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Abstract
This paper is intended to tackle the control problem associated with an extended phase
field system of Cahn–Hilliard type that is related to a tumor growthmodel. This system
has been investigated in previous contributions from the viewpoint of well-posedness
and asymptotic analyses. Here, we aim to extend the mathematical studies around
this system by introducing a control variable and handling the corresponding control
problem.We try to keep the potential as general as possible, focusing our investigation
towards singular potentials, such as the logarithmic one. We establish the existence of
optimal control, the Lipschitz continuity of the control-to-state mapping and even its
Fréchet differentiability in suitable Banach spaces. Moreover, we derive the first-order
necessary conditions that an optimal control has to satisfy.

Keywords Distributed optimal control · Tumor growth · Phase field model ·
Cahn–Hilliard equation · Optimal control · Necessary optimality conditions ·
Adjoint system
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1 Introduction

In this paper, we deal with a distributed optimal control problem for a system of
partial differential equations whose physical context is that of tumor growth dynamics.
Our aim is to devote this section to explain the general purpose of the work and we
postpone all the technicalities for the forthcoming sections. In the next one, we will
state precisely the problem and have the care to present in detail our notation and the
mathematical framework in which set the problem. Here, let us only mention that with
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� ⊂ R
3 we denote the set where the evolution takes place and, for a given final time

T > 0, we fix
Q := � × (0, T ) and � := � × (0, T ).

The distributed control problem, referred as (CP), consists of minimizing the so-
called cost functional

J(ϕ, σ, u) = b1
2

‖ϕ − ϕQ‖2L2(Q)
+ b2

2
‖ϕ(T ) − ϕ�‖2L2(�)

+ b3
2

‖σ − σQ‖2L2(Q)

+ b4
2

‖σ(T ) − σ�‖2L2(�)
+ b0

2
‖u‖2L2(Q)

, (1.1)

subject to the control constraints

u ∈ Uad := {u ∈ L∞(Q) : u∗ ≤ u ≤ u∗ a.e. in Q}, (1.2)

and to the state system

α∂tμ + ∂tϕ − 	μ = P(ϕ)(σ − μ) in Q (1.3)

μ = β∂tϕ − 	ϕ + F ′(ϕ) in Q (1.4)

∂tσ − 	σ = −P(ϕ)(σ − μ) + u in Q (1.5)

∂nμ = ∂nϕ = ∂nσ = 0 on � (1.6)

μ(0) = μ0, ϕ(0) = ϕ0, σ (0) = σ0 in �. (1.7)

Let us give just some overall indications on the involved quantities of the above
equations. The symbols b0, b1, b2, b3, b4 represent nonnegative constants, not all zero,
while ϕQ, ϕ�, σQ, σ�, u∗, and u∗ denote given functions. As regards these latter, the
first fourmodel some targets, while the last two fix the box inwhich the control variable
u can be chosen. Furthermore, F and P are nonlinearities, while (1.6) and (1.7) are
the boundary conditions and the initial conditions, respectively.

During the last decades, lots of models based on continuum mixture theory have
been derived. The above state system constitutes a variation on an approximation to a
diffuse interface model for the dynamics of tumor growth proposed in [23] (see also
[24,28]), in which the velocity contributions are neglected and the attention is focused
on the behavior of the state variables that model the fractions of the tumor cells and
the nutrient-rich extracellular water, respectively. Moreover, let us refer to [16–21],
where transport mechanisms such as chemotaxis and active transport are also taken
into account. Further investigations and mathematical models related to biology can
be found e.g. in [13] and [15].

Let us spend some words about the interpretation of the system (1.3)–(1.7), and
on the involved variables. The unknown ϕ is an order parameter which describes
the tumor cell fraction and assumes values between − 1 and + 1. These two extremes
represent the pure phases, say the tumor phase and the healthy cell phase, respectively.
The second unknown μ has the interpretation, as usual for Cahn–Hilliard equation,
of chemical potential and its relation with ϕ is precisely expressed by (1.4). The third
unknown σ consists of the nutrient-rich extracellular water volume fraction and we
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assume that it takes values between 0 and 1 with the following property: the closer
to one, the richer of water the extracellular fraction is, while the closer to zero, the
poorer it is.As the nonlinearities are concerned,wehave that F stands for a double-well
potential, while P models a proliferation function which we assume to be nonnegative
and dependent on the phase variable. To conclude the overview of the model, worth
to point out the different role of α and β. When α = 0, Eqs. (1.3)–(1.4) becomes of
viscous Cahn–Hilliard type or it is pure Cahn–Hilliard equation depending on the fact
that β is strictly positive or vanishes, respectively. On the other hand, the presence of
α gives to (1.3) a parabolic structure with respect to the variable μ.

As for the interpretationof the (CP)problem, our goal consists of finding a “smarter”
choice of u ∈ Uad such that, with its corresponding solution to (1.3)–(1.7), minimizes
(1.1). Note that the control variable u appears in (1.5), the equation describing the
nutrient evolution process. Thus, from the viewpoint of the model, it could represent
a supply of a nutrient or a drug in chemotherapy. The cost functional we choose is a
tracking-type one, namely we have fixed some a priori targets, say some a priori final
configurations for the tumor cells and on the nutrient, and we try to find the control
variable whose corresponding solutions approximate better this fixed configuration.
Worth to insist on this fact: even if the better situation is the health of the patient, our
efforts are neither in the direction of minimizing the variable ϕ, that has the meaning
of leading to the healthier configuration nor minimizing the variable σ to reduce the
tumor expansion. In fact, we only try to handle the whole evolution process, acting on
the choice of the control variable, to force a final configuration that for some practical
reason should be desirable. Obviously the ratios among the constants b0, b1, b2, b3, b4
implicitly describe which targets hold the leading part in our application. To conclude
the analysis, we focus our attention on the last term of (1.1). From an abstract view-
point, it represents the cost we have to pay to implement u, thus in our framework
it should be read as the rate of risks to afflict harm to the patient by following that
strategy. Finally, observe that we do not consider the cost functional to be dependent
on the chemical potential. Indeed, from an interpretation point of view, we mainly
care to handle the phase dynamics, and it is not clear if including the variable μ in the
analysis is interesting for applications (see the forthcoming Remark 4.1).

At this general stage, let us perform a little overview of the literature. The first
systematic study on this system was carried out in [4,14], where well-posedness and
long-time behavior of the solutions were investigated for a system very close to ours.
Moreover, quite recently, the system has been investigated with particular interest on
the asymptotic analysis as the constants α and β go to zero. To this concern, we address
to [4,9], and [5], where the asymptotic analyses represent the core of the works. To our
best knowledge, as the control theory is concerned, there are very few contributions
to this kind of system. In this regard, we refer to [8], where a control problem for a
system without relaxation terms is performed. Even though we take inspiration from
this work, the functional framework and the potentials setting significantly differ from
ours. Nevertheless, the control theory related to different phase-field models based on
the Cahn–Hilliard equation presents more contributions. Among others, we mention
[2,6,7,10–12]. Furthermore, since particular attention is devoted to singular potentials,
we point out [3,22,26] and the vast list of references therein.
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Toconclude, let us sketch anoutline of thework.Thefirst section is devoted tofixour
notation and state the established results. The second one contains all the proofs cor-
responding to the analysis of the state system, while the last one is completely devoted
to the control problem. Namely, the last section faces the analysis of the existence of
optimal control, the linearized problem, the investigation of the Fréchet differentiabil-
ity of the control-to-state mapping and the adjoint problem. Moreover, it contains the
necessary conditions that a control has to satisfy to be optimal.

2 General Assumptions and Results

In the following, we intend to fix the notation, state the problem in a precise form, and
announce the main results.

The introduction should not have created any confusion since the employed notation
is quite standard. We assume � to be a smooth, bounded and connected open set in
R
3, whose boundary is denoted by �. From the smoothness property, it is almost

everywhere well defined the unit normal vector n of � and the symbol ∂n represents
the outward derivative in that direction. Moreover, for a fixed T > 0, which stands for
the final time involved in the evolution process, we set

Qt := � × (0, t) and �t := � × (0, t) for every t ∈ (0, T ],
Q := QT , and � := �T .

As the functional spaces are concerned, it turns out to be very convenient to introduce
the following

H := L2(�), V := H1(�), W :=
{
v ∈ H2(�) : ∂nv = 0 on �

}
,

and endow them with their standard norms indicated by ‖ · ‖•, where • stands for
the referred space or is completely omitted if it is clear from the context which norm
should be. In the same way, we write ‖ · ‖p for the usual norm in L p(�). The above
definitions yield that (V , H , V ∗) forms aHilbert triplet, that is, the following injections
V ⊂ H ≡ H∗ ⊂ V ∗ are both continuous and dense. As a consequence, we also have
that 〈u, v〉 = ∫

�
uv for every u ∈ H and v ∈ V , where 〈·, ·〉 denotes the duality

pairing between the dual V ∗ and V itself.
Now, we state the general assumptions on the problem.

H1 b0, b1, b2, b3, b4 are nonnegative constants, but not all zero.
H2 ϕQ, σQ ∈ L2(Q), ϕ�, σ� ∈ H1(�), u∗, u∗ ∈ L∞(Q) with

u∗ ≤ u∗ a.e. in Q.
H3 α, β > 0.
H4 μ0 ∈ H1(�) ∩ L∞(�), ϕ0 ∈ H2(�), σ0 ∈ H1(�).
H5 P ∈ C2(R) is nonnegative, bounded and Lipschitz continuous.
H6 B̂ : R → [0,∞] is convex, proper and lower semicontinuous, with B̂(0) = 0.
H7 π̂ ∈ C3(R) and π := π̂ ′ is Lipschitz continuous.
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We define the potential F : R → [0,∞] and the graph B ⊆ R × R by

F := B̂ + π̂ and B := ∂ B̂, (2.1)

and note that B is a maximal monotone operator (see, e.g., [1, Ex. 2.3.4, p. 25]) with
domain denoted by D(B). Furthermore, we assume that B, when restricted to its
domain D(B), is a smooth function. Indeed, we require that

H8 D(B) = (r−, r+), with − ∞ ≤ r− < 0 < r+ ≤ +∞, B(0) = 0,
F|D(B)

∈ C3(r−, r+), and lim
r→r±

F ′(r) = ±∞.

H9 r− < inf ϕ0 ≤ supϕ0 < r+.
H10 1/β (μ0 + 	ϕ0 − B(ϕ0) − π(ϕ0)) ∈ L2(�).

It is worth to underline that from the above requirements, it follows that both B̂(ϕ0)

and B(ϕ0) are both in L∞(�), thus a fortiori in L1(�). In the literature, with a slight
abuse of notation, F ′ usually denotes the sum of B, the subdifferential of B̂, and π ,
namely F ′ = B + π . Here, since F is regular, B exactly represents the derivative of
B̂ in (r−, r+).

Notwithstanding (H6)–(H10), let us point out that there are significant classes
of double-well potentials that fit the assumptions. Standard choices are the regular
potential and the, physically more relevant, logarithmic one. Written as (2.1), they
read as

Freg(r) := 1

4
(r2 − 1)2 = 1

4
r4 − 1

4
(2r2 − 1) for r ∈ R, (2.2)

Flog(r) := ((1 − r) log(1 − r) + (1 + r) log(1 + r)) − kr2 for |r | < 1, (2.3)

where in the latter k is a constant large enough to kill convexity. Moreover, it is
usually helpful to extend (2.3) by continuity imposing that it assumes the value +∞
outside its actual domain. Note that both (2.2) and (2.3) do fit our framework with
D(B) = (−∞,+∞) and D(B) = (− 1,+ 1), respectively. Furthermore, if we take
into account Freg , due to its regularity, all the results we are going to prove still hold
true even in a slightly weaker framework. However, since Freg is introduced as an
approximation of more general potentials, we try to focus our attention on the singular
ones, such as Flog , which is more relevant for the applications. Before starting with
the statements, we introduce another notation.

Let UR be an open set in L2(Q) such that Uad ⊂ UR and ‖u2‖ ≤ R for all u ∈ UR .

As it usually occurs in control problems, the requirements (H2)–(H10) are far from
sharp in terms of the well-posedness and regularity result of (1.3)–(1.7) are concerned.
Anyhow, they are all useful in order to deal with the corresponding control problem.

Let us proceed this section by listing the obtained results.

Theorem 2.1 (well-posedness and separation results) Under the hypotheses (H2)–
(H10), and for every u ∈ UR, the following results hold true.
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(i) The system (1.3)–(1.7) has a unique strong solution (μ, ϕ, σ ) which satisfies

ϕ ∈ W 1,∞(0, T ; H) ∩ H1(0, T ; V ) ∩ L∞(0, T ; W ) ⊂ C0([0, T ]; C0(�̄))

(2.4)

μ, σ ∈ H1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; W ) ⊂ C0([0, T ]; V ) (2.5)

μ ∈ L∞(Q) (2.6)

that is, there exists a constant C1 > 0, which depends on R, α and β, and on the
data of the system, such that

‖ϕ‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;W ) + ‖μ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W )∩L∞(Q)

+‖σ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ C1. (2.7)

(ii) There exists a compact subset K of (r−, r+) such that

ϕ(x, t) ∈ K for all (x, t) ∈ Q; (2.8)

in particular, there exists a constant C2 > 0, which depends on R, α and β, K
and on the data of the system, such that

‖ϕ‖C0(Q) + max
0≤i≤3

‖F (i)(ϕ)‖L∞(Q) + max
0≤ j≤2

‖P( j)(ϕ)‖L∞(Q) ≤ C2. (2.9)

Theorem 2.2 (continuous dependence on the control)Assume (H2)–(H10). Then there
exists a constant C3 > 0, which depends only on R, α and β, and on the data of the
system such that, if ui ∈ UR and (μi , ϕi , σi ) are the corresponding solutions with the
same initial value, i = 1, 2, it holds

‖α(μ1 − μ2) + (ϕ1 − ϕ2) + (σ1 − σ2)‖L∞(0,T ;V ∗) + ‖μ1 − μ2‖L2(0,T ;H)

+‖ϕ1 − ϕ2‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖σ1 − σ2‖L∞(0,T ;H)∩L2(0,T ;V )

≤ C3‖u1 − u2‖L2(0,T ;H). (2.10)

Let us remark that in the proof of the above result we do not account for point
(ii) of Theorem 2.1. In fact, we will see that this first continuous dependence result
is not sufficient to handle the (CP) (particularly to prove the Fréchet differentiability
of the control-to-state mapping S, cf. Sect. 4.3), then in the beneath lines there is an
improvement that, this time, take strongly into account the second part of Theorem
2.1.

Theorem 2.3 In the same framework of Theorem 2.2, there exists a constant C4 > 0,
possibly smaller than C3, which depends only on R, α and β, and on the data of the
system such that

‖μ1 − μ2‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ϕ1 − ϕ2‖H1(0,T ;H)∩L∞(0,T ;V )

≤ C4‖u1 − u2‖L2(0,T ;H). (2.11)
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Since we have already provided the well-posedness of the state system in Theorem
2.1, we can introduce the so-called control-to-state mapping S that will cover a central
role in the control theory. It consists of the map that assigns to every admissible
control u the corresponding solution triple (μ, ϕ, σ ), which components belong to
the functional spaces pointed out by (2.4)–(2.6). Moreover, it allows us to present the
so-called reduced cost functional as follows

J̃ : UR → R, defined by J̃(u) := J(S2,3(u), u),

where S2,3(u) represents the couple of the second and third components

of the solution triple S(u) = (μ, ϕ, σ ). (2.12)

In this view, Theorem 2.2 established the Lipschitz continuity of S in this natural
functional framework.

At this point, we introduce a well-posedness result for the linearized system, which
comes out naturally from the investigation of the control problem. First of all, let
us present the mentioned problem. Fixed ū ∈ UR , we denote (μ̄, ϕ̄, σ̄ ) = S(ū) the
corresponding solution to (1.3)–(1.7). Then, for any h ∈ L2(Q), the linearized system
reads as

α∂tη + ∂tϑ − 	η = P ′(ϕ̄)(σ̄ − μ̄)ϑ + P(ϕ̄)(ρ − η) in Q (2.13)

η = β∂tϑ − 	ϑ + F ′′(ϕ̄)ϑ in Q (2.14)

∂tρ − 	ρ = −P ′(ϕ̄)(σ̄ − μ̄)ϑ − P(ϕ̄)(ρ − η) + h in Q (2.15)

∂nρ = ∂nϑ = ∂nη = 0 on � (2.16)

ρ(0) = ϑ(0) = η(0) = 0 in �. (2.17)

Here the existence and uniqueness result follows.

Theorem 2.4 (well-posedness of the linearized system) Under the assumptions (H2)–
(H10), and for every h ∈ L2(Q), the system (2.13)–(2.17) possesses a unique solution
triple (η, ϑ, ρ) which satisfies

η, ϑ, ρ ∈ H1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; W ) ⊂ C0([0, T ]; V ); (2.18)

that is, there exists a constant C5 > 0, which depends on the data of the system, and
possibly on α and β, such that

‖η‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) + ‖ϑ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W )

+‖ρ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ C5.

In the following, we prove that S is even Fréchet differentiable in suitable Banach
spaces.

Theorem 2.5 (Fréchet differentiability of S) Assume (H2)–(H10). Then the control-
to-state mapping S is Fréchet differentiable in UR as a mapping from L2(Q) into the
state space Y, where
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Y :=
(

H1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; W )

)3

. (2.19)

Moreover, for any ū ∈ UR, the Fréchet derivative DS(ū) is a linear and continuous
operator from L2(Q) to Y, and for every h ∈ L2(Q), DS(ū)h = (η, ϑ, ρ) where
(η, ϑ, ρ) is the unique solution to the linearized system (2.13)–(2.17) associated with
h.

Theorem 2.6 (Existence of optimal control) Assume (H2)–(H10). Then the optimal
control problem (CP) has at least a solution ū ∈ Uad.

As the necessary optimality condition is concerned, we recall the reduced cost
functional (2.12) and the fact that Uad is convex. Therefore, the optimal inequality we
are looking for turns out to be

〈DJ̃(ū), v − ū〉 ≥ 0 for every v ∈ Uad, (2.20)

where DJ̃(ū) represents the differential of J̃, at least in the Gâteaux sense. Accounting
for Theorem 2.5 and the chain rule, (2.20) develops as follows.

Corollary 2.7 Suppose that the assumptions (H1)–(H10) are fulfilled. Let ū ∈ Uad be
an optimal control for (CP) with his corresponding optimal state (μ̄, ϕ̄, σ̄ ) = S(ū).
Then we have

b1

∫

Q
(ϕ̄ − ϕQ)ϑ + b2

∫

�

(ϕ̄(T ) − ϕ�)ϑ(T ) + b3

∫

Q
(σ̄ − σQ)ρ

+b4

∫

�

(σ̄ (T ) − σ�)ρ(T ) + b0

∫

Q
ū(v − ū) ≥ 0 ∀v ∈ Uad, (2.21)

where ϑ and ρ are the second and third components of the unique solution triple
(η, ϑ, ρ) to the linearized system (2.13)–(2.17) associated with h = v − ū.

To eliminate the presence of the variables ϑ and ρ in the previous inequality, we
introduce the so-called adjoint problem that consists of the following system of partial
differential equations.

β∂t q − ∂t p + 	q − F ′′(ϕ̄)q + P ′(ϕ̄)(σ̄ − μ̄)(r − p) = b1(ϕ̄ − ϕQ) in Q

(2.22)

q − α∂t p − 	p + P(ϕ̄)(p − r) = 0 in Q (2.23)

−∂t r − 	r + P(ϕ̄)(r − p) = b3(σ̄ − σQ) in Q (2.24)

∂nq = ∂n p = ∂nr = 0 on � (2.25)

p(T ) − βq(T ) = b2(ϕ̄(T ) − ϕ�),

α p(T ) = 0, r(T ) = b4(σ̄ (T ) − σ�) in �. (2.26)

Here the existence and uniqueness result for the adjoint problem is stated.
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Theorem 2.8 (Well-posedness of the adjoint problem) Under the assumptions (H1)–
(H10), the system (2.22)–(2.26) has a unique solution (q, p, r) that satisfies the
following regularity requirements

q, p, r ∈ H1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; W ) ⊂ C0([0, T ]; V ). (2.27)

Finally, the well-posedness of the adjoint system allows us to improve Corollary
2.7 leading to a second necessary condition. Namely, we achieve the following result.

Theorem 2.9 (Necessary optimality condition) Assume (H1)–(H10). Let ū ∈ Uad be
an optimal control with his corresponding optimal state (μ̄, ϕ̄, σ̄ ) = S(ū) and let
(p, q, r) be the solution to the corresponding adjoint system. Then we have

∫

Q
(r + b0ū)(v − ū) ≥ 0 ∀v ∈ Uad. (2.28)

To conclude the section, let us introduce further notation and recall some well-
known inequalities and general facts related to the Cahn–Hilliard equation. First of
all, we remind the Young inequality

ab ≤ δa2 + 1

4δ
b2 for every a, b ≥ 0 and δ > 0. (2.29)

Furthermore, for given v ∈ V ∗ and v ∈ L1(0, T ; V ∗), we introduce their generalized
mean values v� ∈ R and v� ∈ L1(0, T ) by

v� := 1

|�| 〈v, 1〉, and v�(t) := (
v(t)

)� for a.a. t ∈ (0, T ), (2.30)

where (2.30) reduces to the usual mean values when it is applied to elements of H or
L1(0, T ; H). In addition, we often owe to the Poincaré inequality

‖v‖2V ≤ C�

(‖∇v‖2H + |v�|2) for every v ∈ V , (2.31)

wherewe stressed the fact thatC� depends on�. Since itwill be convenient to interpret
some partial differential equations in the framework of the Hilbert triplet (V , H , V ∗),
we introduce the Riesz isomorphism associated with V . That is, we define the map
A : V → V ∗ as follows

〈Au, v〉 = (u, v)V =
∫

�

(∇u · ∇v + uv) for every u, v ∈ V . (2.32)

Observe that when restricted to its domain W , A turns out to be the operator −	 + I
endowed with homogeneous Neumann boundary conditions, where I denotes the
identity map of W . A little investigation on A leads to the following identities

〈Au,A−1v∗〉 = 〈v∗, u〉 for all u ∈ V and v∗ ∈ V ∗, (2.33)
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〈u∗,A−1v∗〉 = (u∗, v∗)∗ for all u∗, v∗ ∈ V ∗, (2.34)

where (·, ·)∗ stands for the inner product of V ∗, whence also

2〈∂tv
∗(t),A−1v∗(t)〉 = d

dt
‖v∗(t)‖2∗ for a.a. t ∈ (0, T ). (2.35)

Remark 2.10 Let us explain a convention that we are going to use throughout the paper.
Since we have to deal with a lot of estimates, we agree that the symbol c stands for any
constants which depend only on the final time T , on�, the shape of the nonlinearities,
on the norms of the involved functions, and possibly on α and β. For this reason, the
meaning of c might change from line to line and even in the same chain of inequalities.
Conversely, the capital letters are devoted to denote precise constants.

3 State System and Continuous Dependence Results

From this section on,wewill focus our attention to prove the statements. This section is
devoted to the investigation of the state system, namely we aim at checking Theorems
2.1, 2.2, and 2.3. Let us begin dealing with the first one.

Proof of Theorem 2.1 In [4, Thm. 2.2, p. 2426] it has been shown that the system
(1.3)–(1.7) possesses a unique strong solution with the following regularity

μ, ϕ, σ ∈ H1(0, T ; H) ∩ L2(0, T ; W ) ⊂ C0([0, T ]; V ),

in the homogeneous case u ≡ 0. Since we admit that u can be chosen in UR , only
straightforward modifications are needed in order to prove that, for every choice of u
in UR , there exists a unique corresponding solution (μ, ϕ, σ ) satisfying the same reg-
ularity mentioned above. Let us point out that conditions (H2)–(H10) perfectly fit the
framework of [4]. In fact, the strong requirement (2.6) of [4] is only needed to handle
the asymptotic behavior, whereas it can be substituted by the weak requirement (H7)
as the investigation of the well-posedness and regularity of the system are concerned.

In the following, we proceed formally; as a matter of fact, we should introduce
suitable approximation of the potential depending on a small parameter ε and then,
after showing sufficient compactness property, let ε ↘ 0 as made in [4]. Anyhow,
we will take care in referring to works in which this strategy is properly employed to
justify all the passages that we present only in a formal level.

With the following estimates, we aim at improving the regularity of the unique
solution to (1.3)–(1.7) in view of the forthcoming control investigation. Once obtained,
it is a standard matter to conclude by compactness arguments that the solution triple
satisfies (2.4)–(2.6). The rigorous treatment of the first three estimates, with little
variations, can be found in [4, eqs. (4.4)–(4.12), pp. 2431–2432].

First estimate We add to both the sides of (1.4) the term ϕ, multiply (1.3) by μ, this
new second equation by −∂tϕ and (1.5) by σ , then we add the resulting equations and
integrate over Qt and by parts. A little rearrangements of the terms produce
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α

2

∫

�

|μ(t)|2 +
∫

Qt

|∇μ|2 + β

∫

Qt

|∂tϕ|2 + 1

2

∫

�

|ϕ(t)|2 + 1

2

∫

�

|∇ϕ(t)|2

+
∫

�

B̂(ϕ(t)) + 1

2

∫

�

|σ(t)|2 +
∫

Qt

|∇σ |2 +
∫

Qt

P(ϕ)(σ − μ)2

= α

2

∫

�

|μ0|2 + 1

2

∫

�

|ϕ0|2 + 1

2

∫

�

|∇ϕ0|2 +
∫

�

B̂(ϕ0)

+1

2

∫

�

|σ0|2 +
∫

Qt

uσ +
∫

Qt

ϕ ∂tϕ −
∫

Qt

π(ϕ)∂tϕ,

where we split F ′ as sum of B and π , and where the former, multiplied by ∂tϕ, consists
of the derivative with respect to time of B̂(ϕ(t)). All the terms on the left-hand side are
nonnegative since they are squares and P and B̂ are nonnegative by (H5) and (H6),
respectively. The first five terms on the right-hand side are easily managed owing to
(H4) and to the properties of B̂, while the otherswere denoted by I1, I2, I3. Accounting
for the Young inequality (2.29), we obtain

|I1| + |I2| + |I3| ≤ 1

2

∫

Qt

|u|2 + 1

2

∫

Qt

|σ |2 + 2δ
∫

Qt

|∂tϕ|2 + cδ

∫

Qt

(|ϕ|2 + 1).

We choose 0 < δ < β/2, and invoke the Gronwall lemma to conclude that

‖μ‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ϕ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖B̂(ϕ)‖L∞(0,T ;L1(�))

+‖σ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c. (3.1)

Second estimate Now we multiply (1.3) by ∂tμ and (1.5) by ∂tσ , add the resulting
equations and integrate over Qt . Using (3.1) and the boundedness of P , and arguing
as above lead to

‖μ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖σ‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c. (3.2)

Third estimateEquations (1.3) and (1.5) show a parabolic structurewith respect toμ

and σ , respectively. Moreover, it follows from the previous estimates that their forcing
terms are both in L2(0, T ; H). Therefore, since the initial data (1.7) are in V (cf.
(H4)), parabolic regularity theory with Neumann homogeneous boundary conditions
gives

‖μ‖L2(0,T ;W ) + ‖σ‖L2(0,T ;W ) ≤ c. (3.3)

Fourth estimate As above we would like to obtain more regularity for the phase
variable ϕ by comparing terms in (1.4). Since it is more delicate, worth to show the
detailed procedure. In fact, we can rearrange (1.4) as follows

− 	ϕ + B(ϕ) = f , where f := μ − β ∂tϕ − π(ϕ). (3.4)
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The previous estimates entails that f ∈ L2(0, T ; H). Now, we multiply the above
inequality by (−	ϕ) and integrate over �. Actually, note that this choice is rigor-
ously forbidden since too few regularity is known on the phase variable. Anyhow, this
choice can be formally justified by introducing a suitable Faedo–Galerkin scheme. So,
for a.a. t ∈ (0, T ), we get the following inequality

∫

�

|	ϕ(t)|2 +
∫

�

B ′(ϕ(t)) |∇ϕ(t)|2 ≤ −
∫

�

f (t)	ϕ(t) ≤ 1

2

∫

�

|	ϕ(t)|2

+ 1

2

∫

�

| f (t)|2,

owing to (2.29). Both the terms on the left-hand side are nonnegative since B ′ is so.
Hence, we realize that

‖	ϕ‖L2(0,T ;H) ≤ c.

Moreover, by elliptic regularity theory, the boundary conditions (1.6), and by compar-
ison in (3.4), we conclude that

‖ϕ‖L2(0,T ;W ) + ‖B(ϕ)‖L2(0,T ;H) ≤ c. (3.5)

Fifth estimate We continue to proceed formally, in order to keep the proof as short
and easy as possible. Here, for a precise and detailed treatment it will be necessary to
introduce time steps and suitable translations, and show some estimates for this new
functions. This procedure will become quite technical. Anyhow, for the interested
reader, we refer to [4, Proof of Thm. 2.6 (iii), p. 2436], where the correct procedure is
performed to establish a slightly different estimate.

So, we differentiate (1.4) with respect to the time variable, multiply it by ∂tϕ, and
integrate over Qt to get

∫

Qt

∂tμ ∂tϕ = β

∫

Qt

∂t tϕ ∂tϕ −
∫

Qt

(	∂tϕ) ∂tϕ +
∫

Qt

(B ′(ϕ) + π ′(ϕ)) |∂tϕ|2.

Using the integration by parts and the boundary conditions (1.6), we deduce that

β

2

∫

�

|∂tϕ(t)|2 +
∫

Qt

|∇∂tϕ|2 +
∫

Qt

B ′(ϕ)|∂tϕ|2 = β

2

∫

�

|(∂tϕ)(0)|2

−
∫

Qt

π ′(ϕ)|∂tϕ|2 +
∫

Qt

∂tμ ∂tϕ,

where the terms on the left-hand side are all nonnegative. The first term of the right-
hand side is under control, due to (1.4) and (H10). Moreover, the last two integrals
can be estimate as follows

−
∫

Qt

π ′(ϕ)|∂tϕ|2 +
∫

Qt

∂tμ ∂tϕ ≤ c
∫

Qt

|∂tϕ|2 + 1

2

∫

Qt

|∂tμ|2,
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owing to the Lipschitz continuity of π ′ and (2.29). Thus, thanks to (3.1) and (3.2) we
obtain

‖ϕ‖W 1,∞(0,T ;H)∩H1(0,T ;V ) ≤ c. (3.6)

Sixth estimate We take again into account equation (3.4). Due to the previous
estimates, we can infer that f is more regular than we pointed out before. In fact, now
we have that f ∈ L∞(0, T ; H). Therefore, the test by −	ϕ leads to the estimate
‖	ϕ‖L∞(0,T ;H) ≤ c. Moreover, by the boundary conditions, the elliptic regularity
and comparison in (3.4), we deduce that

‖ϕ‖L∞(0,T ;W ) + ‖B(ϕ)‖L∞(0,T ;H) ≤ c, (3.7)

which gives, by the Sobolev embeddings, also

‖ϕ‖L∞(Q) ≤ c. (3.8)

Furthermore, an application of the well-known embedding results (see e.g., [27,
Sect. 8, Cor. 4]) directly recovers the continuity of the solution variables. Namely, as
the variables μ and σ are concerned, due to (3.1)–(3.3), we infer that they belong to
C0([0, T ]; V ). Since the phase variable ϕ satisfies, in addition, the estimates (3.5) and
(3.6)–(3.8), we deduce that ϕ is more regular and it belongs to C0([0, T ]; C0(�̄)).

Now, we start to approach the separation result (ii). This property will be crucial in
order to handle the potential and its higher order derivatives. Indeed, if (ii) holds true,
it acts on functions which values are well detached from the boundary of the domain
of B. In this way F and his higher order derivatives do not blow up and they turn out
to be Lipschitz continuous and bounded functions.

First of all, we need to show the boundedness of the chemical potential in the whole
of Q. In this direction, we would like to apply [25, Thm. 7.1, p. 181] to Eq. (1.3). The
key point is the parabolic structure with respect to μ that (1.3) possesses. Indeed, by
simply rearranging the terms, we get

α∂tμ − 	μ = g, where g := P(ϕ)(σ − μ) − ∂tϕ.

Roughly speaking, the result formalizes the following idea: if the initial datum is
bounded in � and the forcing term g satisfies a suitable summability regularity with
respect to space and time, then it is natural to expect that the variableμ stay bounded in
the whole of Q. Actually, from (H4) the property on the initial data is already satisfied.
Moreover, (H5) and the previous estimates immediately yield that

‖g‖L∞(0,T ;H) ≤ c.

This allows us to apply [25, Thm. 7.1, p. 181] and infer that there exists a positive
constant c such that

‖μ‖L∞(Q) ≤ c. (3.9)
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Note that (3.9) ends the proof of (i) and turns out to be fundamental in order to proceed
with the second part of Theorem 2.1.

As before, let us emphasize that the estimate we are going to prove in the fol-
lowing is formal. Anyhow, it can be reproduced correctly by introducing a suitable
approximation scheme, as made in [3, Proof of Thm. 2.6, pp. 992-994].

Seventh estimate We multiply (1.4) by |B(ϕ)|p−1 signϕ = |B(ϕ)|p−2B(ϕ), for a
fixed p > 2, and integrate over Qt . Moreover, we set f := μ−π(ϕ) and observe that
f belongs to L∞(Q) due to (3.8), (3.9) and (H7). We infer, for every t ∈ [0, T ], that

β

∫

�

Bp(ϕ(t)) + (p − 1)
∫

Qt

B ′(ϕ)|B(ϕ)|p−2|∇ϕ|2 +
∫

Qt

|B(ϕ)|p

= β

∫

�

Bp(ϕ0) +
∫

Qt

f |B(ϕ)|p−1signϕ, (3.10)

where Bp(r) := ∫ r
0 |B(s)|p−1signs ds. Furthermore, all the terms on the left-hand

side are nonnegative. As the right-hand side is concerned, we manage the first term in
the following way. From (H9) we know that |B(ϕ0)| is bounded by a positive constant
M , hence, we infer that

β

∫

�

Bp(ϕ0) ≤ βM p−1
∫

�

|ϕ0| ≤ cp.

Moreover, the last term can be estimated by

∫

Qt

f |B(ϕ)|p−1signϕ ≤ 1

p
cp + 1

p′

∫

Qt

|B(ϕ)|(p−1)p′ ≤ cp + 1

p′

∫

Qt

|B(ϕ)|p,

owing to the general version of the Young inequality, where p′ stands for the conjugate
exponent of p. Using the above estimates, we can rearrange (3.10) to conclude that

1

p

∫

Qt

|B(ϕ)|p ≤ cp,

that implies
‖B(ϕ)‖L p(Q) ≤ c,

where the constant c is independent of p. Since the above procedure can be iter-
ated for every p > 2, we realize that ‖B(ϕ)‖L∞(Q) ≤ c and from this we recover
‖F ′(ϕ)‖L∞(Q) ≤ c. In view of (H8), this establishes that

r− < inf ϕ ≤ supϕ < r+ for a.a. (x, t) ∈ Q,

as we claimed. ��
At this point, we prove the continuous dependence results.
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Proof of Theorem 2.2 For this proof we have largely taken inspiration from [4, Sect. 3,
pp. 2429-2430]. First of all, we set

μ := μ1 − μ2, ϕ := ϕ1 − ϕ2, σ := σ1 − σ2, u := u1 − u2. (3.11)

Writing (1.3)–(1.7) for (μi , ϕi , σi ), i = 1, 2, and taking the difference, we obtain the
following equations and conditions:

α∂tμ + ∂tϕ − 	μ = R1 − R2 in Q (3.12)

μ = β∂tϕ − 	ϕ + F ′(ϕ1) − F ′(ϕ2) in Q (3.13)

∂tσ − 	σ = −(R1 − R2) + u in Q (3.14)

∂nμ = ∂nϕ = ∂nσ = 0 on � (3.15)

μ(0) = ϕ(0) = σ(0) = 0 in � (3.16)

where Ri := P(ϕi )(σi − μi ), i = 1, 2. Now, we take the sum of (3.12) and (3.14),
then add to both the members of this new equation μ + σ . This gives

∂t (αμ + ϕ + σ) + A(μ + σ) = u + μ + σ in Q, (3.17)

owing to (2.32). Keeping in mind (2.32)–(2.35), we multiply (3.17) byA−1(αμ+ϕ +
σ), (3.13) by −ϕ and (3.14) by σ , add them, and integrate over Qt . We deduce that

1

2
‖(αμ + ϕ + σ)(t)‖2∗ +

∫

Qt

(μ + σ)(αμ + ϕ + σ) −
∫

Qt

ϕμ

+ β

2

∫

�

|ϕ(t)|2 +
∫

Qt

|∇ϕ|2 +
∫

Qt

(F ′(ϕ1) − F ′(ϕ2))ϕ + 1

2

∫

�

|σ(t)|2

+
∫

Qt

|∇σ |2 =
∫ t

0
〈u + μ + σ,A−1(αμ + ϕ + σ)〉

−
∫

Qt

(P(ϕ1) − P(ϕ2)) (σ1 − μ1)σ −
∫

Qt

P(ϕ2) (σ − μ) σ +
∫

Qt

uσ,

(3.18)

where the second and third terms of the right-hand side come from a simple rearrange-
ment of R1 − R2. We develop the second term of the left-hand side as

α

∫

Qt

|μ|2 +
∫

Qt

|σ |2 +
∫

Qt

μϕ + (1 + α)

∫

Qt

μσ +
∫

Qt

σϕ,

andmove the last three terms of the above sum to the right-hand side of (3.18). Observe
that the term that involves the double-well potential should be decomposed as

∫

Qt

(F ′(ϕ1) − F ′(ϕ2))ϕ =
∫

Qt

(B(ϕ1) − B(ϕ2))ϕ +
∫

Qt

(π(ϕ1) − π(ϕ2))ϕ,
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where the first term of the right-hand side is nonnegative by the monotonicity of B,
while the second one can bemoved to the right-hand side of (3.18) and easilymanaged,
since π is Lipschitz continuous by (H7). If we rearrange (3.18) according to the above
observations, we obtain

1

2
‖(αμ + ϕ + σ)(t)‖2∗ + α

∫

Qt

|μ|2 +
∫

Qt

|σ |2 + β

2

∫

�

|ϕ(t)|2

+
∫

Qt

|∇ϕ|2 +
∫

Qt

(B(ϕ1) − B(ϕ2))ϕ + 1

2

∫

�

|σ(t)|2 +
∫

Qt

|∇σ |2

=
∫ t

0
〈u + μ + σ,A−1(αμ + ϕ + σ)〉 −

∫

Qt

(P(ϕ1) − P(ϕ2)) (σ1 − μ1)σ

−
∫

Qt

P(ϕ2) (σ − μ) σ − (1 + α)

∫

Qt

μσ −
∫

Qt

σϕ

+
∫

Qt

uσ −
∫

Qt

(π(ϕ1) − π(ϕ2))ϕ,

where all the terms on the left-hand side are nonnegative. As the right-hand side is
concerned, we denote I1, . . . , I7 the seven integrals, in that order. Using (2.29) and
(2.34) we have

|I1| =
∣∣∣∣
∫ t

0
(u + μ + σ, αμ + ϕ + σ)∗

∣∣∣∣

≤ δ

∫ t

0
‖u + μ + σ‖2∗ + cδ

∫ t

0
‖αμ + ϕ + σ‖2∗,

where the first term of the this inequality can be estimated by virtue of the embedding
of V ∗ in H and the Young inequality as follows

δ

∫ t

0
‖u + μ + σ‖2∗ ≤ cδ

∫ t

0
‖u + μ + σ‖2H ≤ α

4

∫

Qt

|μ|2 + c
∫

Qt

|u|2 + c
∫

Qt

|σ |2

provided δ is sufficiently small. Moreover, combining the Hölder inequality and the
Sobolev continuous embedding V ⊂ Lq(�), which holds for every q ∈ [1, 6], we
realize that

|I2| ≤ c
∫

Qt

|ϕ|(|σ1| + |μ1|)|σ | ≤ c
∫ t

0
‖ϕ‖2(‖σ1‖4 + ‖μ1‖4)‖σ‖4

≤ c
∫ t

0
‖ϕ‖H (‖σ1‖V + ‖μ1‖V )‖σ‖V ≤ 1

2

∫

Qt

(
|σ |2 + |∇σ |2

)

+c
∫ t

0
(‖σ1‖2V + ‖μ1‖2V )‖ϕ‖2H ≤ 1

2

∫

Qt

(
|σ |2 + |∇σ |2

)
+ c

∫ t

0
‖ϕ‖2H ,

where in the first line we use the Lipschitz continuity of P stated by (H5), in the
second we apply the Young inequality, while in the latter we made use of estimate
(2.7) for the solutions σ1 and μ1. Furthermore, in view of (2.29), we obtain
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|I3| ≤ c
∫

Qt

|σ − μ| |σ | ≤ α

4

∫

Qt

|μ|2 + c
∫

Qt

|σ |2,

and finally, from (2.29), (2.9), and (H7) we have that

|I4| + |I5| + |I6| + |I7| ≤ α

4

∫

Qt

|μ|2 + 1

2

∫

Qt

|u|2 + c
∫

Qt

|σ |2 + c
∫

Qt

|ϕ|2.

Combining the above estimates, we have shown that for every t ∈ [0, T ] it holds that

1

2
‖(αμ + ϕ + σ)(t)‖2∗ + α

4

∫

Qt

|μ|2 +
∫

Qt

|σ |2 + β

2

∫

�

|ϕ(t)|2

+
∫

Qt

|∇ϕ|2 + 1

2

∫

�

|σ(t)|2 + 1

2

∫

Qt

|∇σ |2 ≤ c
∫

Qt

|σ |2

+c
∫

Qt

|ϕ|2 + c
∫ t

0
‖(αμ + ϕ + σ)(s)‖2∗ ds + c

∫

Qt

|u|2.

Therefore, we invoke the Gronwall lemma and achieve

‖αμ + ϕ + σ‖L∞(0,T ;V ∗) + ‖μ‖L2(0,T ;H) + ‖ϕ‖L∞(0,T ;H)∩L2(0,T ;V )

+‖σ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c‖u‖L2(0,T ;H),

where the variables are defined by (3.11). ��
We conclude this section by proving a sharper estimate.

Proof of Theorem 2.3 Here, we account for (2.10) and make heavily use of the second
part of Theorem 2.1. We consider again that the variables are defined by (3.11).

First estimate We consider again the system (3.12)–(3.14). We add to both sides of
(3.13) the term −ϕ, test (3.12) by μ, and this new second equation by −∂tϕ. Adding
the equations and integrating over Qt , we obtain

α

2

∫

�

|μ(t)|2 +
∫

Qt

|∇μ|2 + β

∫

Qt

|∂tϕ|2 + 1

2

∫

�

|ϕ(t)|2 + 1

2

∫

�

|∇ϕ(t)|2

≤
∫

Qt

(R1 − R2)μ −
∫

Qt

(F ′(ϕ1) − F ′(ϕ2)) ∂tϕ +
∫

Qt

ϕ ∂tϕ.

As before we call I1, I2, I3 the three contributions on the right-hand side and proceed
with a separate investigation. Due to (2.29) and Hölder’s inequality, we have that

|I2| + |I3| ≤ 2δ
∫

Qt

|∂tϕ|2 + cδ

∫

Qt

|ϕ|2 + cδ

∫

Qt

|F ′(ϕ1) − F ′(ϕ2)|2

≤ 2δ
∫

Qt

|∂tϕ|2 + cδ

∫

Qt

|ϕ|2,
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where in the last estimate we invoke the fact that, by (ii) of Theorem 2.1, F ′ turns
out to be Lipschitz continuous. Furthermore, by virtue of (H5), (2.10), and Hölder’s
inequality and Sobolev’s embeddings, we conclude

|I1| ≤
∫

Qt

P(ϕ2)(σ − μ)μ +
∫

Qt

(P(ϕ1) − P(ϕ2))(σ1 − μ1)μ

≤ c
∫

Qt

|σ |2 + c
∫

Qt

|μ|2 + c
∫

Qt

|ϕ|(|σ1| + |μ1|) |μ|

≤ c
∫

Qt

|σ |2 + c
∫

Qt

|μ|2 + c
∫ t

0
‖ϕ‖4(‖σ1‖4 + ‖μ1‖4)‖μ‖2

≤ c
∫

Qt

|σ |2 + c
∫

Qt

|μ|2 + c
∫ t

0
‖ϕ‖2V (‖σ1‖2V + ‖μ1‖2V ) ≤ c‖u‖2L2(0,T ;H)

,

where the fact that σ1 and μ1 satisfy (2.7) turn out to be fundamental. On account of
the previous estimates, we can choose 0 < δ < β/2, and apply the Gronwall lemma
in order to conclude that

‖μ‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ϕ‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c‖u‖L2(0,T ;H).

��

4 The Control Problem

The current section represents the most challenging part of the work, since it contains
the proof of the Fréchet differentiability of the control-to-state mapping S, the inves-
tigation of both the linearized and the adjoint systems, and the necessary conditions
that a control has to satisfy to be optimal.

4.1 Existence of Optimal Control

In the following, we are going to prove the existence of an optimal control. We remind
that in general nothing can be said about the uniqueness. The strategy of the proof is
quite standard and mainly lies on the semicontinuity property of the cost functional J
and on standard weak compactness arguments.

Proof of Theorem 2.6 Let {un}n be a minimizing sequence for the control problem
(CP) constituted of elements of Uad and for every n ∈ N, let (μn, ϕn, σn) be the
corresponding state. Therefore, the estimate (2.7) yields that there exist ū ∈ Uad and a
triple (μ̄, ϕ̄, σ̄ ) such that, possibly for a subsequence which is not relabelled, it holds
true the following

un → ū weakly star in L∞(Q),

μn → μ̄ weakly star in H1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; W ) ∩ L∞(Q),
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ϕn → ϕ̄ weakly star in W 1,∞(0, T ; H) ∩ H1(0, T ; V ) ∩ L∞(0, T ; W ),

σn → σ̄ weakly star in H1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; W ).

Furthermore, owing to standard compactness results (cf., e.g., [27, Sect. 8, Cor. 4]),
we recover even some strong convergences. Indeed, we infer that

ϕn → ϕ̄ strongly in C0([0, T ]; C0(�̄)).

This latter, paired with (H5)–(H8) and Theorem 2.1, allows us to manage the nonlin-
earities, since now

F ′(ϕn) → F ′(ϕ̄) and P(ϕn) → P(ϕ̄),

with the same uniform convergence. Then, we can pass to the limit as n goes to infinity
in the variational formulation of (1.3)–(1.7) written for (μn, ϕn, σn). Therefore, we
realize that S(ū) = (μ̄, ϕ̄, σ̄ ) and ū itself are admissible solution for the (CP). By the
weak sequentially lower semicontinuity of J we finally realize that ū is an optimal
control that we were looking for. ��

4.2 Towards Necessary Conditions: The Linearized Problem

Our first efforts are intended to establish the well-posedness of the linearized system
(2.13)–(2.17), namely to prove Theorem 2.4.

Proof of Theorem 2.4 Existence The well-known spectral property of the operator A
allow us to apply a Faedo-Galerkin scheme. We consider the family

{
w j

}
j of eigen-

functions for the eigenvalue problem

−	w j + w j = λ jw j in �, ∂nw j = 0 on �,

which constitutes a Galerkin basis in V . Moreover, let
{
w j

}
j represent a complete

orthonormal system in (H , (·, ·))which is also orthogonal in (V , (·, ·)). For fixed n, we
set Wn := span {w1, . . . , wn}, and we expect that the solutions to the approximated
problem possess the following structure

ηn(x, t) =
n∑

k=1

an
k (t)wk(x), ϑn(x, t) =

n∑
k=1

bn
k (t)wk(x), ρn(x, t) =

n∑
k=1

cn
k (t)wk(x),

for suitable unknown sequences an
k , bn

k , cn
k . Namely, we try to solve (2.13)–(2.17) in

which the variables are replaced by the above expressions and we will refer to this
problem as (Pn). Since (2.14) only depends on the variables an

i and bn
i , 1 ≤ i ≤ n, by

comparison, we can express the unknowns an
i in terms of

{
bn
1 , . . . , bn

n

}
. In this way,

(Pn) can be reformulated as a Cauchy problem for a linear system of 2n first-order
ODE in the 2n unknowns bn

i , cn
i , 1 ≤ i ≤ n. By Cauchy-Lipschitz theorem, there

exists a unique solution to this linear system satisfying (bn
1 , . . . , bn

n , cn
1 , . . . , cn

n) ∈
(C1(0, T ))2n . This proves the existence and uniqueness of solution to (Pn), and it is
straightforward to realize that (ηn, ϑn, ρn) ∈ C1([0, T ];Wn)3.
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At this point, we would like to obtain an existence result, for the solution to (2.13)–
(2.17) itself. To do that, we look for some a priori estimates on the approximated
solutions that involve constants that may depend on the data of the problem, but are
independent of n, thus we will be able to pass to the limit as n ↗ +∞ to prove
the existence of solutions. To prevent a heavy notation in the following estimates, we
avoid writing every time the subscript n under the variables, while we will reintroduce
the correct notation at the end of each estimate.

First estimate First of all, we add the term to both themembers of (2.14)ϑ . Thenwe
test (2.13) by η, this new second equation by −∂tϑ , and (2.15) by ρ, add the resulting
equalities and integrate over Qt and by parts to obtain

α

2

∫

�

|η(t)|2 +
∫

Qt

|∇η|2 + β

∫

Qt

|∂tϑ |2 + 1

2

∫

�

|ϑ(t)|2 + 1

2

∫

�

|∇ϑ(t)|2

+1

2

∫

�

|ρ(t)|2 +
∫

Qt

|∇ρ|2 +
∫

Qt

P(ϕ̄)(ρ − η)2 =
∫

Qt

hρ

−
∫

Qt

F ′′(ϕ̄) ϑ ∂tϑ +
∫

Qt

P ′(ϕ̄)(σ̄ − μ̄)ϑ(η − ρ) +
∫

Qt

ϑ∂tϑ

≤ |I1| + |I2| + |I3| + |I4|,

where I1, . . . , I4 represent, in that order, the integrals in the right-hand side. It is worth
to note that all the terms of the left-hand side are nonnegative since they all contain
squares and P attains nonnegative values by (H5). Clearly, by Young’s inequality it
turns out that

|I1| ≤ 1

2

∫

Qt

(|h|2 + |ρ|2), and |I2| + |I4| ≤ 2δ
∫

Qt

|∂tϑ |2 + cδ

∫

Qt

|ϑ |2,

respectively. Moreover, by virtue of (2.7), (2.9), Hölder’s inequality, and the Sobolev
embeddings, we have that

|I3| ≤
∫

Qt

(|σ̄ | + |μ̄|) |ϑ | (|η| + |ρ|) ≤ c
∫ t

0
(‖σ̄‖6 + ‖μ̄‖6) ‖ϑ‖3 (‖η‖2 + ‖ρ‖2)

≤ c
∫ t

0
(‖σ̄‖V + ‖μ̄‖V ) ‖ϑ‖V (‖η‖H + ‖ρ‖H ) ≤ c

∫ t

0

(
‖σ̄‖2V + ‖μ̄‖2V

)
‖ϑ‖2V

+c
∫

Qt

|η|2 + c
∫

Qt

|ρ|2 ≤ c
∫ t

0
‖ϑ‖2V + c

∫

Qt

|η|2 + c
∫

Qt

|ρ|2,

where in the second line we also apply (2.29). Thus, by fixing 0 < δ < β/2, the
Gronwall lemma yields

‖ηn‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ϑn‖H1(0,T ;H)∩L∞(0,T ;V )

+‖ρn‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c‖h‖L2(0,T ;H). (4.1)

Second estimate We test (2.14) by 	ϑ , which is perfectly admissible. Indeed, in
our approximating scheme 	ϑ actually stands for 	ϑn , which belongs toWn . Using
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(2.9), the previous estimate and theYoung inequality, we deduce ‖	ϑn‖L2(0,T ;H) ≤ c.
Therefore, by elliptic regularity we realize that

‖ϑn‖L2(0,T ;W ) ≤ c. (4.2)

Third estimate We multiply (2.13) by ∂tη, (2.15) by ∂tρ, integrate over Qt and by
parts to get

α

∫

Qt

|∂tη|2 + 1

2

∫

�

|∇η(t)|2 +
∫

Qt

|∂tρ|2 + 1

2

∫

�

|∇ρ(t)|2

= −
∫

Qt

∂tϑ ∂tη +
∫

Qt

P ′(ϕ̄)(σ̄ − μ̄)ϑ ∂tη +
∫

Qt

P(ϕ̄)(ρ − η) ∂tη

−
∫

Qt

P ′(ϕ̄)(σ̄ − μ̄)ϑ ∂tρ −
∫

Qt

P(ϕ̄)(ρ − η) ∂tρ +
∫

Qt

h ∂tρ,

where we denote the six terms of the right-hand side by I1, . . . , I6, in that order. As
I2 and I4 are concerned, we invoke (2.7) and (2.9) to obtain

|I2| + |I4| ≤ c
∫

Qt

(|σ̄ | + |μ̄|)|ϑ ||∂tη| + c
∫

Qt

(|σ̄ | + |μ̄|)|ϑ ||∂tρ|

≤ c
∫ t

0
(‖σ̄‖6 + ‖μ̄‖6)‖ϑ‖3‖∂tη‖2 + c

∫ t

0
(‖σ̄‖6 + ‖μ̄‖6)‖ϑ‖3‖∂tρ‖2

≤ δ

∫

Qt

(|∂tη|2 + |∂tρ|2) + cδ

∫ t

0
(‖σ̄‖2V + ‖μ̄‖2V )‖ϑ‖2V ,

where in the second line we apply first the Hölder inequality and then the Sobolev
continuous embedding of V ⊂ L6(�). Furthermore, the last estimate is obtained by
the Young inequality combining the fact that σ̄ and μ̄, as solutions, satisfy (2.7) and
the above estimate (4.1). Accounting for the Young inequality, (2.7) and (2.9), we also
conclude that

|I1| + |I3| + |I5| + |I6| ≤ 2δ
∫

Qt

(|∂tη|2 + |∂tρ|2) + cδ

∫

Qt

|∂tϑ |2

+ cδ

∫

Qt

|P(ϕ̄)(ρ − η)|2 + cδ

∫

Qt

|h|2

≤ 2δ
∫

Qt

(|∂tη|2 + |∂tρ|2)

+ cδ

∫

Qt

(|∂tϑ |2 + |ρ|2 + |η|2 + |h|2).

Choosing 0 < δ < min {α/3, 1/3}, we can apply the Gronwall lemma which gives

‖ηn‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖ρn‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c. (4.3)
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Fourth estimate Now, we test (2.13) by −	η, and (2.15) by −	ρ, respectively.
Summing the resulting equalities and integrating over Qt , we obtain

∫

Qt

|	η|2 +
∫

Qt

|	ρ|2 = α

∫

Qt

∂tη 	η +
∫

Qt

∂tϑ 	η −
∫

Qt

P ′(ϕ̄)(σ̄ − μ̄)ϑ 	η

−
∫

Qt

P(ϕ̄)(ρ − η)	η +
∫

Qt

∂tρ 	ρ

+
∫

Qt

P ′(ϕ̄)(σ̄ − μ̄)ϑ	ρ

+
∫

Qt

P(ϕ̄)(ρ − η)	ρ −
∫

Qt

h 	ρ,

where we convey to denote the integrals on the right-hand side by I1, . . . , I8. Except
|I3| and |I6|, the other terms on the right-hand side that multiply −	η or −	ρ can be
easilymanaged bymeans of the Young inequality since they are estimatedwith respect
to the L2(0, T ; H) norm. Moreover, owing to the Hölder and Young inequalities and
(2.9), we infer that

|I3| + |I6| ≤
∫

Qt

∣∣∣P ′(ϕ̄)(σ̄ − μ̄)ϑ 	η

∣∣∣ +
∫

Qt

∣∣∣P ′(ϕ̄)(σ̄ − μ̄)ϑ	ρ

∣∣∣

≤ c
∫

Qt

(|σ̄ | + |μ̄|)|ϑ ||	η| + c
∫

Qt

(|σ̄ | + |μ̄|)|ϑ ||	ρ|

≤ c
∫ t

0
(‖σ̄‖6 + ‖μ̄‖6)‖ϑ‖3‖	η‖2 + c

∫ t

0
(‖σ̄‖6 + ‖μ̄‖6)‖ϑ‖3‖	ρ‖2

≤ δ

∫

Qt

(|	η|2 + |	ρ|2) + cδ

∫ t

0
(‖σ̄‖2V + ‖μ̄‖2V )‖ϑ‖2V ,

where in the last two lines, we have used the Sobolev embeddings, the fact that σ̄ and
μ̄ solve (1.3)–(1.7) and the previous estimate. In conclusion, owing to (2.29) we can
manage the other terms and obtain

∫

Qt

|	η|2 +
∫

Qt

|	ρ|2 ≤ 4δ
∫

Qt

(|	η|2 + |	ρ|2) + cδ.

Furthermore, we fix 0 < δ < 1/4 in order to find that

‖ηn‖L2(0,T ;W ) + ‖ρn‖L2(0,T ;W ) ≤ c. (4.4)

Conclusion of the proof Collecting all these informations, by standard compactness
arguments, it follows that, up to a subsequence, suitably relabeled, (ηn, ϑn, ρn) con-
verges weakly star to a limit (η, ϑ, ρ) that solves (2.13)–(2.17) and has the following
regularity

η, ϑ, ρ ∈ H1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; W ).

123



Applied Mathematics & Optimization

Finally, the standard embedding results applied to each variable, imply that they all
belong to C0([0, T ]; Lr (�)) for every r < 6.

Uniqueness As the uniqueness is concerned we consider (2.13)–(2.17) written for
the variables (ηi , ϑi , ρi ), i = 1, 2, and subtract the equations. Then we denote η :=
η1 − η2, ϑ := ϑ1 − ϑ2, ρ := ρ1 − ρ2 and observe that they solve (2.13)–(2.17) with
h ≡ 0. Then it immediately follows that η = ϑ = ρ = 0. ��

4.3 Fréchet Differentiability of the Control-to-state Mapping

In the following,weproveTheorem2.5.Let usfix ū ∈ UR anddenote (μ̄, ϕ̄, σ̄ ) = S(ū)

the corresponding solution to (1.3)–(1.7). Since we are going to work with small
increments h and UR is open, we assume h to be small enough in order that ū + h
belongs to UR as well. For h fixed, we define

(μh , ϕh , σ h) := S(ū+h), ζ := μh−μ̄ − η, ψ := ϕh − ϕ̄ − ϑ, and χ := σ h−σ̄−ρ .

Therefore, we aim at providing a property such as

S(ū + h) = S(ū) + [DS(ū)](h) + o(‖h‖L2(0,T ;H)) as ‖h‖L2(0,T ;H) → 0.

In view of the investigation of the linearized system, by rearranging the terms, we
realize that it suffices to prove that

‖(ζ, ψ, χ)‖Y ≤ c‖h‖2L2(0,T ;H)
as ‖h‖L2(0,T ;H) → 0, (4.5)

where Y stands for the space to which belongs (ζ, ψ, χ). According to Theorem 2.1
and Theorem 2.4, we have that

Y =
(

H1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; W )

)3

.

Proof of Theorem 2.5 Consider (1.3)–(1.7) associated to ū + h, and subtract (1.3)–
(1.7) associated to ū and (2.13)–(2.17). By combining them, we obtain that (ζ, ψ, χ)

solves the following system

α∂tζ + ∂tψ − 	ζ = � in Q (4.6)

ζ = β∂tψ − 	ψ + Z in Q (4.7)

∂tχ − 	χ = −� in Q (4.8)

∂nζ = ∂nψ = ∂nχ = 0 on � (4.9)

ζ(0) = ψ(0) = χ(0) = 0 in �. (4.10)

where Z and � are defined as follows

Z := F ′(ϕh) − F ′(ϕ̄) − F ′′(ϕ̄) ϑ,
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� := P(ϕh)(σ h − μh) − P(ϕ̄)(σ̄ − μ̄) − P ′(ϕ̄)(σ̄ − μ̄) ϑ − P(ϕ̄)(ρ − η).

Taylor’s theorem with integral remainder, and some easy calculations, allow us to
write

Z = F ′′(ϕ̄)ψ + Rh
1 (ϕh − ϕ̄)2,

� = P(ϕ̄)(χ − ζ ) +
(

P(ϕh) − P(ϕ̄)
) (

(σ h − σ̄ ) − (μh − μ̄)
)

+ P ′(ϕ̄)(σ̄ − μ̄)ψ + (σ̄ − μ̄)Rh
2 (ϕh − ϕ̄)2,

where

Rh
1 :=

∫ 1

0
(1 − z) F ′′′(ϕ̄ + z (ϕh − ϕ̄))dz, Rh

2 :=
∫ 1

0
(1 − z) P ′′(ϕ̄ + z (ϕh − ϕ̄))dz,

respectively. Before starting with the core of the proof, we introduce some preparatory
estimates that will be useful later on.

Preliminary estimates First of all, thanks to (2.9) and (H5)–(H8), we have

‖Rh
1‖L∞(Q) + ‖Rh

2‖L∞(Q) ≤ c. (4.11)

By (2.11), the previous estimate and the Sobolev embeddings, we infer that for every
t ∈ [0, T ], it holds

∫ t

0

∥∥∥Rh
1 (s)

(
ϕh(s) − ϕ̄(s)

)2∥∥∥
2

H
ds ≤ c

∫

Qt

|ϕh − ϕ̄|4

≤ c
∫ t

0
‖ϕh − ϕ̄‖44 ≤ c‖ϕh − ϕ̄‖4L∞(0,T ;V ) ≤ c‖h‖4L2(0,T ;H)

. (4.12)

Furthermore, owing to (2.7), (2.10), (2.11), Hölder’s inequality, and (H5), we get

∫ t

0

∥∥∥
(

P(ϕh) − P(ϕ̄)
) (

(σ h − σ̄ ) − (μh − μ)
) ∥∥∥

2

H

≤ c
∫

Qt

|ϕh − ϕ̄|2(|σ h − σ̄ |2 + |μh − μ|2)

≤ c
∫ t

0
‖ϕh(s) − ϕ̄(s)‖24(‖σ h(s) − σ̄ (s)‖24 + ‖μh(s) − μ(s)‖24) ds

≤ c
∫ t

0
‖ϕh − ϕ̄‖2V

(
‖σ h − σ̄‖2V + ‖μh − μ‖2V

)
≤ c ‖h‖4L2(0,T ;H)

, (4.13)

where in the third line we have applied the Sobolev embedding of V ⊂ L4(�).
Moreover, from (H5), (2.7) and (2.9), we obtain

∫ t

0

∥∥∥P ′(ϕ̄)(σ̄ − μ̄)ψ

∥∥∥
2

H
≤ c

∫

Qt

(
|σ̄ |2 + |μ̄|2

)
|ψ |2
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≤ c
∫ t

0

(
‖σ̄‖2V + ‖μ̄‖2V

)
‖ψ‖2V ≤ c

∫ t

0
‖ψ‖2V . (4.14)

Finally, thanks to (4.11), Hölder’s inequality, (2.7), (2.10), (2.11), and to the Sobolev
embeddings, we have

∫ t

0

∥∥∥(σ̄ − μ̄)Rh
2 (ϕh − ϕ̄)2

∥∥∥
2

H
≤ c

∫

Qt

(|σ̄ |2 + |μ̄|2)|ϕh − ϕ̄|4

≤ c
∫ t

0

(
‖σ̄ (s)‖26 + ‖μ̄(s)‖26

)
‖ϕh(s) − ϕ̄(s)‖46 ds

≤ c
∫ t

0

(
‖σ̄‖2V + ‖μ̄‖2V

)
‖ϕh − ϕ̄‖4V ≤ c‖h‖4L2(0,T ;H)

. (4.15)

Now, we start with the actual estimates.
First estimate First, we add to both sides of (4.7) the term ψ , then we multiply

(4.6) by ζ , this new second equation by −∂tψ , and (4.8) by χ . Adding the resulting
equations and integrating over Qt , we get

α

2

∫

�

|ζ(t)|2 +
∫

Qt

|∇ζ |2 + 1

2

∫

�

|ψ(t)|2 + 1

2

∫

�

|∇ψ(t)|2 + β

∫

Qt

|∂tψ |2

+
∫

�

|χ(t)|2 +
∫

Qt

|∇χ |2 =
∫

Qt

�ζ −
∫

Qt

F ′′(ϕ̄) ψ ∂tψ

−
∫

Qt

Rh
1 (ϕh − ϕ̄)2 ∂tψ +

∫

Qt

ψ ∂tψ −
∫

Qt

�χ,

where the last five integrals of the right-hand side are denoted by I1, . . . , I5, in this
order. Simply using (2.9), (2.29), and (4.12), we deduce

|I2| + |I3| + |I4| ≤ 3δ
∫

Qt

|∂tψ |2 + cδ

∫

Qt

|ψ |2 + cδ

∫

Qt

|Rh
1 (ϕh − ϕ̄)2|2

≤ 3δ
∫

Qt

|∂tψ |2 + cδ

∫

Qt

|ψ |2 + cδ‖h‖4L2(0,T ;H)
.

Moreover, we have

|I1| ≤ ∣∣
∫

Qt

P(ϕ̄)(χ − ζ ) ζ +
(

P(ϕh) − P(ϕ̄)
) (

(σ h − σ̄ ) − (μh − μ)
)

ζ

+P ′(ϕ̄)(σ̄ − μ̄) ψ ζ + (σ̄ − μ̄)Rh
2 (ϕh − ϕ̄)2 ζ

∣∣

≤ c
∫

Qt

|χ |2 + c
∫

Qt

|ζ |2 + c
∫ t

0
‖ψ‖2V + c‖h‖4L2(0,T ;H)

,

owing to the Young inequality, (H5), (2.7), (2.9), and the estimates (4.13)–(4.15). The
last term I5 is treated the same way, while it is referred to the variable χ instead of ζ .
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Choosing 0 < δ < β/3, we can apply the Gronwall lemma in order to realize that

‖ζ‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ψ‖H1(0,T ;H)∩L∞(0,T ;V )

+‖χ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c‖h‖2L2(0,T ;H)
.

Second estimate Accounting for the previous estimate, by comparison in (4.7), we
easily conclude that

‖	ψ‖L2(0,T ;H) ≤ c‖h‖2L2(0,T ;H)
.

Third estimate To recover the stated regularity, let us reformulate Eqs. (4.6) and
(4.8) as follows

α∂tζ − 	ζ = � − ∂tϕ := g1, and ∂tχ − 	χ = � := g2.

Accounting for (4.16), we realize that both the forcing terms g1 and g2 have been
already estimated in L2(0, T ; H). Moreover, owing to the smoothness of the initial
conditions (4.9), the parabolic regularity theory (see, e.g., [25]) gives

‖ζ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) + ‖χ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W )

≤ c‖h‖2L2(0,T ;H)
.

This proves (4.5), that is the Fréchet differentiability of S. ��
At this point Corollary 2.7 immediately follows from (2.20) by direct calculations.

4.4 Adjoint Problem

The last part of our work regards the improvement of (2.21) by dealing with the system
(2.22)–(2.26). In fact, our aim is to prove Theorem 2.8.

Proof of Theorem 2.8 Existence As in the proof of Theorem 2.4, we apply a Faedo-
Galerkin scheme based on a basis

{
w j

}
j ⊂ W , and we again refer to Wn as to the

space generated by the first n eigenvectors. We look for approximated solutions of the
form

qn(x, t) =
n∑

k=1

an
k (t)wk(x),

pn(x, t) =
n∑

k=1

bn
k (t)wk(x), rn(x, t) =

n∑
k=1

cn
k (t)wk(x),

which satisfies, for a.a. t ∈ (0, T ) the following problem

β(∂t qn, v) + (−∂t pn, v)−(∇qn,∇v) − (F ′′(ϕ̄)qn, v)

+(P ′(ϕ̄)(σ̄ − μ̄)(rn − pn), v) = (b1(ϕ̄ − ϕQ), v) for all v ∈ Wn, (4.16)
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(qn, v)−α(∂t pn, v)+(∇ pn,∇v) + (P(ϕ̄)(pn − rn), v) = 0 for all v ∈ Wn, (4.17)

(−∂t rn, v) + (∇rn,∇v) + (P(ϕ̄)(rn − pn), v) = (b3(σ̄ − σQ), v) for all v ∈ Wn,

(4.18)

pn(T ) − βqn(T ) = P
(
b2(ϕ̄(T ) − ϕ�)

)
, α pn(T ) = 0,

rn(T ) = P
(
b4(σ̄ (T ) − σ�)

)
, (4.19)

whereP represents the orthogonal projection in H ontoWn . Arguing as before, we can
easily conclude that the backward-in-time problem (4.16)–(4.19) admits a unique solu-
tion triple that satisfies the following regularity (qn, pn, rn) ∈ (

W 1,∞(0, T ;Wn)
)3.

So, to ensure the existence of the adjoint problem, we need to provide some a priori
estimates independent of n in order to apply standard compactness arguments and
motivate rigorously the passage to the limit as n ↗ +∞.

As for the notation, we again adopt the convention used in the proof of Theorem
2.4.

First estimate First, we add to both sides of (4.17) the term p. Then, we test (4.16)
by −q, this new second equation by −∂t p, and (4.18) by r . Finally, we add these
equations and integrate over � × [t, T ] =: QT

t and by parts to find the following
identity

β

2

∫

�

|q(t)|2 +
∫

QT
t

∂t p q +
∫

QT
t

|∇q|2 −
∫

QT
t

∂t p q + α

∫

QT
t

|∂t p|2

+1

2

∫

�

|∇ p(t)|2 + 1

2

∫

�

|p(t)|2 + 1

2

∫

�

|r(t)|2 +
∫

QT
t

|∇r |2

= 1

2

∫

�

|r(T )|2 + β

2

∫

�

|q(T )|2 + 1

2

∫

�

|∇ p(T )|2 + 1

2

∫

�

|p(T )|2

+
∫

QT
t

P ′(ϕ̄)(σ̄ − μ̄)(r − p) q −
∫

QT
t

F ′′(ϕ̄)q2 −
∫

QT
t

b1(ϕ̄ − ϕQ)q

+
∫

QT
t

b3(σ̄ − σQ)r −
∫

QT
t

P(ϕ̄)(r − p)r −
∫

QT
t

P(ϕ̄)(r − p) ∂t p −
∫

QT
t

p ∂t p.

Let us note that two terms cancel out and that the first four integrals of the right-hand
side can be explicitly written using (4.19) and are bounded due to (H1)–(H2). Let us
call, in the order, I1, . . . , I7 the other terms. Using (2.9) and (H2), we have

|I2| + |I3| + |I4| ≤ c + c
∫

QT
t

|q|2 + c
∫

QT
t

|r |2.

In addition, (2.9) and (2.29) yield that

|I5| + |I6| + |I7| ≤ 2δ
∫

QT
t

|∂t p|2 + c
∫

QT
t

|r |2 + cδ

∫

QT
t

|P(ϕ̄)(r − p)|2

+cδ

∫

QT
t

|p|2 ≤ 2δ
∫

QT
t

|∂t p|2 + cδ

∫

QT
t

|r |2 + cδ

∫

QT
t

|p|2.
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Finally, we obtain from (H5), (2.7), (2.9), (2.29), the Sobolev embeddings, and the
Hölder inequality that

|I1| ≤ c
∫

QT
t

|P ′(ϕ̄)(σ̄ − μ̄)q|2 + c
∫

QT
t

|r − p|2

≤ c
∫

QT
t

(|σ̄ |2 + |μ̄2|)|q||q| + c
∫

QT
t

|r |2 + c
∫

QT
t

|p|2

≤ c
∫ T

t
(‖σ̄‖26 + ‖μ̄‖26)‖q‖6‖q‖2 + c

∫

QT
t

|r |2 + c
∫

QT
t

|p|2

≤ 1

2

∫

QT
t

(|q|2 + |∇q|2) + c
∫ T

t
(‖σ̄‖4V + ‖μ̄‖4V )‖q‖22 + c

∫

QT
t

|r |2 + c
∫

QT
t

|p|2

≤ 1

2

∫

QT
t

|∇q|2 + c
∫

QT
t

|r |2 + c
∫

QT
t

|p|2 + c
∫

QT
t

|q|2.

We now fix 0 < δ < α/2, and applying the backward in time Gronwall lemma, we
infer that

‖qn‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖pn‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖rn‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c.

Second estimateWe test (4.17) by	p. Using the Young inequality and the previous
estimate it is quite easy to realize that

‖	pn‖L2(0,T ;H) ≤ c,

whence, from elliptic regularity, we infer that

‖pn‖L2(0,T ;W ) ≤ c.

Third estimate We now test (4.16) by ∂t q. Integrating over �×[t, T ] and by parts,
we obtain that

β

∫

QT
t

|∂t q|2 + 1

2

∫

�

|∇q(t)|2 = 1

2

∫

�

|∇q(T )|2 +
∫

QT
t

∂t p ∂t q

−
∫

QT
t

P ′(ϕ̄)(σ̄ − μ̄)(r − p) ∂t q +
∫

QT
t

F ′′(ϕ̄)q ∂t q +
∫

QT
t

b1(ϕ̄ − ϕQ) ∂t q,

and we denote by I1, . . . , I4 the last four summands on the right-hand side. Note that
the first term on the right-hand side is finite by (4.19) and (H2). A simple application
of (2.9) and of the Young inequality show that

|I1| + |I3| + |I4| ≤ cδ + 3δ
∫

QT
t

|∂t q|2 + cδ

∫

QT
t

|∂t p|2 + cδ

∫

QT
t

|q|2.
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Furthermore, owing to the Young inequality and to the Sobolev embeddings, we also
have that

|I2| ≤ c
∫

QT
t

(|σ̄ | + |μ̄|)(|r | + |p|)|∂t q| ≤ c
∫ T

t
(‖σ̄‖6 + ‖μ̄‖6)(‖r‖3 + ‖p‖3)‖∂t q‖2

≤ δ

∫

QT
t

|∂t q|2 + cδ

∫ T

t
(‖σ̄‖2V + ‖μ̄‖2V )(‖r‖2V + ‖p‖2V ),

where all the terms on the right-hand side of both these inequalities have been already
estimated above. Therefore, fixing 0 < δ < β/4, we conclude

‖qn‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c.

Fourth estimate Arguing exactly as above, by testing (4.18) by −∂t r , we also infer
that

‖rn‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c.

Fifth estimateMoreover, accounting for the above estimates and the Young inequal-
ity, by taking −	r and 	q as test functions in (2.22) and (2.24), respectively, we can
easily deduce that

‖qn‖L2(0,T ;W ) + ‖rn‖L2(0,T ;W ) ≤ c.

Conclusion of the proof It follows from the above a priori estimates that there exist
functions (q, p, r) such that, possibly for some subsequence which is again indexed
by n, the following convergences

qn → q, pn → p, rn → r weakly star in

H1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; W )

hold. Moreover, by continuous embedding, also

qn → q, pn → p, rn → r weakly in C0([0, T ]; V ).

It is now a standard matter to verify that (q, p, r) is in fact a solution to the system
(2.22)–(2.26) satisfying (2.27).
Uniqueness As before we denote q := q1 − q2, p := p1 − p2, r := r1 − r2, where
(qi , pi , ri ), i = 1, 2, are two solutions to (2.22)–(2.26). If we consider the system
obtained by subtracting the corresponding equations each others, we can repeat the
argument of the existence and realize that q = p = r = 0. ��

4.5 Final Necessary Condition

We are now in the position to eliminate ϑ and ρ from (2.21). This procedure automat-
ically leads to (2.28) and prove Theorem 2.9.
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Proof to Theorem 2.9 Comparing (2.21) with (2.28), we realize that it sufficies to show
that

∫

Q
rh = b1

∫

Q
(ϕ̄ − ϕQ)ϑ + b2

∫

�

(ϕ̄(T ) − ϕ�)ϑ(T )

+b3

∫

Q
(σ̄ − σQ)ρ + b4

∫

�

(σ̄ (T ) − σ�)ρ(T ), (4.20)

where ϑ and ρ solve the linearized system (2.13)–(2.17) with h = v− ū. Indeed, if this
equality are satisfied (2.28) directly follows by (2.21) by a mere substitution. In this
direction, owing to (2.13)–(2.17), we have that the following equalities are satisfied:

0 =
∫

Q
q [η − β∂tϑ + 	ϑ − F ′′(ϕ̄) ϑ],

0 =
∫

Q
p [α ∂tη + ∂tϑ − 	η − P ′(ϕ̄)(σ̄ − μ̄) ϑ − P(ϕ̄)(ρ − η)],

0 =
∫

Q
r [∂tρ − 	ρ + P ′(ϕ̄)(σ̄ − μ̄) ϑ + P(ϕ̄)(ρ − η) − h].

Hence, summing the above equalities and integrating by parts, we realize that

0 =
∫

Q
qη + β

∫

Q
∂t q ϑ − β

∫

�

ϑ(T )q(T ) +
∫

Q
	q ϑ −

∫

Q
F ′′(ϕ̄) q ϑ − α

∫

Q
∂t p η

+α

∫

�

p(T )η(T ) −
∫

Q
∂t p ϑ +

∫

�

p(T )ϑ(T ) −
∫

Q
	p η −

∫

Q
P ′(ϕ̄)(σ̄ − μ̄) p ϑ

−
∫

Q
P(ϕ̄)p ρ +

∫

Q
P(ϕ̄)p η −

∫

Q
∂t r ρ +

∫

�

r(T )ρ(T ) −
∫

Q
	r ρ

+
∫

Q
P ′(ϕ̄)(σ̄ − μ̄)r ϑ +

∫

Q
P(ϕ̄)r ρ −

∫

Q
P(ϕ̄)r η −

∫

Q
r h,

where, after the time integration, only the final conditions are remained since the initial
value of the linearized variables are all zero by (2.17). Moreover, in the integration by
parts of the terms with the Laplacian, we also account for the homogeneous Neumann
boundary conditions (2.16). Therefore, by rearranging the above equality we get

∫

Q
r h =

∫

Q
[q − α∂t p − 	p + P(ϕ̄)(p − r)] η

+
∫

Q
[β∂t q − ∂t p + 	q − F ′′(ϕ̄)q + P ′(ϕ̄)(σ̄ − μ̄)(r − p)] ϑ

+
∫

Q
[−∂t r − 	r + P(ϕ̄)(r − p)] ρ

+
∫

�

[−βϑ(T )q(T ) + αη(T )p(T ) + p(T )ϑ(T ) + r(T )ρ(T )],
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and invoking the adjoint system (2.22)–(2.26), this latter reduces to

∫

Q
rh = b1

∫

Q
(ϕ̄ − ϕQ)ϑ + b2

∫

�

(ϕ̄(T ) − ϕ�)ϑ(T )

+b3

∫

Q
(σ̄ − σQ)ρ + b4

∫

�

(σ̄ (T ) − σ�)ρ(T ),

which is the equality we were looking for. ��
Remark 4.1 Let us slightly digress to point out a mathematical issue. The choice of
the tracking type cost functional (1.1) is essentially led by the model interpretation.
Indeed, from a mathematical point of view, only little rearrangements are needed to
treat the more general version

Ĵ(ϕ, μ, σ, u) := J(ϕ, σ, u) + b5
2

‖μ − μQ‖2L2(Q)
+ b6

2
‖μ(T ) − μ�‖2L2(�)

,

in which all the variables appear. At this stage, we understood the natural requirements
on the constants and on the targets that are necessary to give sense to these lines. As
the necessary condition is concerned, we expect something like (2.21) in which the
following additional terms on its left-hand side

b5

∫

Q
(μ̄ − μQ)η + b6

∫

�

(μ̄(T ) − μ�)η(T )

occur. Moreover, the adjoint system will read exactly as (2.22)–(2.26), but instead of
(2.23) and (2.25) we should have

q − α∂t p − 	p + P(ϕ̄)(p − r) = b5(μ̄ − μQ) in Q,

and α p(T ) = b6(μ̄(T ) − μ�) in �,

respectively. About the existence result, note that the presence of this new term on the
right-hand side of (2.23) does not add difficulties since it can be easily handled by the
Young inequality. In fact, only straightforward modifications are needed to extend the
proof of Theorem 2.8 to this general framework. In a similar way also the new final
condition can be handled.

To conclude, let us mention that for forthcoming contributions, it will be interesting
to couple our study for the control problem (CP) with asymptotic analysis as α and β

go to zero. Of course, this would require less generality for the potentials, in order to
handle the passage to the limit, as pointed out in [4,5,9].
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