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Abstract
Onmodern ships, the quick development in data acquisition technologies is pro-
ducing data-rich environments where variable measurements are continuously
streamed and stored during navigation and thus can be naturally modelled as
functional data or profiles. Then, both the CO2 emissions (i.e. the quality char-
acteristic of interest) and the variable profiles that have an impact on them (i.e.
the covariates) are called to be explored in the light of the new worldwide and
European regulations on the monitoring, reporting and verification of harmful
emissions. In this paper, we show an application of the functional regression con-
trol chart (FRCC) with the ultimate goal of answering, at the end of each ship
voyage, the question: given the value of the covariates, is the observed CO2 emission
profile as expected? To this aim, the FRCC focuses on the monitoring of residuals
obtained from a multivariate functional linear regression of the CO2 emission
profiles on the functional covariates. The applicability of the FRCC is demon-
strated through a real-case study of a Ro-Pax ship operating in theMediterranean
Sea. The proposed FRCC is also comparedwith other alternatives available in the
literature and its advantages are discussed over some practical examples.

KEYWORDS
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1 INTRODUCTION

Nowadays, the quick development in the data acquisition (DAQ) technologies is producing data-rich industrial environ-
mentswheremassive amounts of data are available. In particular, a large portion of the ship observational data are complex
measurement signals that may be envisaged as reflecting smooth variations of quantities generated by continuous func-
tions defined on an infinite compact domain, that is, as functional data. Functional data analysis (FDA) is a thriving area
of statistics. For a comprehensive overview, the reader could refer to Ramsay and Silverman,1 Horvath and Kokoszka2 and
Kokoszka and Reimherr.3 In this functional data setting, profile monitoring4 is the name of a new branch of statistical
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process control (SPC) that provides a suite of methods to continuously give a solution to the urging issue of evaluating the
stability over time of functional quality characteristics. Recent contributions are Colosimo and Pacella,5 Grasso et al6 and
Menafoglio et al.7 As in the classical SPC, where data are scalars, profile control charts have the task of monitoring the
functional quality characteristic and of triggering a signal when assignable sources of variations (i.e. special causes) act
on it. When this happens, the process is said to be out of control (OC). Otherwise, when only normal sources of variation
(i.e. common causes) apply, the process is said to be in control (IC).
Only recently, Centofanti et al8 introduced the functional regression control chart (FRCC) framework to monitor a

functional quality characteristic when this is influenced by one or more functional covariates. In particular, the aim of the
FRCC is to improve the monitoring of the quality characteristic by including the information coming from the covariates.
In this scenario, if one of these covariates manifests itself with an extreme realization, the quality characteristic may
wrongly be judged to be OC, even though it shows perfectly reasonable values given the covariates. Otherwise, there may
be situations where the covariates are not extreme and the quality characteristic may wrongly appear IC because the
information in the covariates is not used to increase the power of the monitoring.
The FRCC framework is the functional extension of the basic Mandel’s idea,9 where the quality characteristic is mon-

itored after being adjusted for the effect of covariates. That is, the control variable is the residual obtained from a regres-
sion of the quality characteristic on the covariates, and the focus is spotted on the residual variability not explained by
the knowledge of the observed value of the covariates. In a more direct phrasing, the FRCC answers the question: given
the value of the covariates, is the quality characteristic as expected? Alternatively, the question could be phrased as: does
the assumed model fit the reality of the quality characteristic? If the answer is no, then special causes may have occurred
that are beyond the information brought by the covariates through the chosen regression model. In particular, in the
FRCC framework, the quality characteristic and the covariates are linked through a multiple functional linear regres-
sion model (MFLR), where both the response and the explanatory variables can be described by functional data. Recent
examples of MFLR model can be found in Palumbo et al,10 Centofanti et al11, 12 and Chiou et al.13 The idea of monitoring
model residuals arises also in SPC with autocorrelated data, for example, time series.14–16 In this setting, residuals from
an autoregressive model are used to recover independence of the observations, because conventional control charts are
known not to work well if the quality characteristic exhibits even low levels of correlation over time.17 In the regression
control chart idea, residuals are used to adjust the quality characteristic for the information in the covariates.
In recent years, profile monitoring has emerged as an effective technique also in the field of maritime transport where

the issue of CO2 emission monitoring is becoming of paramount importance.8, 18, 19 Indeed, in view of climate change
and global warming crises, the maritime transport industry is currently facing new challenges related to CO2 emissions.
Indeed, the Marine Environment Protection Committee of the International Maritime Organization20–22 has urged ship-
ping companies to set up a framework for the monitoring, reporting and verification (MRV) of CO2 emissions based on
fuel consumption. In the face of these regulations, shipping companies are updating DAQ systems on their fleets, enabling
large volumes of observational data to be automatically streamed and transferred to a remote server, bypassing human
intervention. A large proportion of these data can be modelled as functional data, thus representing a new challenge for
FDA and related SPC methods in this area. The DAQ system installed on modern ships facilitates in fact the collection
of functional data related to CO2 emissions as well as to other functional covariates affecting them, which include the
speed of the ship, engine variables such as the propeller pitch variables, environmental variables that describe the wind
and sea conditions or the cumulative navigation time (we refer to Section 2.2 for more details on the variables consid-
ered in this work). However, most of the approaches that have already appeared in maritime literature23–25 do not take
advantage of the potential help to managerial decision making represented by the modelling of the entire voyage profiles
acquired and usually compress information in one or more scalar features extracted from them. In this setting, a recurrent
request posed by maritime engineers is related to the CO2 emissions corresponding to the given values of other recorded
covariates. That is, they want to assess if CO2 emissions are coherent with the values of the covariates, in order to identify
unexpected behaviours and take corrective measures. Engineers are less concerned in identifying CO2 emission profiles
that are extreme with respect to their marginal distribution, if this can be explained by some extreme value in the covari-
ates. They are rather interested in CO2 emission profiles that are not consistent with covariates affecting them because,
for example, they can reveal anomalous ship performance.
The FRCC can be used to meet this engineering need. In this paper, we propose to use the FRCC to monitor ship CO2

emissions throughout each voyage, in order to identify special causes, at given values recorded by functional covariates.
Specifically, we consider a particular implementation of the FRCC framework, where the functional quality characteristic,
hereinafter referred to also as response, and the functional covariates are related through themultivariate functional linear
regression (MFLR) model. In this paper, the MFLR model is estimated based on the multivariate functional principal
components analysis (FPCA).13, 26 Then, studentized residuals are monitored through the simultaneous application of
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TABLE 1 Technical features of the considered Ro-Pax ship
Features Value
Gross tonnage 32,728
Length 203.9m
Beam 25m
Draft 6.8m
Maximum power for propulsion 46,080 kW
Maximum speed 28.9 knots

the Hotelling’s "2 and the squared prediction error (SPE) control charts.4–6, 27 In this paper, the FRCC framework is used
both retrospectively, as an aid to the practitioner to determine the IC state of the process under study and to identify an IC
reference sample (Phase I), and, prospectively to monitor any departure from the IC state at future voyages (Phase II). The
applicability of the FRCC is demonstrated through a real-case study of a Ro-Pax ship operating in the Mediterranean Sea,
courtesy of the shipping company Grimaldi group.
This work does not directly aim at a real-time feedback control, that is, in the online monitoring and immediate actions

during an ongoing voyage. The FRCC framework is indeed used to signal OC voyages once they are completed, as "2
and #$% monitoring statistics are going to be calculated on the entire profiles. Instead, the proposed FRCC focuses on
tracking automatically (and possibly the whole fleet) the future OC signals, or patterns and trends that may identify, for
example, engine malfunctioning, the need for hull cleaning or for any other energy efficiency initiative. Even though no
action could be taken during an ongoing voyage, we believe this paper motivates the use of a functional data approach
as the FRCC can be indeed used by shipping companies to evaluate, at the end of a voyage, if the observed CO2 emission
profile is anomalous, given the value of the observed covariates. This information can help to prevent and disguise possible
problems in future voyages, or to schedule maintenance operations.
The paper is structured as follows. In Section 2, the structure of the data and technological details of the ship equip-

ment are provided for the real-case study at hand. In Section 3, the main materials and methods behind the particular
implementation of the FRCC framework are summarized. In Section 4, by means of the real-case studymentioned before,
the FRCC is practically applied to monitor CO2 emissions and compared with alternative methods already appeared in
the SPC literature. In Section 5, we draw conclusions. All computations and plots have been obtained using the software
environment R.28

2 TECHNOLOGICAL BACKGROUND AND DATA STRUCTURE

For confidentiality reasons, in what follows we omit the name of the ship considered in the real-case study. However, to
give an idea of the ship type, in Section 2.1, we provide its main technical features. Whereas, in Section 2.2, we describe in
detail all the variables and the data used for the analysis.

2.1 Technical features

The main technical features of the ship are illustrated in Table 1. The considered ship is characterized by two engine sets,
each consisting of two main diesel engines for propulsion Wärtsilä, Type 16ZAV40S, four-stroke, with a maximum con-
tinuous rating of 11,520 kW at 510 revolutions per minute (rpm) and by two variable pitch propellers and a shaft generator
for electric power supply. The main engine power is used both for propulsion and electrical generation through the shaft
generators, which are themselves keyed on a gearbox. The gearbox has two fast inlet shafts powered by the engine shaft,
a slow outlet shaft for the propeller and a faster one to which the shaft alternator is connected. The gear ratio between
the engine shaft and the propeller shaft is equal to 3.24, whereas the gear ratio between the engine shaft and the shaft
alternator is equal to 0.32. The main diesel engine can be powered by three types of fuel with different percentage of sul-
phur (S) content in order to be compliant with the regulation in force on the geographical area to be sailed: heavy fuel oil,
very low sulphur fuel oil (≤0.5% #), ultra-low sulphur fuel oil or marine gas oil (≤0.1% #). The electrical power supply of
the ship consists of three diesel generators (1840 kVA, 690 V), two shaft generators (2100 kVA, 690 V) and one emergency
diesel generator (480 kVA). Themain engines can supply power in two differentmodes, at fixed rpm (constantmode) or at
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variable rpm (combined mode). In the constant mode, shaft generators can be used to supply electric power, even though
the maximum speed cannot be reached because speed variations are only possible by changing the pitch of the propellers.
Whereas, in the combined mode, the ship speed can be regulated by increasing both pitch propeller and engine rpm, but,
vice versa, the possibility to engage the shaft generator is lost.

2.2 Data description

Data come from a DAQ system installed on the ship that are transmitted to the cloud with different frequencies varying
from 2 to 5min. The data refer to a specific route, that is, each profile in the data set corresponds to a voyage of the ship and
all voyages have the same departure and arrival ports. A period of 11 consecutive months following a dry-dock operation
on the ship is considered. Voyages in the first nine months (i.e. from the beginning of February 2020 to the end of October
2020) are used in Phase I, that is, to identify a reference data set, estimate the model and control chart limits. Voyages
in the last 2 months (i.e. from the end of October 2020 to the end of December 2020) are used in Phase II to show the
performance of the FRCC onmonitoring new voyages. We start with a data set of 190 voyages for the Phase I (Section 4.1);
then we remove outliers as described in Section 4.1.2 and we end up with a reference data set of 169 voyages; finally, we
consider 22 voyages for the Phase II (Section 4.2).
Note that the data refer to the navigation phase. More specifically, the navigation phase begins with the finished with

engine order (when the ship leaves the departure port) and ends with the stand by engine order (when the ship enters
the arrival port). Moreover, we need to identify an adequate functional domain for each voyage. Even if time is naturally
suitable as a functional domain, total travel time can vary from voyage to voyage. Therefore, we prefer to use the fraction
of distance traveled over the voyage as the common domain (0,1) of the data.
All the signals acquired by the DAQ system are summarized into several variables that we describe here to select later

the functional covariates and response considered in theMFLRmodel. The ship is tracked by its global positioning system
(GPS),which provides longitude and latitude coordinates. The course over ground (COG) is the actual direction of progress
of a vessel, between two points, with respect to the surface of the earth, measured in degrees. The sailed distance over
ground (SDOG) is the distance travelled by the vessel between two points, measured in nauticmiles (NM), calculated from
the GPS sensor through the Haversine formula. The speed over ground (SOG) is measured in knots (kn) and is the ratio
between SDOG and the sailing time, measured in hours. The propeller pitch (P) is measured in degrees and represents
the angle between the intersection of the chord line of the blade section and a plane normal to the propeller axis. An
anemometer sensor provides data about the true speed (&), measured in knots, and direction ('), measured in degrees,
of the wind. The latter is obtained as the difference between the true wind angle in earth system and the COG. Additional
information on the wind variables can be found on Bocchetti et al.25 From the two anemometer variables, the longitudinal
component of the wind is calculated as & cos', while the transversal component is calculated as |& sin'|. Note that a
positive (respectively, negative) longitudinal component of the wind means that the wind blows from stern (respectively,
bow). Moreover, a data fusion process also allows the integration of marine data into the data set, that is, weather forecasts
about the sea state furnished by private held weather service provider. The sea state is characterized by the provider
through the typical parameters, namely, height and period, used to model waves that, in turn, are roughly divided into
two components: wind-driven waves, or simply waves (generated by the immediate local wind) and swell (generated by
distant weather systems and usually having larger period). In particular, the height, measured in meters, is defined as the
vertical distance from wave crest to wave trough; whereas, the period, measured in seconds, represents the time between
successive crests of a train of waves passing a fixed point in a ship, at a fixed angle of encounter.29 Regarding the CO2
measurement, MRV regulation proposes direct and indirect methods. The direct method determines the amount of CO2
emitted measuring the flow of these emissions passing in exhaust gas funnels. Instead, the indirect method calculates the
CO2 emissions based on the fuel consumption. The direct method is based on the determination of CO2 emitted that flow
in exhaust gas stacks based on the measurement of the CO2 in the exhaust gas and the measurement of the volume of
the exhaust gas flow per unit of time. This method is very sensitive to the calibration and the uncertainty related to the
measurement devices. Whereas, the class of indirect method calculates CO2 emissions as a product of the whole amount
of fuel consumption of the main and auxiliary engines, boilers, gas turbines and inert gas generators times the so-called
emission factor, which is calculated as the average emission rate of a greenhouse gas (GHG) relative to the activity data of
a source stream, assuming complete oxidation for combustion and complete conversion for all other chemical reactions.
In this paper, we use the indirect method and we focus on the main engines only.
In what follows, we list the functional variables chosen for the analysis in this work that are obtained from the signals

acquired by the DAQ system. The functional response is the signal corresponding to the CO2 emissions per hour along the
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TABLE 2 Functional covariates used in the MFLR
Variable name Unit of measurement

1 Speed over ground (SOG) kn
2 Propeller pitch 1 degrees
3 Propeller pitch 2 degrees
4 Swell height m
5 Wave period s
6 Wave height m
7 Longitudinal wind component kn
8 Transverse wind component kn
9 Navigation time h/(NM[%])

Note: For confidentiality reasons, (-axis labels are omitted.
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F IGURE 1 Functional covariates in the reference data set

entire voyage. In order to select functional covariates among the available signals, a very long preliminary investigation
was carried out to identify the covariates that could better explain the CO2 emissions. However, in practice, many signals
that could have played the role of covariates were not able to be measured accurately. The intersection between the set of
candidate and trulymeasurable covariateswas finally identified after an intensive exchange of information and experience
with marine engineers, shipping managers and operators. The following nine functional covariates have been identified,
which are, thus, assumed as a characterization of the ship operational conditions: SOG, left propeller pitch, right propeller
pitch, transversal and longitudinal component of the wind, wave height, wave period, swell height and derivative of the
cumulative navigation time. Table 2 reports the complete list of the functional covariates considered in this work.
Moreover, Figures 1 and 2 show the profiles of covariates and response, respectively, included in the reference data

set used for model building and control chart limits estimation. In Section 4, we describe with more details how smooth
profiles are obtained from the discrete observations acquired by the DAQ system over time, with 2–5min frequency.
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F

F IGURE 2 Functional response in the reference data set. For confidentiality reasons, (-axis labels are omitted

3 METHODOLOGY

The FRCC is a general framework for profile monitoring that can be divided into three main steps.8 First, (i) define an
MFLRmodel which links the functional response variable *̃, defined on the compact domain  and a vector +̃ of random
functional covariates ,̃1, … , ,̃-, defined on the compact domain  . Secondly, (ii) define the estimation method of the
chosenmodel and thirdly, (iii) define the monitoring strategy of the functional residual, which is defined as the difference
between the fitted value and *̃. In what follows, we assume that ,̃1, … , ,̃- and *̃ have smooth realizations in .2() and.2( ), that is, the Hilbert spaces of square integrable functions defined on  ,  ⊂ ℝ.
A specific implementation of the FRCC can be obtained by assuming for the step (i) the following MFLR model:

*(1) = ∫ (2(3, 1))"4(3)53 + 6(1) 1 ∈  , (1)

where * and + are the standardized versions of *̃ and +̃, obtained through the transformation approach of Chiou et al.13
The regression coefficient 2 = (81, … , 8-)" , is a vector where 89 ’s are square integrable bivariate functions defined on the
closed interval  ×  , and the random error function 6 has zero mean and variance function ;26 , and is independent of +.
For the step (ii), we use an estimation method based on the multivariate Karhunen–Loève’s Theorem.30 In particular,

we assume that the standardized covariate and response variables can be represented as follows:

4 = ∞∑
9=1 =,9 >,9 * = ∞∑

9=1 =*9 '*9 , (2)

where>,9 = (',91, … ,',9-)" and '*9 are principal components (PCs). PCs are defined as the eigenfunctions of the covariance
operator of the standardized covariates and response variable corresponding to the eigenvalues ?,9 and ?*9 in descending
order, respectively. The scores =,9 = ∑-@=1 ∫ ,@(3)',9@(3)53 and =*9 = ∫ *(1)'*9 (1)51 are such that E(=,9 ) = 0, E(=,9 =,@ ) =?,9 A9@ and E(=*9 ) = 0, E(=*9 =*@ ) = ?*9 A9@ , with A9@ the Kronecker delta. As demonstrated in Chiou et al,31 the regression
coefficient can be then expressed as follows:

2(3, 1) = ∞∑
9,@=1

E(=,9 =*@ )?,9 >,9 (3)'*@ (1) 3 ∈  , 1 ∈  . (3)

An estimator of 8(3, 1) can be readily obtained by considering the truncated version of Equation (3), that is
2.B(3, 1) = .∑

9=1
B∑
@=1 C9@>,9 (3)'*@ (1) 3 ∈  , 1 ∈  , (4)
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with C9@ = E(=,9 =*@ )∕?,9 , and .,B <∞. Plugging Equation (4) into Equation (1), due to the orthonormality of the PCs >,9
and '*9 , we obtain

E*B = (F.B)"E,. + GB , (5)

where E*B = (=*1 , … , =*B)" , E,. = (=,1 , … , =,. )" , GB = (H1, … , HB)" and F.B = {C9@}9=1,…,.,@=1,…,B , with H9 = ∫ 6(1)'*9 (1)51.
Therefore, the problem of estimating 2 reduces to the estimation of the matrix F.B , which can be obtained through
least squares given I independent realizations (+̃9 , *̃9) of (+̃, *̃). Then, given the least-squares estimator F̂.B of F.B , the
estimator 2̂.B of 2 can be calculated as

2̂.B(3, 1) = (>̂*(1))"(F̂.B)"K̂,(3) 3 ∈  , 1 ∈  , (6)

where >̂* = ('̂*1 , … , '̂*B)" , K̂, = (>̂,1 , … , >̂,. )" , with '̂*9 and >̂,9 = ('̂,91, … , '̂,9-)" estimators of '*9 and >,9 , respectively.
Finally, an estimator *̂.B of * is

*̂.B = .∑
9=1

B∑
@=1 Ĉ9@=̂,9 '̂*@ , (7)

where Ĉ9@ are the entries of F̂.B and =̂,9 = ∑-@=1 ∫ ,@(3)'̂,9@(3)53.
For the step (iii), we can define the raw functional residual as

L(1) = *(1) − *̂.B(1) 1 ∈  . (8)

However, by following the remarks in Centofanti et al,8 we shall better consider a scaled version of it, named studentized
functional residual, and defined as

L31N(1) = *(1) − *̂.B(1)Cov* (* − *̂.B)1∕2(1) 1 ∈  . (9)

The residual variance function is estimated as Ĉov*(* − *̂.B)(1) = ;̂26 (1) + P̂.B(1, 1), for 1 ∈  , where ;̂26 is an estimator
of ;26 and P̂.B is defined as

P̂.B(3, 1) = Cov (*̂.B)(3, 1) = (Ê +. )"(Q̂"+Q̂+)−1Ê +. >̂*B(3)"R̂GB >̂*B(1) 3 ∈  , 1 ∈  , (10)

where Ê +. is the estimator of the score vector E,. of 4, Q̂"+Q̂+ is the estimator of ICov(E,. , E,. ), >̂*B is the estimator of
the vector of the first B eigenfunctions of *, and R̂GB is the estimator of Cov(GB). As stated in Ref. [8], the use of the
studentized functional residual, in place of the raw residual, is needed to reduce the effect of covariate mean shifts on the
performance of the FRCC to identify OC condition of the quality characteristic, which can be large especially when the
coefficient function is poorly estimated. In this case, it can be demonstrated that the interpretation of the FRCC becomes
cumbersome, indeed a point falling outside the FRCC control limits could be wrongly assigned to a mean shift in the
quality characteristic even though it shows a perfectly reasonable behaviour given the value of the covariates. This is
problematic because the aim of the FRCC is to monitor the quality characteristic assigned the value of the covariates, and,
thus, if amean shift in the covariates causes anOC, the chart is saying that the value of quality characteristic disagreeswith
those of the covariates that, of course, it is not true. In this respect, the studentized functional residual is less influenced
by covariate mean shifts than the raw residual. Indeed, the aim of Cov*(* − *̂.B)1∕2 is to weight the raw residual on the
basis of its uncertainty, such that for an extreme realization of +, the residual is heavily scaled. Thus, the probability of
the quality characteristic to be judged IC, when no special causes apply to the process, is larger than that corresponding to
the raw residual. Note that, for a large sample sizes, consistently with the data set complexity, the studentized functional
residual leads to the same results of the raw residual, because in this case it is independent of the values achieved by the
covariates. Therefore, the use of studentized residual allows controlling the false alarm rate in presence of covariate mean
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shifts, which comes at a cost of reducing the power of the FRCC in identifying OCs in the quality characteristic, especially
for extreme values of the covariates. However, this behaviour is inevitable because comes from the greater uncertainty in
the model estimation originated by a limited number of extreme realizations in the reference sample.
We use a monitoring strategy based on the Hotelling’s "2 and the #$% control charts4, 6 27, 32 applied to L31N in Equation

(9). In particular, the studentized functional residual L31N is approximated as
L31N,S = S∑

9=1 =L9 'L9 , (11)

where the scores =L9 = ∫ L(1)'L9 (1)51 and the PCs'L9 are the eigenfunctions corresponding to the eigenvalues ?L9 in descend-
ing order of the covariance function of L31N. The Hotelling’s statistic "2 is obtained as follows:

"2L = E LR−1E L E L, (12)

where REL = diag(?L1, … , ?LS) is the variance–covariance matrix of E L = (=L1, … , =LS)" . Note that "2L is the squared distance
of the projection of L31N from the origin of the space spanned by the PCs standardized for the score variances. Analogously,
changes along directions orthogonal to the latter space are monitored by the statistic

#$%L = ∫
(L31N(1) − L31N,S(1))251. (13)

The control charts are designed in Phase I bymeans of a set ofI functional studentized residuals L31N,9 , 9 = 1,… ,I, obtained
by I independent realizations (+̃9 , *̃9) acquired under IC conditions. Phase I includes also the estimation of the MFLR
model unknown parameters, the PCs 'L9 and the matrix R=L (calculated by means of the sample covariance) as well as the
estimation of the control limits for both theHotelling’s "2 and the #$% control charts. The latter can be obtained bymeans
of the (1 − T)-quantiles of the empirical distribution of the two statistics, where T is chosen to control the overall type I
error probability. In the monitoring phase (Phase II), the functional studentized residuals of new data are calculated and
an alarm signal is issued if at least one of the corresponding "2L and #$%L statistics violates the control limits.
4 RESULTS AND DISCUSSION

In this section, we show the results of the application of the FRCC to the data set described in Section 2.2. In particular, the
retrospective and prospective phases, that is, Phase I and Phase II, are described in Section 4.1 and Section 4.2, respectively.
Moreover, in Section 4.3, a comparison with simpler monitoring approaches is shown.
Wehave used theRpackage funcharts to build the FRCCand performall the analysis shown in this paper. The package

is available on CRAN at https://cran.r-project.org/web/packages/funcharts/index.html. Moreover, in the supplementary
material we provide an R script and the data to reproduce the results in this paper. Note that the data have been scaled for
confidentiality reason.

4.1 Phase I

Phase I comprises the recovery of smooth functional data from the discrete observations for each voyage (Section 4.1.1),
the identification of the reference data set of IC voyages (Section 4.1.2) and, the estimation of theMFLRmodel as described
in Section 3 (Section 4.1.3).

4.1.1 Data smoothing

The first step of the analysis is to get smooth functional data from the discrete observations for each voyage of the ship.
We use B-spline basis expansion and penalized least squares to estimate the corresponding basis coefficients. A common

https://cran.r-project.org/web/packages/funcharts/index.html
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F IGURE 3 Median, across all voyages in the Phase I data
set, of the generalized cross-validation (GCV) error as a
function of the number of basis functions, for each functional
variable

approach is to set a quite large number of basis functions and then select the optimal smoothing parameter by minimiz-
ing the generalized cross-validation (GCV) error.1 However, the number of available discrete points is above 200 for each
voyage and, by following this approach, the GCV criterion leads to choosing the smoothing parameter equal to zero in
practice for all functional variables. This is a typical problem of overfitting, as also pointed out by Reiss and Ogden,33
which show that at finite sample sizes GCV is likely to developmultiple minima and undersmooth. Therefore, we encour-
age parsimony and achieve regularization by choosing a small, efficient number of basis functions, with the smoothing
parameter fixed to a small positive value (i.e. 10−10) to ensure identifiabilty. In Figure 3, we plot the GCV error against the
number of B-spline basis functions. While increasing the number of basis functions reduces the GCV error, we select 25
basis functions for all functional variables as the elbow point of these curves.

4.1.2 Reference data set

Once functional data are obtained, in order to monitor a set of voyages in a considered period, it is necessary to identify a
reference data set of previous IC voyages that can be used for model building and estimation of the Hotelling "2 and #$%
control chart limits. Starting from an historical data set, any voyage that is not representative of the IC conditions has to
be removed from it. Specific Phase I techniques are designed for the problem of eliminating anomalous voyages from the
historical data set and generally lead to the construction of control charts with different limits from the ones calculated in
Phase II. However, the problem of selecting the best method to perform Phase I is beyond the scope of this paper, which
is instead mainly focused on Phase II monitoring. In this paper, we use the same FRCC framework also in Phase I and
based on experts’ opinion, to establish which voyages are actually considered anomalous and have to be excluded. That
is, we first use the historical data set to build the FRCC and estimate the control chart limits, and we plot the FRCC for
the same voyages; then, voyages signalled as anomalous are carefully investigated by maritime engineers to understand
if special causes occurred; in these cases, voyages are removed from the data set; the process is repeated until the final
reference data set is obtained, which contains only voyages considered as IC. Starting from the initial historical data set of
190 voyages, at the end of this iterative process of identifying outliers, detecting anomalies, removing anomalous voyages
and refitting the model, we get a reference data set of 169 voyages. Figure 4 shows the FRCC applied to the initial data
set. The U-axis label indicates the voyage number (VN) and is here intended to be a progressive counting label to denote
subsequent voyages in the data set. Moreover, Figure 5 shows some OC studentized residual profiles correctly signalled
as anomalous.

4.1.3 Model building

The FRCC relies on the choice of . andB in Equation (4), as well as S in Equation (11). Figure 6 shows the cumulative
fraction of variance explained by the functional PCs in the multivariate functional covariates, the functional response and
the functional studentized residuals, respectively. Based on the results in Figure 6, we opt for a more parsimonious choice
than that suggested in Centofanti et al8 and set the thresholds for the explained variability in the data as 80%, 95% and
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F IGURE 4 FRCC used for Phase I monitoring on the initial data set of 190 voyages, to remove outliers and define the reference data set

F F

F IGURE 5 Some functional studentized residuals identified as OC in Phase I, plotted in red against all the other ones in the original
Phase I data set, plotted in grey

95%, respectively, that is, we select . = 7,B = 1 and S = 8. The corresponding actual fractions of variance explained are81%, 96% and 96%.
To allow for a possible interpretation of the selected functional PCs, in Figure 7 we plot the eigenfunctions of the

covariance operator of the standardized multivariate functional covariates. Since they all have unit norm, we multiply
them by the square root of the corresponding eigenvalues so that profiles with larger norm are PCs that explain a larger
fraction of the total variance in the data. It can be readily envisaged that the first PC depends almost entirely on the two
propeller pitch variables, the SOG and the navigation time. The latter is negatively correlated with the other variables,
and for all these variables, weights are almost constant over the entire functional domain. The second PC strongly
depends on the sea state descriptors (swell height, wave height and wave period) and only on the transversal component
of the wind. These functional variables all have positive weight, with some parts of the domain showing slightly larger
weight than others. The third PC seems to mainly depend on the longitudinal component of the wind alone. In other
words, the first PC describes how fast the ship is moving, while the second and third PCs capture two distinct aspects of
environmental conditions. Figure 8A shows the first PC (i.e. eigenfunction) of the covariance operator of the standardized
functional response, that alone explains most of the variability in the data. This highlights that, after standardization, all
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F IGURE 6 Eigenvalues of the covariance operator of the functional covariates (A), the functional response (B) and the functional
studentized residuals (C), estimated on the reference data set. Vertical dashed lines indicate the selected number of components
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F IGURE 7 Eigenfunctions of the covariance operator of the functional covariates, estimated on the reference data set

fuel consumption per hour profiles are mostly constant over the entire domain, apart from the beginning and the end
of the voyage . Figure 8B shows the eigenfunctions of the covariance operator of the studentized residuals. The first PC
depends on the average value over the entire voyage. The second PC accounts for the difference between the first and the
second half of the voyage. Whereas, some of the following PCs seem to assign a larger weight to the boundaries of the
functional domain, but, however, their interpretation becomes less straightforward.
Figure 9 shows the estimated functional coefficients obtained as in Equation (6). Since the functional response is approx-

imated with a single functional PC, which, in practice, is constant over the entire domain, the functional coefficient shows
only vertical bands along the direction of 1. The most important predictors are those associated with the first and third


