop and validate a model 

to predict response to neoadjuvant treatment in rectal cancer using rectal MRIs 

acquired for baseline staging in 9 different centers in the Netherlands, intended to 

be a representative sample of rectal imaging performed in everyday clinical practice.

METHODS
Patients 

As part of an institutional review board approved multicenter study project, the 

clinical and imaging data of 670 patients undergoing standard of care neoadjuvant 

chemoradiotherapy for newly diagnosed locally advanced rectal cancer between 

February 2008 and March 2018 were retrospectively collected from 9 participating 

study centers (1 university hospital, 7 large teaching hospitals and 1 comprehensive 

cancer center). Patients were identified based on the following inclusion criteria: (a) 

biopsy-proven rectal adenocarcinoma, (b) non-metastasized disease, (c) availability 

of a pre-treatment MRI (including at least T2-weighted (T2W) sequences in multiple 

planes and an axial DWI sequence) with corresponding radiological staging report 

(d) routine long-course neoadjuvant treatment consisting of radiotherapy (total dose 

50.0-50.4 Gray) with concurrent capecitabine-based chemotherapy, (e) final treatment 

consisting of surgery or watch-and-wait with >2 years clinical follow-up to establish a 

reliable final response to CRT. From this initial cohort, 161 patients were excluded for 

reasons detailed in the inclusion/exclusion flowchart in Figure 1, leaving a total study 

population of 509 patients. Due to the retrospective nature of this study, informed 

consent was waived.

Imaging and image pre-processing 

MRIs were acquired according to routine practice in the participating centers with 

substantial variations in scan protocols and corresponding image quality between 

(and within) centers, as illustrated in Figure 2. During the study inclusion period, 

images were acquired using 25 different scanners (19 1.5T; 6 3.0T) and a total of 112 

unique T2W and 94 unique DWI protocols. Further parameters are summarized in 

Supplementary Materials A. From the source DW images we calculated the Apparent 

Diffusion Coefficient (ADC) maps using all available b-values (varying from 2-7 b-values 
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per sequence; b-values ranging between b0-b2000) by applying a mono-exponential 

fit of the signal intensity. Negative ADC values (<0) and ADC values larger than 3 

standard deviations from the tumor mean (>mean+3SD) were marked as invalid. Since 

T2W pixel values are represented on an arbitrary scale, these images were normalized 

to mean=0 and standard deviation=100 (in line with PyRadiomics documentation [16]). 

All images were then resampled to a common isotropic pixel spacing of 2x2x2mm.

Image evaluation

In addition to the original staging reports, all MRIs were re-evaluated by a dedicated 

radiologist (DMJL, pelvic MR expert with >10 years’ experience in reading rectal MRI) 

Figure 1. In- and exclusion flowchart. Note, mucinous tumors were excluded because 
these are known to exhibit distinctly different signal characteristics on both T2W-MRI 
and DWI.

Included for analysis:
n=509

Non-diagnostic quality (e.g. due to hip 
prostheses causing artefacts): n=47

Severe geometric mismatch between 
T2W-MRI and DWI: n=22

Predominantly mucinous tumor type: n=19

Prolonged waiting interval from CRT
to surgery (>20 weeks): n=39

Multiple tumors in field-of-view: n=18

Tumor not completely covered in 
field-of-view (T2W-MRI and/or DWI): n=8

Concomitant abscesses: n=8

Considered for inclusion:
n=670 rectal cancer patients
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who staged all cases in line with the modern staging guidelines as outlined in the 

structured report template published by the European Society of Gastrointestinal and 

Abdominal Radiology (ESGAR) in 2018 [17]. For quantitative image analysis, all rectal 

tumors were segmented using 3D Slicer (version-4.10.2), using previously published 

methods [18]. In summary, segmentation was performed semi-automatically using a 

level-tracing algorithm applied to the high b-value DWI. Segmentations were then 

manually adjusted by an expert radiologist (DMJL, the same reader who also staged 

the cases) on a slice-by-slice level taking into account the anatomical information 

from the corresponding T2W-MRI. Care was taken to include only tumor tissue on 

the DWI and T2W images, excluding the rectal lumen and any non-tumor perirectal 

tissues. Segmentations were then copied from the DWI to the ADC-map and T2W-

MRI, after which tumor volume and other quantitative features (first-order features 

such as mean signal intensity, standard deviation, entropy) were extracted from these 

images with PyRadiomics (version-3.0) using a bin-width of 5 (T2W-MRI) and 5x10-5 

(ADC). This bin-width was chosen such that the number of histogram bins was between 

30 and 130, as proposed by PyRadiomics documentation [16]. Quantitative features 

were deliberately limited to simpler volume, and first-order features as these have 

previously been reported to be most reproducible [19–23] and least dependent on 

acquisition differences between centers [18]. 

Figure 2. Examples illustrating differences in image quality and acquisition for T2W-
MRI (A-D) and DWI (E-H) between centers, related to for example field-of-view, tissue 
contrast (e.g. TR/TE settings), image resolution, and noise. For the DWI scans, the 
highest acquired b-values shown in these examples were b1000 (E), b600 (F), b800 (F) 
and b1000 (H).
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Variable definitions

Five distinct variable categories were defined:

1.  Non-imaging variables; these included baseline patient characteristics (age and 

sex), basic tumor descriptors available from clinical examination and endoscopy 

(tumor location and basic tumor morphology, e.g. polyp/circular) and the time 

interval between completion of neoadjuvant CRT and surgery.

2.  Basic image-based staging variables: 

(2a) derived from the original reports; these included the main clinical staging 

descriptors that could routinely be derived from the original radiological staging 

reports: cT-stage (cT1-2, cT3, cT4), cN-stage (cN0, cN1, cN2), and involvement 

of the mesorectal fascia (MRF).  

(2b) derived from expert re-evaluation; the same descriptors given in (2a) were 

derived from the re-evaluations performed by the dedicated expert reader.

3.  Advanced image-based staging variables; these included, in addition to the 

descriptors given in (2b), advanced staging descriptors that were not routinely 

available from the original staging reports but were derived from the expert 

re-evaluations in line with the ESGAR reporting guidelines: tumor length, cT-

substage (cT1-2; cT3a,b,c,d; cT4a,b), depth of extramural invasion, and extramural 

vascular invasion (EMVI).

4.  Quantitative imaging features; these included tumor volume, which was 

extracted directly from the whole-tumor segmentations, and the following first-

order features that were derived from the pixel values of the rectal tumor for both 

the T2W-MRI and the ADC maps: mean, median, minimum, maximum, variance, 

mean absolute deviation, range, robust mean absolute deviation, root mean 

squared, 10th percentile, 90th percentile, energy, entropy, interquartile range, 

kurtosis, skewness, total energy and uniformity. 

These variable categories were combined into eight variable sets for the statistical 

analysis as detailed in Table 1.

Response outcome

The final treatment response outcome was defined in twofold [8, 24, 25]:

•  Complete response (CR) versus incomplete response: CR was defined as either a 

pathological complete response after surgery (pCR; ypT0N0) or a sustained clinical 

complete response (cCR) with no evidence of a tumor on repeated follow-up MRI 

and endoscopy for a follow-up period of >2 years in patients undergoing watch-
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and-wait. Patients with ypT1-4 disease after surgery were classified as incomplete 

response.

•  Good response (GR) versus poor response: the good response group included all 

patients with a histopathological Mandard’s tumor regression grade (TRG) of 1-2 

(total and subtotal regression); patients with TRG of 3-5 (moderate, limited and 

no regression) were classified as poor responders. For the purpose of this study, 

patients with a sustained cCR for >2 years were considered TRG1. If the pathology 

report did not explicitly mention a TRG score, the complete pathology reports 

were reviewed with a dedicated gastrointestinal pathologist (PS with >8 years of 

experience) to assign a TRG score retrospectively.

Table 1. Variable category defi nition and variable sets

Variable categories Features

1. Non-imaging Age, sex, time between CRT and surgery, tumor morphology 
(polyp, semicircular, or circular) and tumor height (distal-mid 
versus proximal-rectosigmoid)

2a.  Basic imaging staging 
(original reports)

cT-stage (cT12, cT3, cT4), cN-stage (cN0, cN1, cN2), involvement 
of the mesorectal fascia (MRF-, MRF+)

2b.  Basic imaging staging 
(expert re-evaluation) 

cT-stage (cT12, cT3, cT4), cN-stage (cN0, cN1, cN2), involvement 
of the mesorectal fascia (MRF-, MRF+)

3.  Advanced imaging staging
(expert re-evaluation)

All variables included in 2b (basic imaging staging – expert 
re-evaluation) + cT-substage (cT12, cT3abcd, cT4ab), extramural 
invasion depth, EMVI, tumor length

4.  Quantitative imaging
(derived from T2W-MRI and 
ADC)

Tumor volume*, mean, median, minimum, maximum, variance, 
mean absolute deviation, range, robust mean absolute 
deviation, root mean squared, 10th percentile, 90th percentile, 
energy, entropy, interquartile range, kurtosis, skewness, total 
energy, uniformity

Variable sets

1. Non-imaging only
2. Non-imaging + basic imaging staging (original reports)
3. Non-imaging + basic imaging staging (expert re-evaluation)
4. Non-imaging + advanced imaging staging (expert re-evaluation)
5. Non-imaging + quantitative imaging
6. Non-imaging + basic imaging staging (original reports) + quantitative imaging
7. Non-imaging + basic imaging staging (expert re-evaluation) + quantitative imaging
8. Non-imaging + advanced imaging staging (expert re-evaluation) + quantitative imaging

* Tumor volume was derived directly from the whole-tumor segmentations. 
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Statistical analysis

The 9 centers were divided into a development and (external) validation set, including 

6 centers (n=412) and 3 centers (n=97), respectively. Differences between development 

and validation sets were assessed using Chi-squared tests for categorical (sex and 

response) and Kruskal-Wallis tests for continuous/ordinal variables (age, cT and cN). 

The model development and validation process is summarized in Figure 3. Predictive 

performance for the eight variable sets (see Table 1) to predict the two respective 

response outcomes (complete vs incomplete response; good vs poor response) 

was assessed in the development cohort by calculating the average area under the 

receiver operator characteristic curve (AUC) after repeated (n=100) random hold-out 

validation. During each iteration, the development cohort was randomly split into a 

70% training / 30% test dataset.

All training variables were then scaled (mean = 0, standard deviation = 1), with the 

same scaling (i.e. using the mean and standard deviation derived from the training 

set) applied to the test set. When two or more features in a variable set were 

correlated (with Pearson’s ρ>0.8 in the training data), only the feature with the lowest 

mean absolute correlation was retained for further analysis. The remaining variables 

were used to train a logistic regression model with Least Absolute Shrinkage and 

Figure 3. Schematic overview of the study workflow and statistical analysis. From a 
total cohort of 509 patients from 9 centers, 412 patients (from 6 centers) were used to 
develop a prediction model to predict two respective outcomes (complete response, 
good response) using repeated hold-out validation. For both outcomes, the best 
performing model was tested on an external and independent validation cohort 
consisting of 97 patients (from 3 different centers)

Development cohort
(6 centers)

n=412 

(1) Non imaging variables
+
(2) Basic imaging staging (original)
(3) Basic imaging staging (expert re-evaluation)
(4) Advanced imaging staging
(5) Quantitative imaging
(6) Basic imaging staging (original) + quantitative imaging
(7) Basic imaging staging (expert re-evaluation) + quantitative imaging
(8) Advanced imaging staging + quantitative imaging 

Feature sets

Logistic regression + LASSO

Model

Repeated hold-out validation (n=100)

External validation cohort
(3 centers)

n=97 70%
train

30%
test

Train best model
on development

cohort

External validation performance

ROC AUC

ROC AUC

Model performance

1. Complete vs incomplete response
2. Good vs poor response

Outcome
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Selector Operator (LASSO) regularization [26]. The LASSO regularization parameter 

(λ) was tuned to select only the most relevant variables by minimizing the negative 

binomial log-likelihood loss using internal repeated (n=100) 10-fold cross-validation. 

Each model’s performance was measured on the test dataset, and the model 

achieving the best average test AUC was trained on the whole development cohort.  

As a final step, the performance of this best performing model (N.B. one model to 

predict a complete response and one model to predict a good response) was tested 

on the external validation cohort. 95% confidence intervals for averaged AUCs in the 

development data were estimated through bootstrapping (200 samples). Confidence 

intervals for the validation cohort were obtained using DeLong’s method [27]. 

Supplementary Materials B describes two additional analyses: (1) testing the effects 

of 3 different previously described methods for multicenter data normalization (using 

a reference organ [28], statistical correction of imaging features using the ComBat 

algorithm [29], and statistical correction using mixed-effects models [30]), and (2) 

comparing model performance in the multicenter dataset to a single-center data subset 

from the cohort acquired with a harmonized MRI acquisition protocol. The latter was 

done to mimic comparison of our results with a single center study design.

RESULTS
Patients

Baseline information of the 509 included patients (332 (65%) male; median age 65 (range 

25-87) years) is presented in Table 2. For the outcome complete (versus incomplete) 

response, 141 patients (28%) were classified as complete responders. For the outcome 

good (versus poor) response, 225 patients (44%) were classified as good responders. 

The development and validation cohort showed no significant differences in sex, age, 

cT-stage, cN-stage and tumor response (p=0.37-0.98).  

Model performance and predictive variables

Results for model development and performance are detailed in Table 3. The best 

performing model included non-imaging and advanced imaging staging variables and 

achieved an average AUC of 0.60 (95%CI 0.48-0.72) to predict a complete response 

and AUC 0.65 (95% CI 0.53-0.76) to predict a good response in the external validation 

cohort, results very similar to those obtained during testing in the development cohort. 

The addition of quantitative imaging features did not lead to improved predictive 
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performance in any of the model combinations. Basic staging variables consistently 

achieved lower predictive performance compared to the advanced staging variables, 

especially (though 95% confidence intervals showed some overlap) when the basic 

staging variables were derived from the original reports. Based on the model coefficients, 

a more proximal tumor location, shorter tumor length, longer waiting interval after CRT, 

lower cT-substage and cN-stage, negative MRF, lower extramural invasion depth and 

negative EMVI status were associated with a favorable response outcome (full model 

coefficients are provided in Supplementary Materials C).

The results of our supplementary analyses (Supplementary Materials B) show that none 

of the normalization methods applied to retrospectively harmonize the data improved 

the predictive performance of our models. When mimicking a single-center study design 

(i.e. when performing the same analysis on a single-center subset within our cohort with 

homogeneous imaging protocols), results were highly variable. However, there was a 

trend towards better single-center model performance for most variable subsets to 

predict a complete response. 

Table 2. Baseline patient characteristics and variations between centers 

  Total Development 
cohort

Validation 
cohort

P-value

TOTAL, n (%) n=509
(100%)

n=412 
(81%)

n=97
(19%)

Sex, n (%) Female 177 (35%) 139 (34%) 38 (39%) 0.37*

Male 332 (65%) 273 (66%) 59 (61%)

Age, median (range) 65 (25-87) 66 (25-87) 65 (33-81) 0.37**

cT, n (%) 1-2 35 (7%) 30 (7%) 5 (5%) 0.57**

3 441 (81%) 334 (81%) 80 (83%)

4 60 (12%) 48 (12%) 12 (12%)

cN, n (%) 0 68 (13%) 52 (13%) 16 (17%) 0.98**

1 122 (24%) 103 (25%) 19 (20%)

2 319 (63%) 257 (62%) 62 (64%)

Complete response, 
n (%)

CR 141(28%) 111 (27%) 30 (31%) 0.51*

Not-CR 368 (72%) 301 (73%) 67 (69%)

Good response, 
n (%)

Good 225 (44%) 184 (45%) 41 (42%) 0.75*

Poor 284 (56%) 228 (55%) 56 (58%)

*Calculated using Chi-squared test
** Calculated using Kruskal-Wallis test
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The best performing single-center model (including non-imaging and advanced 

staging variables) achieved an AUC of 0.79, compared to an AUC of 0.69 achieved in 

the total multicenter development cohort.

Table 3.  Model performance 

Average AUC on the development cohort

Variable groups and combinations

Outcome

CR (95% CI) GR (95% CI)

Non-imaging 0.58
(0.49 – 0.66)

0.53
(0.42 – 0.58)

Non-imaging + basic imaging staging 
(original reports)

0.63
(0.55 – 0.70)

0.52
(0.39 – 0.54)

Non-imaging + basic imaging staging 
(expert re-evaluation)

0.66
(0.58 – 0.70)

0.62
(0.56 – 0.68)

Non-imaging + advanced imaging staging 
(expert re-evaluation)

0.69
(0.62 – 0.74)

0.67
(0.62 – 0.73)

Non-imaging + quantitative imaging 0.59
(0.46 – 0.61)

0.58
(0.47 – 0.61)

Non-imaging + basic imaging staging 
(original reports) + quantitative imaging

0.59
(0.44 – 0.60)

0.57
(0.44 – 0.59)

Non-imaging + basic imaging staging 
(expert re-evaluation) + quantitative imaging

0.63
(0.51 – 0.68)

0.62
(0.53 – 0.68)

Non-imaging + advanced imaging staging 
(expert re-evaluation) + quantitative imaging

0.68
(0.59 – 0.71)

0.67
(0.61 – 0.72)

Performance of best performing model on external validation cohort

Non imaging + advanced imaging staging 
(expert re-evaluation)

0.60
(0.48 – 0.72)

0.65
(0.53 – 0.76)

Features selected in CR model: [Intercept], tumor height, weeks to surgery,
cTsub-stage, cN-stage, invasion depth (mm), tumor length (mm)

Features selected in GR model: Tumor height, weeks to surgery, cTsub-stage, 
MRF-status, invasion depth (mm), EMVI status

95% CI: 95% confi dence interval, CR: Complete response (pCR and cCR), GR: Good response 
(TRG1-2) 

NB: Confi dence intervals on the development cohort AUC are based on the non-studentized 
pivotal bootstrap method [31] using 200 bootstrap samples. For the external validation cohort 
DeLong’s method [27] was used.
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DISCUSSION
This multicenter study shows that when combining clinical baseline variables with 

various image-based staging variables and quantitative imaging features, overall 

model performance to predict neoadjuvant treatment response in rectal cancer is 

disappointing, with AUCs ranging between 0.60 and 0.65 when tested in an external 

validation cohort to predict either a complete response (ypT0) or a good response 

(TRG1-2). The best model performance was achieved when combining clinical 

baseline information and image-based staging variables. Quantitative imaging 

variables derived from T2W-MRI and ADC maps had no added value. Notably, model 

performance was considerably better when performing state-of-the-art staging, 

including advanced staging parameters such as cT-substage, extramural invasion 

depth and EMVI, compared to more traditional staging including only simplified cTN-

stage and MRF involvement. Moreover, model performance seemed to be affected 

by staging variations between observers with better performance when staging was 

performed by a dedicated reader compared to the original staging reports acquired 

by a multitude of readers.

The latter is an interesting finding as previous studies included staging variables such as 

cTN-stage as part of the “baseline patient variables”, which suggest that these are used 

as ‘objective’ variables with little variation between readers [32, 33]. While measurement 

variations are commonly considered when analyzing quantitative imaging data, our 

current results demonstrate that the more basic staging variables are also subject to 

inter-observer variations, considering the differences in model performance when 

using the same variables derived from either the original staging reports or expert re-

evaluation of the same images. The improved model performance when including also 

modern staging variables such as cT-substage and EMVI in these expert re-evaluations 

further highlight the importance of high-quality diagnostic staging according to up-to-

date guidelines such as the ESGAR rectal staging template [17]. The clinical impact of 

state-of-the-art staging was also demonstrated by Bogveradze et al., who showed in a 

retrospective analysis of 712 patients that compared to “traditional” staging methods, 

advanced staging according to recent guideline updates would have led to a change 

in risk classification (and therefore potentially in treatment stratification) in up 18% of 

patients [34].

The fact that our cohort dates back as far as 2008 and covers a 10-year inclusion period 

explains why many of these advanced staging variables could mostly not be derived 
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from the original reports. The use of older data will likely also have impacted the 

quality of the images and thus the quantitative imaging features derived from the data. 

Following developments in acquisition guidelines, software and hardware updates, 

image quality will have evolved over time. This is also reflected by the large number of 

different imaging protocols (including 112 unique T2W and 94 unique DWI protocols) 

derived from the 9 participating centers over time. The question, therefore, remains 

if and how model performance would have improved using only current-day state-of-

the-art and/or more harmonized (prospectively acquired) MRI data.

In our current dataset quantitative imaging features showed no added benefit 

for the purpose of pre-treatment response prediction. This is contrary to different 

previous single center and smaller bi- and tri-institutional studies that achieved more 

encouraging AUCs ranging from 0.63 to as high as 0.97 using quantitative imaging 

features derived from MRI [5, 14, 15]. These previous results are likely at least in part an 

overestimation of how such models would perform in everyday practice, as especially 

earlier pilot studies are hampered by limitations in methodological design (e.g., small 

patient cohorts, re-using of training data for testing, multiple testing, etc.) as also 

outlined in several review papers reporting on the quality and/or reproducibility of 

image biomarker studies [5, 19, 35–39]. 

The fact that most previous studies have been single-center reports will likely have also 

played an important role. Though reflective of data acquired in everyday practice, our 

results confirm the known difficulty of building generally applicable prediction models 

using heterogeneous retrospectively collected multicenter data. While some data 

variations are necessary to identify robust features to vendor and acquisition differences, 

too much variation will negatively impact model generalizability. Attempting to directly 

compare and investigate the effects of multicenter (heterogeneous) versus single-

center (homogeneous) modelling using our own data, we mimicked a single center 

comparison by repeating our study analyses on a homogeneous single-center subset 

within our cohort. Though results have to be interpreted with caution considering the 

wider confidence intervals and lack of external validation in the single-center arm, this 

comparison suggests that the best performing model indeed appeared to be better 

for the homogeneous single-center subset (AUC 0.79) than for the multicenter (AUC 

0.69) cohort. Though full data harmonization will likely never be achieved in daily 

clinical practice, these findings do support a need for further protocol guidelines and 

standardization to benefit future multicenter research. 
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There are some limitations to our study design. As mentioned above, data was acquired 

over the time span of a decade including scans acquired using outdated protocols 

dating back as far as 2008. All segmentations were performed on high b-value DWI 

and then copied to T2W-MRI and ADC maps. Although care was taken to include 

anatomical information of the T2W-MRI during segmentation, ideally a separate 

segmentation would have been performed. Finally, comparison between the original 

basic staging reports and the advanced staging performed as part of this study was 

influenced by the fact that all re-evaluations were done by a single reader. In contrast, 

original staging reports were performed by a multitude of readers with varying levels 

of expertise.

In conclusion, this multicenter study combining clinical information and MRIs acquired 

as part of everyday clinical practice over the time span of a decade rendered 

disappointing performance to predict response to neoadjuvant treatment in rectal 

cancer. Best results were obtained when combining clinical baseline information with 

state-of-the-art image-based staging variables, highlighting the importance of good 

quality staging according to current guidelines and staging templates. No added 

value was found for quantitative imaging features in this multicenter retrospective 

study setting. This is likely at least in part the result of acquisition variations, which 

is a major problem for feature reproducibility and thus model generalizability. To 

benefit from quantitative imaging features—assuming a predictive potential—further 

optimization and harmonization of acquisition protocols will be essential to reduce 

feature variation across centers. For future research it would also be interesting to see 

how model performance may improve when combining the information that can be 

derived from imaging with other clinical biomarkers such as molecular markers (e.g. 

DNA mutations, gene expression, microRNA) [40, 41], blood biomarkers (e.g. CEA, 

circulating tumor DNA) [40, 42], metabolomics (e.g. metabolites, hormones and other 

signaling molecules) [43], organoids [44] and immune profiling [45]. 
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GENERAL DISCUSSION
The aim of this thesis was to study the clinical role of multiparametric imaging to help 

predict neoadjuvant treatment response in rectal cancer and to determine the optimal 

combination of clinical predictors, functional imaging ‘biomarkers’ and modern post-

processing methods. 

Importance of good quality radiological imaging and staging

Chapters 3, 4 and 6 consistently show that clinical-radiological staging parameters  

were the most significant predictors for response, outperforming the advanced quan-

titative imaging features studied in this thesis. Routine clinical staging parameters such 

as tumour stage (cT-stage), nodal stage (cN-stage), invasion depth and mesorectal 

fascia involvement are thus not only crucial for risk- and treatment stratification, but 

also have value for prediction of response. However, our results from Chapter 6 also 

show that the predictive performance of these staging variables can vary depending 

on visual staging quality, with better model performance when staging was performed 

by dedicated radiologists using current state-of-the-art reporting guidelines. This is a 

factor that has commonly been neglected in previous works, where variables such as 

cT- and cN-stage have been included as “baseline” patient variables not taking into 

account inter-reader variations in staging. In line with our findings, a recent report by 

Bogveradze et al. showed that dedicated expert staging using up to date guideline 

criteria resulted in significant downstaging of cT-stage and cN-stage compared 

to original radiological reports performed by multiple readers and using older 

guidelines. This resulted in significant risk migration which would retrospectively have 

altered treatment stratification in up to 18% of the patients [1]. These results clearly 

highlight the importance of having dedicated radiologists involved in rectal cancer 

management, both for treatment stratification and prognostic modeling. Moreover, 

it underscores the importance of dedicated radiological training and investment in 

guideline implementation. 

Image quality was another important factor that affected the predictive performance 

of our models. In our multicenter cohort described in Chapters 5 and 6, there were 

substantial differences in acquisition protocols between—but also within—centers. 

Differences in for example in-plane resolution, slice-thickness, signal-to-noise ratio, 

number of signal averages, and DWI b-values resulted in significant variations in 

quantitative imaging features but also in overall (visual) scan quality between centers. 

Our results from Chapter 6 suggest that these differences also indirectly affected the 
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clinical-radiological staging variables. When the predictive modelling was repeated on 

a single-center subset of patients with consistent imaging settings and good quality 

images, staging variables achieved a substantially higher predictive performance 

compared to the full heterogeneous multicenter dataset. This emphasizes the 

importance of using optimized imaging protocols. It also suggests that current 

MR guidelines (that mainly include basic recommendations on slice thickness and 

sequence angulation [2, 3]) should be expanded with more specific recommendations 

on other scan parameters affecting image quality.

Quantitative MRI variables

Quantitative (‘Radiomics’) MR imaging parameters were of limited predictive value in 

the various predictive models investigated in this thesis. In Chapter 4, some predictive 

value was found for DWI texture variables, but only when included in an “imaging-

only” prediction model. When combined with other clinical-radiological variables (cT-

stage, cN-stage, age, sex and interval between CRT and final response evaluation), 

the predictive benefit of quantitative DWI analysis was negligible. Our review on the 

role of DWI for the management of rectal cancer (Chapter 2) also showed conflicting 

results. While several studies reported a potential value for pre-treatment DWI analysis 

(in particular ADC) to predict neoadjuvant treatment response [4–13], others were 

not able to reproduce these findings [14–20]. Moreover, there were large variations in 

reported ADC values and response threshold values in the different studies. We found 

similar large variations in ADC values in our own multicenter dataset. Our analysis in 

Chapter 5 showed that 64% of these ADC variations were related to acquisition and 

hardware differences between centers, whereas only 0.4% of the variations in ADC 

could be attributed to a correlation with clinical outcomes such as treatment response. 

This demonstrates that the influence of imaging variations is substantially larger than 

any relation between ADC and treatment outcome, which also explains why ADC had 

limited predictive value in our multicenter analysis (Chapter 6). In the current clinical 

setting — with inherent variations in data between centers — ADC will therefore likely 

have a limited role as a biomarker for response. 

The same conclusion can be drawn for the other MRI features studied in this thesis. 

Even though we deliberately chose to include mainly basic features that are generally 

regarded as the most reproducible (e.g. mean, min, max, standard deviation, entropy 

and volume) [21–23], these features still showed significant variations between centers 

(Chapter 5). Several normalization techniques were used attempting to correct for these 

variations. Nevertheless, their predictive value in our multicenter models remained 
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disappointing with AUCs not exceeding 0.69. Acquisition variations are thus a serious 

problem when building image-based prediction models, but are also the current 

clinical reality. Not only are there inherent differences between images acquired using 

different vendors and field strengths, acquisition protocols will likely also continue to 

vary because centers continuously update and optimize their own protocols. While 

efforts such as specialized phantoms for quality assessment of Radiomics features [24], 

best-practice guidelines on how to perform quantitative imaging research [25–29], 

and ongoing developments in statistical post-processing methods [30] may reduce 

these variations to some extent, it remains questionable whether these solutions will 

ultimately be sufficient to implement MR imaging features as biomarkers for response 

prediction in everyday clinical practice. It could very well be that prediction models 

developed in one center (with specific scanner and acquisition settings) will prove to be 

center-specific and cannot be generalized. When designing prospective clinical trials 

integrating the use of imaging biomarkers in the decision process, standardization of 

scan protocols, as well as defining specific requirements with respect to field strength 

and further hardware and software will be of the utmost importance. 

Combination of PET/CT and MRI

In chapters 3 and 4 we studied the potential complementary value of combining FDG-

PET/CT and MRI parameters to predict response. Results indicated no added value for 

PET/CT variables when combined with clinical-radiological staging and quantitative 

MRI variables. Again, clinical staging variables (in specific cT-stage) showed the best 

predictive performance. Chapter 4 did indicate a potential benefit for performing 

a more in depth analysis of local texture features on both PET and MRI to assess 

response, but only when analyzed in image-only prediction modes. In a clinical setting, 

i.e. when combined in a multiparametric model together with other staging variables, 

these positive effects were negligible.

Our disappointing findings for combining PET and MRI to predict response are in 

line with a recent review by Min et al. who reported that with current generation 

stand-alone MRI and PET techniques there seems to be limited value in combining 

quantitative PET and MR parameters in prediction models for abdominal tumors. Of 

the 14 studies that were included in this review (including 7 studying rectal cancer), 

only 6/14 showed a potential value for combining these two techniques [31]. Given 

that PET/CT appears to have little predictive value for prediction of response, there is 

currently no hard argument to include PET/CT in the primary work up of rectal cancer. 
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Future directions for research

Even though our single-center results were more encouraging, the moderate predictive 

performance of our multicenter model was too low to base actual clinical decision 

making on. This is likely at least in part explained by the large variations in the imaging 

data. Therefore, future multicenter studies should be conducted prospectively and 

with harmonized imaging protocols. Whether this leads to improved prediction models 

remains an open question, as it is also possible that the studied imaging features have 

no predictive value at all. 

The search for biomarkers that can be used in decision-support tools to personalize 

neoadjuvant treatment in rectal cancer thus continues and should also be expanded 

to other fields. Promising options include circulating biomarkers (e.g. CEA, microRNA, 

circulating tumor DNA) [32, 33], gene expression profiles [34] and gut microbiome 

components [35]. Integration of these techniques with imaging biomarkers to improve 

predictive models is a field that should be further explored. In our studies, imaging 

techniques were limited to methods that are already applied in clinics (i.e. T2/DWI 

MRI and PET/CT), but exciting advancements such as MRI fingerprinting, susceptibility 

imaging, magnetic transfer, metabolic spectroscopy and photon counting CT may also 

provide new ways to characterize tissue [36]. 

In this thesis we have only looked at baseline imaging. Given that tumor response is a 

dynamic process, it would also be interesting to investigate the evolution of imaging 

features early after the onset of treatment (e.g. in the first or second week). Such 

longitudinal response monitoring has the added benefit that an ‘internal’ normalization 

is performed (by comparing imaging to baseline). These “relative” measurements 

comparing two time points (often referred to as Δ-measurements) typically show less 

variations between centers than absolute measurements taken at a single time point. 

Literature suggests that PET/CT and parametric MRI performed during treatment 

may have potential to monitor response early after onset of CRT [7, 8, 12, 37]. Novel 

technologies such as the MR Linear Accelerator (MR-Linac) that integrate MRI with 

a radiotherapy machine too enables day-to-day imaging during treatment, this is a 

subject of research with potential clinical impact. 

Finally, artificial intelligence solutions such as deep learning may offer new ways to 

handle imaging differences [38]. The potential of deep learning was for example 

demonstrated in a recent study that developed a method called “DeepHarmony” 

which can harmonize the contrast of MR images regardless of the MRI protocol that 

was used [39].
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CONCLUSION
The role of imaging in the management of rectal cancer has evolved substantially 

over the past decade. Aiming to offer more patients the chance of achieving organ-

preservation there is an increased need for accurate prediction of response to help 

guide neoadjuvant treatment choices. This thesis investigated whether combining 

imaging with clinical variables into multiparametric prediction models has value. 

Routine radiological staging variables were found to be most important with the highest 

predictive performance in all of our studies. Staging quality influenced predictive 

performance indicating the importance of reader experience and adherence to state-

of-the-art guidelines. The predictive value of quantitative imaging variables is limited 

in the multicenter setting and negatively affected by large variations in acquisition 

and hardware. Though heterogeneous data will always remain part of the clinical 

reality, efforts should therefore be taken towards further protocol harmonization and 

standardization. The complimentary role of PET/CT when combined with clinical 

staging and MRI for response prediction at baseline appears to be limited. 
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SUMMARY

SUMMARY
The overall aim of this thesis is to determine which clinical parameters, functional 

imaging techniques and modern post-processing methods are appropriate for 

predicting response to chemoradiation therapy in rectal cancer.

Chapter 2 provides a literature review of the applications and clinical benefit of 

diffusion weighted MRI (DWI) in rectal cancer. In the past 10 years there has been a clear 

trend from simple qualitative (visual) evaluation of DWI towards increasingly advanced 

methods of quantitative image analysis. Most of the studies reviewed focus on DWI 

for determining rectal tumour response after neoadjuvant chemoradiotherapy. In this 

setting, DWI has particular value for detecting residual tumour in post-radiation fibrosis. 

The role of DWI for further tumour and nodal staging is less well-defined. Quantitative 

DWI analysis (particularly measurement of the “Apparent Diffusion Coefficient”) may 

have added value for predicting tumour response and other prognostic outcomes, but 

protocol standardization is an issue and results will need to be confirmed prospectively 

and on a larger scale.

In Chapter 3, we examine the individual and combined value of commonly used 

quantitative MRI and FDG-PET/CT variables in combination with baseline clinical 

staging parameters to build models for predicting rectal tumour response. Based on 

our analysis, we can conclude that a model incorporating quantitative variables derived 

from T2-weighted MRI in combination with clinical tumour stage can help identify 

patients who will respond well to chemoradiotherapy. Adding quantitative variables 

derived from PET/CT or DWI does not improve the predictive value of the model.

In Chapter 4, we focus specifically on texture analysis and investigate whether 

quantitative variables describing local tumour texture on MRI and FDG-PET/CT can 

be of added value in predicting tumour response, compared to more global tumour 

features (such as those examined in Chapter 3). Our analysis shows that in prediction 

models based solely on imaging, local texture variables (especially those derived from 

ADC, CT and T2-weighted MRI) appear to have additional predictive value compared to 

global tumour features. However, when local texture variables are combined with clinical 

variables (such as tumour stage), local texture features have similar predictive value 

compared to more traditional global tumour features. This shows that from a clinical 

perspective these local texture variables have no clear added value when building 

models to predict response.
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Chapter 5 examines in a multicentre MRI dataset the influence of different sources 

of variation, such as hardware and acquisition settings, segmentation methodology 

and image quantification software, on the reproducibility of quantitative imaging 

features. This analysis shows that there are large variations in imaging features 

between centres. When looking at ADC (one of the most commonly used quantitative 

imaging parameters) we find that more than 60% of the variation in mean tumour 

ADC can be linked to variations in hardware and acquisition settings. Differences in 

segmentation between readers has little influence on feature reproducibility, provided 

that whole-volume segmentations are performed. Software variations does not affect 

simpler features, but results in poor reproducibility for more advanced (‘higher order’) 

quantitative features. Overall, simpler ‘first order’ and shape features shows good 

reproducibility, with better reproducibility for T2-weighted MRI compared to DWI 

features. 

In Chapter 6, we integrate findings from previous chapters to develop and validate a 

multicentre model to predict tumour response based on clinical and quantitative MR 

image analysis. Our analysis shows that after external validation, the best performing 

model achieves only a moderate performance to predict tumour response with 

areas under the curve in the range of 0.60-0.65. We find that mainly clinical baseline 

and staging variables are predictive of treatment outcome. More advanced staging 

variables (acquired by expert readers using state-of-the-art staging guidelines) show 

the best performance, highlighting the need of good quality staging using up to date 

guidelines. Quantitative imaging variables has no added value, which could probably 

at least in part be explained by the large variations in these variables between centers 

as also discussed in chapter 5.
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SAMENVATTING

SAMENVATTING
Het doel van deze thesis is om te bepalen welke klinische parameters, functionele 

imaging technieken en moderne post-processing methodes geschikt zijn voor het 

voorspellen van respons op chemoradiatietherapie bij endeldarm kanker.

Hoofdstuk 2 geeft een literatuuroverzicht van de toepassingen en klinische meer-

waarde van diffusie gewogen MRI (DWI) bij rectumkanker. In de afgelopen 10 jaar is er 

een duidelijke trend geweest van eenvoudige kwalitatieve (visuele) evaluatie van DWI 

naar steeds geavanceerdere methoden van kwantitatieve beeldanalyse. De meeste 

van de studies die we hebben onderzocht richten zich op DWI voor het bepalen 

van de respons van de endeldarm tumor na neoadjuvante chemoradiotherapie. 

In deze setting heeft DWI met name waarde voor het opsporen van resttumor in 

post-bestralingsfibrose. De rol van DWI voor verdere tumor- en nodale stadiëring is 

minder goed gedefinieerd. Kwantitatieve DWI analyse (in het bijzonder meting van 

de “Apparent Diffusion Coefficient”) kan toegevoegde waarde hebben voor het 

voorspellen van tumorrespons en andere prognostische uitkomsten, echter is protocol 

standaardisatie een probleem en zullen de resultaten prospectief en op grotere  

schaal bevestigd moeten worden.

In Hoofdstuk 3 onderzoeken we de individuele en gecombineerde waarde van 

veelgebruikte kwantitatieve MRI en FDG-PET/CT variabelen in combinatie met 

baseline klinische stageringsparameters om modellen te bouwen voor het voorspellen 

van endeldarm tumor respons. Op basis van onze analyse kunnen we concluderen dat 

een model met kwantitatieve variabelen afgeleid van T2-gewogen MRI in combinatie 

met klinisch tumorstadium kan helpen bij het identificeren van patiënten die goed 

zullen reageren op chemoradiotherapie. Toevoeging van kwantitatieve variabelen 

afgeleid van PET/CT of DWI verbetert de voorspellende waarde van het model niet.

In Hoofdstuk 4 richten we ons specifiek op textuur analyse en onderzoeken we 

of kwantitatieve variabelen die de lokale tumortextuur op MRI en FDG-PET/CT 

beschrijven van toegevoegde waarde kunnen zijn bij het voorspellen van tumorrespons 

in vergelijking met meer globale tumorkenmerken (zoals die zijn onderzocht in 

hoofdstuk 3). Uit onze analyse blijkt dat in modellen die alleen op beeldvorming zijn 

gebaseerd, lokale textuurvariabelen (vooral die zijn afgeleid van ADC, CT en T2-

gewogen MRI) extra voorspellende waarde lijken te hebben in vergelijking met globale 

tumorkenmerken. Echter, wanneer lokale textuurvariabelen worden gecombineerd 
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met klinische variabelen (zoals tumorstadium), hebben lokale textuurkenmerken een 

vergelijkbare voorspellende waarde in vergelijking met de meer traditionele globale 

tumorkenmerken. Dit toont aan dat vanuit een klinisch perspectief deze lokale textuur 

variabelen geen duidelijke toegevoegde waarde hebben bij het bouwen van modellen 

om respons te voorspellen.

Hoofdstuk 5 onderzoekt in een multicenter MRI dataset de invloed van verschillende 

bronnen van variatie, zoals hardware en acquisitie instellingen, segmentatie 

methodologie en beeldkwantificatie software, op de reproduceerbaarheid van 

kwantitatieve beeldkenmerken. Uit deze analyse blijkt dat er grote variaties in 

beeldvormingskenmerken bestaan tussen centra. Wanneer we kijken naar ADC (een 

van de meest gebruikte kwantitatieve beeldkenmerken), zien we dat meer dan 60% 

van de variatie in de gemiddelde ADC van de tumor in verband kan worden gebracht 

met variaties in hardware- en acquisitie-instellingen. Verschillen in segmentatie 

tussen beoordelaars hebben weinig invloed op de reproduceerbaarheid van deze 

beeldkenmerken, op voorwaarde dat segmentaties van het hele volume worden 

uitgevoerd. Softwarevariaties hebben geen invloed op eenvoudigere beeldkenmerken, 

maar leiden tot een slechte reproduceerbaarheid voor meer geavanceerde (“hogere 

orde”) kwantitatieve kenmerken. Over het algemeen laten eenvoudigere ‘eerste 

orde’ en vormkenmerken een goede reproduceerbaarheid zien, met een betere 

reproduceerbaarheid voor T2-gewogen MRI vergeleken met DWI.

In Hoofdstuk 6 integreren we bevindingen uit voorgaande hoofdstukken om een 

multicentermodel te ontwikkelen en te valideren waarmee tumorrespons kan worden 

voorspeld op basis van klinische en kwantitatieve MR-beeldanalyse. Onze analyse laat 

zien dat na externe validatie het best presterende model slechts matig presteert in het 

voorspellen van tumorrespons met oppervlakten onder de curve in het bereik van 0,60-

0,65. Vooral klinische basislijn- en stadiëringsvariabelen blijken voorspellend te zijn voor 

het behandelingsresultaat. Meer geavanceerde stadiëringsvariabelen (verkregen door 

deskundige beoordelaars gebruikmakend van state-of-the-art stadiëringsrichtlijnen) 

laten de beste prestatie zien, hetgeen de noodzaak onderstreept van een goede 

kwaliteit van stadiëring gebruikmakend van up to date richtlijnen. Kwantitatieve 

beeldvormingskenmerken hebben geen toegevoegde waarde, wat waarschijnlijk 

tenminste gedeeltelijk verklaard kan worden door de grote variaties in deze 

variabelen tussen centra, zoals ook besproken in hoofdstuk 5.
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MAIN AIMS AND OUTCOMES 
The standard treatment for patients with locally advanced rectal cancer is chemo-

radiotherapy (CRT) followed by surgical resection. In a minority of patients (±20%) the 

tumour completely disappears as a result of CRT. In these “complete responders” surgery 

may be avoided. This “watch-and-wait” approach has been shown to result in similar 

survival outcomes as surgery, but with considerably better functional outcome and quality 

of life. It is impossible to know upfront which patients will achieve a complete response 

after CRT. If we could predict how well patients will respond to CRT beforehand, this 

may create opportunities to further personalize and optimize neoadjuvant treatment, for 

example by intensifying CRT in patients likely to response, ultimately aiming to increase 

complete response rates and offer more patients the chance of organ-preservation.

This thesis focuses on investigating the role of different medical imaging techniques 

and image analysis tools in predicting neoadjuvant treatment response. In addition to 

‘anatomical’ imaging techniques such as computed tomography (CT) and magnetic 

resonance imaging (MRI), there are to date several ‘functional’ or ‘molecular’ imaging 

techniques available that can help us visualize biological tumor properties such as cell 

structure (diffusion weighted imaging (DWI)), tumor perfusion/angiogenesis (dynamic 

contrast enhanced imaging (DCE)), or metabolic tumor activity (positron emission 

tomography (PET)). In addition, novel image post-processing tools such as Radiomics 

can help us to study the detailed imaging phenotype of a tumour lesion on a pixel-

per-pixel level, providing us with new insights into for example underlying tumor 

heterogeneity (i.e. texture analysis). Quantitative parameters derived from functional 

imaging and image post-processing can be used as imaging biomarkers of disease 

which in turn may be used to predict clinical outcomes such as treatment response. 

Although promising results have been reported for various imaging biomarkers in 

previous studies, evidence mainly comes from small single-center studies focusing on 

a single imaging or post-processing technique at a time. Results are conflicting and 

little is known about the complementary value of combining parameters acquired using 

different imaging techniques, an approach commonly referred to as “multiparametric 

imaging”. With this thesis we set out to investigate the value of multiparametric imaging 

to predict response to chemoradiotherapy in rectal cancer, to identify the best predictive 

imaging biomarkers and evaluate how these should best be combined with other clinical 

information such as the radiological tumour stage. In addition we have explored whether 

it is feasible to build prediction models that are reproducible when using heterogeneous 

multicenter data from everyday clinical practice.
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Chapter 2 summarized the role of diffusion-weighted imaging – one of the most 

commonly used functional imaging techniques in oncology – for the clinical 

management of rectal cancer, including its role for prediction of response. In Chapters 3 

and 4 the information from anatomical (MRI, CT), functional (DWI, PET) and image post-

processing techniques (e.g. texture analysis) was combined into a ‘multiparametric’ 

imaging model to predict response. Best performance was achieved when combining 

imaging features derived from MRI with clinical staging variables; the added value 

of PET and CT was limited. In Chapter 5, we investigated how imaging parameters 

derived from multicenter data – i.e. from MRI scans acquired in different institutions – 

are affected by variations in scanner hardware, scan protocols, radiologists and image 

analysis software. We found that functional DWI parameters and more advanced 

(complex) imaging features are more affected by variations between centers. For this 

reason we chose to include mainly simpler and better reproducible parameters to 

develop our clinical response prediction model described in Chapter 6. In this model 

(similar to the models, described in Chapters 3 and 4) clinical radiological staging 

variables such as the tumour (T-) and nodal (N-) stage had the highest predictive value, 

particularly when staging was performed by experienced radiologists using current 

state-of-the-art clinical guideline criteria. Quantitative imaging parameters contributed 

little in the multicenter setting, despite efforts to account for data variations between 

centers.

RELEVANCE
The results presented in this thesis are relevant for future studies that are aimed 

at developing image-based clinical prediction models. Lessons learned from our 

multicenter data analyses in Chapters 5 and 6 can offer guidance on how to handle data 

variations that are inherently present when dealing with everyday clinical imaging data 

derived from multiple institutions. Though heterogeneous data will always remain part 

of the clinical reality, efforts should be taken towards further protocol harmonization 

and standardization.

The results of this thesis are also relevant for the clinical management of rectal 

cancer patients. Our literature review presented in Chapter 2 can serve as a quick 

reference for clinicians on the pros and cons of using DWI to help guide clinical 

treatment management. From Chapters 3 and 4 we have learned that PET/CT does 

not seem to have any added value when combined with clinical and MRI variables in 

the setting of pre-treatment response prediction, indicating that there is currently no 
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incentive to include PET/CT in the primary staging work up of rectal cancer. Finally, the 

results from Chapters 3, 4 and 6 consistently demonstrate the importance of clinical 

radiological staging variables as predictors of response. Chapter 6, however, also 

showed that the predictive performance of these staging variables was dependent on 

the experience level of the radiologist performing the staging and on whether staging 

was performed using state-of-the-art staging guidelines. These result highlight the 

importance of having dedicated radiologists involved in rectal cancer management, 

and also underscore the importance of dedicated radiological teaching and training, 

and investment in clinical guideline implementation.

TARGET POPULATION
The results of this thesis are relevant to several groups. Although this thesis focused 

specifically on rectal cancer, the impact of multicenter imaging variations on 

multiparametric imaging modelling and lessons learned on how to handle these can 

also be translated to other organs and outcomes. These findings are thus important for 

all researchers focused on multiparametric image model development.

Our findings are also relevant for radiologists performing rectal cancer staging, as well 

as other clinicians dealing with the management of rectal cancer. Our results describe 

the current role and limitations of imaging to help predict neoadjuvant treatment 

response. Though the predictive performance of our multicenter model in Chapter 

6 was too low to base actual clinical decision making on, the search for biomarkers 

continues and should be expanded to other fields. If imaging can be integrated with 

other clinical biomarkers to build stronger clinical prediction models of response, these 

models could be used as decision support tools to help further personalize treatment 

in rectal cancer and optimize treatment outcomes. 

ACTIVITIES
The results of this thesis have been presented to a wide audience at both national 

and international conferences, and have been published in peer-reviewed journals. 

The paper publication of Chapter 3 was awarded the European Radiology ESGAR 

award 2020. Lessons learned from this thesis are incorporated into follow-up projects 

on multicenter data modelling to predict other clinical outcomes and investigating 

other target organs. Moreover, the large multicenter dataset that was acquired as 
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part of this thesis has been further expanded and is currently being used in several 

ongoing collaborative international projects focusing on optimizing the diagnostic 

performance of imaging for the staging and response evaluation of rectal cancer 

patients. The current thesis and results of these future studies may serve as a basis for 

future guideline updates. 
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ongetwijfeld een top dag! 

Collega’s van het tuinhuis, met heel veel plezier heb ik de afgelopen jaren met jullie 

samengewerkt. Ik herinner me vele mooie team uitjes met jullie, de OOA retraite op 

Renesse, wedstrijden bedrijfs volleybal en hockey, maar ook mooie congressen samen 

en gezellige vrijdag middag borrels. Een ontzettend fijne omgeving waar altijd tijd is 

voor een praatje, een gezellige lunch, maar ook vooral om een goede kop koffie te 

halen ;) Want, zoals iedereen weet, is koffie (en thee) de brandstof voor het tuinhuis. Ik 

hoop jullie zeker nog in de toekomst weer tegen te komen!

Kamergenootjes, ik weet nog goed dat ik begon in ‘de Geekroom’, en ondanks 

dat we achter in het tuinhuis zaten, waarschijnlijk by far de meestbezochte kamer. 

Niet alleen voor het dagelijkse ICT advies (hi Joost!) maar ook vanwege de rijkelijk 

gevulde snoeppot en gezelligheid. Het was ontzettend fijn om met jullie samen te 

werken. Joost, je bent opgeleid als dokter, maar stiekem geboren als programeur, vol 

enthousiasme kan jij vertellen over je code. Het is tekenend voor je hoeveel passie je 

hier voor hebt en hoe je hiermee anderen weet te inspireren. Paula, blij ei, wat hebben 

we veel gesprekken gehad. Over de carnaval, je PhD, of de je foto’s en filmpjes die je 

aan het sorteren was. Het was altijd gezellig als je er was, je vrolijkheid is aanstekelijk! 

Marjaneh, I really enjoyed your funny jokes and kindness. I hope you don’t have too 

much of a trauma of your bouncing computer screen though (NIEELSSS..). Sorry for 
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rocking my foot so much ;) Thank you for the good times and also teaching me some 

basic Farsi. To mahshari! Kay, in het begin was je nog wat terughoudend, maar al 

gauw een grote prater. Altijd bereid om te helpen en mee te denken. Bedankt voor 

de goede gesprekken! Najim, door COVID hebben we helaas maar korte periodes 

samengewerkt, maar altijd prettig! Kamergenootjes, jullie allemaal, enorm bedankt 

voor de mooie tijd samen!

Joost, met heel veel plezier kijk ik terug op onze tijd samen in het AVL. We hebben 

vaak gelachen over droge programeer humor, met soms (jouw intentie ;) ) een lange 

XKCD internetspiraal tot gevolg. Bijna dagelijks gingen we koffie halen en vele weken 

zijn we op pad geweest samen om, zoals je dat zo mooi kon zeggen, lekker te data-

slaven. Maar het was zeker niet alleen op werk gezellig, ook daar buiten hebben we 

mooie borrels, feestjes en spelletjes avonden gehad. Met jouw promotie heb je alvast 

het goede voorbeeld gegeven. En zoals ze zeggen, goed voorbeeld doet volgen, ik 

ben blij dat je mijn paranimf wilt zijn!

Jelle, we kennen we elkaar al meer dan 15 jaar en hebben heel wat beleefd met de BCH. 

Met je enthousiasme ben je altijd een echte sfeermaker, want van slap ouwehoeren 

tot diepe gesprekken er is altijd wel wat te beleven. Je bent betrokken met anderen 

en weet over de meest uiteenlopende onderwerpen wat, dus mocht ik het even niet 

meer weten tijdens m’n promotie dan ben ik er zeker van dat jij er dan vast een mooi 

verhaal van weet te breiden ;). Ik ben blij dat je m’n paranimf wilt zijn, met jou erbij 

weet ik zeker dat het een geslaagde promotie gaat worden!

Lieve vrienden en vriendinnen uit Deventer, Enschede en Utrecht, bedankt voor alle 

welkome afleiding, en de goede momenten samen! Van de vele festivals en feestjes, 

vakanties, spelletjes avonden en bbq smoke sessies tot kerstdiners, wiskey borrels, 

lunch wandelingen en sportieve activiteiten, maar ook goede gesprekken afgewisseld 

met slap geouwehoer. Ik waardeer jullie allemaal enorm en ik hoop dat er nog veel 

mooie momenten volgen!

Mijn lieve familie, bedankt voor jullie steun door alle jaren heen ik kan me geen betere 

familie wensen. Mam, bedankt voor de basis die je me hebt gegeven, je staat altijd 

voor me klaar en hebt me, ook als je het ergens niet mee helemaal eens bent, altijd 

gesteund in m’n keuzes. Lineke, mijn grote kleine zusje, ik ben super trots op je en zal 

dat altijd blijven. Ondanks dat we niet bij elkaar om de hoek wonen ga ik altijd met 

veel plezier met jou en met Elmer, lunchen, wandelen of boulderen. Oma Els, leeftijd 
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zegt niks, je bent immers zo jong als je je voelt. Het is prachtig om te zien hoe energiek 

en vol plezier u van het leven geniet. Ik hoop dat ik op uw leeftijd nog net zo mooi in 

het leven mag staan. En Pap, je bent er helaas niet meer om mijn verdediging bij te 

wonen maar ik weet dat je trots op me bent. Je bent en blijft altijd een inspiratie voor 

me.

Ook mijn (schoon)familie wil ik graag bedanken: Dick en Anja, Tianne, Ton, Minke en 

Jouk en Teska, bedankt voor alle gezelligheid samen, de goede gesprekken en de 

leuke spelletjes. Het voelt altijd als een warm onthaal als ik bij jullie ben. 

Lieke, jij hebt bijna alles van m’n proefschrift meegemaakt, van de mooie momenten 

tot de worstelingen. Altijd betrokken, lief, zorgzaam en positief, je bent er altijd 

voor me. Het is ongelooflijk fijn om samen met jou te zijn. We hebben al veel moois 

meegemaakt samen, maar ik kijk uit naar alle avonturen die we nog gaan beleven. 

Laten we samen van het leven blijven genieten en er een feestje van maken!
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