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Abstract: The paper is devoted to the measurement and to the processing of load spectra of forces
and moments acting at the wheel hub of a motorcycle. Smart wheels (SWs) have been specifically
developed for the scope. Throughout the paper, the extreme case of a race motorcycle is considered.
Accurate load spectra were measured in two race circuits. Standardized load spectra are derived by
processing measured data. A way to easily generalize the measured load spectra is proposed for the
first time for motorcycles. Several loading conditions, related to the motorcycle straight line motion,
cornering, curb hit and gear shift, are identified and extracted from the experimental measures.
For each loading condition, by means of simple semi-analytical models (SAMs), a relationship is
found between the vertical force on the wheel, the tilt angle of the motorcycle and the remaining forces
and moments acting at the wheel hub. Such relationships are nothing else than the standardized load
spectra. Additionally, a simple and efficient method based on smart wheels for real-time structural
monitoring is proposed. Standardized load spectra prove to provide consistent results even when
compared to real-time structural monitoring data. By means of the presented smart wheels, advanced
lightweight motorcycle construction is enabled by derivation of standardized load spectra or real
time estimation of the damage of structural components.

Keywords: smart wheel; structural monitoring; motorcycle; load spectra; fatigue; spectral method;
damage estimation; prognostics

1. Introduction

In this paper, we propose to use smart wheels (SWs) to derive load spectra for the design or for the
structural monitoring of motorcycles. Using SWs for detecting external forces acting on a motorcycle
enables in a straightforward way

• the derivation of load spectra,
• the derivation of standardized load spectra,
• the real time estimation of the damage of structural components.

1.1. Smart Wheels (SWs)

Referring to SWs, in previous papers, the authors have presented their activity in the field. SWs have
been conceived, manufactured and employed extensively [1,2]. At the moment, the developed SWs
are used for research or testing purposes. In the future, they could be industrialized to equip consumer
motorcycles. A complete overview on smart wheels for motorcycle applications can be found in [3].

The special and unique characteristic of the SWs that have been used in this paper is their lightness.
Contrary to other too heavy applications [2,3], the SWs that have been used in this paper provide
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practically the same forces at the hubs as normal wheels. This makes possible the derivation of reliable
load spectra.

1.2. Durability and Derivation of Load Spectra of Motorcycles

Structural safety and durability are among the most important concerns of vehicle designers.
Each vehicle component that is relevant for safety has to pass many tests before obtaining production
approval [4–10]. Lightweight design has increased its importance in the last decades and nowadays is
one of the main drivers in the design of new vehicles [11]. Obviously, mass reduction requires both
special construction skills [12] and a deep knowledge and awareness of in-service loads.

The proper definition of test load spectra is the key point for designing safe lightweight
automotive structures. Load spectra for trucks and passenger cars have been collected during the last
20 years [6,13–15]. In particular, Grubisic et al. ([16–18]) developed “Eurocycle”, a representative load
spectrum of vertical and lateral wheel loads of European cars and commercial trucks.

A scarce literature is found on motorcycle durability [19–23]. In [19], a method for the fatigue life
prediction of the frames of lightweight electric mopeds was developed. An experimental campaign was
implemented to collect data from strain gauges installed at critical locations on the frame. Field tests on
a total mileage of 300 km under various driving conditions (namely urban, extra urban, pavé, offroad
and mountain) were conducted to extract a fatigue load spectrum of the frame. A fatigue life prediction
based on the Miner linear damage summation rule was developed leveraging on additional indoor
testing on a dedicated test bench.

Experimental acquisitions on a motorcycle frame were also used in [21] as reference input to
reconstruct a fatigue load spectrum to be used for indoor testing.

The same purpose was achieved in [20] and [22] through the use of numerical simulations.
In [23] the authors developed and validated a multi-body model of a moped. The model allows to

predict the input loads acting on the main structural members of the moped during the roller-bench
endurance test, one of the most widespread indoor tests among motorcycles manufacturers. In the
paper, the authors provide load spectra of the vertical and longitudinal force acting on the moped.

1.3. Derivation of Standardized Load Spectra

The advantage in using standardized load spectra for designing vehicle components is
acknowledged by Heuler et al. in two papers [24,25], where a comprehensive overview of existing
standardized load spectra is provided and the principles applied for collection and analysis of
appropriate load data, assessment of operating profiles and generation of the respective load spectra
and sequences are discussed.

In the literature, there are many methods to obtain a standardized load-time history for
four-wheel-vehicles, reference [26] refers to the CAr LOading Standard (CARLOS) sequence, maybe the
most widely used load spectrum generator. In CARLOS, three uniaxial sequences of the vertical,
lateral and longitudinal forces are to be applied on the front car suspension. According to this method,
the three directional loads are independent, each one gives a different contribution to the suspension
damage. In reference [27], the CARLOS sequence was improved by considering four load channels to
solve the correlation problem.

In order to allow the experimental safety assessment of car wheels, Nurkala and Wallace [6]
developed the standardized test spectrum for the well-known Biaxial Test rig, a standard repetition of
32 constant-amplitude blocks of vertical and lateral loads. The standard spectrum is adapted to the
particular wheel to be tested by means of a scaling on the vehicle static load.

According to the known literature addressed above, to date, a well-established standardized
procedure to derive load spectra for road vehicles is available only for cars.

Unfortunately, the known standardized procedures ([6,26]) require some adaptation that is
not always complying with the physical dynamic behavior of the vehicle under consideration.
Actually, the effect of the vibrations of the un-sprung masses [28] is generally neglected. In other words,
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the known standardized load spectra for cars and trucks do not consider accurately the influence of
the suspension parameters (stiffness, damping). This is a shortcoming that is generally accepted to
preserve the simplicity of the generation of standardized load spectra, letting them depend just on the
static vertical force.

In the paper, we will propose standardized load spectra for motorcycles. The approach followed
in the literature is followed, i.e., we will not consider the effect of vibration of un-sprung masses.
Therefore, the standardized load spectra will depend on a limited number of parameters, namely the
vertical load and roll angle of the motorcycle. We will discuss the simplifying approach and its pros
and cons.

A method for combining forces and moments will be given. The method we propose overcomes
the shortcomings common to some papers in the literature [6,26,27] which adopt scaling factors to
consider different vehicles.

We review below a number of papers that deal with load spectra derived for motorcycles, all of
them do not focus on standardized load spectra.

In reference [29], experimental tests on a maxi scooter have been conducted to collect data related
to the in-service loads acting on the scooter subsystems. The acquired data have been employed to
setup accelerated fatigue testing on a full-scale test bench. In reference [30], the authors instrumented
several motorcycles with accelerometers to acquire data to be used to simulate real road inputs on
an electro-hydraulic servo system test rig, aimed at studying the durability of a motorcycle frame.
In [31], a methodology for estimating input loads on road motorcycles is presented and discussed.
Input loads are estimated by exploiting a network of on-board sensors and a model-based approach.
Estimated forces were validated through experimental data acquisitions. In [32,33], the authors
instrumented the handlebar of a motorcycle with three-axis rosette strain gauges in order to obtain
strain histories on several roads. The strain histories were then used as input for a servo-hydraulic
actuator to obtain accelerated durability tests. The displacement histories applied by the test rig were
obtained by reproducing the strain histories acquired on the motorcycle handlebar. Similarly, in [34],
the authors instrumented a motorcycle with six strain gauges and two accelerometers to obtain load
histories in order to develop an accelerated fatigue test. A motorcycle has been instrumented in [35]
and [36] with strain gauges and accelerometers to evaluate the motorcycle fatigue strength by using a
simulator. A study on the fatigue induced by structural resonance on motorcycle is presented in [37],
the study takes advantage of data acquired from strain gauges on the frame. A motorcycle center
stand has been instrumented in [38] to predict its fatigue life and optimize its design. In [39], a sport
motorcycle was instrumented with strain gauges to measure the dynamic loads during the riding.

In all of the above papers referring to motorcycles, the load spectra have been estimated without
resorting to a force sensor like a SW. In this paper, smart wheels (SWs) will be used to derive very
accurately the load spectra.

The research activity presented in this paper is based on experimental measurements performed
with a race motorcycle. The example of the race motorcycle has been chosen because the dynamical
forces are extremely high. Forces at un-sprung masses are high during running on curbs. At the rear
suspension, the forces are high due to driving torque.

The application of the method developed in this paper for consumer motorcycles should be
relatively easy.

The motorcycle has been equipped with a set of SWs [1] to measure the tire/road contact forces.
The acquired data have been processed to provide the fatigue load spectra of the forces and moments
applied to the motorcycle as function of two standardized parameters only: the vertical force and the
tilt angle.

1.4. Real Time Estimation of the Damage of Structural Components

Prognostic health monitoring (PHM) [40] may represent an attractive perspective in lightweight
design. Considering the constantly increasing advance and complexity of automotive systems,
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sensors and components, a tool able to promptly detect faults, or provide a reasonable approximation
of the remaining useful life of automotive parts, is fundamental for maximizing vehicle performances
while maintaining an acceptable level of safety [41–44].

PHM aims to provide a real-time estimation of the Residual Useful Life (RUL) of a system,
subsystem or component. In the framework of RUL predictions, two main different approaches can
be distinguished in the literature, namely model-based approaches and data-driven approaches [45].
Model-based approaches rely on the availability of a validated physical model of the system under
investigation, which is able to describe the damage process the system undergoes during its in-service
life. Examples of analytical models of the fatigue damage of vehicle systems caused by road excitations
can be found in the works of Gobbi and Mastinu [46] and more recently Jaoude [47]—in both of the
works, the Palmgren–Miner linear damage accumulation rule was adopted.

Data-driven approaches, on the other hand, make use of monitoring data acquired during the
whole life of the system (and with different levels of damage) and are preferred when a physical model
of the damage process is unavailable, due for instance to the complexity of the process itself or the
variability of operational conditions. Data-driven approaches require a large set of monitoring data and
are generally based on probabilistic models that aim to identify trends by learning from the available
data [48].

In the framework of data-driven approaches, extensive use of machine learning techniques is
made, such as Neural Networks (NNs) or Radial Basis Function Networks (RBFNs). In a typical
application, NNs are trained off-line on a “baseline” condition involving acquisitions during the
early (and “healthy”) condition of the system [49]. However, differences that could occur between
training conditions and real in-service life could significantly affect the accuracy of the method.
Recently, adaptive prognostic approaches that combine Particle Filtering (PF) techniques and machine
learning were proposed; the network parameters are identified online as soon as new observations are
available, thus realizing an adaptive online training [49,50].

Data-driven approaches were extensively employed for the RUL estimation of composite
structures [51–53]. In [51], the authors propose a probabilistic data-driven method for the RUL
estimation of carbon/epoxy specimens subjected to a constant amplitude fatigue loading. The RUL
model is based on Non-Homogeneous Hidden Semi Markov model (NHHSMM), which was improved
in [48] by including adaptive features based on monitored data. In [52], a statistical life prediction
method of composite structures is presented. The method takes advantage of Bayesian statistical theory
to combine laboratory data with stiffness data measured on the in-service structure. The method was
validated on both Glass Fiber Reinforced Polymers (GFRP) and Carbon Fiber Reinforced Polymers
(CFRP).

Applications of data driven approaches extend also beyond purely mechanical problems, as the
studies of Sbarufatti [50] and Liu [53,54] on Lithium-ion batteries demonstrate.

As a matter of fact, it is widely acknowledged that the uncertainty associated to the variability
of operational loads, is one of the most important issues related to the practical implementation of
structural monitoring and prognostics [42,43].

In such a framework, the SWs can provide accurate information on the actual input loads that are
stressing the structure in any driving scenario. Concerning for instance the application described in
this paper, the SWs can be included in the network of sensors and used to measure the actual input
loads acting on the motorcycle subsystems, e.g., suspensions or motorcycle frame.

Once the input loads are known, a model-based approach [41] can be adopted to estimate
the fatigue damage and the residual useful life of the structural components. Obviously, such an
approach has to rely on the use of validated numerical models (based for example on finite elements
and multi-body dynamics) that allow to calculate the applied stress on the mechanical components.
The Palmgren–Miner rule can be finally adopted to calculate the fatigue damage and estimate the
residual useful life of the components [46,55].
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Additionally, data coming from the smart wheels could support the development of data-driven
prognostic models, making the SW actual monitoring sensors that could help the model in the detection
of a failure of a vehicle component.

1.5. Paper Structure

- In Section 2, the smart wheels are briefly introduced.
- In Section 3, the experimental tests and the acquired data are described.
- In Section 4, the identified maneuvers and the motorcycle models employed for the simulations

are described.
- In Section 5, the standardized load spectra are calculated with the proposed method and compared

with the ones obtained from the measured loads.
- In Section 6, a possible application of the SW as a sensor for prognostic health monitoring of

motorcycle structural components is envisaged.
- In Section 7, a discussion is made on pros and cons of the proposed method for standardized load

spectra of motorcycles.

2. Smart Wheel

In [1], a smart wheel rim is presented, suitable to be used as an instrumented wheel to measure
the three forces and three moments acting at the hub. The complete set of generalized forces acting at
the tire-road contact patch can be measured and the data can be provided with a very low latency to
the vehicle.

The smart wheel and its concept design are shown in Figure 1a,b, respectively. The three spoke
structure that connects the central hub to the outer wheel rim in Figure 1a is the sensing structure.
The sensing structure is constrained to the wheel rim by means of three joints positioned at the tip
of each spoke. According to the scheme of Figure 1b, the sensing structure is statically determined
in the space if and only if the joints at the three spoke tips are spherical joints able to translate in the
direction of the respective spoke axes. This is the core of the invention [56–58]. Notice that the three
spoke structure is ‘the’ optimal solution for making a rim a sensing structure. Actually, the three
spoke structure is the only spatial structure to be statically determined and suitable for a wheel,
two pre-requisites for obtaining the most accurate measuring performance.
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only to the two forces T and N shown in Figure 2. A total of 6 forces are acting at the three spoke tips, 
the forces N1, N2 and N3 act along the y axis of Figure 2, while the forces T1, T2 and T3 act in the xz 
plane. Such forces can be measured by sensing the strain levels due to the bending moments at each 
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Figure 1. Smart wheel rim. (a) Concept design. (b) The three spoke sensing structure as a statically
determined structure. Forces T and N are highlighted at each spoke tip.

In the actual embodiment (Figure 1a), the translating spherical joints that connect the sensing
structure to the wheel rim are realized by means of thin laminae located between each spoke tip and
the rim. Such kind of structures allow to obtain a low stiffness in the direction of the spoke axis with
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respect to the stiffness in the transversal direction, thus providing the sliding spherical joint constraint
of Figure 1b. The shape of the laminae has been optimized in order to obtain translating spherical
joints with some associated elastic stiffnesses. With this type of a structure, each spoke tip is subject
only to the two forces T and N shown in Figure 2. A total of 6 forces are acting at the three spoke tips,
the forces N1, N2 and N3 act along the y axis of Figure 2, while the forces T1, T2 and T3 act in the xz
plane. Such forces can be measured by sensing the strain levels due to the bending moments at each
spoke root, see Figure 2.Vehicles 2020, 2, FOR PEER REVIEW 6 
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in red the force directed as the wheel axis.

Given such six forces, the three forces and the three moments at the center of the wheel can be
computed by solving simple equilibrium equations [58–60].

The three cantilever/spoke structure can be instrumented by means of 12 strain gauges at the basis
of the spokes and connected in half-bridge configuration, as highlighted in Figure 2. Their positions
have been defined in order to maximize the output (voltage) of the strain gauges for all combinations
of loads applied at the wheel center. The strain gauges are intentionally located in the area where the
bending moments acting at each cantilever/spoke produce high strains.

The SW has to be designed in order to have inertia properties (i.e., mass, moment of inertia) and
stiffness similar to those of the standard wheels, provided that good sensitivity is provided.

As the measuring hub rotates, a telemetry system had to be designed and developed to transmit
the six voltage signals from the strain gauges to a storage system on board of the vehicle.

Utilizing an encoder (angular resolution 0.05◦), a simultaneous ADC sampling is performed on
the six strain gauges bridges outputs while coupling the force/torque output with the absolute wheel
angular position. The synchronous sampling allows seamless real-time measurements at vehicle speed
up to 400 km/h.

The real-time calculation of the forces/torques components is performed by a DSP (Digital Signal
Processor) programmed to apply the calibration matrix and the rotation matrix, as shown in the
functional block diagram of Figure 3.

Referring to Figure 3, the voltage signals coming from the six Wheatsone bridges are amplified
(gain G in Figure 3) and digitally converted (Analog to Digital converter in Figure 3). The digital
signals are then fed to the DSP unit where they are multiplied by the sensor calibration matrix to
calculate the output forces and moments in the wheel (rotating) reference system. To express the forces
in the motorcycle reference system, a rotation matrix function of the wheel angular position is applied.
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The signals are sent via Bluetooth to an on-board receiver connected to the vehicle CAN bus.
Each signal can be sampled at 1600 Hz and more. Oversampling rate (1.6 kHz) has been selected
such that anti aliased frequencies are below the noise floor allowing to eliminate the need of analog
filters with the advantage of reducing the time delay associate with analog PB filtering. The acquired
signals are then digitally low pass filtered at 90 Hz and broadcasted via the CAN network at 200 Hz
per channel.

The accuracy of the smart wheel is very high, the resolution is 1 N and 0.1 Nm for force and
moment, respectively. The linearity full up to the hysteresis is extremely reduced, the full-scale error is
1%, the uncertainty is 1.5% in every condition.Vehicles 2020, 2, FOR PEER REVIEW 7 
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generalized force signals in the motorcycle reference system.

3. Experimental Tests

A race motorcycle has been equipped with two smart wheels, presented in [1]. These wheels are
instrumented with a set of strain gauges and allow to measure the three force components and the
three moment components applied at the wheel center (Figure 4). In addition, the tilt angle ρ and the
motorcycle speed are acquired. All the data are collected by an on-board data logger via CAN-BUS.
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Figure 4. Reference frames of the smart wheels.

A professional rider drove the motorcycle, in a race-setup configuration, on a race circuit (referred to
as circuit A hereafter). Data related to ten consecutive laps were acquired, for an overall mileage of
about 40 km.
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From the analysis of the acquired data, five different typical running conditions have been
identified, which represent relevant loading conditions of the motorcycle. They are

#1. pure longitudinal motion
#2. steady turning
#3. combined longitudinal and cornering
#4. curb hit
#5. gear shift

In the pure longitudinal motion, the motorcycle is either accelerating or braking on a straight path.
The longitudinal force will be either a traction or a braking force.

In the steady turning, the motorcycle is in a pure cornering situation, with no tractive or braking
force. The tilt angle (ρ in Figure 4) is high and the speed is assumed to be almost constant in this phase.

The combined longitudinal and cornering condition refers to a case in which both longitudinal
and lateral forces are applied at the ground. This condition is reached either at the beginning or at
the end of a corner, where, respectively, the driver is still braking while approaching the turn, or is
accelerating at its exit.

In the curb hitting, the motorcycle is passing over a curb, this generally happens during a corner,
where the driver passes firstly over the inner curb and then on the outer curb at the corner exit.

In the gear shift, an instantaneous peak of the longitudinal force is measured on the rear wheel.
This force is caused by an overshoot of the engine torque transferred to the wheel through the driveline,
which occurs every time the driver acts on the gearbox lever to shift the gear.

Figures 5 and 6 depict the signals of the forces and moments measured by the rear and the front
SWs respectively; the data refer to a single lap of circuit A. In the graphs, the five running conditions are
highlighted. The identified running conditions cover almost the entire portion of the lap acquisition,
meaning that they are representative of actual in-service loading conditions of the motorcycle.
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4. Motorcycle Semi Analytical Models

In this section, simple semi-analytical models (SAMs) able to describe the motorcycle dynamic
behavior in the defined running/loading conditions are developed. The developed models are either
based on simple equilibrium equations of the motorcycle, or on linear regression models applied to the
acquired experimental data. The inputs of the models are the vertical loads acting at the front and
rear wheel and, where required, the motorcycle tilt angle. The models are quasi-static, no effect of
the vibrations of the un-sprung masses is introduced to keep the derivation of load spectra as simple
as possible.

The models give as output all the remaining relevant forces and moments acting at the wheel
center for each running/loading condition. The models consider the motorcycle as a single, rigid body,
i.e., the dynamics of other motorcycle subsystems, like suspensions and engine vibrations, are neglected.
This limitation of the models allows to avoid to introduce many parameters (e.g., suspension stiffnesses
and damping, tires, etc.) and have somehow general and robust estimates of the load spectra.
However, we have a good estimation of the motorcycle loads only in the low frequency range (up to
few Hertz), which is the most relevant for fatigue.

In this paper, the experimental data acquired by the SWs are filtered down to 1 Hz and used
to calibrate the SAMs. Experimental data could be easily processed at higher cut-off frequency to
explore the effect of high frequency loads on the fatigue damage, but this would imply a more complex
modeling with errors eventually introduced by the uncertain parameters.

The final aim of these models is that of reconstructing suitable load spectra starting from simple
data of the vertical load and the tilt angle, which can be obtained by simple and cheap sensors mounted
on the motorcycle.

This is a way to standardize loading conditions and related load spectra. Actually, given the
vertical force on the wheel (and the tilt angle), the other remaining forces and moments can be
easily derived.

In the following, all of the SAMs and their tuning on experimental data acquired by SWs are
described and analyzed.
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4.1. Pure Longitudinal Motion (Running Condition #1)

The load transfer motorcycle model described in [61] and shown in Figure 7, is adopted. In this
model, the following hypotheses are assumed:

- the rolling resistance force is neglected,
- the aerodynamic lift force is neglected,
- the aerodynamic force FD is the only resistance to the forward motion of the motorcycle,
- the rotational inertial effects are neglected,
- the longitudinal and vertical forces act at the tire/road contact points.

Vehicles 2020, 2, FOR PEER REVIEW 10 

 

4.1. Pure Longitudinal Motion (Running Condition #1) 

The load transfer motorcycle model described in [61] and shown in Figure 7, is adopted. In this 
model, the following hypotheses are assumed: 

- the rolling resistance force is neglected, 
- the aerodynamic lift force is neglected, 
- the aerodynamic force FD is the only resistance to the forward motion of the motorcycle, 
- the rotational inertial effects are neglected, 
- the longitudinal and vertical forces act at the tire/road contact points. 

 
Figure 7. Motorcycle model for pure longitudinal motion (running condition #1). 

The geometrical and mass properties of the motorcycle are reported in Table 1. 

Table 1. Motorcycle characteristics. 

Physical Quantity Symbol Value Units 
Mass m 240 kg 

Wheelbase p 1.435 m 
Distance of the contact point from the COG b 0.861 m 

Height of the COG h 0.55 m 
Wheel radius r 0.3 m 

From the model of Figure 7, the following three equilibrium equations can be written 𝐹𝑥 − 𝐹 − 𝑚𝑥 − 𝐹𝑥 = 0𝐹𝑧 + 𝐹𝑧 − 𝑚𝑔 = 0𝐹𝑧 ∙ 𝑏 + 𝐹𝑥 ∙ ℎ − 𝐹𝑧 ∙ (𝑝 − 𝑏) − 𝐹𝑥 ∙ ℎ = 0 (1) 

In case of straight path acceleration, 𝐹𝑥  is neglected, while for braking, 𝐹𝑥  is vanishing. 
In both cases, the aerodynamic resistance 𝐹  is neglected. 

Therefore, for straight path acceleration, the longitudinal force Fx and the moment My can be 
expressed as a function of the only vertical load Fz through the linear relations of Equation (2) 

𝐹𝑥 = 𝑚𝑥 ≈ −𝑚𝑔 ∙ (𝑝 − 𝑏) + 𝐹𝑧 ∙ 𝑝ℎ ∙ 𝛼𝑀𝑦 = −𝐹𝑥 ∙ 𝑟 ∙ 𝛼  (2) 

For rectilinear brake, Equation (3) holds 

Figure 7. Motorcycle model for pure longitudinal motion (running condition #1).

The geometrical and mass properties of the motorcycle are reported in Table 1.

Table 1. Motorcycle characteristics.

Physical Quantity Symbol Value Units

Mass m 240 kg
Wheelbase p 1.435 m

Distance of the contact
point from the COG b 0.861 m

Height of the COG h 0.55 m
Wheel radius r 0.3 m

From the model of Figure 7, the following three equilibrium equations can be written
Fxrear − FD −m

..
x− Fx f ront = 0

Fzrear + Fz f ront −mg = 0
Fzrear·b + Fx f ront·h− Fz f ront·(p− b) − Fxrear·h = 0

(1)

In case of straight path acceleration, Fx f ront is neglected, while for braking, Fxrear is vanishing.
In both cases, the aerodynamic resistance FD is neglected.

Therefore, for straight path acceleration, the longitudinal force Fx and the moment My can be
expressed as a function of the only vertical load Fz through the linear relations of Equation (2) Fxrear = m

..
x ≈ −mg·(p−b)+Fzrear·p

h ·α1

Myrear = −Fxrear·r·α2
(2)
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For rectilinear brake, Equation (3) holds Fx f ront = −m
..
x ≈

−mg·b+Fz f ront·p
h ·α3

My f ront = −Fx f ront·r·α4
(3)

The coefficients α1, α2, α3 and α4 are correction factors that are to be identified from the forces
measured by the SWs during this particular loading/running condition.

For the identification of α1, α2, α3 and α4, the measured signals acquired by the SWs are used.
To extract the signals of running condition #1 from full time histories, thresholds for the tilt angle,
the vertical force Fz and the moment My, have been defined and reported in Tables 2 and 3, respectively
for the rear and front wheel.

Table 2. Parameters for identification of driving conditions for the rear wheel.

Pure Longitudinal (Acceleration) Longitudinal + Cornering
(Acceleration at Corner Exit) Curb Hit

Tilt angle
∣∣∣ρ∣∣∣ < 35◦ deg

Force |FZ| > 2000 N
Torque |MY| > 800 Nm

Duration t > 1 s

Tilt angle
∣∣∣ρ∣∣∣ > 35◦ deg

Force |FZ| > 2000 N
Torque |MY|> 800 Nm

Duration t > 1 s

In each of the previous cases if:
Interval t = 0.2 s

RMSinterval
(
F2

X + F2
Z

)
> 3·RMStotal

(
F2

X + F2
Z

)
Duration t > 0.3 s

Steady Turning Gear Shift

Tilt angle
∣∣∣ρ∣∣∣ > 35◦ deg

Force |FZ| > 500 N
Torque |MY|< 30 Nm

Duration t > 1 s

Interval t = 0.05 s
RMSinterval

(
M2

Y

)
> 7·RMStotal

(
M2

Y

)
Duration t > 0.005 s

Table 3. Parameters for identification of driving conditions for the front wheel.

Pure Longitudinal (Braking) Longitudinal + Cornering
(Brake at Corner Entrance) Curb Hit

Tilt angle
∣∣∣ρ∣∣∣ < 35◦ deg

Force |FZ| > 1700 N
Torque |MY| > 300 Nm

Duration t > 1 s

Tilt angle
∣∣∣ρ∣∣∣ > 35◦ deg

Force |FZ| > 1700 N
Torque |MY|> 300 Nm

Duration t > 1 s

In each of the previous cases if:
Interval t = 0.2 s

RMSinterval
(
F2

X + F2
Z

)
> 3·RMStotal

(
F2

X + F2
Z

)
Duration t > 0.3 s

Steady state cornering

Tilt angle
∣∣∣ρ∣∣∣ > 35◦ deg

Force |FZ| > 500 N
Torque |MY|< 30 Nm

Duration t > 1 s

The coefficients α1, α2, α3 and α4 are identified by means of a least square fitting on the measured
quantities. The identified values are reported in Table A1 in Appendix A.

4.2. Steady Turning (Running Condition #2)

To describe this maneuver, the motorcycle model of Figure 8 is adopted [61]. In the model,
the following hypotheses are assumed

- the tire geometry is neglected, i.e., the tires are assumed as rigid planes,
- the motorcycle speed and lateral acceleration are constant,
- the gyroscopic effects are neglected,
- the lateral load Fy is equally distributed on the front and rear wheel.

The following equilibrium equations can be written{
Fyrear = Fzrear· sin(ρ)· cos(ρ)·α5

Mxrear = −Fyrear·r·α6

{
Fy f ront = Fz f ront· sin(ρ)· cos(ρ)·α7

Mx f ront = −Fy f ront·r·α8
(4)
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where α5, α6, α7 and α8, are identified from the acquired experimental data. In this case, to extract the
time histories for the identification, the thresholds on the tilt angle, on the vertical force Fz and on the
moment My that are reported in Tables 2 and 3 are considered. The correction coefficients are then
identified as described above. The identified coefficients are reported in Table A1 in Appendix A.
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4.3. Combined Longitudinal and Cornering (Running Condition #3)

In this running/loading condition, a combination of traction or braking force and cornering is
experienced. The model employed for describing such a condition is a simple superposition of the two
models described above (Figures 7 and 8).

Equations (5) and (6) define the forces acting at the wheel center, respectively, for an acceleration
at the turn exit and a brake while entering the turn.

Fxrear =
−mg·(p−b)+Fzrear·p

h ·α9

Myrear = −Fxrear·r·α10

Fyrear = Fzrear· sin(ρ)· cos(ρ)·α11

Mxrear = −Fyrear·r·α12

(5)


Fxfront =

−mg·(p−a)+Fzfront·p
h ·α13

Myfront = −Fxfront·r·α14

Fyfront = Fzfront· sin(ρ)· cos(ρ)·α15

Mxfront = −Fyfront·r·α16

(6)

The coefficients αi (i= 9, . . . ,16) in Equations (5) and (6) are correction factors that are identified
by a least square fitting on experimental data. The motorcycle geometrical and inertial properties are
summarized in Table 1.

Thresholds on the tilt angle, on the vertical force Fz and on the moment My, are set to extract the
experimental data from the complete time histories. These thresholds are reported in Tables 2 and 3.

4.4. Curb Hit (Running Condition #4)

During the lap, the rider often passes over the curbs located at the sides of the track. In this phase,
a rapid increase of the vertical and longitudinal force is highlighted by the experimental acquisitions.
In order to detect the curb hitting, a moving average filtering approach is employed. A sliding time
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window of 0.2 s is defined and the root mean square of the combination of vertical and longitudinal
load defined by Equation (7) is computed.

RMSsliding =

√∑t=0.2 s
t=0

(
Fx(t)2 + Fz(t)2

)
n

(7)

The selection of the sliding time window depends on many factors, such as motorcycle velocity and
curbs profile, that are related to the particular track on which the motorcycle is running. The selection
process of the sliding time window starts by considering a reference value of about 0.1 s, which is then
iteratively tuned by analyzing the acquired experimental data.

The computed value of the RMS of Equation (7) is then compared with the mean value of the
RMS of all the sliding intervals considered in the time history. If the computed RMS is greater than
3 times the mean RMS (Equation (8)), that interval is considered as a curb hit.

RMSsliding > 3·RMSmean = 3·mean
(
RMSsliding

)
(8)

Since the curb hitting occurs either during a straight line driving or during a turn, each one
of the three models described above (i.e., pure longitudinal motion, steady turning and combined
longitudinal and cornering) can be employed to compute the wheel forces.

4.5. Gear Shift (Running Condition #5)

In the acceleration phases, to minimize the gear shift time, the rider does not disengage the engine
from the driveline. This use of the gearbox provides a high peak of the torque transmitted along
the driveline, which is felt as an instantaneous peak on the moment My measured by the rear wheel.
The identification of this loading condition happens in a similar way as for the curb hitting, but, due to
the fast dynamics of the maneuver, the sliding interval for the RMS calculation has been reduced to
0.05 s, and the threshold value for the RMS comparison has been increased to 7. As for the case of
curb hit (running condition #4) the selection of the time window is done iteratively by analyzing the
acquired time histories. The RMS is now calculated on the torque My measured by the rear wheel as
shown in Equation (9).

RMSsliding =

√∑t=0.05 s
t=0

(
Myrear(t)

2
)

n
RMSsliding > 7·RMSmean = 7·mean

(
RMSsliding

)
(9)

The torque My must be higher than 800 Nm and the minimum duration time is set to be greater
than 0.005 s.

For this load case, a simplified relation has been adopted to correlate the longitudinal force Fx
and the moment My on the rear wheel with the vertical force Fz. The other loads (i.e., Fy and Mx),
being significantly lower, are neglected for this loading condition. Two correlation coefficients have
been introduced as shown in the expressions of Equation (10).{

Fxrear = Fzrear·α33

Myrear = Fzrear·α34
(10)

Equation (10) provides a relation between the traction torque Myrear (and therefore the longitudinal
force Fxrear) and the vertical force Fzrear applied to the rear wheel. From the physical point of view,
such a relation is explained by the peak of the driving torque My and longitudinal force Fx during the
gear shift, which effect the motorcycle longitudinal and vertical motion.

The correlation coefficients are calculated by means of a least square fitting on the acquired
experimental data. The identification thresholds are summarized in Table 2, while the values of the
coefficients are reported in Table A1 in Appendix A.
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5. Results and Comparison

In the previous section, numerical coefficients αi (i = 1, . . . ,34) are introduced to minimize the
least square errors between the experimental loads and the forces computed by SAMs. Such numerical
coefficients are used to recover the simplifying hypotheses that were introduced for SAMs.

All the identified coefficients αi are reported in Table A1 in Appendix A. Tests have been performed
in the race circuit A.

From the acquired experimental data, the load spectra of the forces and moments acting at the
front and rear wheel of the motorcycle are calculated. The Rainflow cycle-counting method [62] has
been adopted to extract the mean and alternate components of the loads and the respective number of
cycles. The load spectra have been computed over 10 laps on circuit A, for an overall mileage of about
40 km in real race conditions.

Figure 9 shows the load spectra related to the vertical force acting at the front and rear wheel for
the 10 considered laps. The histograms are computed by dividing the alternate and mean components
of the vertical force into classes of amplitude of 200 (N) or 200 (Nm). In the obtained graphs, all the
contributions related to the loading conditions identified in Section 4 are included.
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Figure 9. Load spectrum of the measured vertical force Fz on circuit A. (a) Rear wheel. (b) Front wheel.

The experimental time histories of the vertical forces acting at the front and rear wheel and the
signal related to the tilt angle, are fed to the motorcycle models described in Section 4, which provide
the time histories related to the remaining force and moment components for each loading conditions.
The Rainflow counting method is then applied to the obtained time histories to calculate the load
spectra of the simulated forces and moments acting at the motorcycle wheels.

In Figures 10–13, the comparison between the load spectra of the rear wheel obtained from
experimental data and from the simulations by SAMs is reported for the longitudinal force Fx,
the lateral force Fy, the tilting moment Mx and the torque My, respectively.
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Figure 13. Load spectrum of the torque My on the rear wheel on circuit A. (a) Computed by SAMs (left).
(b) Measured.

The comparison of the obtained load spectra shows a reasonable correlation between experimental
data and analytical models, in terms of both mean and alternate components of the loads and in terms
of related number of cycles.
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Figures 14–17 show the comparison of the load spectra of the forces and moments acting at the
front wheel. Even in this case, a reasonable correlation can be highlighted.
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At a first inspection, the load spectra coming from the bare measurements and the standardized
version given by SAMs are just approximately similar. This is due to the fact that, to keep the
standardization as simple as possible, we used a quasi-static formulation for SAMs. We will see in
Section 6 that the damage computed by the Miner’s rule is similar for measured load spectra and for
SAMs load spectra.

To check the robustness of the information obtained by SAMs, data coming from a different
circuit (named circuit B in the following of the paper) have been considered. These data refer to the
same motorcycle, but with a slightly different setup, running for 10 consecutive minutes (5 laps) on a
completely different race circuit.

Considering the new data acquisitions, different coefficients αi have been identified for the SAMs.
Comparing the new identified αi with the ones of circuit A, a variation of less than 15% has been
found for the standard running conditions (i.e., running conditions #1, #2 and #3). Regarding running
conditions #4 and #5 (curb hitting and gear shift), the maximum difference on the identified coefficients
rises up to 35%, probably due to the different profiles of the curbs of circuit B and the different strategy
adopted for gear shifting.

The limited difference in the identified coefficients however demonstrates the effectiveness of the
approach in deriving standardized load spectra of race motorcycles, provided that a sufficiently large
set of data from different circuits is available.

6. Smart Wheel as a Sensor for Prognostic Health Monitoring

The stress level (s) in a generic motorbike component can be evaluated from the external forces and
moments acting at the wheels: Fx,front Fy,front Fz,front, Fx,rear Fy,rear Fz,rear, Mx,front My,front Mz,front, Mx,rear

My,rear Mz,rear. Let us consider the transfer functions H(s/Fik) and H(s/Mik) where I = front,rear and k
=x,y,z and s is the stress at a certain location of a certain component. The transfer functions depend on
the shape of the component

sAik = H(s/Aik)·Aik (11)

where A = F,M, I = front,rear and k = x,y,z. The combined effect of the loads Fx,y,z,front, Fx,y,z,rear, Mx,y,z,front
and Mx,y,z,rear acting simultaneously can be computed by applying the superposition principle.

The power spectral density of the stress is

SsAik(ω) =
∣∣∣H(s/Aik)

∣∣∣2·SAik(ω) (12)
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where SAik(ω) is the power spectral density (PSD) of the applied loads as function of the angular
frequency (ω).

The component suffers an amount of damage which can be expressed as

dD = f (n, s, N(s)) (13)

where n is the number of cycles at constant stress amplitude s, N(s) is the number of cycles to failure at
stress amplitude s obtained from the Wöhler’s curve Nsk = C, and D is the damage function.

According to Miner’s rule if Di is the fraction of damage caused by ni cycles at stress level si
given by

Di =
ni
Ni

(14)

the total cumulative damage D is given by

D =
∑

Di (15)

and the failure should occur when D = 1.
The main criticism to this approach is that the loading sequence and stress interaction effects are

disregarded, resulting in non-accurate estimates of fatigue life. Nevertheless, due to the simple
formulation, it remains a useful approach for the real time estimation of the damage level of
the component.

The total expected damage in the time interval T for a stationary Gaussian random process is
upper-bounded by the following formula presented in [63] by Rychlik

E[DNB(T)] =
T

2πC

√
λ2

λ0

(√
2λ0

)k
Γ
(
1 +

k
2

)
(16)

where Γ () is the Gamma function, λ2 is the stress spectral moment of order two, λ0 the stress
spectral moment of order zero and C and k the Wöhler’s curve parameters of the material (Nsk = C).
However, it is widely acknowledged that the upper bound provided by Equation (16) may give
over-conservative results for wide-band processes [64]. That is why in [64] a corrected version of
Equation (16) was provided, which gives an improved estimation of the fatigue damage level under
the assumption of a Rainflow count and linear damage accumulation

E[DRFC(T)] = E[DNB(T)]·
[
w + (1−w)γk−1

2

]
(17)

where the weight w can be computed as

w = min
{
γ1 − γ2

1− γ1
, 1

}
(18)

and depends only on the PSD bandwidth parameters γ1 and γ2:

γ1 =
λ1
√
λ0λ2

γ2 =
λ2
√
λ0λ4

(19)

where λ1 and λ4 are the stress spectral moments of order one and four, respectively.

Example: Estimation of the Fatigue Damage on the Front Fork

In this section, an example of fatigue life estimation is discussed. The example refers to the
structural health monitoring of the motorcycle front fork. The damage of the front fork has been
calculated both for circuit A and circuit B.



Vehicles 2020, 2 666

The forces and moments signals acquired by the front SW during the on-track tests are filtered
down to a frequency of 1 Hz with a 4th order Butterworth filter. The filtered signals are then combined
to calculate the stress acting on the fork.

The total expected damage level is computed in two ways, by the formula of Equation (17) or by
the Rainflow counting on the stress time history. Additionally, the same damage index is calculated
considering the standardized load spectra derived from SAMs and presented in Section 5.

The front fork is made by two circular tubes made from 34Mn5 low alloy steel. The analyzed
system is depicted in Figure 18 and can be schematized as a cantilever beam with a free loaded end.
The geometrical parameters of the front fork are reported in Table 4.
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Figure 18. Front fork main dimensions and static scheme.

Table 4. Geometrical parameters of the front fork.

Parameter Description Notation Numerical Value Units

Stem outer diameter De 43 mm
Stem thickness t 1.5 mm

Fork length Lf 580 mm
Rake angle β 25 deg

Referring to Figure 18, the maximum bending stress acting on the fork stems in the x-z plane reads

smax =
FzL f sin(β) − FxL f cos(β) −My

W f
(20)

where W f = 2· π32
D4

e−(De−2t)4

De
is given by the ratio of the moment of inertia of the cross section and the

maximum distance from the neutral axis (the factor 2 accounts for the two stems). The bending stress
acting on the x-y plane is more than 20 times lower than the one of Equation (20) and is therefore
neglected in the computation.

An example of time history of the maximum bending stress computed from the experimental
data acquired by the front SW during the tests on circuit A is shown in Figure 19.

The maximum number of cycles to failure of the fork depends on the fatigue properties of the
34Mn5 low alloy steel and on other factors, such as: the local stress concentration factor (set to 1 for
sake of simplicity here), the dimensions of the fork, the surface finishing. Dimension and finishing are
taken into account by introducing two parameter coefficients, b2 and b3, respectively.

Assuming a typical endurance limit of approximately 400 MPa, a slope of the Wöhler’s curve
k ≈ 7, b2 ≈ 0.9 and b3 ≈ 0.9, the numerical value of C equals 2.39 × 1023 (C is the parameter of the
Wöhler’s curve Nsk = C).
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The fatigue stress amplitude acting on the stems can be calculated by simply deducting the
average stress from the time history (Figure 19). The PSD of the obtained signal is then employed to
compute the four spectral moments λ0, λ1, λ2 and λ4 that appear in Equation (19).

The described procedure has been applied to portions of the stress time history, with T ≈ 100 s.
The damage index of each portion of the signal is calculated from Equation (17) and the total damage
at the end of the test is given by the sum of each contribution.

The second approach that has been employed for the fatigue life estimation of the component
is based on a Rainflow counting method. In this case, the stress cycles are directly extracted from
the time history (Figure 19). The damage level is then evaluated by applying Equations (14) and (15).
For this second approach, also the standardized load spectra derived from the SAMs and presented in
Section 5 have been considered.
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Figure 19. Maximum bending stress acting on the fork’s stems computed from the experimentally
acquired forces and moments by the smart wheel (SW) during ten consecutive laps on circuit A.

Figure 20 depicts the spectra of the stress amplitude acting on the fork stem, computed from both
the experimental time histories and the standardized load spectra derived from the SAMs. The plots
of Figure 20 refer either to circuit A (Figure 20a) or circuit B (Figure 20b). In the figure, the Wöhler’s
curve of the fork stem is shown as well.
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Figure 21 shows the evolution of the fatigue damage index of the front fork as function of the
covered mileage, computed with the two described approaches on either circuit A (Figure 21a) or
circuit B (Figure 21b). In Figure 21, the grey solid lines refer to the calculated Miner damage index
after Rainflow counting from experimental data. The black solid lines refer to the Miner damage index
computed with Equation (17). The black dashed lines show the Miner damage index computed from
the standardized load spectra derived from SAMs and described in Section 5. The grey dashed lines
show the Miner damage index computed from the standardized load spectra derived from SAMs with
indices αi, which are derived from the data of another circuit. In other words, the grey dashed line
pertaining to circuit A is derived with parameters αi identified on circuit B, and vice-versa.
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By analyzing the plots of Figure 21, several comments can be made.

- For all cases, the damage level is well far below the unit value, which means that the front fork is
able to withstand the loads applied along the covered mileage without any durability issue.

- Concerning the damage levels computed from experimental data, it turns out that Equation (17)
provides a more conservative prediction than the Rainflow approach, with a damage level equal
to 2.50 × 10−5 against 0.53 × 10−5 for circuit A and 6.19 × 10−6 against 1.00 × 10−6 for circuit B.
This was however quite expected, since Equation (17) provides an upper bound of the fatigue
damage level.

- Concerning the damage level computed from the standardized load spectra, results show that the
SAMs tend to provide a less conservative prediction than the experimental data. If for instance
the rainflow count on the standardized load spectra of circuit A is considered (the black dashed
line in Figure 21a), it can be seen that the computed damage index is about five times lower
than the result obtained with Rainflow count on experimental acquisitions (the grey solid line in
Figure 21a). For circuit B, the ratio between the two computed damage indices is around 2.6.

- In case the parameters αi pertaining to a circuit are used to derive the damage on the other circuit,
the damage may vary of more than an order of magnitude. It can be seen that, for circuit A, the two
values are still comparable (the damage level goes from 9.88 × 10−7 to 2.11 × 10−7), while for
circuit B a larger difference is experienced. These discrepancies could however be reduced by
considering averaged values of the αi on a large set of data coming from different circuits.
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From the practical point of view, both of the two described computational methods can be
implemented into any Digital Signal Processing unit, enabling an almost real time computation of the
damage level of the motorcycle components. Equation (17), although more conservative, has indeed
important advantages in terms of computational effort, since it simply requires to update the values of
the spectral moments as soon as new samples are available. The Rainflow Counting approach, on the
other hand, requires the whole signal to be stored in memory to compute the stress load spectrum once
the prescribed time period T is reached.

7. Discussion

One aim of the paper was to derive load spectra for motorcycles by measuring directly the loads
at the wheels. The enabling technology was provided by proper smart wheels (SWs) able to produce
reliable data. This seems an original contribution. Without light smart wheels the forces acting at the
motorcycle are derived in a too approximated way, as the attempts made in the literature show.

Additionally, we did want to produce, for motorcycles, standardized load spectra, i.e., load spectra
depending on few parameters (namely vertical load and tilt angle). This contribution seems quite
original, and useful in the concept design phase. The designer can produce a preliminary structural
arrangement without having tested the physical motorcycle. We did propose a method to derive such
standardized load spectra by resorting to simple semi-analytical models (SAMs). The shortcoming here
is that to keep the standardized load spectra as simple as possible, the forces related to the vibrations
of the suspensions or driveline had to be neglected. This produces -as expected- slightly lower damage
than the one computed by actual measured load spectra. Nonetheless, an engineering scaling factor of
5 (reasonable when we consider damaging effects [24]) could be used to exploit effectively the derived
standardized load spectra for motorcycles. A broad test campaign could be organized to set the scaling
factor, but this is out from the scope of this paper.

We have seen that changing the race circuit the damage can vary considerably. This has a direct
effect on parameters αi. This means that parameters αi have to be selected very carefully. In case the
motorcycle for consumer market would be considered, a meaningful set of experimental data will be
needed to derive parameters αi.

More accurate standardized load spectra would involve the introduction of the vibrations of
suspensions and driveline. This would cause the dependence of such load spectra on many more
parameters than vertical force and tilt angle.

In case other subsystems (like the frame for instance) are analyzed, correlation functions (depending on
the motorcycle wheelbase and speed) should be considered to combine properly the standardized load
spectra of front and rear loads.

At the time being, the smart wheels are not industrialized for consumer use. Therefore, the continuous
structural health monitoring is not possible with the presented smart wheels. In case such wheels
will be made available on the consumer market, we propose a method based on the application
of Equation (17) to monitor the continuous on-line damaging process of motorcycle structural
components. Obviously, this is just a proposal that can be further improved by a proper interaction
with the manufacturer.

In the paper, the numerical exercise refers to a race motorcycle. This implies extreme loading
conditions. Possibly it is a good starting point for the application of the developed method to the
consumer motorcycle market.

8. Conclusions

In the paper, experimental measurements of load spectra on an actual race motorcycle have
been performed. Two circuits were considered. Forces and moments acting at the front and the rear
motorcycle wheels have been measured by means of a set of smart wheels, i.e., special lightweight
sensing wheels able to measure the six components of forces and moments acting at the wheel
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center. The motorcycle speed and other quantities related to its dynamics were also measured by
dedicated sensors.

Data were acquired over a number of consecutive laps on each racetrack, performed by a
professional rider under real race conditions. The analysis of the acquired data allowed to identify five
typical loading conditions (i.e., maneuvers) that are representative of a complete lap. The identified
running conditions describe the motorcycle behavior during pure longitudinal motion, steady cornering,
combined cornering with traction/braking, passage over curbs and gear shifts. The identification
proved to be rather robust.

The Rainflow counting method has been applied to the acquired time histories of the forces and
moments, in order to derive load spectra that are representative of real in-service loading conditions.

A method able to derive standardized load spectra has been presented in the paper.
Simple semi-analytical models (SAMs) of the motorcycle have been employed to estimate the loads
acting at the tire/terrain contact patch during well-defined running conditions. The standardized load
spectra require as input just the vertical load and the motorcycle tilt angle. The standardized load
spectra provide the relevant forces and moments acting at the motorcycle wheels during the specific
maneuver in the low frequency range (up to few Hertz).

The load spectra computed from the experimental measures and the ones obtained from SAMs
are similar and produce similar Miner’s damage indices. The proposed method allows to obtain a
reasonable estimation of motorcycle loads, starting from the vertical loads and the tilt angle.

Finally, the smart wheel as a sensor for motorcycle structural monitoring is introduced. In fact,
the data acquired by the smart wheel, can provide useful information on the actual input loads.
The precise knowledge of input loads and the Palmgren–Miner rule can be exploited for the estimation
of the residual useful life of each structural component of the motorcycle.

As an example, two different approaches for estimating the residual fatigue life of the front fork
were tested and compared. Starting from the tire/ground contact forces measured by the front SW,
the stress acting on the fork stems was calculated. The Miner damage index was calculated by means of
a Rainflow count. Alternatively, a spectral method was employed to estimate the damage. The applied
stress was treated as a wide-band stationary random process, and the expected Miner damage index
was computed analytically.

Both of the two approaches are suitable to be implemented in a real-time digital signal processing
unit, enabling the SWs to be exploited as reliable sensors for real time structural monitoring and fatigue
life prognosis. As expected, the analytical formula provides a more conservative prediction of the
fatigue damage, and implies a lower computational effort with respect to the Rainflow count.

Motorcycle load spectra and structural monitoring can be enabled by proper smart wheels.
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Appendix A

Table A1 reports the numerical values of the coefficients αi of the SAMs, identified from the
experimental forces and moments.
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Table A1. Numerical coefficients αi (circuit A).

Coefficient Description Value Coefficient Description Value

α1

Longitudinal force Fx in
rectilinear acceleration–rear

wheel
0.68 α18

Torque My in rectilinear
acceleration–rear wheel–curb

hitting
0.72

α2
Torque My in rectilinear
acceleration–rear wheel 0.72 α19

Longitudinal force Fx in
rectilinear brake–front

wheel–curb hitting
1.27

α3
Longitudinal force Fx in

rectilinear brake–front wheel 1.36 α20
Torque My in rectilinear

brake–front wheel–curb hitting 1.02

α4
Torque My in rectilinear

brake–front wheel 1.07 α21
Lateral force Fy in steady

turning–rear wheel–curb hitting 0.07

α5
Lateral force Fy in steady

turning–rear wheel 0.09 α22
Moment Mx in steady

turning–rear wheel–curb hitting 0.41

α6
Moment Mx in steady

turning–rear wheel 0.52 α23

Lateral force Fy in steady
turning–front wheel–curb

hitting
0.11

α7
Lateral force Fy in steady

turning–front wheel 0.14 α24

Moment Mx in steady
turning–front wheel–curb

hitting
0.29

α8
Moment Mx in steady
turning–front wheel 0.29 α25

Longitudinal force Fx at
acceleration in a corner–rear

wheel–curb hitting
*

α9

Longitudinal force Fx in
curve acceleration–rear

wheel
0.57 α26

Torque My at acceleration in a
corner–rear wheel–curb hitting *

α10
Torque My at acceleration in

a corner–rear wheel 0.58 α27

Lateral force Fy at acceleration
in a corner–rear wheel–curb

hitting
*

α11

Lateral force Fy at
acceleration in a corner–rear

wheel
0.07 α28

Moment Mx at acceleration in a
corner–rear wheel–curb hitting *

α12
Moment Mx at acceleration

in a corner–rear wheel 0.34 α29
Longitudinal force Fx at corner
brake–front wheel–curb hitting *

α13
Longitudinal force Fx at

corner brake–front wheel 0.72 α30
Torque My at corner brake–front

wheel–curb hitting *

α14
Torque My at corner
brake–front wheel 0.47 α31

Lateral force Fy at corner
brake–front wheel–curb hitting *

α15
Lateral force Fy at corner

brake–front wheel 0.11 α32
Moment Mx at corner

brake–front wheel–curb hitting *

α16
Moment Mx at corner

brake–front wheel 0.24 α33
Longitudinal force Fx at gear

shift–rear wheel 0.99

α17

Longitudinal force Fx at
rectilinear acceleration–rear

wheel–curb hitting
0.68 α34

Torque My at gear shift–rear
wheel 0.39

* None of such maneuvers have been identified from the experimental data.
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