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Abstract—The Agri-Food Competition for Robot Evalua-
tion (ACRE) is a novel competition for autonomous robots and
smart implements. It is focused on agricultural tasks such as
removing weeds or mapping/surveying crops down to single-plant
resolution. Such abilities are crucial for the transition to so-called
“Agriculture 4.0”, i.e., precision agriculture supported by ICT,
Artificial Intelligence, and Robotics. ACRE is a benchmarking
competition, i.e., the activities that participants are required to
execute are structured as performance benchmarks. The bench-
marks are grounded on the key scientific concepts of objective
evaluation, repeatability, and reproducibility. Transferring such
concepts in the agricultural context, where large parts of the test
environment are not fully controllable, is one of the challenges
tackled by ACRE. The ACRE competition involves both physical
Field Campaigns and data-based Cascade Campaigns. In this
paper, we present the benchmarks designed for both kinds of
Campaigns and report the outcome of the ACRE dry-runs that
took place in 2020.

Index Terms—robotics, smart agriculture, benchmarking, com-
petition, machine learning, image segmentation

I. INTRODUCTION

METRICS [1] is an EU-funded project dedicated to the
metrological evaluation and testing of autonomous robots. One
of the key activities of METRICS is the organization of four
robot benchmarking competitions. ACRE (Agri-food Competi-
tion for Robot Evaluation) [2] is one of these competitions and
deals with the applications of robotics to agriculture. ACRE (as
the other METRICS competitions) is based on the concept of
“benchmarking through competitions” [3], i.e., on exploiting
the appeal and desirable features of competitions to foster a
culture of benchmarking in European robotics. In this, ACRE
shares the approach with other ongoing efforts, such as the
European Robotics League [4]–[6].

Robotics competitions organized through the years are
many. The most notable include the EUROBENCH project [7]
focused on bipedal robotics technologies (exoskeletons, pros-
theses, and humanoids); the RoboCup, RoCKIn and European
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Robotics League [8] focused on indoor competitions related
to domestic and industrial robots; and the euRathlon [9],
the world’s first multi-domain (air, land and sea) multi-robot
search and rescue competition. Regarding the agricultural
domain, it has to be mentioned the Tomato Harvesting Robot
Competition [10] focused on the evaluation of robots for
automated tomato harvesting to reduce the working time of
harvesting. However, to the best knowledge of this paper’s
authors, no agricultural weeding robot competitions have been
held in the past, apart from the ROSE Challenge on which
ACRE builds on.

The ROSE Challenge [11] is a French national project end-
ing in 2021 involving companies developing weeding robots.
The ROSE Challenge is organized by the National Laboratory
of Metrology and Testing (LNE) and the National Research
Institute for Agriculture, Food and the Environment (INRAE).
The ROSE challenge aims to encourage the development of
innovative solutions for intra-row weed control to reduce or
even eliminate herbicides. Four teams are competing against
each other during the challenge.

A specific challenge for ACRE comes from the fact that its
Field Campaigns occur in outdoor environments and that a key
element of the experimental setup is live crops. Consequently,
a longer and less controllable preparation phase is required due
to plant growth. Moreover, like the actual state of readiness at
the time of the Campaign, the setup’s quality heavily depends
on the weather. Indeed, some benchmarks (see Section II)
require plants at a specific growth stage.

ACRE competition comprises two separate but intercon-
nected tracks. One track comprises the so-called Field Cam-
paigns that involve robots executing activities in real-world
agricultural environments such as open-air fields. The events
of the second track are called Cascade Campaigns. In Cascade
Campaigns, Artificial Intelligence systems perform activities
on data collected during the Field Campaigns. Data are like
crop images or robot sensor logs.

There is mutual feedback between the two tracks of ACRE;
indeed, Field Campaigns provide data to Cascade Campaigns,
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while Cascade Campaigns are a way to foster the development
of systems to be exploited in subsequent Field Campaigns.
Cascade Campaigns are a way to involve in ACRE people
experienced in data analytics without necessarily acquiring
robotics expertise. At the same time, they can also present their
achievements to interested parties, such as companies involved
in agricultural robotics, which lack expertise in perception.

The first events in the Field and Cascade tracks of
ACRE took place in 2020, respectively, in October 2020 and
from October 2020 to January 2021. We officially called
these events “dry-runs” because we used them to verify
and validate the organization more than to provide rankings
representing the state-of-the-art. The next ACRE Field and
Cascade Campaigns are foreseen for June 2021 and October
2021, respectively.

In the next section, a description of the ACRE benchmarks
is provided. Sections III and IV describe, respectively, the
results of the dry-run Field Campaign and Cascade Campaign.
Section V presents the outlook for future editions of the
competition and a brief discussion on the pedagogical impact
of Cascade Campaigns.

II. OVERVIEW OF ACRE BENCHMARKS

ACRE’s benchmarks take two forms [12]: Functionality
Benchmarks (FBMs), focused on specific capabilities of a
robot and designed to make the benchmark as independent as
possible from robot components not directly involved in the
functionality under examination (FBMs are Plant discrimina-
tion, Field navigation, Leaf area estimation, Weed destruction,
Biomass estimation); Task Benchmarks (TBMs), evaluating the
execution of complex tasks involving multiple functionali-
ties, where the final result depends both on the individual
functionalities and on the integration between components
(TBMs are Intra-row weeding, and Crop mapping). We have
described ACRE benchmarks with detailed information on
their execution and evaluation metrics in the ACRE Evaluation
Plan [13]. Below we provide an overview of them.

ACRE benchmarks involve three different robot capabilities
required in agricultural tasks: robot perception, navigation, and
manipulation. ACRE benchmarks concerning perception are:

• Plant discrimination (FBM) evaluates the capability of
discriminating which plants of a row are weeds and which
are crops (intra-row detection). The robot is required to
make a pass over a prepared row containing both crops
and weed plants; using its sensors (e.g., vision), the robot
classifies the crops and weeds present in the rows. To
decouple plant discrimination functionality from others,
we do not require the robot to move autonomously.

• Leaf area estimation (FBM) evaluates the capability of
estimating the plants’ leaf area along a cultivated row.
The test environment is a linear row with plant height in
the range 30 cm–50 cm. The robot must move along the
row and use its perception to estimate the variable leaf
area along the entire row. We do not require the robot to
move autonomously.

• Biomass estimation (FBM) evaluates the capability of
estimating above-ground crop biomass. The robot must
make a pass over a prepared field composed of one
or more rows, using its sensors to perceive the plants.
The robot must estimate the fresh weight of the above-
ground parts of the plants (without distinguishing be-
tween types of plants). We do not require that robots
move autonomously.

ACRE benchmarks concerning robot navigation are:
• Field Navigation (FBM) requires the robot to move

through cultivation without damaging the crop. The or-
ganizers identify predefined destination locations within
a cultivated area. The robot under test is assigned one of
these locations and required to reach it within a timeout.

• Crop Mapping (TBM) evaluates the robot’s capability
to produce a map of the entire cultivation by exploring
it autonomously. The robot must explore a multi-row
cultivated plot autonomously and provide a map of crop
plants. The robot has to recognize single plants and
provide their positions on a Cartesian coordinate system.

ACRE benchmarks concerning manipulation, in the wider
sense of “physical interaction with the environment”, are:

• Weed Destruction (FBM) evaluates the capability of
destroying weeds in intra-row without damaging crops.
The evaluation compares the state of the test plot before
and after the weeding operations. To make this evaluation
as independent as possible from other functionalities, we
use visual markers to identify crop and weed plants in
the prepared plot; additionally, the robot is not required
to drive autonomously along the row.

• Intra-Row Weeding (TBM) assesses the capability to
perform fully autonomous intra-row weeding of a row.
The robot must eliminate the weeds located among a
row’s crop plants without damaging the crop. The robot
must navigate the rows autonomously, and there are no
markers on the plants to facilitate their detection and
identification.

The benchmarks described above refer to the Field Cam-
paigns, and only a subset of them will be executed in every
Campaign based on the participants’ implemented capabilities.
The organizers are currently selecting the benchmarks for the
next (2021) Campaign together with interested stakeholders.
Instead, since ACRE Cascade Campaigns do not involve phys-
ical robots, we cannot implement all of the ACRE benchmarks.

In Cascade Campaigns, the set of possible benchmarks
is limited to those concerning pure perception (i.e., Plant
discrimination, Leaf area estimation, Biomass estimation).
An additional benchmark is a modified version of the Crop
Mapping TBM where the robot’s trajectory has been recorded
in a previous Field Campaign and thus cannot be controlled.

III. ACRE DRY-RUN FIELD CAMPAIGN

The ACRE dry-run Field Campaign took place in October
2020 at the experimental farm of the National Research
Institute for Agriculture, Food and the Environment (INRAE)



Fig. 1: Example of ground truth image labeled by a human
expert; colored dots outline the areas identified as weeds
(yellow) or crops (green).

located in Montoldre (France). We exploited the dry-run event
to test and adjust the benchmarking protocols according to the
METRICS project methodology [14], and to obtain datasets for
the future ACRE Cascade Campaign. We made to coincide the
ACRE dry-run in time and space with the ROSE Challenge.
We aimed to exploit the synergy between the ACRE and ROSE
challenges and encourage ROSE teams to participate in both.

The dry-run setup has involved multiple benchmarks, i.e.,
Plant Discrimination FBM, Weed Destruction FBM, Intra-
Row Weeding TBM, and Field Navigation FBM. The first
three of these have been conducted in parallel with the
second evaluation campaign of the ROSE challenge since
the experimental setup was designed to be compatible. Due
to the circumstances of the COVID-19 pandemic, the fourth
benchmark (Field Navigation FBM) was executed by only one
team.

A. Preparation of Plant Discrimination, Weed Destruction,
and Intra-Row Weeding benchmarks

Plant Discrimination requires that a robot uses its perception
and interpretation capabilities to differentiate between crops
and weeds based on their features. The plant classification
produced by the robot can be compared with ground truth
provided by qualified humans. Figure 1 shows an example
of ground truth provided by human experts. Participants are
evaluated based on the EGER metric [15] that accounts for
the number of correctly and incorrectly classified and missed
plants.

In the Weed Destruction FBM, the goal is to destroy weeds
without damaging the crops. To decouple this capability from
the robot’s performance in discriminating weeds from crops,
we labeled plants using colored discs as shown in Figure 2.
Since Intra-Row Weeding is a Task Benchmark, no visual
markers are allowed for this benchmark, and the robot must
eliminate the weeds autonomously. Participants are evaluated
by manually counting the number of destroyed weeds and
damaged plants (see Figures 3, and 4).

Fig. 2: Crops and weeds identified with colored discs for the
Weed Destruction FBM.

Fig. 3: Rows prepared for the Intra-Row Weeding Benchmark.

B. Preparation of the Field Navigation FBM

The test field used for the dry-run of the Field Navigation
FBM was divided into two four experimental plots of 2m wide
by 46.5m long that have been prepared and sown with two
maize crop rows each. The inter-row spacing was 75 cm, and
the mean maize plant spacing on the sowing line was 14 cm.
We sowed two maize plots with straight lines of plants and
the other two with a curve in the middle of the row by shifting
the lines by an offset. At each end of the plot, a free grassy
area allowed robots to realize the half-turn required to invert
their motion direction. In the two plots with the offset, maize
rows were straight for about 10m before and after the offset.

Due to the dry-run meteorological conditions, maize growth
was limited. The maize plants reached only the growth stage
in which they show two or three small yellow leaves for an
approximate height between five and six centimetres. Figure 6
shows the configuration of the four maize plots used for the
FBM.

C. Execution of the Field Navigation FBM in the dry-run

Due to the ongoing pandemic’s strong constraints, only
one participant executed the Field Navigation FBM: namely
SITIA, a French company. SITIA, a partner of the Roseau team
in the ROSE challenge, participated with its Trektor platform
(see Figure 5). Trektor is a hybrid platform developed for
agricultural applications of market gardening and viticulture.



Fig. 4: Assessment of the damaged crop plants and counting
of destroyed weeds in the Intra-Row Weeding Benchmark.

SITIA’s execution of ACRE’s FBM took place on October
22th, 2020.

In preparation for the Field Navigation FBM, a SITIA
operator recorded several points between the maize rows on
each plot with a portable RTK GPS. The recorded trajectories
allowed the Trektor to perform the field navigation FBM later.
It must be noted that pre-recording waypoints, while perfectly
acceptable in the dry-run context, are not compatible with the
rules of the ACRE competition, which require that the robots
exploit onboard perception to follow the plant rows.

The Trektor platform, placed manually in front of the
first straight row at the starting point, successfully followed
the maize rows until the end using the pre-recorded GPS
points (see Figure 5). All trajectories were executed without
damaging the crop, as required by the benchmark. At each end
of the maize plot, the SITIA operator manually controlled the
half-return required to invert motion direction. Again, it must
be noted that manual driving is compatible with the dry-run
but not with the full rules of the Field Navigation FBM.

IV. ACRE DRY-RUN CASCADE CAMPAIGN

In the ACRE Dry-Run Cascade Campaign, we built upon
the data collected by the participants of the 2019 ROSE Chal-
lenge. We set up an online competition asking to segment RGB
images to distinguish between crop, weeds, and background.
Automatic crop and weed segmentation can be a driver of
innovations to optimize the agricultural processes. A ground
robot can exploit automatic weed detection for mechanical
weeding; thus, the use of chemicals could even be avoided
entirely.

The competition was published via CodaLab Competitions
[16], a powerful open-source framework for running com-
petitions that involve results or code submission. Organizers
can program many aspects of the competition, thus having
more space for customization. It is also possible to run the
competitions in the organizers’ docker, and their compute
workers. Since we did not need a high computing workforce,
we hosted our competition on the CodaLab servers.

In the competition, we had 57 teams accounting for 457
individuals. On the total number of participants, 95.6% were
from 53 different institutions (universities, research centers,
and companies). The remaining 4.4% declared to be not
attached to any institution for the scope of the competition.

The competition duration was 97 days, from 17 October
2020 to 22 January 2021 (plus one day of extension on 29
January 2021). It has been divided into two phases, Develop-
ment and Final. In the Development phase, participants were
required to train their models on the Training set and submit
predictions of the Test Dev set. At the end of the Development
stage, we released the labels of the Test Dev set and the
new, unseen and unlabeled, Test set. Thus, in the Final phase,
participants were required to submit predictions of the new
Test set. The Final phase was restricted to the last three days
of the competition and characterized by a limited number of
submissions (a maximum of 10 submissions). The limit to
the number of submissions was imposed to reduce the risk of
overfitting.

The dataset was composed of images captured by different
sensors in different moments and was about two kinds of
crops: haricot and maize. Data came from the 2019 ROSE
Challenge, where four teams have competed with agricultural
robots. The names of these four teams are Bipbip, Pead,
Roseau, and WeedElec. Each team has collected images of
the same two crops, but in different moments and with
different sensors (RGB cameras). The dataset contained both
RGB images and some labeled masks (ground truth). Masks
were composed of three different classes: crop, weed, and
background. Figure 7 shows an example of an RGB image and
its corresponding labeled mask. Dataset images were divided
by the team that acquired the image, and for each team, by
the type of crop present in the images, i.e., haricot and maize.
In particular, the dataset was composed as in the following:

• 90 Training images (per team per crop)
• 15 Test Dev images (per team per crop)
• 20 Test images (per team per crop)

Thus, since we had four teams and two types of crops, the
total number of images in the dataset was 1000.

Participants were evaluated on the mean Intersection over
Union (IoU) obtained on the two classes, crop, and weed.
The Intersection over Union, also called Jaccard Index [17],
is typically used in segmentation tasks, and it essentially
quantifies the percentage of overlap between predicted and
target segmentations. If A is the prediction and B is the ground
truth, the IoU is calculated as in the following:

IoU =
| A ∩B |
| A ∪B |

.

IoU was computed for each target class (crop and weed)
separately, by considering prediction and ground truth as
binary masks. Then, the final IoU is computed by averaging
the two. Thus, we had the following formulation:

IoUcrop = TPcrop/(TPcrop + FPcrop + FNcrop)

IoUweed = TPweed/(TPweed + FPweed + FNweed)



(a) First pass (straight row). (b) Manually controlled half-turn. (c) Second pass (curved row).

Fig. 5: The Trektor robot executing the Navigation FBM during the ACRE dry-run Field Campaign.

Fig. 6: Robot path for the Navigation FBM. In the two bottom
lines you can note the central offset.

IoU = (IoUcrop + IoUweed)/2

where TP are the True Positives, FP are the False Positives
and FN are the False Negatives.

Thanks to the CodaLab Competitions framework’s flexibil-
ity, we could score the participants with different customized
IoUs. In particular, we scored the participants according to the
“Global IoU” (by considering the images of both crops and
the four teams), the Haricot and Maize IoUs, and an IoU for
each of the four teams (Bipbip, Pead, Roseau, and WeedElec).
Thus, we nominated seven competition winners for each of the
categories above.

Figure 8 shows the daily-wise distribution of the total
number of submissions and the evolution of the daily highest
score (Global IoU). The highest Global IoU was 0.7858 in
the Development phase and 0.7753 in the Final phase. In the
Development phase, the highest IoU related to teams Bipbip,

Pead, Roseau, and WeedElec, was 0.8272, 0.6256, 0.7129, and
0.8319, respectively. In the Final phase, the highest IoU related
to teams Bipbip, Pead, Roseau, and WeedElec, was 0.8189,
0.6483, 0.7359, and 0.8115, respectively. In the Development
phase, the highest IoU related to Haricot and Maize was
0.7954 and 0.7720. In the Final phase, the highest IoU related
to Haricot and Maize was 0.7740 and 0.7748. The results
obtained in the Final phase were, in general, lower but still
close to those of the Development phase. The team Pead
images were the most challenging to segment in both phases,
probably due to the RGB camera’s different positioning.
Haricot and Maize images did not show relevant differences in
the corresponding IoU scores, suggesting a similar complexity
of the task.

V. CONCLUSIONS

In this paper, we have presented the design of a robotics
competition in the agricultural setting. The competition has
been designed around the complex task of intra-row weeding
to develop autonomous robots capable of pesticide-free weed
destruction. This task requires robot perception, navigation,
and manipulation capabilities. These capabilities are evaluated
in an objective, repeatable, and reproducible way via an
established methodology that is based on task and functionality
benchmarks [12].

The design of outdoor agricultural competitions poses sev-
eral challenges. For instance, weather conditions’ uncertainty
has a clear impact on the stage of crops at the competition
time. To deal with this uncertainty, we organized the first
edition of the ACRE competition in dry-run mode. Indeed, we
aimed to investigate the benchmarks’ feasibility in the setting
where the Field Campaigns will happen in the following years.

As a follow-up of Field Campaigns, ACRE foresees Cascade
Campaign based on data acquired on the field. Cascade
Campaigns are aimed at targeting the Artificial Intelligence
community with tasks such as Plant Discrimination. The first
Cascade Competition has seen many participants as it did
not require a physical robot but just software components.
It is worth noticing that the online competition has attracted
companies’ and universities’ involvement, being the latter also



(a) RGB image (b) Labeled mask

Fig. 7: A couple of RGB image and corresponding ground truth mask from the dataset used in the 2020 ACRE dry-run Cascade
Campaign.

Fig. 8: Daily-wise distribution of the total number of submissions and evolution of the daily highest score (Global IoU).

interested in using the competition data to have students facing
real-world problems in their AI and Machine Learning courses.
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