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Summary

Throughout the chapters in this book, pathways are used 
to visualize how genetically inheritable metabolic disor-
ders are related. These pathways provide common con-
ceptual models which explain groups of chemical 
reactions within their biological context. Visual represen-
tations of the reactions in biological pathway diagrams 
provide intuitive ways to study the complex metabolic 
processes. In order to link (clinical) data to these path-
ways, they have to be understood by computers. 

Understanding how to move from a regular pathway 
drawing to its machine-readable counterpart is pertinent 
for creating proper models. This chapter outlines the vari-
ous aspects of the digital counterparts of the pathway dia-
grams in this book, connecting them to databases and 
using them in data integration and analysis. This is fol-
lowed by three examples of bioinformatics applications 
including a pathway enrichment analysis, a biological 
network extension, and a final example that integrates 
pathways with clinical biomarker data.
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�Introduction

The metabolic pathways in this book are common concep-
tual models which help us understand groups of chemical 
reactions within their biological context. These conversion 
reactions are catalyzed by enzymes and triggered by recep-
tors or transporters, causing a wide variety of metabolites to 
be present in bodily fluids and tissues. Visual representations 
of the reactions in biological pathway diagrams provide intu-
itive ways to study complex metabolic processes. If we want 
to link clinical data to these pathways, we need pathways 
that can be understood by computers. By creating machine-
readable versions of the pathways relevant for (rare) disor-
ders, clinical data can be processed and analyzed in an 
automated fashion, allowing fast and visual interpretation 
(Kutmon et al. 2014a; Villaveces et al. 2015). However, mod-
eling these pathways for data analysis comes with some 
challenges and limitations (Howe et  al. 2008; Khare et  al. 
2016), which are discussed in this chapter in more detail.

Even though there is still a substantial amount of unex-
plored territory in human molecular biology, data on bio-
logical mechanisms, pathways, and related diseases has 
increasingly become available due to improvements in 
measurement and computational techniques. A crucial step 
to enable advanced data analysis is structuring and sharing 
the knowledge obtained from biological experiments. This 
chapter provides some examples of what types of data anal-
ysis can be performed with machine-readable pathways 
and related knowledge. More examples are available in lit-
erature, e.g., visualization of drug metabolism related ex-
pression changes (Jennen et al. 2010), integrating molecular 
interaction data (Herwig et al. 2016), and fully automatable 
processing steps of metabolomics data (Stanstrup et  al. 
2019). We hope to inspire the metabolic rare disease com-
munity to aid our quest in transforming, structuring, and 
collecting knowledge about molecular processes in ma-
chine-readable pathway models and databases. Finally, all 
these data acquisition and modeling steps will lead to a bet-
ter understanding of the phenotype of a patient.

�IEMBase and WikiPathways

The knowledge captured in the chapters of this book holds 
vital information on genetically inheritable metabolic dis-
eases, genes, and proteins involved, metabolic biomarkers, 
pathways, relevant literature, diagnosis, and treatment. A great 
effort has been done digitizing most of this information in the 
IEMBase (www.iembase.org) (Lee et al. 2018), but one key 
element missing were machine-readable pathways, which are 
being added through a collaboration with the WikiPathways 
pathway database (www.wikipathways.org) (Kelder et  al. 

2012; Kutmon et al. 2016; Slenter et al. 2018). This database 
allows researchers to add machine-readable pathways, includ-
ing literature references, and creates a traceable history of 
edits. The results are freely accessible and reusable by every-
one in the world. Furthermore, adding a pathway to 
WikiPathways exposes the biological knowledge captured in 
the model via various other data formats (http://help.wikipath-
ways.org) and tools (http://tools.wikipathways.org), allowing 
researchers to directly integrating the new knowledge within 
their tool of choice.

We aim to provide all pathways in the chapters of this 
book as machine-readable pathway models in WikiPathways. 
You can find the currently available pathways on http://iem.
wikipathways.org.

�Machine-Readable Metabolic Pathway 
Models

Researchers can use different tools to model machine-
readable pathways from schematic drawings in publications. 
WikiPathways stores all pathways in the graphical pathway 
markup language (GPML), which can be drawn in PathVisio 
(www.pathvisio.org) (Kutmon et  al. 2015). This format is 
flexible enough to allow modeling of detailed biological 
phenomena, while relying on a machine-readable structured 
backbone for automated data analysis. In the following sub-
sections, we highlight relevant topics for creating pathways 
on genetically inheritable metabolic rare diseases. This infor-
mation is complemented with an online step-by-step tutorial 
(academy.wikipathways.org).

�Modeling Biological Entities

The biological entities in GPML-encoded pathways (e.g., gene 
products, proteins, and metabolites) are captured as DataNodes 
(Fig. 73.1a). These nodes have a textual label and biological 
type and can contain the following additional information: lit-
erature references, free text comments, and a unique database 
identifier (Fig. 73.1b). The textual label is the visible name of 
the entity while the type represents which biological entity is 
modeled: genes are modeled as GeneProducts, proteins and 
enzymes as Proteins and chemicals as Metabolites (Fig. 73.1a). 
Additional modeling options include Complexes, Groups, 
RNAs, (full) Pathways, and States such as posttranslational 
modifications (Fig. 73.1c). DataNodes can be connected to lit-
erature, ideally using PubMed identifiers. Another section 
allows users to add free text in the comment field, to explain 
additional details relevant for the pathway. Finally, a database 
identifier and the accompanying database (Fig. 73.1b) provides 
the framework required for data integration later (Figs. 73.4 
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and 73.5). An online database identifier allows the retrieval of 
additional facts about the entity in the pathway. PathVisio 
makes use of the BridgeDb identifier mapping framework 
(www.bridgedb.org) (van Iersel et al. 2010) and can therefore 
support a variety of databases and mappings between them. 
Since these identifiers are crucial for data analysis, the next two 
sections discuss them in more detail.

�Identifiers for Pathway Entities

There are many online resources storing information about 
the proteins, molecules, and interactions in pathways. Ideally, 
each element in the pathway is annotated with a specific 
identifier from one of the online databases. Because there are 
many different databases to choose from, we provide some 
general guidelines for the annotations of DataNodes and 
interactions in pathways.

Genes and proteins can be annotated with over 60 differ-
ent databases. However, there are some subtle differences 
between what type of information is modeled in these data-
bases. Ensembl (Cunningham et  al. 2019) and NCBI 
(Entrez) Gene (Agarwala et  al. 2018) focus on gene and 
transcript identifiers, while UniProt (UniProt Consortium 
2019) models their data at a protein level. Therefore, one 
gene identifier in Ensembl could point to multiple UniProt 
entries. Enzyme commission numbers (EC-codes) 
(McDonald and Tipton 2014) can be very useful to annotate 
a group of enzymes which serve a similar biological func-
tion or to classify a chemical conversion to a specific reac-
tion mechanism, without knowing the actual protein 
structure or gene involved. However, since this classifica-
tion is not specific for one gene or protein, numerous map-
pings can be created which complicates data analysis. Thus, 

regarding identification of biological entities, the more spe-
cifically the identifier points to one entity, the more straight-
forward data can be connected to GeneProduct (Ensembl, 
NCBI Gene) and Protein (UniProt) DataNodes. For 
Complexes with multiple enzymes, each individual enzyme 
should receive a unique identifier from UniProt. In addition, 
distinctive isoforms could also have unique identifiers and 
be drawn as separate DataNodes.

Metabolites can be annotated with over 25 databases, 
where most of these databases have their own focus (nutri-
tion, toxicology, human metabolism, medication) and possess 
different levels of chemical detail. These different levels can 
be quite relevant for the biological implications of these com-
pounds and corresponding interactions, such as stereochem-
istry (e.g., chirality, isomers), protonation state, (de)
phosphorylation, and tautomerization. For several pathways 
and reactions, the specific level can also be unknown, which 
is particularly the case for lipid pathways. These are more 
often considered to behave biologically similar when the 
head and tail of the lipid are comparable; however a small 
difference in number of double bonds or location thereof 
could lead to distinct biological behavior. Identifiers exist to 
be able to add groups of compounds as Metabolite DataNodes 
in pathways. Nevertheless, this does not solve the issue of 
straightforward data analysis as discussed for genes and pro-
teins. We would therefore advise to use chemical identifiers 
which correspond to the known level of chemical detail, e.g., 
ChEBI (Hastings et  al. 2016) for metabolites, DrugBank 
(Wishart et al. 2018) for drugs, and LIPID MAPS (Fahy et al. 
2009) for lipids.

Interactions can currently be annotated with 14 databases, 
for which some allow easy integration with other resources. A 
good coverage of metabolic conversions between metabolites 
is provided by the Rhea database (Lombardot et al. 2019).

a b c

Fig. 73.1  Visualization of modeling properties for biological entities 
in PathVisio. (a) Main DataNodes, where the GeneProduct is selected 
(indicated with small yellow blocks). (b) Pop-up menu allowing con-
necting a DataNode to literature, identifier, and database. (c) Additional 

modeling options, where multiple DataNodes can be used to form 
Complexes and Groups. Nodes can also be used to point to other 
Pathways (including identifier) and RNA. DataNodes can also be 
extended with a State like posttranslational modifications

73  WikiPathways: Integrating Pathway Knowledge with Clinical Data
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�Interaction Types

As mentioned previously, interactions are separate elements 
within the pathway model. An interaction clearly connects 
two or more biological entities to depict a relationship 
between them. Understanding the biological meaning of a 
connection between different entities is needed to create 
accurate machine-readable models. PathVisio supports sev-
eral types of interaction (standards): basic interactions, 
molecular interaction map (MIM) interactions (Luna et  al. 
2011), and the interaction types described in the systems 
biology graphical notation (SBGN) (van Iersel et al. 2012).

For the pathways in this book, we advise the application 
of MIM interactions, which include conversion and catalysis 
for reactions between metabolites and related enzyme(s) 
(Fig.  73.2a); stimulation and inhibition for signaling func-
tions (Fig. 73.2b); transcription/translation for GeneProduct 
to Protein (Fig. 73.2c); modification for posttranslational or 
other modifications and binding for complex formation 
(Fig. 73.2d); and translocation for transport of metabolites 
between different cellular compartments (Fig. 73.2e).

�Modeling Diseases and Interactions

Most pathways in this book clearly indicate which step(s) in 
a pathway are disease causing. This disease information can 
be added to pathways in several manners. First, diseases can 
be added to a pathway as text labels and connected to the 
related gene or protein. Second, a pathway can be tagged 
with terms from the Human Disease Ontology (Köhler et al.  
2019) Pathway Ontology (Petri et al. 2014) and Cell Type 
Ontology (Diehl et al. 2016) on WikiPathways. The infor-
mation enables systematic search and browse functionalities 
with clearly defined child-parent relationships; for example 
find all pathways, which are linked to the term “inborn error of 
metabolism pathway” (purl.bioontology.org/ontology/PW/
PW:0001589) or all pathways linked to possible child terms. 
Third, genes and proteins are often linked to OMIM gene 
entries (Amberger et  al. 2015) through BridgeDb, allowing 
navigation from a specific pathway to disease databases. 
Finally, including the disease name or class in the title of the 
pathway or description also helps searching for relevant 
pathways.

a

b

c

d

e

Fig. 73.2  Overview of MIM interaction types and how these can be 
used to connect biological entities in PathVisio. (a) Metabolite 1 is 
enzymatically converted to Metabolite 2, which is catalysed by a 
Protein. (b) Protein 1 stimulates Protein 2; Protein 2 is inhibited by a 
Metabolite. (c) A GeneProduct is transcribed and/or translated to a 

Protein. (d) top: A Protein undergoing a phosphorylation (P) Post-
Translational-Modification (PTM); bottom: two Proteins binding 
together to form a complex. (e) A translocation from cytosol to nucleus 
for a Metabolite

D. N. Slenter et al.
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�Genetically Inheritable Metabolic Disorder 
Pathways on WikiPathways

A majority of the pathways in the chapters of this book are 
already available on WikiPathways (iem.wikipathways.org). As 
an example, Fig.  73.3 visualizes a complete example of a 
machine-readable version of the purine pathway (Chap. 13, 
WikiPathways:WP4792, www.wikipathways.org/instance/
WP4792), which is linked to over 20 genetically inheritable dis-
eases (available at WikiPathways:WP4224). Even though at 
first glance, this figure resembles the original drawing quite 
closely, all the individual metabolites, proteins, and biomarkers 
are annotated with identifiers and linked to databases, all inter-
actions connect these elements together and have the appropri-
ate MIM types. The following sections provide several examples 
on how these pathways can now be used for data analysis.

�Using Pathway Models to Analyze Clinical 
Data

Pathways can be used to analyze various types of clinical 
data including whole exome sequencing (WES), transcrip-
tomics and proteomics, genome-wide association studies 

(GWAS), metabolomics, or targeted chemical assay data. In 
this section, we provide several examples on how the created 
pathway models can be used for data analysis. Scripts and 
instructions for performing these analyses can be found 
online (bigcat-um.github.io/IEMPathwayAnalysis).

�Pathway Analysis

The availability of pathways as machine-readable models 
enables us to visualize molecular data on the elements in 
the pathways and to perform advanced computational anal-
ysis including gene set enrichment and network analysis. 
While whole-genome sequencing is already well estab-
lished in clinical practice, transcriptome analysis seems 
promising for diagnosing rare disease patients (Gonorazky 
et al. 2019).

Pathway analysis for transcriptomics data is a powerful 
tool to put the data into a biological context. As an exam-
ple, we selected a publicly available transcriptomic dataset 
of patients with Lesch-Nyhan disease (LND) 
(geo:GSE24345, omim:300322) (Kang et  al. 2011). The 
disease is caused by mutations in the HPRT1 gene (ensemb
l:ENSG00000165704), producing the hypoxanthine phos-

8 steps involved
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Fig. 73.3  Machine-readable version of the purine pathway, with metabolites in blue, proteins in black, and biomarker molecules in red (Wiki 
Pathways:WP4792)
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phoribosyltransferase 1 enzyme (uniprot:P00492) which 
enables cells to recycle purines. After statistical analysis 
with GEO2R (Davis and Meltzer 2007), the differential 
gene expression data was visualized on the previously 
described purine pathway (Fig.  73.3) using the 
WikiPathways app in Cytoscape (apps.cytoscape.org/apps/
wikipathways) (Kutmon et  al. 2014b); see Fig.  73.4. 
Cytoscape (www.cytoscape.org) (Shannon et al. 2003) is a 
widely adopted network analysis and visualization soft-
ware tool, and the WikiPathways app provides direct access 
to the WikiPathways pathway content. The log2 fold 
changes (difference in gene expression between patients 
and control group) are visualized as a gradient from blue 
(less expressed) over white (not changed) to red (more 
expressed). A strong downregulation of the HPRT1 gene is 
immediately visible by the corresponding blue gene boxes. 
Based on this dataset, it seems that several of the other 
enzymes in the pathway (PNP, APRT, PRPS1) attempt to 
compensate for the lower transcript availability of HPRT1 
and are upregulated in LND patients. Other enzymes, which 
are up- or downstream from the affected purine pathway, 
could also show changes relevant for the phenotype of the 

patient. Therefore, enrichment analysis on other pathway 
models can be used to assess the relevance of these path-
ways and find interesting affected processes in a certain 
dataset. Enrichment analysis showed several immune-
related processes including the complement system as well 
as the Wnt signaling pathway affected in LND patients. 
Reimand et al. published a protocol that provides a descrip-
tion of pathway enrichment analysis and a practical step-
by-step guide (Reimand et al. 2019).

Tutorial videos and R scripts for the data visualization 
(1A, Fig. 73.4) and pathway enrichment analysis (1B) can be 
found in the PathwayAnalysis folder on GitHub (bigcat-um.
github.io/IEMPathwayAnalysis).

�Pathways as a Source for Network Biology

Well-annotated pathway models are also an immensely use-
ful source for network biology approaches. They can be used 
to extend biological pathways and networks (combinations 
of pathways) with additional knowledge, such as drug 
targets.

8 steps involved
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Fig. 73.4  Visualization of changes in gene expression in patients with Lesch-Nyhan disease in the purine metabolism pathway (WikiPathways: WP4792)
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Using the WikiPathways app in Cytoscape, pathways 
can be visualized in two different views: the pathway view 
and the network view. The network view retains the exist-
ing biological interactions in the pathway only and applies 
an automatic layout allowing the pathways to be used for 
network analysis. Pathways can then be automatically 
enriched with additional information, e.g., regulatory 
mechanisms, known drugs, or disease annotations. The 
CyTargetLinker app for Cytoscape was specifically 
designed for this purpose (cytargetlinker.github.io) 
(Kutmon et  al. 2019). In the following example, we will 
extend the purine metabolism pathway with approved 
drugs from DrugBank; see Fig.  73.5. The pathway con-
tains fifteen enzymes, shown as rounded rectangles. In 

DrugBank, 21 drugs (shown as green diamonds) are 
reported to target one or more of these enzymes. Nine of 
the 15 enzymes are targeted by at least one drug, as shown 
in orange. The LND-causing gene HPRT1 (highlighted 
with the red rectangle) is targeted by three drugs, azathio-
prine, mercaptopurine, and ɑ-phosphoribosyl pyrophos-
phoric acid. The first two are immunosuppressants and 
inhibit HPRT1. The last molecule is a key substance in the 
biosynthesis of histidine, tryptophan, purine, and pyrimi-
dine nucleotides and has unknown pharmacological action 
on HPRT1.

Tutorial videos and R scripts for the following example 
can be found in the Network Analysis folder on GitHub (big-
cat-um.github.io/IEMPathwayAnalysis).
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Fig. 73.5  Known drug-target interactions (from DrugBank) for the purine metabolism pathway
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�Linking Chemical (Biomarker) Data with RDF

The two examples in the previous sections work well for tran-
scriptomics data. However, connecting metabolomics or 
chemical biomarker data to pathways can be challenging with 
the methods presented above, since the amount of data is sig-
nificantly lower. Furthermore, as previously mentioned in 
Sect. 73.3.2, various levels of chemical detail exist within 
pathway models. To overcome these problems, we want to 
highlight another method to connect biomarkers data with 
pathways using an automated approach. The workflow for this 
example is visualized in Fig. 73.6a. One starts with chemical 
data from targeted (clinically validated) assays or with (un)
targeted metabolomics data from mass spectrometry (MS) 
and/or nuclear magnetic resonance (NMR). After preprocess-
ing of this data, for example, in R (Stanstrup et al. 2019), and 
annotation of relevant peaks with the corresponding chemical 
structure, one can also add an identifier from a (supported) 
database to the data. For subsequent data analysis steps, we 
used BridgeDb to link these identifiers to their corresponding 
InChIKey (a shortened version of the InChI) (Heller et  al. 
2015), which links the chemical structure to the original com-
pound identifier in a machine-readable manner. The InChIKey 
consists of three parts (separated by a bar “-”); the first 
describes the general structure of a molecule, the second its 
stereochemistry, and the third the charge of the molecule. For 
example, “CKLJMWTZIZZHCS-REOHCLBHSA-M” is the 
InChIKey for L-aspartic acid monoanion, where the “M” 
stands for a −1 charge. In order to link these compounds to 
(metabolic) pathways, we will use a SPARQL query (Galgonek 

et al. 2016). This query is a structured method to ask questions 
to a database such as WikiPathways, which has been con-
verted to the Resource Description Framework (RDF) format 
(Waagmeester et al. 2016). This RDF format unifies and har-
monizes pathway data over all models, with several filtering 
and search options; data can be queried for specific species, 
DataNodes, literature, and more. Figure  73.6b provides an 
example of a SPARQL query where we investigated the 
occurrence of five compounds within the pathway models 
of WikiPathways. More details on the structure of the 
WikiPathways RDF and example queries are available on 
the Semantic Web portal: rdf.wikipathways.org. We also pro-
vide a beginners’ tutorial on how to write SPARQL queries in 
the SPARQL folder on GitHub (bigcat-um.github.io/
IEMPathwayAnalysis).

To visualize the concepts of SPARQL and data mapping, 
we chose the five naturally charged proteinogenic amino 
acids (positive charge: aspartic acid (Asp, D) and glutamic 
acid (Glu, E); negative charge: arginine (Arg, R), histidine 
(His, H), and lysine (Lys, K)). Lines 6–10 in Fig. 73.6b pro-
vide the InChIKeys for these compounds, which we will link 
to pathway data in line 15 (wp:bdbInChIKey ?inchikey). The 
results of the example query reveal in which pathways these 
compounds can be found, which are listed from lowest to 
highest (line 22) occurrence counts (line 4) in pathways, to 
find the most relevant pathways for further analysis. This 
results in 15 pathways, which all have one of these com-
pounds present (RDF data release 2021-03-10). However, 
since pathways can be annotated with the uncharged form of 
these amino acids as well, we can also query all compounds 

a b

Fig. 73.6  Proposed workflow for data analysis of metabolic biomarkers with semantic web technologies. (a) Moving from chemical assay data 
to data interpretation using BridgeDb, SPARQL and Cytoscape. (b) Example of a SPARQL query on metabolic data in the WikiPathways RDF
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with the same stereochemistry independent of change status, 
obtaining a more complete result. By changing the end of 
each compounds InChIKey to their neutral counterpart 
(“CKLJMWTZIZZHCS-REOHCLBHSA-M” becomes 
“CKLJMWTZIZZHCS-REOHCLBHSA-N”) and changing 
line 15 to “rdfs:seeAlso ?inchikey,” we obtain a total of 38 
pathways, with 15 pathways containing 2 of the 5 amino 
acids (either in their neutral or charged form). This example 
is explained in more detail in the SPARQL folder on GitHub 
(bigcat-um.github.io/IEMPathwayAnalysis).

The next step in this workflow downloads the relevant path-
ways from WikiPathways in Cytoscape; see Sect. 73.4.1 and 
73.4.2 for further details. When moving to a network tool, more 
advanced analysis approaches can be used. The chemical data 
can be visualized on the nodes in the network, while the edges 
(interactions between nodes) can be used to visualize fluxomic 
data (if available). After the data has been added, interpretation 
can be facilitated by additional features in Cytoscape, such as 
visualizing the chemical structure of the compounds, connect-
ing several pathways (as networks) to obtain a more complete 
overview, adding other experimental data (e.g., transcrip-
tomics; see Sect. 73.4.1), or expanding the network with bio-
logical knowledge from other databases (see Sect. 73.4.2).

�Limitations

Every type of data analysis comes with its own set of limita-
tions. For pathway analysis, the results depend on the cover-
age of the selected database (s), the mappings between 
identifiers from the dataset to the pathway knowledge, the sta-
tistics, and cut-off value used for the fold change to discover 
significant findings. Especially regarding this first issue, 
WikiPathways is a useful resource, since users can add miss-
ing information on pathways and interaction themselves, 
allowing them and others to use them directly in data analysis. 
Furthermore, the machine-readable model behind this data-
base is flexible enough to accommodate the needs of research-
ers from the genetic inheritable metabolic disease research 
area. We hope that this chapter, as well as the created examples 
of machine-readable pathways from the figures in this book, 
provides other users inspiration to add more biological knowl-
edge to databases. For more information on how to model 
these pathways, please visit help.wikipathways.org.

�Conclusions

While regular pathway drawings are a great resource to visu-
alize relevant biological interactions, these figures are not 
interactive and not directly reusable for data analysis. 
Understanding how to move from a regular pathway drawing 
to its machine-readable counterpart is pertinent for creating 

proper models. As shown in this chapter, having a digital 
pathway can link to reference databases and allows us to pre-
form data integration and analysis. This will require some 
time and effort from the side of the user; however once these 
skills are mastered, adding new information is relatively 
easy, will decrease other research time needed for data analy-
sis, and aid the research community as a whole.
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