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ABSTRACT Day-ahead power forecasting is an effective way to deal with the challenges of increased
penetration of photovoltaic power into the electric grid, due to its non-programmable nature. This is
significantly beneficial for smart grid and micro-grids application. Machine learning and hybrid approaches
are well assessed techniques, able to provide effective forecasting with a data-driven approach based on
previous measurements from existing power plants. Ensemble methods can be employed to increase solar
power forecasting accuracy, by running several independent forecasting models in parallel. In this paper,
a novel selective approach is proposed and assessed, where independently trained neural networks are
evaluated in terms of accuracy, in order to properly select a suitable forecasting. Moreover, in order to reduce
the associated computational burden, suitably developed new normalization approaches are proposed and
evaluated. The considered experimental case study shows that the combination of the proposed procedures is
able to increase accuracy and to mitigate the overall computational load, resulting in a simple and lightweight
algorithm. Additionally, a comparison with other commonly used techniques has shown that the proposed
approach is robust with respect to dataset limited size and discontinuities.

INDEX TERMS Artificial neural network, PV power forecasting, ANN sizing, ensemble method, renewable
sources, short-term.

I. INTRODUCTION
In the last years, energy system have been progressively shift-
ing towards Renewable Energy Sources (RES) integration
in the Smart Grid (SG). In particular, in 2015 the United
Nations included among the 17 Sustainable Development
Goals (SDGs) one objective regarding energy [1], underlining
the need to significantly increase the share of renewables
in the global energy mix, together with the overall energy
efficiency of the system [2].

Among the RES, Wind turbines and solar photo-
voltaic (PV) are the most relevant technologies exploiting
resources belonging to this category and will be essential to
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meet future energy needs while reducing the carbon emis-
sions [3], [4]. Nevertheless, their intrinsic variability causes
problems in balancing the energy supply and demand that still
have to be fully addressed [5]: thus, more accurate energy
forecasting approaches would be helpful for SG and stand-
alone micro-grids stability, balancing of demand and sup-
ply, integration of distributed generation, monitoring, energy
market [6].

PV power production, in particular, strongly relies on
meteorological condition. Of particular importance is the
solar radiation received by the solar module, that can gen-
erally be decomposed into two main contributions: one
deterministic, depending on the position of Earth and the
Sun, and one stochastic, due to atmospheric conditions and
clouds [7].
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Distributed Energy Management Systems (EMS) are
envisaged for an efficient utilization of PV power in smart-
and micro-grids, by suitable integration of forecasting and
operation planning [8].

In order to perform the PV power forecast, different fore-
casting models can be implemented. Depending on their
nature, they are generally divided into three classes: physical,
statistical and hybrid [9].

Physical methods, also referred as parametric or ‘‘white
box’’ methods, directly use available weather conditions as
input features to a physical model of the PV systems; thus,
they strongly rely on the accuracy of the weather forecast they
are provided [10] and a proper selection of weather parame-
ters. Furthermore, a complete model of both the system and
the surrounding environment is hardly achievable with a high
degree of precision.

Data-driven methods, such asMarkov chains and exponen-
tial smoothing, are statistical approaches, where the underly-
ingmodel is based on previous measurements rather than on a
physical model of the system [11]; thus, they strongly rely on
the accuracy of historical data collected. Among data-driven
methods, ‘‘black box’’ approaches such as e.g. Machine
Learning (ML) and Artificial Neural Networks (ANN) have
been reported to guarantee high level of accuracy when
adopted to the power forecast of PV system [12]. More
recently, the use of recurrent neural network models has been
also proposed for short-term residential load forecasting in
SG applications [13].

Currently, among several data-driven approaches proposed
in literature, a great attention was gained by Deep Learning,
Convolutional Neural Networks [14] and Long Short-Term
Memory (LSTM) networks [15].

Hybrid methods are usually able to suitably combine the
previous approaches, actually improving solar forecasting
performance based on the historical data by compensating
deviations [16]. Several approaches have been succesfully
proposed in literature: in [17] an improvement in wind power
forecasting is obtained by means of independent forecast-
ing models hybridization; in [18], a physical-hybrid-based
forecasting model is used to effectively monitor PV modules
and to evaluate faults or anomalous trends that may affect
the PV plant; in [19], different components of irradiance and
additional weather features are employed to improve the input
of ML models.

Nowadays, in addition more attention is given to the
‘‘ensemble methods’’ development which improve forecast
accuracy and eliminate limitations of single models [20].
Generally, an ‘‘ensemble’’ consists of a set of individually
trained models whose predictions are combined when classi-
fying novel instances. [21]

Besides, these ensemble methods are primarily divided
into cooperative ensemble where each of the ensemble
members performs the same task and their predictions are
aggregated to obtain the improved performance [22] or com-
petitive ensemble where, on the contrary, the best prediction
of a relevant ensemble member is selected for a particular

input. [23]. Hence, ensemble methods, could be obtained
both by using different training sets and by having ANN
with different structures and this proved to be effective both
ambient temperature [24] and in solar radiation forecast [25].

Recently, ML methods for PV have been based also on
LSTM models and aggregation functions, in order to achieve
accurate predictions thanks to their recurrent architecture
and memory units [26]. Effective strategies for aggregating
the predictions of deep learning models are also addressed
in [27], exploiting long-term information to properly model
solar irradiance fluctuations.

In this view, the authors recently proposed a prelimi-
nary attempt to employ several parallel ML models, suitably
selected, as an effective way to improve power forecasting
accuracy [28]. However, the use of the ensemble approach
generally implies reaching a tradeoff between the improved
accuracy and the increased computational load.

In the present work, authors will focus on the day ahead PV
power prediction by means of ML techniques with an ensem-
ble approach. Here novel methodologies aiming at increasing
the forecast accuracy and reducing the computational load are
proposed. In particular, accuracy is addressed analyzing the
new selective ensemble approach, where several independent
models are assessed to properly choose the most effective
ensemble. Moreover, in order to reduce the computational
burden associated with the proposed ensemble procedure,
new normalization approaches are presented and evaluated.

Finally, a suitable experimental case study is considered in
order to show the forecasting accuracy improvement and the
reduced computational load, thus resulting in a simple, robust
and lightweight algorithm, capable of being implemented on
an industrial micro-controller.

The present paper is structured as follows: in Section II the
here employed physical hybrid approach is presented, with
the adopted metrics for performance measurement and a pre-
sentation of the case study. In section III, the proposed parallel
computing approach is analyzed, specifically addressing the
accuracy of the selective ensemble technique. The computa-
tional burden issues are addressed in section IV, where suit-
ably defined techniques for pre- and post-processing data are
presented to improve the performance. Numerical results will
be reported in Section V to validate the proposed approach.
Section VI will conclude the paper with a brief discussion of
perspective and future research.

II. THE FORECASTING MODEL
Among the previously mentioned approaches, hybrid pre-
dicting methods combining deterministic models with ANN
have been demonstrated to improve forecasting accura-
cies [16]. In this work, a simple Multi-Layer Perceptron
(MLP) with 12 neurons in the first hidden layer and 5 in
the second one is hybridized with the physical Clear-sky
Solar Radiation model (CSRM) [29]. This method is called
Physical Hybrid Artificial Neural Network (PHANN) and it
is described in detail in [30], while a simple scheme of its
functioning is reported in Figure 1.
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FIGURE 1. ANN forecasting scheme with pre- and post-processing operations.

This ML architecture has been chosen for its simplicity
and lightweight in view of its implementation on an indus-
trial micro-controller [18], [31]. This approach was already
demonstrated to provide a significant accuracy improve-
ment with respect to both deterministic and standard ML
approaches [16], thus providing a reliable day-ahead predic-
tion based on forecasted weather parameters, which are the
input of the network trained with the historical dataset.

However, a well-known drawback with neural networks
non-linear approximation ability is the possibility to occur in
bad generalization. In fact, an ANN properly sized, in terms
of number of neurons in the hidden layers, can be cor-
rectly trained with an arbitrary training data set; nevertheless,
it could learn both investigated dependencies and noise (wors-
ening the predictive ability of the network) giving rise to the
well-known issue of overtraining, that is when the network
learns most likely the gross existing links among parameters
first, and then the fine structure that is generated also by
noise [32]. This issue can be mitigated by control techniques
on the convergence of the ANN model, as described in the
following section.

A. CASE STUDY
In order to check the performance and the accuracy of the
novel approaches proposed in this work, the study was con-
ducted on experimental data collected from the SolarTechLAB

at Politecnico di Milano, Italy, located on the rooftop of
Department of Energy [33]. In this Laboratory, different tech-
nologies are simultaneously tested and in order to test the
modules under different meteorological conditions, each of
them is singularly controlled by a dedicated micro-inverter.
All PV modules are oriented with an azimuth γ equal to
−6◦30′, assuming 0◦ is the South positive West, and a tilt θ
of 30◦. The tilt of the modules can be modified together with
the distance among arrays.

In the order to properly assess the capability of the pro-
posed model, the production from a single monocrystalline
module of nominal power of 245Wp is considered, by adopt-
ing its DC power recordings of the year 2017. The PVmodule
and micro-inverter datasheets are reported in Table 1. A pub-
licly available dataset with all these measurements has been
previouly provided by the authors in [34] as described by [35].

Meteorological forecasts for the following days were col-
lected from a commercial weather service provider every

TABLE 1. PV module and inverter datasheets.

day at 11 p.m. The weather parameters considered by the
proposed model are summarized in table 2, where they are
listed together with the theoretical irradiance in clear-sky con-
ditions, computed according to the deterministic CSRM, the
day of the year (DOY), the hour of the day (h) and the desired
target P, i.e. the measured power production in the considered
PV plant. All these variables are provided to the network both
in the training and the test phases.

Finally, the here considered dataset covers 269 days for
the year 2017; however, the described procedure has general
validity, and it can be easily extended to different time range,
PV modules, power plants and also load forecasting, accord-
ing to the suitable data set availability.

In order to properly set the forecasting model avoiding
overtraining issues, the data were divided into two sub sets,
called training and validation sets. They comprises the param-
eters reported in Table 2, together with the measured power
of the PV module, in order to compute errors and evaluate
accuracy, as proposed in [36].

In particular, the dataset is divided randomly assigning
90% of data to the training set and 10% to the validation
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set. These specific choices and shares have been previously
defined through sensitivity analysis conducted in [37].

TABLE 2. Dataset composition for year 2017.

B. ACCURACY MEASUREMENT
The effectiveness and the accuracy of the forecasting tech-
niques must be proven by means of evaluation indica-
tors. A wide definition’s variety can be found in literature
[38], [39] and the most common will be here proposed.

Since the considered model is for day-ahead forecasting
with hourly resolution, the root for all the other metrics is the
hourly error eh, defined as:

eh = Pm,h − Pp,h (1)

where Pm,h is the measured power corresponding to the
hour h and Pp,h is the prediction provided by one of the
forecasting methods. For a fair accuracy assessment and easy
identifiable indicators, normalized error have been preferred.
Hence, starting from this basic definition, the normalized
mean absolute error (NMAE), which is the Mean Absolute
Error (MAE) normalized by the nominal power Pn of the
plant and the normalized root mean square error (nRMSE)
which is defined as the Root Mean Square Error normalized
by the maximum power recorded in the PV system have been
adopted.

Besides, the weighted mean absolute error (WMAE) is
defined as follows:

WMAE =

∑N
h=1 |eh|∑N
h=1 Pm,h

· 100 (2)

and it is based on the total energy production in the considered
period: when this last data is significantly lower than the
predicted one, large values can occur (often significantly
above 100%).

Additionally, two novel error metrics have been introduced
by the authors in [40]; these are specifically tailored on
PV power production in order to provide a more significant
evaluation of the overall error behavior.

The enveloped mean absolute error (EMAE) is similar to
the WMAE, but an upper bound limited to 100% is set by its
definition, to avoid the previously described drawback of the
standard WMAE indicator:

EMAE =

∑N
h=1 |eh|∑N

h=1max
(
Pm,h,Pp,h

) · 100 (3)

Finally, the objective mean absolute error (OMAE) whose
definition has been specifically designed to introduce an
adaptive normalization factor, more representative of the
maximum level of irradiance theoretically available in a spe-
cific time:

OMAE =

∑N
h=1 |eh|∑N

h=1G
CS
POA,h

·
GSTC
Pn
· 100 =

= NMAE ·
N · GSTC∑N
h=1G

CS
POA,h

(4)

where GCSPOA,h is the theoretical irradiance on the plane of the
array provided by the CSRM for a specific time and GSTC
is the reference irradiance in standard test condition. This
correction factor makes this indicator more related to the
theoretical available power in any time of the day and the year,
with respect to just the nominal capacity Pn used in NMAE.
Night measurements are hence included in the definition of
these metrics to properly compare errors in different periods
of the year.

III. ENSEMBLE FORECAST
The forecasting technique adopted in this work is based on
a ML method, such as ANN. During the network initializa-
tion, weights among neurons are firstly randomly assigned
and later optimized during training. As highlighted in [41],
this process presents many local minima, hence the obtained
values for weights can greatly differ from one run to the other,
resulting in a differentiation of the errors committed by the
networks on different subsets of the input space. For this rea-
son, an ‘‘ensemble method’’ is usually adopted, as reported
in [42]. This method consists in performing the forecast of
power profile with various models and finally averaging their
results to obtain the desired single day profile.

In our work, the considered models for the ensemble are
parallel runs of the MLP defined in Section II: in particular,
for each run, commonly referred to as ‘‘trial’’, the network’s
weights and biases are re-initialized and then trained; thus,
every considered single MLP is trained on different training
and validation datasets, assuring a proper diversity among
all the parallel trials. For obvious reasons, the number of
computed trials and their respective accuracy are parameters
that have a great influence both on the overall prediction reli-
ability and the computational burden, thus, in the following
subsection 3.A we will describe how the minimum number
of parallel MLPs can be set, while in subsection 3.B we will
define the acceptance criteria in order to select a single trial
for the considered ensemble.

A. NUMBER OF TRIALS
To evaluate how many MLPs should be trained in parallel
in order to have a reliable prediction, several ensembles are
considered for every day of the year, each composed of an
increasing number of trials, with a maximum of 250. For
every single MLP added to the ensemble, the correspond-
ing predicted power profile is then obtained averaging the
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current number of trials; the error committed throughout the
whole year range is then evaluated for any trial added to the
ensemble, and the corresponding metrics are computed as
described above. An additional parameter can be determined
with respect to each indicator and the number of considered
trials, i.e. the marginal benefit M% of increasing the number
of trials Nt , e.g. for the EMAE indicator it can be defined as:

M% = −
1EMAE
1Nt

· 100 (5)

It indicates the performance increase (error reduction)
obtained for any trial added to an ensemble.

For the sake of generalization, this process has been
repeated 8 times, considering 8 independent ensembles of
maximum 250 trials each, for a total of 2000 independent
trials.

In Figure 2, two graphs are shown: the first one is repre-
sentative of the error committed in terms of EMAE indicator,
with respect to the number of adopted trials. The second
graph, on the other hand, shows the M% as defined in equa-
tion (5). In both graphs, the grey lines represents the eight
aforementioned independent ensembles, while the orange
line their average.

As it is possible to see for each model, accuracy increases
(reduction of EMAE) with the number of trials, approaching
an asymptotic value:

lim
Nt→∞

M% = 0 (6)

Nevertheless, as seen in the figure below, the marginal ben-
efit, despite being generally positive, quickly tends toward
zero in less than 40 trials. Since the computational load
linearly increases with the number of parallel trials (at each
repetition, a new network is created, trained and the forecast
is computed), a trade off between the time required to predict
the power profile and the increase of performance is required.
After the preliminary study described above, in the following
a number of trials equal to 40 is adopted. Finally, the purpose
of the marginal benefit is a criterion to properly define the
number of trials to be adopted in the ensemble.

B. TRIALS SELECTION
One of the main advantages of forecasting PV power is that
almost half of the desired outputs are known a priori. For
instance, power production is known to be zero during night
hours. Additionally, power production in daytime is expected
not to exceed nominal power, modulated by the hourly profile
of maximum irradiation, which can be daily determined by
the CSRM. Thus, a mask can be defined daily by setting the
maximum and minimum admitted profiles Ph,top and Ph,bot,
respectively:

Ph,top =
GCSPOA,h
GSTC

· Pn (7)

Ph,bot = 0 ∀h (8)

where Ph,top has been defined following the same methodol-
ogy adopted in (4) for OMAE.

FIGURE 2. Increase of EMAE performance (top) and the marginal benefit
M% with increasing number of trials Nt (bottom).

This valuable information can be used for admitting or
rejecting values produced by the forecastingmodel: this helps
validating the accuracy of single outputs obtained by the
ANN, which allows an improvement with respect to the
previously introduced ensemble logic.

In fact, analyzing the result of each single trial, it is possible
to detect the worst performing ones, which can be eliminated
in advance without affecting the overall average prediction.
For instance, in Figure 3 (top) the forecast of a sample day
is presented: the gray lines represent the output of each of
the 40 considered trials, the orange line is their average
(i.e., the output of the ensemble), the blue line is the actual
measurements and finally the yellow shaded area represents
the mask defined by the CSRM. As it is possible to see in the
first plot, a few trials present a power profile exceeding the
admission mask: these are not consistent, since they strongly
differ from the expected value. These unfortunate cases can
be explained by the nature of ANN training, based on the
Error Back-Propagation (EBP) algorithm, which can end up
in sub-optimal solutions. Consequently, those single trials are
not providing a good generalization, hence being not suited
for the scope.

Starting from these considerations, an accuracy measure
can be defined for each trial, defining an exclusion criterion
of a single trial based on the error committed with respect to
the mask defined by (7) and (8), respectively:

Perr,top =
∑
h

Pp,h − Ph,top, ∀h|(Pp,h > Ph,top) (9)

Perr,bot =
∑
h

Ph,bot − Pp,h, ∀h|(Pp,h < Ph,bot) (10)

For each forecasted day, this cumulative error has to be lower
than or equal to a control threshold Pthr:

Perr,top + Perr,bot ≤ Pthr (11)

It is here worth to underline that this methodology aims at
identifying the properly trained network excluding from the
ensemble the results when (11) is not verified.
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FIGURE 3. Power forecast for a sample day: without (top) and with
control threshold (bottom).

Fig. 3 (bottom) presents the power forecast of the same
day, after the introduction of the control threshold. As it can
be noticed, both the power profiles and the observed EMAE
error indicator are significantly improved for that particular
day. Thus, with specific reference to the sample day reported
in Fig. 3, it is worth highlighting that precision of the forecast
also at nighttime is particularly important in order to train the
forecasting model to the best precision at sunrise and sun-
set: indeed, these two conditions are those when the highest
relative errors usually occur during the day, due to the small
value of produced power, which is usually at the denominator
of error indicators, as shown in (2), for instance. Moreover,
since PV power forecasting should take care of accuracy not
only on average but also in peak hours, a report of the per-
centage error behavior in different hours of the day (average
over the whole year) is reported in Figure 4, with respect to
the plant capacity. As shown in this figure, while absolute
errors at peak hours are the most relevant in percentage, the
selective ensemble approach is effective in reducing them,
as reported in the overall distribution during the year, shown
in the boxplots: this improvement is clearly highlighted by
the bottom histogram, where the average values from the

previous boxplots are compared, showing the higher accuracy
due to ensemble selection, in particular during peak hours.

FIGURE 4. Distribution of the hourly error during one year: without
ensemble selection (top); with selective ensemble (middle); comparison
of the hourly average (bottom).

The overall procedure is synthesized in the flowchart of
Figure 5: in order to compose the ensemble of trained MLPs,
the output of each trial is compared to Pthr to evaluate its
accuracy: when the trial satisfies the control threshold, its
model is included in the ensemble, otherwise it is discarded
and a newMLP is trained and evaluated, until the completion
of the ensemble. The ensemble forecast is hence computed a
posteriori, once the well trained networks have been selected.

While a preliminary implementation of this method was
introduced and its overall validity demonstrated in [28] focus-
ing mainly on night hours, in the current paper the control
threshold is extended to full day analysis and an additional
study is proposed, in the following subsection, to further
analyze the performance improvement and mitigate the addi-
tional load associated with the computation of several trials.

C. COMPUTATIONAL LOAD
The main disadvantage coming from the implementation of
the described method is given by the increased computational
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FIGURE 5. Scheme of the proposed selective ensemble approach to reject
trials which do not satisfy the control threshold.

burden required to provide the desired number of valid trials:
to achieve it, respecting the control threshold, some networks
must be trained and later discarded.

In order to quantify the added computational burden, power
profile predictions are simulated day-by-day for the whole
year 2017, through 250 independent trials; these are later
reassembled respecting the logic described above, to obtain a
valid ensemble of 40 trials; this study is conducted by varying
the value of the threshold Pthr in equation (11).

In Figure 6, the blue bars represent the number of trials that
was possible to select, on average, with respect to the control
threshold Pthr, on a yearly basis; the red stacks, on the other
hand, represent the number of runs that had to be discarded.
Hence, the overall number of networks that, on average, must
be trained, is given by the sum of the two. As it is possible
to see, reducing Pthr, the vast majority of the trials are not
compliant and are discarded.

In the lower part of Figure 6, the blue line shows the cor-
responding computational load, which, as expected, tends to
infinity asPthr approaches zero. In fact, during training ANNs
learn to generalize trends but not the specific behaviour of the
training dataset, as it occurs in case of overtraining.

From the aforementioned considerations it is evident that a
trade-off between the accuracy and increased computational

FIGURE 6. Number of accepted and discarded trials with respect to
control threshold (top) and corresponding computational load (bottom).

burden is fundamental. For this reason, based also on prelim-
inary studies conducted in [28], a threshold Pthr = 30 Wh
is considered a good compromise and will be used in the
followings.

IV. DATA PRE-PROCESSING AND POST-PROCESSING
In the previous section a technique aiming at reducing the
overall prediction error was presented by means of selective
ensemble approach. Since the required computational load
is greatly increased, in the following a few approaches are
proposed and analyzed to enhance convergence speed of
ANN training, thus reducing the total computational effort
needed is now presented.

When dealing with ANN, and adopting a gradient descent
method to perform the training process (for example
EBP [43]), it is particularly important to pre-process and post-
process the inputs and the outputs.

According to [44], convergence is faster when every input
variable of the training set has a mean value that is close to
zero. In [45], the importance of normalizing data is further
explained, in fact it is shown how removing covariance shift
from internal activation of the network may aid in the training
process.
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In the current section, a novel normalization procedure
is proposed: as a starting point is always beneficial to shift
the mean value according to [44]. Moreover convergence
is faster and works better if inputs are scaled so that they
have approximately the same covariance Ci. Scaling speeds
the learning process because it helps to balance out the rate
at which the weights connected to the input nodes learn,
as shown in [46].

Data normalization is a fundamental pre-processing step
for mining and learning from data; nevertheless, finding the
proper approach to deal with time series normalization is not
obvious: several normalization methods proposed in litera-
ture are valid only on specific time series [47].

In this section, we propose different approaches for nor-
malizing non-stationary time series to be used with ANNs in
forecast problems, bymeans of properly defined data pre- and
post-processing, as shown in Fig. 1.
Generally speaking, the covariance value should be cho-

sen with respect to the adopted neuron’s activation function.
Here, the hyperbolic tangent is used and a covariance equal
to 1 is demonstrated to be a good choice. An exception to this
guideline can be made when the importance of every input
to the output (i.e. for example, the correlation) is known a
priori [46].
In the following, a step-by-step analysis is conducted on

how different input and output processing influence the over-
all prediction performances, both in terms of committed error
and time required to compute the forecast, in order to define
suitable data processing to improve ANN efficiency.

A. CORRELATION
The importance of every input to the output is studied by
means of the Bravais-Pearson correlation factor [48]:

ρX ,Y =

∑N
i=1 (xi − x) (yi − y)√∑N

i=1 (xi − x)
2∑N

i=1 (yi − y)
2

(12)

where X and Y are two generic variables, x̄ and ȳ their mean
value and xi and yi a single observation belonging to X and Y
respectively.

B. NORMALIZATION
One of the most common way of pre- and post-processing the
output is normalizing the variable in a predefined range, usu-
ally [−1;+1]. Generally speaking, the normalization process
is performed according to equation (13),

Z ′ =
Z − Zmin

Zmax − Zmin
·
(
Z∗max − Z

∗

min
)
+ Z∗min (13)

where Z is a generic vector of data, whose minimum observa-
tion is Zmin and maximum observation is Zmax. Z∗max and Z

∗

min
represent the upper and lower bound of the desired range.

C. COVARIANCE
As said, the covariance plays a central role in the
ANNs training process. It is defined for generic

vectors X and Y as follows:

Cov (X ,Y ) = E [(X − E [X ]) (Y − E [Y ])] =

= E [XY ]− E [X ] E [Y ] (14)

where E[·] is the expected value operator.
When the normalization expressed in equation (13) is

performed, the covariance coefficient changes consequently
following equation (15).

Cov
(
X ′,Y ′

)
= E

[((
X − Xmin

Xmax − Xmin

)
·
(
X∗max − X

∗

min
)
+ X∗min +

− E
[(

X − Xmin

Xmax − Xmin

)
·
(
X∗max − X

∗

min
)
+ X∗min

])
·

((
Y − Ymin

Ymax − Ymin

)
·
(
Y ∗max − Y

∗

min
)
+ Y ∗min +

−E
[(

Y − Ymin

Ymax − Ymin

)
·
(
Y ∗max − Y

∗

min
)
+ Y ∗min

])]
(15)

and, given the linearity of the expectation operator E[·]:

Cov
(
X ′,Y ′

)
=

=

(
X∗max − X

∗

min

)
·
(
Y ∗max − Y

∗

min

)
(Xmax − Xmin) · (Ymax − Ymin)

· Cov (X ,Y ) (16)

As it is possible to notice, the new covariance coefficient is
both dependent on the observed and desired upper and lower
bounds.

D. ADJUSTED RANGE
When the information about the correlation of the inputs
with respect to the output is known, instead of normalizing
all the variables in a range of [−1,+1] as it is commonly
done, a smarter normalization can be applied: each parame-
ter’s range could be adjusted, in fact, in order to obtain the
covariance equal to the correlation factor.

As far as the power P is concerned, being the correlation
with itself equal to 1, it is possible to rearrange equation (16)
and, being the desired range symmetric with respect to the
origin, it is possible to write:(P∗max − P

∗

min

)
=

√
��:

1
ρP,P

CovP,P
· (Pmax − Pmin)(

P∗max + P
∗

min

)
= 0

(17)

which allows to find the optimal power range.
As for each of the other i-th selected inputs of the ANN

model:

(
X∗i,max − X

∗

i,min

)
=

=
ρXi,P

CovXi,P
·
(Pmax − Pmin) ·

(
Xi,max − Xi,min

)(
P∗max − P

∗

min

)(
X∗i,max + X

∗

i,min

)
= 0

(18)
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E. CONSIDERED NORMALIZATION APPROACHES
Finally, four different approaches can be proposed for data
normalization: a detailed description is presented in the fol-
lowing, while their comparison and analysis of numerical
results is reported in the next Section.

1) Ap1: BASELINE APPROACH
The first approach (Ap1) can be considered as the baseline,
since it does not include any pre- and post-processing of the
dataset. When the available data are not processed, they are
directly provided to theANN in order to compute the forecast.
In table 3, the above described input and output parameters
are given.

TABLE 3. Correlation and Covariance referred to power.

2) Ap2: TRADITIONAL NORMALIZATION APPROACH
The second approach (Ap2) normalizes all the data in a range
of [−1, +1]. This normalization is the traditionally adopted
one, as it is built-in in common ML libraries, and it can be
used as a benchmark for the others; Normalizing the avail-
able variables between [−1,+1], the consequent covariance
coefficients can be computed as in the following equation

Cov
(
X ′,Y ′

)
=

4 · Cov (X ,Y )
(Xmax − Xmin) · (Ymax − Ymin)

(19)

The obtained values are listed in table 4.

TABLE 4. Covariance and ranges for Ap2.

3) Ap3: ADAPTIVE NORMALIZATION APPROACH
The third approach here considered (Ap3) adjusts the nor-
malization range for every available variable to reflect the
importance of each input determining the output.

In table 5, the obtained covariances and ranges deriving
from equations (17) and (18) are reported.

TABLE 5. Covariance and ranges for Ap3.

4) Ap4: ENHANCED NORMALIZATION APPROACH
The fourth approach here considered (Ap4) is similar to
the previous one, but it divides all the obtained ranges by
two, to properly match the activation window of the chosen
transfer function (hyperbolic tangent). The active range of a
transfer function is defined as the range of the input which
produces a value for the first derivative significantly different
from zero. For the tansigmoid function, the active input range
is usually set as [−2,+2]. For this reason the input range
of every available parameter is halved with respect to Ap3,
resulting in a covariance equal to a fourth of the previous.

It is worth highlighting that the information about the
relative importance of each input to the output is retained.
Results are shown in table 6.

TABLE 6. Covariance and ranges for Ap4.

V. COMPARISON AND NUMERICAL RESULTS
Following the aforementioned procedures, it was possible to
compute the optimal ranges for data processing. In particular,
as described in Section II, a simple Multi-Layer Percep-
tron (MLP) is here adopted, with 6 input neurons (parameters
described in Table 2), 1 output neuron (predicted power),
12 and 5 neurons in the first and second hidden layers,
respectively. In order to analyse the performance of the four
approaches presented above, they will be compared from two
different point of view. Firstly, the committed error will be
evaluated, secondly, the time required to perform the simula-
tions of the whole considered year is reported, used as a proxy
of the computational burden.

A. ACCURACY
The overall results of the combination of the presented nor-
malization approaches with the ensemble forecast, are shown
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in table 7, where the computed outcome are filtered with
a control threshold Pthr equal to 30 Wh/day. In particular,
in table 7 the combination of the four considered normal-
ization methodologies to the ensemble selection is compared
with the most widely adopted normalization approach when
the ensemble selection is disabled (Ap2∗); for the sake of
clarity, the lowest attained values for each error indicator are
highlighted in bold.

TABLE 7. Error metrics comparison among the four approaches,
compared to the approach Ap2∗ when the selective ensemble is not
considered (the best results are highlighted in bold).

From the performed comparison, it is evident to what
extent a correct pre- and post-process of inputs and out-
puts affects the prediction accuracy: indeed, Ap2, Ap3 and
Ap4 show a significant improvement with respect to Ap1
(when pre- and post-processing are avoided). Moreover, the
proposed data processing approaches Ap2, Ap3 and Ap4
combined with the selective ensemble present a similar
improvement on the forecasting error with respect to the
benchmark case Ap2* (when the selective ensemble is not
applied).

In order to validate the proposed model results, a com-
parison with other architectures commonly used to address
the PV power forecasting has been conducted, considering in
particular CNN [14] and LSTM [15].

For what concerns the adopted CNN approach, the com-
bined use of a convolutional layer and a pooling layer is
the commonly considered structure, here implemented with
a 1D convolutional layer (32 filters), max pooling layer,
flattening layer and dense layer (fully connected, 20 neurons);
simulations were performed under different input sequences,
considering Tamb (a), GHI (b), GPOA (c) and wind speed (d),
as reported in Table 8.

For what concerns the adopted LSTM approach, a sliding
window forecast was assumed, considering different units,
hidden layers and dropout: in Table 8, the considered models
are indicated as (units × hidden layers × dropout).
After this comparison, it is possible to conclude in general

terms that the CNN and LSTM are not well suited for the
data distribution available in the considered case study, due,
for instance, to the overall size, probably too small for CNN
approach, or to somemissing days in the dataset, which break
the continuity of data flow needed by LSTM: these are com-
mon issues when using real data from PV plant, which usually
are not easily available, and often subject to interruptions.
Indeed, as reported in Table 8, the forecasting computed by

these two approaches have a similar behavior in terms of
accuracy, but slightly above the error level reached by the
presented PHANN with the selective ensemble: apparently,
the here proposed approach is simple and lightweight, better
suited to address the day-ahead power forecast based on
numerical weather predictions, and more robust with respect
to the dataset limitations presented above.

TABLE 8. Comparison with other forecasting architectures (the best
results are highlighted in bold).

B. COMPUTATIONAL BURDEN
Additionally, it is possible to analyze the overall computa-
tional time taken by each approach for a whole year forecast-
ing of daily power profiles (with 40 effective trials): Table 9
reports the results of simulations performed on an Intel(R)
i7-7700 CPU @3.60 GHz - 64 GB ram.

TABLE 9. Computational burden for the Selective Ensemble with
different normalization approaches.

These results show how pre-processing the available
dataset is relevant to reduce the computational burden. In fact,
the two newly proposed adaptive and enhanced normal-
ization approaches (Ap3 and Ap4, respectively) allow to
significantly reduce the time required to train the network
with respect to the most commonly used normalization
procedure Ap2.

In particular, the newly proposed enhanced normaliza-
tion approach (Ap4) guarantees a reduction in the computa-
tional effort required because, during the first iteration, when
weights are randomly picked, it allows the transfer function
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to work in a region of the domain were its derivative is greater
and the optimization algorithm can proceed faster.

Moreover, in table 10, a comparison of the computational
load of the different normalization procedures is reported,
considering the combination of the here introduced selective
ensemble approach with the control threshold Pthr set to
30 Wh/day.

TABLE 10. Comparison of computational burden of each
approach (column) with respect to the others (rows).

As it was possible to see from Table 7, all the error metrics
present a significant reduction, when the ensemble selection
is enable, with respect to the scenario considered as a bench-
mark (Ap2∗). Nevertheless, the newly proposed enhanced
normalization procedure (Ap4) is significantly the fastest in
terms of convergence speed of the ANN model, with respect
to the other traditional (Ap2) and adaptive (Ap3) normaliza-
tion approaches, although having a comparable accuracy.

VI. CONCLUSION
In this paper, the combination of two novel approaches aimed
at improving forecasting accuracy and computational effi-
ciency has been analyzed, applied to the day-ahead PV power
prediction.

First, a selective ensemble methodology has been pro-
posed, in order to select the most promising trained MLPs
for the ensemble forecast. This approach led to a significant
reduction of the overall error committed, with respect to
several considered error evaluation metrics (i.e. about 1 per-
centage point, on average).

Additionally, through the correlation and covariance anal-
ysis of the available dataset, it was possible to obtain the
optimal normalization ranges of ANN. By applying the newly
proposed adaptive and enhanced normalization approaches,
it was possible to get a relevant mitigation (i.e. -17%) of
additional computational load associated to ensemble selec-
tion, with respect to the traditionally adopted normalization
procedure.

Future perspective of this study envisage the possibil-
ity to conduct additional adaptive data analysis to further
increase the computational efficiency of the proposed com-
bined approach and to apply it to the forecasting of power
production and load consumption in challenging micro-grid
management applications.
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