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ABSTRACT. We consider the C1-Virtual Element Method (VEM) for the con-
forming numerical approximation of some variants of the Cahn-Hilliard equa-
tion on polygonal meshes. In particular, we focus on the discretization of
the advective Cahn-Hilliard problem and the Cahn-Hilliard inpainting prob-
lem. We present the numerical approximation and several numerical results to
assess the efficacy of the proposed methodology.

1. Introduction. The Cahn-Hilliard equation, which is a fourth-order nonlinear
parabolic problem, was initially introduced as a diffusive interface model to char-
acterize the phase segregation of binary alloys at constant temperature [28]. Com-
pared to sharp-interface models, where the individual interfaces need to be explicitly
tracked, the advantage of a diffuse-interface approach is that topological changes are
automatically handled, since interfaces are treated in a diffuse manner thanks to the
introduction of a parameter which, varying continuously, accounts for the different
material phases and/or the concentration of the different components. Since the
seminal paper by Cahn and Hilliard, several different variants have been studied
(see, e.g., the book [65] and the references therein) covering a wide spectrum of appli-
cations. Here we mention, for example, the modeling and simulation of solidification
processes, spinodal decomposition, coarsening of precipitate phases, shape memory
effects, re-crystallisation, dislocation dynamics [31, 39, 66, 72], wettability [45], di-
block copolymer [73, 71], tumor growth [2, 46, 51, 76, 29], image inpainting [22, 21],
crystal growth [35, 40, 74, 49] and crack propagation [64, 58, 23].
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In the last decades, different numerical techniques have been utilized to solve
the Cahn-Hilliard equation and its variants, including finite difference, finite ele-
ment, and spectral methods. A crucial difficulty in designing numerical schemes is
that these equations typically involve spatial differential operators that are higher
than second-order. Therefore, standard conforming C° Finite Element Methods
(FEMsS) are ruled out and approximation spaces with higher regularity are required.
However, the construction of such approximation spaces with higher regularity is
deemed a difficult task because it requires a set of basis functions with such a global
regularity. Examples in this direction can be found all along the history of finite
elements: from the oldest works in the sixties of the last century, e.g., [9, 20, 33]
to the most recent attempts in [77, 78, 54, 53]. Despite its intrinsic difficulty, de-
signing approximations with global C' or higher regularity is still a major research
topic. In the literature there is a limited number of works addressing the solution
of the Cahn-Hilliard equation by the C1-FEM, see [38, 37]. To circumvent the well
known difficulty met in the implementation of C'-FEMSs, another possibility is the
use of non-conforming (see, e.g., [36]) or discontinuous (see, e.g., [75, 41]) methods;
obviously in such cases the discrete solution will not satisfy C* regularity.

Alternatively, the Cahh-Hilliard problem can be split into a coupled of lower-
order differential equations and mixed formulation can be employed for discretiza-
tion at the expense of introducing additional unknowns, see, e.g., [44, 56, 10, 60,
30, 62]. Recently, in [50] isogeometric analysis has been employed to discretize the
Cahn-Hilliard problem, whereas in [61] the same approach has been used to dis-
cretize the advective Cahn-Hilliard equation. A remarkable feature of this method-
ology is that the approximation spaces exhibit higher-order continuity properties,
thus avoiding the use of mixed formulations. More recently, in [6] the C*-Virtual El-
ement Method (VEM) has been employed to discretize the Cahn-Hilliard equation
on polygonal meshes, employing highly regular conforming approximation spaces,
thus circumventing the introduction of additional variables typical of mixed formu-
lations.

Roughly speaking, the VEM is a Galerkin-type projection method that generalize
the finite element method, which was originally designed for simplicial and quadri-
lateral /hexahedral meshes, to polygonal/polyhedral (polytopal, for short) meshes.
The VEM has been originally introduced in [13] and does not require the explicit
knowledge of the basis functions spanning the approximation space.

The functions that belong to such approximation spaces are dubbed as “virtual”
as they are never really computed, with the noteworthy exception of a subspace
of polynomials that are indeed used in the formulation and implementation of the
method. The virtual element functions are uniquely characterized by a set of values,
the so called degrees of freedom. The VEM can then be implemented using only
the degrees of freedom and the polynomial part of the approximation space. The
crucial idea behind the VEM is that the elemental approximation space is defined
elementwise as the solution of a partial differential equation. Then the global ap-
proximation space is obtained by globally “gluing” the local spaces in an arbitrary
highly regular conforming way. Thus, the virtual element “paradigm” provides a
major breakthrough as it allows to obtain highly-regular Galerkin methods, and the
construction of numerical approximation dof any order of accuracy on unstructured
two-dimensional and three-dimensional meshes made by general polytopal elements.

The first works proposing a C'-regular conforming VEM addressed the classical
plate bending problems [27, 32], second-order elliptic problems [18, 19], and the
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nonlinear Cahn-Hilliard equation [6]. More recently, highly regular virtual element
spaces were considered for the von Kérmén equation modeling the deformation
of very thin plates [63], geostrophic equations [68] and fourth-order subdiffusion
equations [59], two-dimensional plate vibration problems of Kirchhoff plates [67],
transmission eigenvalue problems [69], and fourth-order plate buckling eigenvalue
problems [70]. In [8] the highly-regular conforming VEM for the two-dimensional
polyharmonic problem (—A)P*u = f, p; > 1 has been proposed. The VEM is based
on an approximation space that locally contains polynomials of degree r > 2p; — 1
and has a global HP' regularity. In [7], this formulation has been extended to a
virtual element space that can have arbitrary regularity ps > p; > 1 and contains
polynomials of degree r > pa.

VEMs for three-dimensional fourth-order linear elliptic equations have been in-
troduced for the first time in [16] (see also [25]), and highly-regular conforming
VEM in any dimension has been proposed in [55].

In this paper, hinging upon the use of C'-VEM, we study the conforming vir-
tual element approximation on polygonal meshes of two variants of the Cahn-
Hilliard equation, namely the Advective Cahn-Hilliard (ACH) problem and the
Cahn-Hilliard Inpainting problem (CHI). Those variants have been selected both
for their relevance in applications and for the presence, with respect to the classical
Cahn-Hilliard equation, of the additional convective term in the ACH problem and
the reaction term in the CHI problem. The numerical treatment of those terms is
new in the context of the conforming virtual element discretization of Cahn-Hilliard
equations. It is also worth mentioning that the numerical treatment of the advective
Cahn-Hilliard represents an important preliminary step to tackle in future works
the virtual element approximation of more complicated problems, as the convective
nonlocal Cahn-Hilliard (see, e.g., [34]) or the Navier-Stokes-Cahn-Hilliard problem
(see, e.g., [47, 48] and [12, 43, 57]).

The paper is organized as follows. In Section 2 we introduce the continuous
problems, whereas in Section 3 we present their conforming virtual element ap-
proximation. In Section 4 we collect and discuss several numerical results to show
the efficacy of our discretization methodology. Finally, in Section 5 we draw some
conclusions.

Notation. Throughout the paper, we will follow the usual notation for Sobolev
spaces and norms [1]. Hence, for an open bounded domain w, the norms in the
spaces W (w) and LP(w) are denoted by [|||w= () and [|-[|zs (), respectively. The
norm and seminorm in H*(w), s > 1, are denoted by ||-||s. and ||s., respectively.
The L2?-inner product and the L?-norm are denoted by (-, -),, and ||-||.,, respectively.
The subscript w may be omitted when w is the whole computational domain 2. We
denote with & = (21, x2) the independent variable. With the usual notation the
symbols V, A, A%, D? denote the gradient, the laplacian, the bilaplacian and the
Hessian for (regular enough) scalar functions, whereas 9; denotes the derivative
with respect to the time variable.

2. Continuous problems. In this Section we introduce the two variants of the
classical Cahn-Hilliard problem, whose numerical discretization will be addressed in
the sequel of this paper. More specifically, we consider the Advective Cahn-Hilliard
problem and the Cahn-Hilliard Impainting problem. For each variant, we provide
the weak formulation that will the basis for the construction of the virtual element
discretization.
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Let Q C R? be an open bounded domain. Let ¢ : R — R with v(z) = (1—2%)%/4
and let ¢(z) = ¢'(x), we consider the following two variants of the Cahn-Hilliard
problem, where v € R*, 0 < v < 1, represents the interface parameter.

Advective Cahn-Hilliard problem. For a given final time 7" > 0, find ¢(x,t) :
2 x [0,7] — R such that:

Orc — —A((b 72Ac) +div(uc) =0 in Q x (0,77,
c(+,0) = co() in Q, (1)
Onc = On(o(c) — v*Ac) =0 on 02 x (0,77,

where 0, denotes the (outward) normal derivative and Pe is a positive constant.
We note that on the boundary of the domain we impose no-flux type condition both
on ¢ and on the so-called chemical potential ¢(c) —vy?Ac. Finally, u € H(div, )N
[CY(£2)]? is a given function such that dive = 0 in Q and w-n = 0 on 9Q. Here

H(div, Q) = {v € [L*(Q)]? : dive € L*(Q)}.

Cahn-Hilliard inpainting problem. Let f be a given binary image and D C €2
be the inpainting domain. For a given final time T' > 0, find ¢(x,t) : @ x [0,T] = R
such that:

(‘3tc—A(%¢(c)—'yAc)+)\(x)(f—c):O in  x (0,71,
c(+,0) = co(+) in Q, (2)
Onc = 8,1(%(]5(6) —7Ac) =0 on 02 x (0,77,

where

\ Ao, ZCEQ\D,
(@_{Q x e D,

Ao being a positive parameter. See, e.g., [22, 21] for more details on the model.

We now briefly introduce the variational formulations of (1) and (2) that will
be used to derive the virtual element discretizations. To this aim, we preliminary
define the following bilinear forms

aDZ(v,w) = /(DQ’U) D (D?w)dQ Yv,w € H*(Q),
Q
a®(v,w) = / vwdQ Yo, w € L*(Q), (3)
)
b(v,w):/u~VU wdQ Yo, w € HY(Q),
Q

and the semi-linear forms

l(f;v,w):/g)\(f—v)wdﬂ Yo, w € L*(Q),

r(z;v,w) = / ¢ (2)Vu - VwdQ Vz,v,w e H*(Q).
Q

Finally, we introduce the space

V={veH*) : Oqv=0o0n00}. (5)
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The weak formulation of problem (1) reads as follows: find ¢(-,t) € V s.t.

2
0 7 Dp? 1 _
a” (O¢c,v) + Pl (c,v) + Per(c, ) +b(c,v)=0 Yoev,

c(,0) =c¢p.

(6)

Similarly, the weak formulation of problem (2) reads as follows: find ¢(-,t) € V s.t.

a®(9;c,v) —|—'yaD2(c,v) + %r(c; ¢v) +1U(fie,v) =0 YveV, )
e(+,0) =c¢p.

3. Virtual element discretization. In this Section we describe the virtual ele-
ment discretization of problems (6)-(7) on computational meshes made of general
polygons. In particular, in Section 3.1 we introduce the assumptions on the regular-
ity of the polygonal mesh together with the definition of crucial projector operators
that will be fundamental in the construction of the virtual element discretization.
In Section 3.2 we describe the C'-Virtual Element spaces that will of paramount
importance to guarantee a conforming approximation of the Cahn-Hilliard prob-
lems. Finally, in Section 3.4 we introduce the semi-discrete in space virtual element
discretization of (6)-(7) together with a fully discrete scheme based on the use of
the backward Euler method for time discretization.

3.1. Mesh assumptions and polynomial projections. From now on, we will
denote with E a general polygon, having n. edges e, moreover |E| and hgp will
denote the area and the diameter of E, respectively. Let {Q;}, be a sequence of
decompositions of 2 into general polygons F, where the granularity h is defined as
h = supgcq, he. We suppose that {2} fulfills the following assumption:

(A1) Mesh assumption. There exists a positive constant p such that for any
FE € {Qh}h

e Any E € {Qp}, is star-shaped with respect to a ball By of radius > phg;

e Any edge e of any E € {Qp}p, has length > phg.

We remark that the hypotheses above, though not too restrictive in many practical
cases, could possibly be further relaxed, combining the present analysis with the
studies in [17, 24, 26].

Referring to Problem (7), we assume that for any h there exists Dj, C 2 such
that Dy, is a decomposition of D, i.e. £;, matches with the subdivision of 2 into D
and Q\ D.

We denote with ¥, the set of all the mesh edges and for any E € ), we denote
with $F the set of the edges of E. Furthermore for any mesh vertex & we denote
with hg the average of the diameters of the elements having & as a vertex. The
total number of vertexes, edges and elements in the decomposition €2, are denoted
by Ny, N, and Np, respectively.

Using standard VEM notations, for any mesh object w € Q, U 3 and for any
n € N let us introduce the space P, (w) to be the space of polynomials defined on
w of degree < n (with the extended notation P,,,(w) = {0} for any negative integer
m). Moreover, for m < n we define P, /m(w) as any polynomial set that satisfies

P (w) = Py (@) ® P (w) -
Finally, we introduce the broken polynomial space
P.(Qn) ={qg€ L*(Q) st. qg€P,(F) forall E€Q}.
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For any non-negative s € R let us introduce the broken space:
H () ={v e L*(Q) st. v|lg € H(E) foral E € Q,}.
Furthermore, we introduce the following notation: let {X¥*}gcq, be a family of
forms X% ngl H%i(E) — R, then we define

14

X JTHY Q) =R, Xuy,.ue) = Y XF(ur, . ue), (8)
j=1 EeQy,

for any u; € H%(Q4), and j =1,...,L.
For any E € O, let us introduce the following polynomial projections:
e the L2-projection I1%F: L3(E) — P, (E), given by

/ qn(v — I%E0)dE =0 for all v € L?(E) and ¢, € P,,(E), (9)
E

with obvious extension for vector functions I1%¥: [L?(E)]?> — [P, (E)]? and
tensor functions IIYF: [L2(E)]?*? — [P, (E)]**?;
e the H2-seminorm projection Hfz*E: H2(E) — P,(E), defined by

/ D?q, : D*(v — HEZ’EU) dE =0 forallve H*(E) and g, € P,(E),
E

/6E(v— Hﬁ)z’Ev)dSZO, (10)

On(v — H,?Q’EU) ds=0.
oF

The global counterparts of the previous projections
19: L2(Q) — Pu(Qn), TE°: H2(Q4) = Pa(Q)
are defined for all E € Q by
(o) =10 0, (I 0)|p =17 o, (11)

In the following the symbol < will denote a bound up to a generic positive
constant, independent of the mesh size h, but which may depend on €2, on the
“polynomial” order of the method k and on the regularity constant appearing in
the mesh assumption (A1).

3.2. Virtual Element space. In the present Section we outline an overview of
the H2-conforming Virtual Element space [27, 6, 7] combined with the construction
proposed in [3] in order to define the “enhanced” version of such space such that
the “full” L2-projection H%E is computable by the degrees of freedom (DoFs).

Let k£ > 2 be the “polynomial” order of the method. We thus consider on each
polyhedral element E € €} the “enhanced” virtual space

Vn(E) = {U € CH(E) s.t. (i) A%v e Py(E),
(i1) vj. € Pr(e) Ve € BY,
(i11) Onv|e € Pi_1(e) Ve € TF,
(iv) / (v— HEQ’EU)@ dE =0 Vp € @k\k—4(E) } ;
E
(12)
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where k = max{3, k}. We here summarize the main properties of the space Vj,(E)
(we refer to [27, 3] for a deeper analysis).

(P1) Polynomial inclusion: Py (E) C V,(E);
(P2) Degrees of freedom: the following linear operators Dy constitute a set of
DoFs for Vi, (E):

Dy 1 the value of v(€) at any vertex £ of the polygon F,
Dv/2 the value of hedy,v(§) and he0,,v(€) at any vertex £ of the polygon E,
Dv3 the values of v at k. = max{0, k—3} distinct points of every edge e € £,
Dv4 the values of h.Opv at k, = k — 2 distinct points of every edge e € X,
Dv5 the moments of v against a polynomial basis {m;}; of Pr_4(E) with

lmill oo gy = 1
7,
— [ vm;dE.
|El JE

Therefore the dimension of V3, (E) is

dim(Vi(E)) = (3 + ke + kn)ne + W .

(P3) Polynomial projections: the DoFs Dy allow us to compute the following
linear operators:

05 : D*Vi(E) = [Pra(B)*2,
Y7 AVL(E) = Pr_o(E),
" s VVA(E) = [Pe-a(B)),
7 Vi, (E) — Pi(E).

The global space V;, () is defined by gluing the local spaces with the obvious
associated sets of global DoF's:

Vi(@p) ={veV st. vypeVi(E) forall E€Qy}, (13)
with dimension
(k—3)(k—2)
2

We now recall the optimal approximation properties for the space V() (see,
for instance, [27, 6]).

dim(V,,(E)) = 3Ny + (ke + kn)Ne + Np.

Proposition 1 (Approximation property of Vi, (23)). Under the Assumption (A1)
for any v € V3, () N H*(Qy,) there exists vz € V3, () such that for all E € Qp, it
holds

lv —vzllo,e + helv —vzhe + hglv — vzl S hilvlse,

where 2 < s <k + 1.

3.3. Virtual Element forms. The next step in the construction of our method is
to define a discrete version of the continuous forms in (3) and (4). It is clear that
for an arbitrary functions in V3,(2;) the forms are not computable since the discrete
functions are not known in closed form. Therefore, following the usual procedure in
the VEM setting, we need to construct discrete forms that are computable by the
DoFs.
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In the light of property (P3) for any vy, wy € Vi (E) we define the computable
local discrete bilinear forms:

2
ay " (vp,wy) = / (15, D%y, « (Y, D%wy,) AE + h2SE (v, wh)
E
ay® (vn,wp) = / (T P o) (T P awy) AE + hESE (v, wy,) (14)
E

bE (vp, wp) = / u - (M5, Vo) (M0 Fw,) dE,
E
and for any vy, wp, zn € V3, (F) the semi-linear forms

1 (f5om,wp) = / A(f = TP )10 Py, dE

(15)
77 (2h3 U, wh) / ¢ (T 2,) (L5, Vo) - (I, V) AE
The VEM stabilizing term in (14) is given by
SF (vn, wn) = SF((I - Iy 2 )on, (I — HQ’E)wh) ; (16)

where SZ(-,-): V,(E) x Vi,(E) — R is a computable symmetric discrete form satis-
fying for all vy € Vi3 (E) N ker(HO’E) the following bounds

lonls 2 S b S" (vn, ) S |Uh|5 B>

(17)
ol < heS” (v, vn) S

Many examples of such stabilization can be found in the VEM literature [13, 14, 15,
27]. In the present paper we consider the so-called dofi-dofi stabilization defined
as follows: let U}, and W), denote the real valued vectors containing the values of the
local degrees of freedom associated to vy, wp, in the space Vi, (E) then

SE(vh,wh) Zﬁh'iﬁh. (18)
In particular we notice that the linear operators Dy in property (P2) are properly

scaled to recover the bounds (17).
The global forms can be derived by (14) and (15), employing the notation in (8).

3.4. Virtual Element problem. Referring to the space (13) the discrete bilinear
forms (14) and the discrete semi-linear forms (15), we can state the following semi-
discrete problems.

Advective Cahn-Hilliard VEM problem: find ¢ (-, t) € V3 (Qp) s.t

2 1
ajp (Ogcn, vp) + %af (ch,vn) + Erh(cm ch, V) + bu(cn,vn) =0 Vo, € Vi(),
Ch(‘,O) = CO,h .
(19)
Cahn-Hilliard inpainting VEM problem: find ¢, (,t) € V4(924) s.t

1
af)(Deen, vn) +val (en,vn) + ;Th(clﬁchavh) +n(ficnvn) =0 Yo € Vi(Qn),

Ch(-, 0) = Co,h -
(20)
In problems (19) and (20) the discrete initial datum cop € Vi (€Qp) is the DoFs
interpolant of ¢y, i.e. Dy (co,n — o) = 0.
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In the next step we formulate a fully discrete version of problems (19) and (20).
We introduce a sequence of time steps ¢, = n7, n = 0,..., N, with time step size
7. Next, we define vj; . ~ vy(-,t,) as the approximation of the function vy (-,?) €
Vi(Qp) at time t,, n=0,..., N.

Here we chose the backward Fuler method. The fully discrete systems conse-
quently reads as follows.

Advective Cahn-Hilliard discrete problem.
given C?m_ = co,n, find ¢, withn =1,..., N s.t. Yo, € V() it holds:

1 _ 2

—af(ch, —eptoon) + 2-al (¢ o) + Sora(Ch e o) + ba(ch . om) = 0.

T ) 5 Pe ’ Pe ) ) )
(21)

Cahn-Hilliard inpainting discrete problem.

given c(})w = co,n, find ¢ . with n =1,..., N s.t. Vo, € V3,(Qp) it holds:

1 _ 2 1

;a?L(CZ,T - 0277‘17 Uh) + ’YCLE (CZ,T’ Uh) + ;Th<cz,r; 02777 Uh) + lh(f; 02,77 Uh) =0.
(22)

The theoretical proof of the existence and uniqueness of the solution of the non-
linear problem (22) is under investigation, nevertheless the feasibility of the pro-
posed approach is confirmed by the numerical experiments presented in Section 4.

4. Numerical results. In this section, we numerically explore the efficacy of the
conforming virtual element discretizations (21) and (22). In particular, the results
of the approximation of the advective Cahn-Hilliard problem are reported in Sec-
tion 4.1, while the ones obtained with the Cahn-Hilliard inpainting problem are
collected in Section 4.2.

We remark that the resulting nonlinear systems (21) and (22) at each time step
are solved by the Newton method, using the {?>-norm of the relative residual as a
stopping criterion, with tolerance 1e-6. Except otherwise stated, the Jacobian lin-
ear system is solved by GMRES, preconditioned by a Block-Jacobi preconditioner,
using the [2-norm of the relative residual as a stopping criterion, with tolerance
le-8.

(a) Cartesian (QUAD) mesh (b) Triangular (TRI) mesh (¢) CVT (CVT) mesh

FIGURE 1. Example of polygonal meshes of the domain (0, 1)? used
in the numerical tests.
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mesh | 1/h | # elements | # nodes | # DoFs
QUAD | 128 16384 16641 49923

TRI | 128 56932 28723 86169

CVT | 128 16384 32943 98829

TABLE 1. Mesh size parameter h, number of elements, number of
nodes and number of degrees of freedom (DoFs) of the polygonal
meshes used in the numerical tests.

The polynomial degree of accuracy for the numerical tests is k = 2. For the com-
putational mesh, we consider three different mesh families of the domain (0, 1)?, i.e.,
quadrilateral (QUAD), triangular (TRI) and central Voronoi tessellation (CVT)
meshes. An example of a mesh of each family is shown in Figure 1. The corre-
sponding number of elements, number of nodes, and number of degrees of freedom
of the meshes used in all tests (except Test 4.1.1) are reported in Table 1.

Finally, the simulations have been performed using an in-house Fortran90 parallel
code based on the PETSc library [11]. Except otherwise stated, the parallel tests
were run on 32 cores of the INDACO linux cluster at the University of Milan
(indaco.unimi.it).

4.1. Advective Cahn-Hilliard problem. We consider two scenarios: the evo-
lution of a cross (Tests 1 and 2, Figure 2) and a spinoidal decomposition (Test 3,
Figure 3). In both cases, the convective field u is taken from [56], i.e.

u(z,y) = f(r)(2y - 1,1 -22)", (z,y) € 2=(0,1)?

where

=5 (s (o 3-er)) oo 3)  (3)'

with 8 = 200 and ¢ = 0.1. The parameters Pe and ~ in system (1) are set to 100
and 0.01, respectively.

4.1.1. Test 1: Parallel performance of the solver. We first study the performance
of the parallel solver by comparing four different methods:

e Mumps: the Jacobian system at each Newton iteration is solved by the par-
allel direct solver Mumps [4, 5];

e BJ: the Jacobian system at each Newton iteration is solved by the Block-
Jacobi preconditioner implemented in the PETSc object PCBJACOBI,

e GAMG: the Jacobian system at each Newton iteration is solved by the Alge-
braic Multigrid preconditioner implemented in the PETSc object PCGAMG,
with default settings;

e bAMG: the Jacobian system at each Newton iteration is solved by the Al-
gebraic Multigrid preconditioner boomerAMG [52] of the HYPRE library
[42].

The initial datum ¢y is a piecewise constant function whose jump set has the
shape of a cross, see Figure 2, Panels (a-e-i). The unit square domain is discretized
by a QUAD mesh of 147456 elements (1/h = 384, DoFs = 444675) and a CVT
mesh of 147456 elements (1/h = 384, DoFs = 884814); see Table 2. We increase
the number of processors from 1 to 48, keeping fixed the global number of DoFs,
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Advective Cahn-Hilliard problem, evolution of a cross

QUAD mesh with 147456 elements, DoFs = 444675
P Mumps BJ GAMG bAMG
nit  Tsp | nit it Teor | mit it Tso | nit it Tsol
11 22 678 |22 147 15522 11.5 278 |22 133 36.7
21 22 394 |22 339 10922 138 19422 134 211
41 22 244 122 374 86 |22 138 10.1|22 138 129
8 | 22 216 |22 458 11.7|22 142 127|122 140 133
16| 22 143 |22 462 64 |22 144 73 |22 140 8.1
32
48

2.2 78 |22 450 1.1 |22 144 1.7 |22 141 23
2.2 72 |22 437 08222 148 13 |22 142 1.7

CVT mesh with 147456 elements, DoFs = 884814

P Mumps BJ GAMG bAMG

nit Tsor | nit it Tsor | nit it Tgo | nit it Tsol
1 |OoM OoM |22 322 44922 189 88.7]22 21.1 1357
2| 22 2021|122 796 36.1]22 256 67.8|22 24.1 172.2
4 | 22 12391(22 959 276|222 285 59822 256 125.3
8| 22 84 |22 1074 239|22 304 45922 269 74.6
16| 2.2 532 |22 1106 14.6 |22 30.7 39.6 |22 272 381
32| 22 324 |22 109.7 4.7 |22 312 343 |22 271 181
48 | 2.2 272 |22 1083 3.2 |22 308 30.5|22 272 129

TABLE 2. Strong scaling test on QUAD and CVT meshes, Ad-
vective Cahn-Hilliard, evolution of a cross. p=number of procs;
nit=average Newton iterations per time step; it=average GMRES
iterations per Newton iteration; Ts,=average CPU time in seconds
per time step; OoM=out of memory.

thus performing a strong scaling test. The code is run on the Galileo100 cluster of
CINECA laboratory (http://www.cineca.it).

In the scalability test, the time step size considered is 7 = 2e — 5 and the sim-
ulation is run for 50 time steps, up to 7' = le — 3. The results show that the four
parallel solvers are all scalable, since the CPU times reduce when the number of
processors increase. As expected, the Algebraic Multigrid preconditioners exhibit a
scalable behavior of GMRES iterations, which remain almost constant with respect
to the number of processors. The BJ preconditioner shows an initial increase in
terms of iterations, but after 8-16 processors they remain stable. We believe that
this scalable behavior of the BJ preconditioner is due to the dominant effect of
the mass matrix, which improves the conditioning of the Jacobian linear system.
Indeed, the most effective solver results to be the BJ preconditioner, which in case
of the CVT mesh is about 9 times as fast as Mumps, 10 times as fast as GAMG
and 4 times as fast as bAMG.

4.1.2. Test 2: FEvolution of a cross under convection. As in the previous test, the
initial datum ¢y is again a piecewise constant function whose jump set has the
shape of a cross, see Figure 2, Panels (a-e-i). For this test cases and the following
ones, the time step size considered is 7 = 2e — 5 and the simulation is run for
500000 time steps, up to T = 10. The evolution of the cross simulated on the
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QUAD mesh

(a) t = 0.01 (b) t = 0.1 (c) t=1

TRI mesh

(e) t =0.01 (f) t = 0.1 (g) t=1 (h) t =10

CVT mesh

(i) t = 0.01

-1,000e+00 . : 1,000e+00
FEEETLLLL RIRRIN|

FIGURE 2. Test 2, evolution of a cross with convection on the unit
square (0,1)2, v = 1/100, Pe = 100. Computed solution ¢ at
different time snapshots. The mesh parameters are reported in
Table 1.

three computational meshes with data reported in Table 1 is displayed in Figure 2.
More precisely, in Figure 2, Panels (b-f-j), we report the computed solution at the
snapshot ¢ = 0.1 for all mesh configurations. The same computed quantities at time
t =1 and ¢ = 10 are shown in Figure 2, Panels (c-g-k) and (d-h-k), respectively.
The cross, rotating under the convective field, evolves towards a circle.

4.1.3. Test 3: Ewolution of spinodal decomposition under convection. The initial
datum is now a small uniformly distributed random perturbation about zero, within
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QUAD mesh
(a) t = 0.01 yt=1 () t=5 (d) t=10
TRI mesh
(e) t =0.01 (g)t=5 (h) ¢t =10
CVT mesh
(i) t = 0.01 G)t=1 (k) t=5 (1) t=10

-1,000e+00 1.000e+00

FIGURE 3. Test 3, spinoidal decomposition of a random disk with
convection on the unit square (0,1)2, v = 1/100, Pe = 100. Com-
puted solution ¢, at different time snapshots. The mesh parameters
are reported in Table 1.

a circle; see Figure 3, Panels (a-e-i). The time step size considered is 7 = 2e — 5
and the simulation is run for 500000 time steps, up to T' = 10. The evolution of the
spinoidal decomposition on the three computational meshes is displayed in Figure 3.
More precisely, in Figure 3, Panels (b-f-j), we report the computed solution at the
snapshot ¢ = 1 for all mesh configurations. The same computed quantities at time
t =5 and ¢t = 10 are shown in Figure 3, Panels (c-g-k) and (d-h-k), respectively.
The initial random distribution evolves very quickly into bulk regions. Then, the
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convective term makes the bulk regions to form concentric circles, which tends very
slowly to a central circular bulk region.

4.2. Cahn-Hilliard inpainting problem. We consider three scenarios: inpaint-
ing of a double stripe (Test 4, Figure 4), inpaiting of a cross (Test 5, Figure 5) and
inpaiting of a circle (Test 6, Figure 6). The parameters v and Ao are set to 0.01 and
50000, respectively. In all next tests, the time step size considered is 7 = 2e — 5 and
the simulation is run for 1000 time steps, up to 7" = 0.02. In all the forthcoming
test cases, we report the initial solution on all mesh configurations (first column)
together with the computed solution at the final time ¢ = 7' = 0.2 (middle col-
umn) and the same quantity without smoothing effects, i.e., projecting the discrete
solution ¢, to 0.95 if ¢, > 0 and to —0.95 if ¢;, < 0 (right column).

4.2.1. Test 4: Inpainting of a double stripe. In this test, the initial configuration
consists of two vertical stripes with a central horizontal damage, see Figure 4. At
the final instant ¢ = T" = 0.02, the correct double stripe configuration is recovered,
for all mesh configurations. We show also the final configuration without smoothing
effects, projecting the discrete solution ¢, to 0.95 if ¢;, > 0 and to —0.95 if ¢;, < 0
(binary).

4.2.2. Test 5: Inpainting of a cross. Here, the initial configuration consists of two
stripes, one vertical and one horizontal, crossing at the center of the domain, with
a central square damage, see Figure 5. At the final instant T' = 0.02, the correct
cross configuration is recovered. As before, we also report the final configuration
without smoothing effects, projecting the solution c¢; to 0.95 if ¢; > 0 and to —0.95
if ¢, < 0 (binary).

4.2.3. Test 6: Inpainting of a circle. In the final test, the initial configuration is a
circle with a horizontal central damage, see Figure 6. At the final instant T' = 0.02,
the correct circle configuration is recovered, for all mesh configurations. This can be
appreciated also from Figure 6 (right panel) where we report the final configuration
(binary plot) projecting the solution ¢ to 0.95 if ¢, > 0 and to —0.95 if ¢, < 0.

5. Conclusions. In this paper we considered the C'-Virtual Element conforming
approximation on polygonal meshes of some variants of the Cahn-Hilliard equa-
tion. In particular, we focused on the advective Cahn-Hilliard problem and the
Cahn-Hilliard impainting problem. In the first part of the paper we introduced
the continuous problems and we gave a detailed description of the virtual element
discretizations, while in the second part we numerically explored the efficacy of the
proposed methodology through a wide campaign of numerical experiments.
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of the Galileo100 cluster.
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QUAD mesh
)t =0.02 ) t = 0.02(binary)
TRI mesh
(e) t =0.02 (f) t = 0.02(binary)
CVT mesh

(8) t=0 ) t=0.02 (i) ¢ = 0.02(binary)

-1,0008+00 ; : 1.000e+00
P L NEREN

FIGURE 4. Test 4, impainting of a double stripe on the unit square
(0,1)2. The mesh parameters are reported in Table 1. Computed
solution ¢;, at different time snapshots. Left: initial configuration
(t = 0). Middle: final configuration (¢ = T = 0.02). Right: final
configuration (¢t = T = 0.02) without smoothing effects, projecting
the solution ¢, to 0.95 if ¢;, > 0 and to —0.95 if ¢;, < 0.
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QUAD mesh

(b) t = 0.02 (¢) t = 0.02(binary)
TRI mesh

(e) t=0.02 (f) t = 0.02(binary)
CVT mesh

(i) t = 0.02(binary)

(g)t=0

-1.000e+00 , : 1.000e+00
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FIGURE 5. Test 5, impainting of a cross on the unit square (0, 1).
The mesh parameters are reported in Table 1. Computed solution
cp, at different time snapshots. Left: initial configuration (¢ = 0).
Middle: final configuration (¢ = T = 0.02). Right: final config-
uration (¢t = T = 0.02) without smoothing effects, projecting the
solution ¢ to 0.95 if ¢, > 0 and to —0.95 if ¢;, < 0.
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QUAD mesh

(b) t =0.02 (c¢) t =0.02 (binary)
TRI mesh

(e) t=0.02 (f) t = 0.02(binary)
CVT mesh

(g) t=0 (h) t =0.02 (i) t = 0.02(binary)
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FIGURE 6. Test 6, impainting of a circle on the unit square (0, 1)2.
The mesh parameters are reported in Table 1. Computed solution
¢, at different time snapshots. Left: initial configuration (¢ = 0).
Middle: final configuration (¢ = T = 0.02). Right: final config-
uration (¢ = T = 0.02) without smoothing effects, projecting the
solution ¢ to 0.95 if ¢;, > 0 and to —0.95 if ¢, < 0.
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