
Machine-Learning Based Prediction of Next HTTP
Request Arrival Time in Adaptive Video Streaming

Andrea Pimpinella1, Alessandro E. C. Redondi1, Frank Loh2, Michael Seufert2
1DEIB - Politecnico di Milano, Milan, Italy, 2University of Würzburg, Würzburg, Germany

{andrea.pimpinella,alessandroenrico.redondi}@polimi.it,
{frank.loh, michael.seufert}@uni-wuerzburg.de

Abstract—Continuously monitoring the network activity to
proactively recognise possible problems and prevent users QoE
degradation is a major concern for network operators, for both
mobile radio and home networks. Considering video streaming
applications, which generate the majority of overall Internet
traffic, monitoring the chunk requests from the video client to
the video server is of particular interest, as they not only indicate
that a download burst is imminent, but their type (e.g., request
of an audio or video chunk) and frequency also allow to estimate
which and how much data will be downloaded to the client. In
this work, we propose a machine-learning based video streaming
traffic monitoring architecture able to i) predict when next uplink
request will be issued by the video client and ii) classify the type
of next uplink request. We evaluate the system performance on a
dataset of more than 900 HTTP adaptive streaming sessions and
15,000 request-response exchanges, where both the predictor of
the next request arrival and the request type classifier are fed
with lightweight features extracted from encrypted traffic in an
online fashion, both in the uplink and downlink directions of the
traffic. Results show that i) the system is able to classify the type
of a HAS uplink requests with an accuracy greater than 95 % and
ii) pipe-lining request type classification and prediction of next
request arrival time improves the final prediction performance.

Index Terms—Network monitoring, HTTP adaptive video
streaming, machine learning, encrypted traffic.

I. INTRODUCTION

The recent improvements in networking technologies, end
devices, and digital services are boosting the generation of
Internet traffic worldwide. It is well known that the majority of
such traffic carries video streaming contents: as an example, in
mobile networks more than 50 % of the downlink traffic is due
to video streaming applications, according to a recent Sandvine
report [1]. Similarly, in home networks a shift towards higher
video resolution like UHD or 4K is clearly visible [2].

From the perspective of an Internet service provider or
a mobile network operator, dealing with high volumes of
video streaming traffic is particularly challenging. Indeed,
such type of traffic constitutes the largest part of total traffic
volume, therefore driving many of the processes related to
network management and optimization. At the same time,
video streaming comes with tight QoE requirements, which
if not met can increase users dissatisfaction and consequently
the churn rate to other operators.

Network operators generally take smart management ap-
proaches and use resource optimization techniques to guar-
antee QoE requirements in an efficient way. Generally, such

techniques are based on the knowledge of aggregated spatio-
temporal traffic patterns, which are known to be recurrent
in large scale networks [3], [4]. However, traffic peaks and
fluctuations from the normal behaviours can greatly affect the
performance of such techniques.

Rather than relying on long-term traffic patterns for manag-
ing the resources, a different approach consists in monitoring
continuously the network activity, trying to anticipate possible
problems and quickly react if a QoE degradation is predicted.
As an example, considering video streaming traffic, monitoring
the chunk requests from the video client to the video server is
of particular interest, as they not only indicate that a download
burst is imminent, but their type (e.g., request of an audio or
video chunk) and frequency also allow to estimate which and
how much data will be downloaded to the client.

The approach comes with its own challenges: first, the
operator generally does not have access to the payload of
the packets flowing in the network due to the increasing
use of application-layer encryption (HTTPS). Therefore, any
monitoring approach of this type must rely only on network
traffic characteristics. Second, if monitoring is applied on
the traffic produced by each user separately, rather than on
traffic aggregates, it must be based on extremely lightweight
processing techniques.

With this paper, we propose a monitoring architecture that
meets such requirements. Our contributions are as follows:

1) We focus on HTTP Adaptive Streaming (HAS) sessions,
and we propose a methodology to predict the next HAS
uplink request arrival based on a dataset of more than
15,000 requests and 900 YouTube streaming sessions.

2) Since HAS requests may be of different types (au-
dio/video), whose knowledge is of paramount importance
to characterize future traffic behaviour, we also propose a
classifier able to differentiate between them with excellent
performance.

3) Both, the predictor of the next request arrival and the
request type classifier are fed with lightweight features
extracted from encrypted traffic in an online fashion.

4) We evaluate the monitoring architecture with extensive
experiments, considering features extracted solely in the
uplink direction or in both directions of the traffic.

The remainder of this paper is structured as it follows:
Section ?? summarises related works, while Section ?? intro-
duces the dataset and the monitoring architecture. Section III

comments on the performance obtained from uplink requests
type classification and next arrival time prediction. Finally,
Section IV concludes and outlines future research directions.

II. RELATED WORKS

Especially in the context of network management, network
traffic classification prediction is important for many applica-
tion areas. An early survey for network traffic analysis and
traffic prediction techniques is given by Joshi in [5], and
especially for real-time traffic by Barros in [6].

For what concerns video streaming, more specific works are
present for video flow detection and classification [7], video
and audio flow separation [8], and overall QoE prediction
with either modeling [9] or machine learning [10], [11], [12]
techniques. In addition, a transfer learning approach across
different networks is presented by Orsolic in [13]. There, the
authors use two large YouTube datasets and the influence of
different locations on the model performance. Furthermore,
the recent question in literature is if video QoE prediction is
preferable from full network traces like done in e.g., [14] or if
uplink requests are enough, as presented by Gutterman [15].
For video QoE prediction based on uplink requests, knowledge
about the arrival time and size of upcoming requests, and the
overall uplink throughput is essential. While a deep learning
based uplink throughput prediction framework is presented by
Lee [16], a more detailed uplink request arrival prediction is,
to the best of our knowledge, not tackled in literature so far.

A. Background

Video streaming services (YouTube, Netflix, etc.) make
use of (encrypted) HAS streaming techniques for delivering
content (e.g., MPEG-DASH). According to such techniques,
the content on the server is divided into a sequence of seg-
ments, containing either audio or video content. Each segment
contains just a short interval of the original content and is
available at different bit-rates. A client willing to stream a
video issues HTTP requests to the server, selecting which
segment to retrieve and at which bit-rate. Generally, the client
requests the maximum bit-rate that can be downloaded in
time without causing stalls or re-buffering events. Sometimes,
the client opens multiple connections to the server (either
TCP or QUIC) in order to parallelize requests. Figure 1
illustrates a typical HAS request-response exchange: first, the
client issues an HTTP request (dashed line) hi to the server,
which after δi seconds replies with a burst of n packets (blue
lines) containing the requested segment. The burst lasts for ri
seconds, depending on the requested segment bit-rate. After
τi seconds from the last packet of the burst, the client issues
another request hi+1. The goal of this work is twofold: based
solely on low-cost features extracted by the i-th client-server
exchange illustrated in Figure 1, we aim to (i) classify the
type of HTTP request transmitted by the client (i.e., audio or
video1) and (ii) predict when the next request hi+1 will be
issued (i.e., provide an estimate for the interval δi + ri + τi).

1Requests for mixed contents are not considered in this work.

7 7.5 8 8.5

Video Playback [s]

1320

1325

1330

1335

1340

1345

1350

1355

P
a
c
k
e
t
S

iz
e
 [
b
y
te

s
]

h
i

h
i+1

i
 r

i

i

p
1

p
n

Fig. 1. Server response Ri to the i-th HAS client request, issued at time hi
= 7.15 s during the playback of a stream taken as example. In blue, the burst
received from the server, composed of n packets sized 1350 bytes each.

B. The Dataset

For the task at hand, we used a dataset containing more
than 15,000 YouTube video sessions, streamed and recorded
from June 2018 to February 2019. The dataset was created
with a monitoring tool similar to [17]. The video sessions were
streamed from different networks (home WiFi network, corpo-
rate WiFi network, LTE mobile network), from four different
geographic locations (Austria, France, Germany, Italy), and
from four different ISPs. During the streaming, we additionally
operated a network emulator, which could artificially limit the
bandwidth on both uplink and downlink.

The measurement framework itself ran on a laptop device
and utilized the Selenium browser automation library. For each
measurement run, it started a Chrome browser and browsed to
a randomly selected YouTube video, where the streaming of
that video was automatically started. Chrome was configured
such that QUIC traffic was enabled and all HTTP requests
were logged during the streaming session. A JavaScript-based
monitoring script [18], [19] was injected into the web page
to periodically record every 250 ms the current timestamp, as
well as the current video playtime, buffered playtime, video
resolution, and player state. During the streaming session,
the presence of pre-roll or mid-roll advertisement clips was
monitored, and several user interactions could be emulated,
such as pausing, scrubbing to a different playback position,
or changing the video resolution. After 180 s, the streaming
session was aborted by closing the browser.

During the whole streaming session, we captured the (en-
crypted) network traffic using tshark to log basic packet
information (timestamp, source IP, source port, destination IP,
destination port, size), as well as DNS lookup responses to
obtain a mapping between IP addresses and domain names.
In each network trace, we identified TCP and QUIC YouTube
video flows based on the domain name (googlevideo.com), and
only considered those YouTube video flows for our analysis,
i.e., we ignored all other flows.

The characteristics of the full dataset are described in detail
in [11]. To obtain a homogeneous dataset for our initial

35.4 35.6 35.8

Video Playback [s]

0

100

200

300

400

500

600

L
 [
m

s
]

h
i

L(t)

Burst Start

Burst End

t
1

t
n

Fig. 2. Server burst detection procedure.

analysis, in this work, we selected only those video streaming
sessions without any imposed network emulation, without any
emulated user interactions, and without any advertisement
clips. This comprises a subset of 900 YouTube video sessions
and more than 16,000 HAS uplink requests. The maximum
observed bandwidth in these sessions was roughly 20 Mbps.

C. Data Preprocessing

The dataset is pre-processed in the following way. First, for
each video session, we exclude from the analysis the first 15
seconds of playback time, due to the noisy behaviour of the
initial buffering phase. Then, considering that requests from
the client can be carried by multiple QUIC and TCP traffic
flows, we restrict our analysis to the dominant flow of each
video session, i.e., the TCP or QUIC flow which carries the
majority of the video session traffic. According to this filtering
operation, we end up with roughly 15,000 HTTP request-
response exchanges, 60 % of the times carried by a TCP flow
and 40 % of the times by a QUIC one. Finally, we label each
uplink request with the corresponding type, i.e., either audio
or video. With this aim, we pre-process the log file returned
by the JavaScript-based monitoring script, retaining only the
entries which correspond to HTTP request instances. Then, for
each request, we identify the corresponding itag, a parameter
carrying information on the type of the request (audio/video)
as well as the requested quality. At the end of this procedure,
we recognise roughly 10,000 requests for video contents while
only 5,000 of them are for audio contents. Also, we observe
that when QUIC traffic is enabled 45 % of the requests are
for audio contents (i.e., 55 % of the time a request carried by
QUIC is for a video content) whereas this happens only 32 %
of the times when TCP is used (i.e., 68 % of the requests are
for video contents in this case).

D. Online Feature Extraction

Next, each video session is processed in order to extract
characteristic features as well as ground truth information
useful for training supervised machine learning models. The
general process is illustrated in the left-side of Figure 3. In
particular, we opt for processing techniques which can be

implemented in an online fashion, i.e., as the network traffic
flows. We recognise three main steps, namely client request
detection, response burst detection and features extraction.

1) Client request detection: We observe that, in a video
session, client requests are the only uplink packets greater
than 100 bytes (all the rest are essentially acknowledgments),
regardless of the request type (audio or video) and transport
layer protocol used (TCP or QUIC). A simple threshold on
the dimension of uplink packets is therefore used to identify
a client request, together with its timestamp hi.

2) Response burst detection: Upon the detection of a new
request hi, we move our attention to downlink traffic in order
to highlight the response burst Ri coming from the server. For
the task at hand, we start a timer L(t) with a timeout of 100
ms after the detection of the request. The timer is reset every
time a downlink packet larger than 250 bytes is received from
the server. A burst is detected when the timeout elapses and
at least n = 50 packets have been observed. Note that both
the timeout, the minimum packet size, and the minimum burst
length are set empirically after a trial and error procedure over
different configurations. We show in Figure 2 an example of
such procedure: in this case, a new request hi is detected at
time 35.34 s, after roughly 500 ms from last downlink packet.
Then, the first packet p1 of server response Ri is received
at time t1 = 35.37 s, for a total burst length of 202.8 ms.
Note that the end of the burst is detected at time tn +100ms
= 35.64ms, i.e., 100 ms after last packet of Ri is received.
Finally, we set δi = t1 − hi and ri = tn − t1.

3) Features extraction: The detection of client requests and
server responses allows to extract two sets of features, relative
to the uplink and downlink direction of traffic:

• Client Request (CR) features: they model the sole activity
of the client when sending the i-th HTTP request, without
considering the response from the server. Therefore, they
can be computed right after the client request is detected.

• Server Response (SR) features: they provide details about
Ri, i.e., the server’s response to the i-th HTTP request.
Therefore, their computation must wait the end of the
burst detection process.

For what concerns CR features, the following quantities are
computed after the detection of hi:

• Inter-Request Time: the difference between the detected
request and the previous one, i.e., hi − hi−1.

• Request Size: The size in bytes of the HTTP request.
• Request Sequence Number and Playback Duration: a

general behavior of video streaming clients is to produce
many consecutive requests at the beginning of the stream-
ing session to fill the video buffer as much as possible.
Therefore, we keep track of the request sequence number
i as well as the time elapsed since the first request.

• Moving Averages: it has been shown [11], [20] that adja-
cent requests are not uncorrelated, and that information
about recent history of the streaming session can give
information on its future behavior. For this reason, we
compute the moving average of both the inter-request

TABLE I
FEATURES RELATED TO THE i-TH EXCHANGE OF A VIDEO HAS SESSION. MOVING AVERAGES FEATURES ARE NOT SHOWN FOR SPACE LIMITS.

Set Feature Description

CR

hi − hi−1 Time lag between the i-th HTTP request and the previous one
i Sequence Number of i-th HTTP request

Request Size Size of the i-th request [B]
Playback Duration Time length of the already played-back content up to hi

SR

δi Inter request-response delay
Response Size Size of Ri [B]

n Length of Ri [N. of Packets]
ri Download Time
τi−1 Time between last packet of Ri−1 received by the client and hi

Inter-Packets Arrival Time distribution 25-th, 50-th and 75-th percentiles of IPA Time
Inter-Packets Arrival Time Coefficient of Variation Ratio between standard deviation and mean of IPA Time

Fig. 3. Architecture for video streaming traffic monitoring and prediction of next uplink request arrival time. On the left side, the features extraction process
is represented: the trade-off here consists to compute either uplink features only or add also downlink features (i.e., wait for server response). On the right
side, the two prediction approaches are represented, either Blind (upper branch) or Audio/Video (lower branch). According to the latter approach, we first
classify the type of last observed request and then we predict the arrival of next request of the same type.

time and the request size, using a window of N = 10
requests, where N is set empirically among different
tested options. For the request size, we also compute the
moving standard deviation.

As for SR features, we compute the following quantities:
• Inter Response-Request Time: the time elapsed between

the last packet of the last server response and the new
client request, i.e., τi−1.

• Request-Response Delay: the time elapsed between the
client request and the first packet of the server response,
i.e., δi.

• Response Size: the total volume in bytes of the response,
as well as the number of packets n constituting the
response burst.

• Download Time: the time elapsed from the first to the last
packet of the response burst, i.e., ri.

• Inter-Packet Arrival Time distribution: we also compute
the inter arrival times of the packets in the response burst
and estimate the 25-th, 50-th and 75-th percentiles of their
distribution.

• Inter-Packet Arrival (IPA) Time Coefficient of Variation:
the ratio between the standard deviation and the mean of
the inter arrival times of the packets in the response burst.

• Received Volume: we also keep track of the cumulative

data volume received by the client as well as the total
received number of packets.

• Moving Averages: similarly to the CR case, we compute
moving averages of the response size, the response down-
load time and the inter request-response delay, as well as
their standard deviations.

Note that both CR and SR features, summarized in Table I, can
be easily updated for each new request issued by the streaming
client, making them suitable for online analysis2.

III. EXPERIMENTS AND RESULTS

In this section we use the features introduced in Section II-D
to i) classify HAS uplink requests and ii) predict when next
request is transmitted. The former task is a binary classification
problem, as client requests can be either for audio or video
content. Differently, the latter is a regression problem, which
we tackle distinguishing two alternative approaches. The first
approach is represented in the upper branch of the right side
of Figure 3. According to this approach, when a new uplink
request is observed features are computed and the arrival
time of next request is predicted. Thus, in this case we do

2In this case, the only overhead is due to the packets live capturing system.
While this aspect is not discussed in this work, it can be shown [11] that its
impact on performance is negligible for lightweight prediction models.

not detect the type of the last observed request and we are
blinded about the type of next request as well. For these
reasons, we refer to this approach as Blind and we refer to the
corresponding prediction output as ĥbi+1. Conversely, in the
second approach, we first classify the last observed request as
being an audio or video request and consequently we predict
the arrival time of the next request of the same type, i.e.,
either ĥai+1 or ĥvi+1 respectively. As represented in the lower
branch of the right side of Figure 3, this lets us customise
the features to the specific request type and thus set up two
different regression algorithms, one for audio and one for
video requests. We will refer to this approach as either Audio
or Video, according to the request type. In the next sections
we present the performance obtained for both the classification
(III-A) and the regression (III-B) tasks.

A. Classification of HAS Uplink Requests

A common way to solve binary classification problems is
by supervised learning: among the several available machine-
learning classifiers we select the Random Forest (RF) algo-
rithm, which is widely known to perform well in general and
has been successfully applied in the past for similar prob-
lems [11], [12], [10], [14]. Operatively, the set of streaming
sessions is divided in training (X) and test (Y) sets, with
splitting ratios of 0.9 and 0.1 according to a 10-fold cross
validation strategy. Secondly, we use X to select the best
set of hyper-parameters (number of decision trees, number
of features to be considered in each tree, etc.) of the RF
algorithm. Finally, we train the RF with the best hyper-
parameters found and we test its performance on the test
set. Figure 4 shows the confusion matrices to summarise
the classification performance. We consider two cases: in the
former, only CR features are used, whereas in the latter we
leverage also SR features (that is, the client request is classified
after the server response has been observed). As one can see
in the left-side of Figure 4, when only uplink features are
considered the overall accuracy equals 79.3 %, where 40.7 %
is due to correct classification of audio requests while 38.6 %
is associated to video requests. However, as shown in the
right-side of Figure 4, when both CR and SR features are
used for classification the performance improve by 7.6 % and
8.6 % for audio and video requests respectively, raising the
overall accuracy to 95.5 %. To explain the benefit observed by
including SR features in the classification process, we show
in Figure 5 the scatter plot of the response download time
versus the response size with respect to the uplink requests
in the test set, when either QUIC (left) or TCP (right) is
adopted. As one can see, most of audio contents are shorter
than 1000 KB and 750 KB when QUIC or TCP protocols are
used, whereas this happens only for 75 % and 80 % of video
contents respectively. Considering that in our experiments the
maximum observed bandwidth is roughly 20 Mbps, this leads
on average to 0.5 s shorter download times for audio contents
with respect to video ones. Similar observations can be drawn
observing the scatter plots of other SR features couples, which
are not shown for space limits.

Audio Video

Predicted Class

Audio

Video

T
ru

e
 C

la
s
s

40.7%

13.1%

7.6%

38.6%

Audio Video

Predicted Class

Audio

Video

T
ru

e
 C

la
s
s

48.3%

2.1%

2.4%

47.2%

Fig. 4. Confusion plots for HAS uplink request type classification, when
either UL (left) or UL+DL (right) model is selected.

0 5 10 15 20

Download Time [s]

0

500

1000

1500

2000

2500

R
e

s
p

o
n

s
e

 S
iz

e
 [

K
b

y
te

s
]

Video

Audio

0 5 10 15 20

Download Time [s]

0

500

1000

1500

2000

2500

3000

R
e

s
p

o
n

s
e

 S
iz

e
 [

K
B

]

Video

Audio

Fig. 5. Download Time vs Burst Size for audio (yellow) and video (red)
flows, when either QUIC (left) or TCP (right) protocol is used.

B. Prediction of Next HAS Uplink Request Arrival Time

For what concerns the prediction of the next uplink request
arrival time, regardless of the selected approach (i.e., either
Blind, Audio, or Video), we consider several prediction models
characterised by different complexity and features sets. For
what concerns complexity, we focus on baseline models,
obtained by either constant prediction or simple data copy,
and RF models, where a set of features is fed into a RF
regressor to output the target. For what concerns the feature
sets, we distinguish a first case where only uplink traffic related
features are considered and a second case where also downlink
traffic related features are included for prediction. Using the
same training and test set splits of Section III-A, we consider
the following prediction models:
• Static Baseline (SB): this baseline model estimates the

arrival time of request hi+1 as constantly equal to:

ˆhi+1 =

∑
s∈X ,∀j(h

s
j − hsj+1)

|X |
(1)

i.e., the average time between two consecutive requests
computed over all the instances j of each stream s ∈ X .

• Dynamic Baseline (DB): this baseline model predicts
hi+1 as:

ˆhi+1 = hi + (hi − hi−1) (2)

i.e., it copies the last observed inter-request time.
• Uplink (UL): this model leverages only CR features and

predicts hi+1 as equal to:

ˆhi+1 = hi + f(CR) (3)

where f(·) represents the RF regressor and its output
equals δ̂i + r̂i + τ̂i.

TABLE II
FREQUENCIES OF UPLINK REQUESTS WHEN EITHER BLIND, AUDIO OR
VIDEO APPROACH IS SELECTED, FOR QUIC AND TCP TRAFFIC FLOWS.

QUIC [s] TCP [s]
Blind 5.12 5.17
Audio 9.71 12.27
Video 10.75 9.15

0 0.5 1 1.5 2

Norm. Error

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty

SB

DB

UL

UL+DL

0 0.5 1 1.5 2

Norm. Error

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty

SB

DB

UL

UL+DL

Fig. 6. Blind, QUIC (left) and TCP (right) traffic flows.

• Uplink + Downlink (UL+DL): this model leverages both
CR and SR features and predicts hi+1 as:

ˆhi+1 = hi + δi + ri + f(CR,SR) (4)

where f(CR, SR) equals τ̂i (δi and ri are known after Ri

is detected).
Note that while SB, DB, and UL models generate the

estimate ˆhi+1 right after client request hi is detected, UL+DL
model must wait for server response Ri to compute the
features and perform the prediction. Moreover, while SB and
DB models do not need to be trained, both UL and UL+DL
require a training phase as well as the tuning of RF hyper-
parameters, similarly to what described in Section III-A. To
compare the models performance, we compute the Cumulative
Distribution Functions (CDFs) of the normalised errors when
either Blind or Audio or Video approach is adopted. Note that
when Blind is selected, the prediction errors are normalised
to the average inter-request time observed in Y . Conversely,
when Audio or Video is selected, normalisation is done with
respect to requests of the same type, i.e., audio or video
respectively. For the sake of clarity, we summarise in Table II
the average inter-request times observed in such three cases,
for either QUIC or TCP transport protocols. As one can
see in Figures 6, 7, and 8, regardless of the approach, UL
and UL+DL models perform better than the baselines, with
UL+DL model outperforming all the others. In details, when
uplink requests are carried by QUIC traffic, UL+DL improves
the 80-th percentile of normalised error by 54 %, 88 %,
and 51 % for Blind, Audio and Video approach respectively,
whereas it is decreased of 29 %, 75 %, and 39 % when TCP
is used. Let us now compare the CDFs of the normalised
errors for Blind, Audio and Video approaches when UL+DL
prediction model, i.e., the best performing one, is selected.
As shown in Figure 9, pipe-lining request type classification
and prediction of next request arrival time improves the final
prediction performance, regardless of the transport protocol
used. In fact, for both QUIC and TCP traffic flows, both

0 0.5 1 1.5 2

Norm. Error

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty

SB

DB

UL

UL+DL

0 0.5 1 1.5 2

Norm. Error

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty

SB

DB

UL

UL+DL

Fig. 7. Audio, QUIC (left) and TCP (right) traffic flows.

0 0.5 1 1.5 2

Norm. Error

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty

SB

DB

UL

UL+DL

0 0.5 1 1.5 2

Norm. Error

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty

SB

DB

UL

UL+DL

Fig. 8. Video, QUIC (left) and TCP (right) traffic flows.

the CDFs for Audio (yellow line) and Video (red line) lay
above the one of Blind (blue line), where largest gaps are
observed in the case of audio requests. This is summarised
in Table III, where we compare the average 50-th and 80-th
percentile of the normalised error obtained from UL+DL and
baseline models. Note that the errors are averaged with respect
to the two cases of QUIC and TCP traffic flows (Table III
also reports the absolute values of the errors in seconds). As
one can see, UL+DL model outperforms the baseline, yielding
an average improvement of 78 % and 70 % for 50-th and
80-th percentile, respectively. Moreover, referring to UL+DL
model, we observe that Audio and Video approaches decrease
the normalised 50-th percentile error by 52 % and 42 % with
respect to Blind approach. This leads to comparable median
absolute errors between Audio, Video, and Blind, ranging
between 0.68 s and 0.76 s. As far as the 80-th percentile of
normalised error is concerned, Audio outperforms Blind by
72 %, whereas Video and Blind approaches yield comparable
values. These results lead to the following conclusions. First,
regardless of the approach, prediction performance improve
when both uplink (i.e., CR) and downlink (i.e., SR) related
features are included in the model. Second, a good strategy
to predict the arrival of next uplink request is to first classify
the last observed request and then perform prediction. This
approach has a twofold advantage: i) it improves the prediction
performance (i.e., the accuracy of the answer when next
request will come) and ii) it provides with the knowledge
of what type next request will be, i.e., whether for audio or
video contents. This can be exploited by a streaming provider,
which can infer the amount of data which will be delivered by
the server and proactively adjust the network configuration, if
needed. Finally, we observe that predicting the arrival of next
request for video contents is more complex than doing the
same for audio contents.

TABLE III
ABSOLUTE AND NORMALISED PREDICTION ERRORS OF SB VS UL+DL REGRESSION MODELS FOR BLIND, AUDIO, AND VIDEO APPROACHES.

Model SB UL+DL
Percentile 50-th 80-th 50-th 80-th

Abs. (s) Norm. (%) Abs. (s) Norm. (%) Abs. (s) Norm. (%) Abs. (s) Norm. (%)
Blind 2.25 43.06 6.17 118.27 0.68 13.16 2.33 45.27
Audio 5.54 50.45 11.63 105.84 0.69 6.30 1.33 12.15
Video 3.41 34.29 11.03 110.86 0.76 7.65 4.44 44.63

0 0.5 1 1.5 2

Norm. Error

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty

Blind

Video

Audio

0 0.5 1 1.5 2

Norm. Error

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty

Blind

Video

Audio

Fig. 9. Blind (blue) vs Audio (yellow) vs Video (red) approach, for QUIC
(left) and TCP (right) traffic flows.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper we present a machine-learning based moni-
toring architecture able to perform a twofold task, namely i)
classification of HAS uplink request type and ii) prediction
of next request arrival time. The features used to perform
these tasks have several advantages: i) they are extracted from
encrypted traffic with very low computational complexity, ii)
they are extracted online, i.e., as the network traffic flows and
iii) they can be easily updated for each new request issued
by the client. We evaluate the performance of the system on a
dataset comprising 900 YouTube video sessions and more than
15,000 HTTP request-response exchanges, extracting features
for both directions of the traffic. Results show that our system
is able to i) differentiate audio and video flows with excellent
accuracy (greater than 95 %), and ii) leverage request type
information to dramatically increase the performance of next
request arrival prediction task. This information is crucial for
network operators to infer the amount of data which will be
delivered by the server and proactively adjust the network
configuration when needed. Future works will regard the
evaluation of the system performance when users interactions
and advertisement clips playback are enabled during video ses-
sions. As for real-time scenarios, main challenges regard the
live packet-capturing process and the monitoring of multiple
parallel traffic flows for single or multi-clients instances.

REFERENCES

[1] Sandvine, “The global internet phenomena report covid-19 spotlight,”
May 2021. [Online]. Available: https://www.sandvine.com/phenomena

[2] “Cisco annual internet report white paper,” March 2020. [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html

[3] A. Okic and A. E. Redondi, “Optimal resource allocation in c-ran
through dsp computational load forecasting,” in 31st Annual Int. Symp.
on Personal, Indoor and Mobile Radio Comm., 2020.

[4] V. Sciancalepore, K. Samdanis, X. Costa-Perez, D. Bega, M. Gramaglia,
and A. Banchs, “Mobile traffic forecasting for maximizing 5g network
slicing resource utilization,” in IEEE Conf. on Computer Communica-
tions, 2017.

[5] M. Joshi and T. H. Hadi, “A review of network traffic analysis and
prediction techniques,” arXiv preprint arXiv:1507.05722, 2015.

[6] J. Barros, M. Araujo, and R. J. Rossetti, “Short-term real-time traffic
prediction methods: A survey,” in Intl. Conf. on Models and Technologies
for Intelligent Transportation Systems, 2015.

[7] D. Tsilimantos, T. Karagkioules, and S. Valentin, “Classifying flows
and buffer state for youtube’s http adaptive streaming service in mobile
networks,” in 9th ACM Multimedia Systems Conf., 2018.

[8] F. Loh, F. Wamser, C. Moldovan, B. Zeidler, D. Tsilimantos, S. Valentin,
and T. Hoßfeld, “Is the uplink enough? estimating video stalls from
encrypted network traffic,” in IEEE/IFIP Network Operations and Man-
agement Symp., 2020.

[9] T. Mangla, E. Halepovic, M. Ammar, and E. Zegura, “emimic: Esti-
mating http-based video qoe metrics from encrypted network traffic,” in
Network Traffic Measurement and Analysis Conf., 2018.

[10] M. Seufert, P. Casas, N. Wehner, L. Gang, and K. Li, “Stream-based
machine learning for real-time qoe analysis of encrypted video streaming
traffic,” in 22nd Conf. on innovation in clouds, internet and networks
and workshops (ICIN), 2019.

[11] S. Wassermann, M. Seufert, P. Casas, L. Gang, and K. Li, “Vicrypt
to the rescue: Real-time, machine-learning-driven video-qoe monitoring
for encrypted streaming traffic,” IEEE Trans. on Network and Service
Management, 2020.

[12] F. Loh, F. Poignée, F. Wamser, F. Leidinger, and T. Hoßfeld, “Uplink vs.
downlink: Machine learning-based quality prediction for http adaptive
video streaming,” Sensors, 2021.

[13] I. Orsolic and M. Seufert, “On Machine Learning based Video QoE
Estimation Across Different Networks,” in 16th Intl. Conf. on Telecom-
munications, Zagreb, Croatia, 2021.

[14] I. Orsolic and L. Skorin-Kapov, “A framework for in-network qoe
monitoring of encrypted video streaming,” IEEE Access, 2020.

[15] C. Gutterman, K. Guo, S. Arora, T. Gilliland, X. Wang, L. Wu, E. Katz-
Bassett, and G. Zussman, “Requet: Real-time qoe metric detection
for encrypted youtube traffic,” ACM Trans. on Multimedia Computing,
Communications, and Applications (TOMM), 2020.

[16] J. Lee, S. Lee, J. Lee, S. D. Sathyanarayana, H. Lim, J. Lee, X. Zhu,
S. Ramakrishnan, D. Grunwald, K. Lee et al., “Perceive: Deep learning-
based cellular uplink prediction using real-time scheduling patterns,” in
18th Intl. Conf. on Mobile Systems, Applications, and Services, 2020.

[17] A. Schwind, M. Seufert, Ö. Alay, P. Casas, P. Tran-Gia, and F. Wamser,
“Concept and Implementation of Video QoE Measurements in a Mo-
bile Broadband Testbed,” in IEEE/IFIP Workshop on Mobile Network
Measurement (MNM), Dublin, Ireland, 2017.

[18] F. Wamser, M. Seufert, P. Casas, R. Irmer, P. Tran-Gia, and R. Schatz,
“YoMoApp: a Tool for Analyzing QoE of YouTube HTTP Adaptive
Streaming in Mobile Networks,” in European Conf. on Networks and
Communications (EuCNC), Paris, France, 2015.

[19] M. Seufert, “Quality of Experience and Access Network Traffic Manage-
ment of HTTP Adaptive Video Streaming,” Doctoral Thesis, University
of Würzburg, 2017. [Online]. Available: https://opus.bibliothek.uni-
wuerzburg.de/files/15413/Seufert Michael Thomas HTTP.pdf

[20] S. C. Madanapalli, H. Habibi Gharakhieli, and V. Sivaraman, “Inferring
netflix user experience from broadband network measurement,” in 2019
Network Traffic Measurement and Analysis Conf. (TMA), 2019.

