Smart Energy 1 (2021) 100002

journal homepage: www.journals.elsevier.com/smart-energy

Contents lists available at ScienceDirect

Smart Energy

Optimisation method to obtain marginal abatement cost-curve
through EnergyPLAN software

Check for
updates

Matteo Giacomo Prina *”, Fabio Capogna Fornaroli °, David Moser ?,
Giampaolo Manzolini °, Wolfram Sparber ?

2 Institute for Renewable Energy, EURAC Research, Viale Druso 1, I-39100, Bolzano, Italy
b Dipartimento di energia, Politecnico di Milano, Via Lambruschini, 4, 20156, Milano (MI), Italy

ARTICLE INFO

Article history:

Received 10 December 2020
Received in revised form

15 February 2021

Accepted 15 February 2021
Available online 2 March 2021

Keywords:

Marginal abatement cost curve
Energy scenarios

EnergyPLAN

EPLANopt

Optimisation

Cost-optimality

Energy planning

Energy system modelling

ABSTRACT

The scope of energy system modelling is to support policy-makers in the definition of an energy strategy.
Energy system models typically provide one single optimal solution. On the contrary, presenting the
results of energy system modelling in the form of a set of optimal or sub-optimal alternatives improves
the transparency towards the policy makers. A method to achieve this is marginal abatement cost curve.
It estimates the relationship between potential reduction of CO, emissions and relative costs. Model
based methods to obtain marginal abatement cost curve lack of simultaneous high resolution in time and
in sector coupling. Moreover, model based methods obtain smooth curves which can be transformed in
step-wise only through a decomposition analysis. This latter shape is particularly important for providing
the explicit technological detail in the graphical representation. The paper aims at developing a method
to address these two issues in marginal abatement cost curves. The method, called EPLANoptMAC, is
based on the EnergyPLAN software, developed by Aalborg university, and a hill climbing algorithm for
expansion capacity optimisation. It is presented by applying it to the Italian energy system in 2030. The
results show how in the initial phase of the decarbonisation process it is cheaper to generate over-
generation and curtailments from variable renewable energy sources than save these curtailments
through balancing and storage solutions. This is driven by the low cost of generation of VRES and the
high cost of balancing and storage solutions.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

more cost expensive than the unique optimal one.
Presenting the results of energy system modelling as a set of

Energy system modelling is the discipline which supports and
guides policy-makers in the definition of an energy strategy. Energy
system models provide the best set of technologies to be imple-
mented in a certain energy system. Solving a cost minimization
problem typically returns a single optimal best set of technologies
as solution. However, as stated by Neumann and Brown [1]
“feasible but sub-optimal solutions may be preferable for reasons
that are not captured by model formulations because they are
difficult to quantify [2]”. Large infrastructure projects and their
visual impact, land-use conflicts, problematic concentration of re-
newables in single regions are all political implications which are
difficult to be quantified in energy system models [1]. However, as
reported by Neumann and Brown [1] these implications could
justify a policy-makers choice towards a solution which is slightly
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alternatives instead of one single optimal solution improves the
transparency towards the policy makers for two main reasons [1].
a) It allows policy makers to choose between different alternatives
depending on their political inclination and requirements [1]. b) It
allows the identification of the common and missing elements of
the different optimal and sub-optimal solutions (must-haves and
must-avoids) [1]. This is useful to better support policy makers
through a participatory process in the identification of the decar-
bonisation measures.

Different approaches and techniques have been elaborated to
assess this challenge: i) identification of multiple near-optimal
solutions, ii) multi-objective optimisation approach, iii) marginal
abatement cost (MAC) curves.

i) DeCarolis [3] discussed the utility of Modelling to Generate
Alternatives (MGA) as a technique to achieve multiple near-
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optimal solutions in the energy system context. In [2],
DeCarolis et al. used MGA together with Temoa bottom-up
energy system model to study multiple near-optimal solu-
tions of the U.S. power sector. Neumann and Brown [1] uti-
lized MGA to study the near-optimal feasible space for the
European power system under CO2 reduction targets be-
tween 80% and 100%. As energy system model they used
PyPSA-Eur [4,5]. The results highlighted the existence of
several similarly costly, but technologically diverse solutions.
A contained cost deviation of 0.5% produces a large range of
feasible solutions. The results showed among the must-have
the following technologies: offshore or onshore wind,
hydrogen storage and transmission reinforcement. Lombardi
et al [6], building upon the work of DeCarolis [3], developed a
method to generate spatially explicit, practically optimal
results (SPORES). The method utilizes the bottom-up energy
system model Calliope framework [7].

ii) Completely different approach is achieved by implementing
a Multi-Objective expansion capacity optimisation. This
approach allows the achievement of the Pareto front of non-
dominated solutions. The objective functions that are usually
selected are economic, environmental variables such as total
annual costs, CO, emissions or renewable energy share. In
fact, economic development and CO, emissions reduction
are often in conflict with each other. Policy makers thanks to
this tool have the possibility to graphically analyse and
compare different optimal solutions and select the favourite
scenario depending on their predilection towards the eco-
nomic or environmental objective. Several publications have
applied this approach [8—10].

iii) Marginal abatement cost curve is a very popular tool to es-
timate the relationship between potential reduction of CO,
emissions and relative costs. Similarly to multi-objective
optimisation approach, MAC curve allows the achievement
of different alternatives solutions depending on where the
policy makers decide to locate on the curve. This will be
driven again by their inclination towards the environmental
and economic objectives.

This paper focuses on this latter approach. Huang et al. [11]
presented a review of MAC curves identifying two main ap-
proaches: Expert-based and model-based. Expert-based MAC
curves are created through the individual assessment of abatement
measures. These models calculate the incremental cost of alterna-
tive abatement measures with respect to the starting situation of
the energy system, which is then divided by the emission reduc-
tion. The MAC curve is thus derived by ranking individual measures
costs of CO; emissions abatement. The advantage of this approach
is the resulting step-wise MAC curve. This type of graphical rep-
resentation allows the very clear and explicit visualisation of the
curve by means of single discreet steps. Each of them is achieved by
a different decarbonisation measure showing immediately which
measure is responsible for the emission reduction. The disadvan-
tages of this approach are related to the difficulties in capturing
system-wide sectorial interactions leading to problems of double-
counts of CO, emissions abatement [12]. Moreover, another
disadvantage of expert-based MAC curves is connected to possible
inconsistencies in the baseline assumptions [13].

Model-based MAC curves achieve the result by mean of an en-
ergy system model which can use a bottom-up, top-down or hybrid
approach. This model is used to perform several model runs with
two different methods: i) with progressively higher CO, emissions
tax levels, ii) with stricter constraints on carbon emissions reduc-
tion. The problems of the expert-based approach are overcome: the
risks of double counts of emissions reduction and not considering
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sectorial interactions are removed. The advantages and disadvan-
tages of this approach are related to the adopted type of model.
Bottom-up models, implementing partial equilibrium approach,
reach a high technological detail in the energy sector but do not
consider macro-economic impacts [14]. Top-down models based
on Computable General Equilibrium (CGE) capture the effects of a
certain energy transition on the whole economy system but lack of
technological detail in the energy sector [14]. For more pros and
cons of these methods there are the studies of Zhang and Folmer
[15], Stoft [16] and Kesicki [13].

A disadvantage of model-based approach is that the final result
is not a step-wise MAC curve but a smooth one. This version
generally omits the technological detail in the graphical represen-
tation. The steps which constitute the MAC curve are continuous
and each level of CO, emissions reduction is achieved by a mix of
technologies. To overcome this limitation, Kesicki [17] introduced a
new method called decomposition analysis. He implemented a
model-based MAC curve approach through the use of UK MARKAL
and decomposition analysis to inspect mitigation costs and CO;
emissions reduction potentials in the UK transport sector [18].

Model-based MAC curves adopting bottom-up energy system
models are the focus of this paper. As already mentioned, the limits
of this approach are related to the limits of bottom-up models. As
highlighted by Prina et al. [19] the main challenge of bottom-up
energy system models is the simultaneous achievement of high
resolution in four identified pillars: resolution in time, in space, in
techno-economic detail and sector coupling. Lowering the resolu-
tion in one or more than one of these fields is usually necessary to
contain the computational effort. However, this introduces
approximation and inaccuracies as demonstrated by Poncelet et al.
[20].

Table 1 shows the main features of reviewed studies imple-
menting a model-based MAC curve through the use of a bottom-up
energy system model.

It is possible to notice how none of them simultaneously
implement sector coupling and a high temporal resolution. More-
over, few of them produce a step-wise MAC curve and only through
a decomposition method.

The hourly time-step is particularly relevant when modelling
energy systems with high penetration of variable renewable energy
sources (VRES). Poncelet et al. [20] showed the importance of the
time resolution in energy system modelling. They demonstrated
how the resolution in time should be prioritized compared to the
resolution in techno-economic detail and how the use of a low
number of time-slices (usually 12 time-slices) produces an error
that cannot be considered negligible.

Sector coupling is also a relevant feature for energy system
models. Several studies have shown the advantages of sector
coupling compared to single sectors modelling approach. In this
regards, it is important to mention the contribute of Aalborg Uni-
versity in the definition of the smart energy system concept
through which they showed the advantages of studying the in-
teractions and synergies between different energy sectors to
maximize efficiency and reduce costs [34,35]. Lund in Ref. [35] and
Connolly et al. [36] have introduced the concept of the smart energy
system and the opportunities and synergies among energy sectors.
In Ref. [37] Mathiesen et al. have inspected the smart energy system
concept with particular attention to the integration of the transport
sector.

To summarise, two main issues have been highlighted: a)
model-based MAC curve carries around the limits of the bottom-up
models used for the analysis. The literature review has showed how
bottom-up models used for developing model-based MAC curves
lack of simultaneous resolution in time and in sector coupling. b)
The model-based MAC curve achieved with these bottom-up
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Table 1

Main features of reviewed studies implementing a model-based MAC curve through the use of a bottom-up energy system model.
Model name Energy sectors covered Time resolution MAC curve shape Reference
MARKAL UK Transport 6 time-slices Step-wise (decomposition analysis) [21]
MARKAL UK Transport 6 time-slices Smooth [22]
TIMES_PT All sectors 16 time-slices Smooth [23]
LUSYM Power Hours Smooth [24]
AIM/Enduse All sectors 1 time-slices Smooth [25]
TIMES_GECCO Transport 42 time-slices Smooth [26]
MARKAL_GEORGIA Power and heating (residential and commercial sectors) 8 time-slices Step-wise (decomposition analysis) [27]
AIM/Enduse Power and heating (residential sector) 1 time-slice Step-wise (decomposition analysis) [28]
AIM/Enduse Industry 1 time-slice Step-wise (decomposition analysis) [29]
0SeMOSYS Power 48 time-slices Smooth [30]
METER Power 73 time-slices Smooth [31]
TIMES All sectors 12 time-slices Step-wise (decomposition analysis) [32]
EPLANoptMAC All sectors Hours Step-wise [33]

models produces a smooth curve which is transformed in step-wise
only through a decomposition method. This latter is particularly
important for providing the explicit technological detail in the
graphical representation.

This paper aims at developing a method to address these two
issues. In particular the scope of the paper is the development of an
optimisation method for model-based MAC curves creation
adopting a bottom-up energy system model with sector coupling
and high temporal resolution. Moreover, the aim is to achieve a
resulting MAC curve with a step-wise shape.

The method which is presented in this paper is named EPLA-
NoptMAC. It is based on the EnergyPLAN software [38] which has a
particularly large community [39]. The source code is openly
available to favour the spread and use of this method among this
community [33]. This paper mainly focuses on the presentation of
this novel method while it does not go in detail in the final results.
The model is applied to the Italian case study at the year 2030 to
show the potentialities of the developed method. This allows the
study of the competing decision variables and the reasons why
certain best energy mixes are reached.

The paper is structured as follows. The methodology section
describes and explains EPLANoptMAC model starting from the
original EnergyPlan and EPLANopt versions. The Italian case study
presents the main sources and assumptions to populate the Ener-
gyPLAN model for the Baseline year 2015 and the main assump-
tions on the decision variables. The results section discusses the
main results of the model and its application to the Italian energy
system selected for demonstration purposes. Finally, last section
provides conclusive remarks.

2. Material and methods

EPLANoptMAC adopts a simple hill climbing algorithm coupled
to EnergyPLAN software [38]. The hill climbing algorithm is used to
perform expansion capacity optimisation and achieve the model-
based MAC curve. EnergyPLAN is used to accomplish the opera-
tional calculations over the year and thus the matching between
demand and supply in each hour of the simulation year. EPLA-
NoptMAC inherits the features of EnergyPLAN: all sectors are
considered (electricity, heating, cooling, industry and transport)
and a high temporal resolution through an hourly timestep is
adopted [35].

2.1. EnergyPLAN software

EnergyPLAN software has been developed and maintained by
Aalborg university [40] since 1999. It has a user-friendly graphical
user interface. It is free to download, documentation and tutorials

are provided in the EnergyPLAN website [34], but it is not open
source. It is programmed in Delphi Pascal. The main characteristics
of the software are the following:

- It is a deterministic input/output model. Uncertainty and sto-
chastic variables are not directly considered. Thus the same
input will always return the same output. The inputs that have
to be included by the users are energy demands, technological
components of the energy system, their capacities and effi-
ciencies, costs specifications and regulation strategies.

It is designed to properly model future scenarios with high
penetration of renewables. It focuses on one-year period (the
simulation year) with an hourly time-step. It implements sector-
coupling by integrating the main energy sectors of the energy
system such as electricity, heating, cooling, industry and
transport.

EnergyPLAN follows a heuristic approach. Through analytical
programming, it implements different priorities for the sources
that have to cover the energy demand. This allows the
containment of the computational effort which is in the order of
seconds for each run.

EnergyPLAN model has been applied at different geographical
scales: at European level [41], at national level [42—52], at regional
level [53,54], to towns and municipalities [55,56] and to small is-
land [57—60].

EnergyPLAN is used in the EPLANoptMAC method adopting the
single-node option thus assuming a ideal and perfect transmission
grid without bottlenecks or losses. For this reason it is important to
define two concepts: overgeneration and curtailment. These will be
particularly relevant in the analysis of the results. The over-
generation, Overgeneration; [GW], is the electric power production,
pr [GW], which exceeds the demand, d; [GW], in a determined hour
t (see Equation (1)). The overall annual over-
generation, Overgeneration [GWh], is given by the sum of the hourly
Overgeneration; [GW] contributions (Equation (2)).

L pe—dr dr <pt
Overgeneration; = { 0 de > pe (1)
T
Overgeneration = Z Overgeneration; (2)
t=0

Curtailment, Curtailment; [GW], is the electric power which is
not used by the system in a determined hour, it exceeds the de-
mand and it is not used by balancing and storage solutions
(Equation (3)). bss; is the electric demand requested by balancing
and storage solutions for charging or generation of different energy
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vectors. The overall annual curtailment, Curtailment [GWh], is given
by the sum of the hourly Curtailment; [GW] contributions (Equation
(4)).

Curtailment, — Overgeneration; — bss;  bss; < Overgeneration;
=0 bss; > Overgeneration;
(3)
T
Curtailment = ~ Curtailment; (4)
t=0

The abovementioned overgeneration and curtailment are
theoretical indicators useful for this paper and its evaluations on
the energy self-sufficiency of the considered case study. In reality,
the excess electricity generation can be used as electricity export
towards other countries.

2.2. EPLANoptMAC

In order to overcome EnergyPLAN limitation in providing an
expansion capacity optimisation option, several methods coupling
the software with different algorithms have been implemented.
Cabrera et al. [61] developed a MATLAB toolbox to iteratively run
EnergyPLAN for automatic evaluation of different future alterna-
tives. Bjeli¢ et al. [62]. applied a Single-Objective (SO) expansion
capacity optimisation through the use of GenOpt. Mahbub et al.
[63] coupled EnergyPLAN with a Multi-Objective (MO) expansion
capacity optimisation algorithm written in Java. Prina et al. [54]
developed the Python based EPLANopt model through the coupling
of EnergyPLAN and a MO expansion capacity optimisation
algorithm.

Starting from this latter approach, EPLANopt model has been
further developed to produce model-based MAC curves. This new
model version is called EPLANoptMAC. It is based on a hill climbing
Single-Objective expansion capacity optimisation algorithm. In
order to delineate the objective function it is important to define
the Cost of CO, Abatement (CCA). Equation (5) shows its formula-
tion. CCA is given by the quotient between the difference in costs
and the difference in CO, emissions between the reference case and
the one obtained implementing decision variable m.

Costsm — CoStSreference

CCA[€/tC0,) = (5)

COZ.reference - Coz,m

The objective function is the minimization of the CCA as shown
in Equation (6). dv is the vector of the decision variables dv;,;, within

a lower dvﬁ,%) and an upper bound dvﬁ,ﬁ] ) for each of them.

Optimization function min [CCA]
dv (6)

Subject to dv'l) < dvm < dvY)

The steps through which the algorithm evolves to identify the
MAC curve are shown in the diagram of Fig. 1 and are the following:

1) Input definition. The inputs of the model are the following: i) all
EnergyPLAN inputs needed to define the reference system in
EnergyPLAN, ii) the list or vector of decision variables on which
the expansion capacity optimisation will be implemented
together with the list of incremental values, one for each of
decision variable (vector I). These incremental values are the
additional values (in terms of installed power, capacity, addi-
tional share, etc.) of each decision variable. These guide the
expansion capacity optimisation. iii) maximum number of steps
(Nsteps). The number of steps, Nsteps, defines the number of
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iterations resulting in the number of discreet elements in the
MAC curve.

2) At each step the possibility to expand the power, capacity or
share of each decision variable is assessed. This is performed by
reading the value of each decision variable, for example the
capacity of Photovoltaics (PV), in the reference system and
modifying it with by adding the incremental unit value for that
decision variable (I;). Then the modified version of the refer-
ence system is launched in EnergyPLAN. The total annual costs
and CO; emissions are taken from the EnergyPLAN output file in
order to calculate the CCA. This is done for each of the decision
variables.

3) The result of phase 2 is a list of CCA values, one for each decision
variable. The minimum value is chosen by the algorithm. All the
outputs of the solution implementing the decision variable
which produce the lowest CCA are saved and adopted to analyse
the final results.

4) The energy system modified by the decision variable which
generates the lowest value of CCA is selected as new reference
system. The algorithm checks if the maximum potential of the

different decision variables, dvﬁ,ﬂ’ ), is reached or not. If it is
reached it removes the decision variable from the dv vector. The
step index moves forward of one unit and the phases 1,2, 3 are
repeated considering the modified reference system.

The algorithm stops when the maximum number of steps,
Nsteps, is met or when it not possible anymore to reduce the CO,
emissions with the considered set of decision variables because the

maximum potential of each of them, dv,(# ), is reached.

EPLANoptMAC is built as static bottom-up energy system model,
thus it is applied at a future target year. EPLANoptMAC inherits the
typical advantages and limitations of hill climbing algorithms. The
advantage of this optimisation algorithm is the short computa-
tional time. The drawbacks regard the possibility to remain stuck in
local minima.

3. Italian case study

In the previous chapter, the generic formulation of the model
and optimisation process have been defined. In this chapter, the
application case study is presented. The input variables and pa-
rameters of the model are listed together with the decision vari-

ables chosen for the selected case study, their lower (dvi,L,)), upper

bounds (de,l,’ )) and incremental values (Ir).

This chapter is subdivided into two sub-sections. In the first, the
assumptions regarding the Baseline scenario are presented. The
Baseline represents the current state of the energy system. The year
for which the Baseline is created is 2015 while the expansion ca-
pacity optimisation model EPLANoptMAC is run for the future
target year 2030. In the second sub-section, the list of decision
variables taken into account within the optimisation problem are
presented and discussed.

3.1. Baseline 2015

The Baseline 2015 is created starting from the Heat Roadmap
Europe 4 (HRE4) project [64]. It provides the 2015 EnergyPLAN
input file for 14 EU member countries (Italy included) [65]. This
2015 HRE4 baseline is modified using more precise data taken from
Italian authorities: GSE [64], RSE [66] and Terna [67] (see Table 2).
For more details on the Baseline 2015 is possible to refer to the
following publication [68]. Scope of this work is to present the
novel methodology of EPLANoptMAC. In order to do this, the
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Step =0

Initialization of the reference system:

Vector of decision

Hourly Costs of the
distributions target year
/ Nsteps /

variables (dv)

Creatlon of the
reference system in
EnergyPLAN

Vector of incremental
values for dv (I)

3)

Modification of the

reference system Remove dvgiep m
with dVe, m and I, from dvy,

Cost of CO,

snnu]anon with abatement
EnergyPLAN evaluation (CCA

Saving the results:

CCA
vector

CCA b Fuel Electricity CoO,
H e distributions balance abatement
minimization

RES plant Total annual
capacities costs CCA

Fig. 1. Diagram of the EPLANoptMAC algorithm.

Table 2 application of the model is necessary. However, the focus of the
Baseline 2015 main additional sources in the power sector to HRE project data [64]. paper is not on the final results of the case study.
Data Source Different assumptions have been formulated to create the
Installed capacity for VRES GSE [69], Terna [70] EnergyPLAN input ﬁ.le for the expansion capacity optimisation in
Hourly distribution for VRES GSE [69], Terna [70] 2030. One of these is the phase out from coal. Moreover, all the
Installed capacity for other technologies Terna [70], HRE [65] costs of the different technologies are updated following different




M.G. Prina, EC. Fornaroli, D. Moser et al.

sources. All the different assumptions, emissions factors, costs of
technologies and fuels for the year 2030 in the Italian energy sys-
tem are listed in Ref. [68].

3.2. Decision variables

The decision variables are the decarbonisation measures on
which the expansion capacity optimisation is performed. It is
important to identify them in order to define the domain of the
optimisation problem. Therefore, it is important to define the
decarbonisation measures that are relevant for the considered case
study starting from the different sectors to exploit the synergies

between them. It is also important to define their bounds. dvﬁ,’;)

corresponds to the current state of the decision variable while dvﬁ,',] )
is the upper bound and corresponds to its maximum potential. In
addition, the incremental value I, for each decision variable dv,y is
defined.

The considered decision variables are listed in Table 3 and are
chosen from different energy sectors.

- Power sector. In the power sector there are generation sources
such as rooftop residential and utility scale photovoltaic sys-
tems, onshore and offshore wind power. The implementation of
these decision variables in the model is straightforward. Their
installed capacity is increased at each step of their incremental
value I;; and the resulting energy system is evaluated in terms of
CCA. The costs associated to the expansion of the installed po-
wer of these sources are the investment, operation and main-
tenance costs in 2030.

In the power sector there are also measures classified under
balancing and storage category: lithium-ion batteries and power to
gas. Their implementation in the model requires some additional
expedients. For lithium-ion batteries the installed capacity is
increased at each step by its incremental value I; under the
assumption that batteries are not limited in charging and dis-
charging power. The costs of batteries are given by the investment,
operation and maintenance costs projections in 2030 [68]. Power to
gas exploits excess electricity by VRES to produce hydrogen and
inject it in the natural gas grid. The decision variable is the amount
of produced hydrogen in TWh. The produced hydrogen maximum
potential is assumed to be 15% of the overall natural gas con-
sumption. At the increase of the generation of hydrogen the elec-
trolyser installed power is forced to increase. For each TWh of
produced hydrogen an installed power of 2000 MW of electrolyser
is imposed. The overall costs of power to gas are connected to the
investment, operation and maintenance costs of the electrolyser in
2030.

- Heating sector. Energy efficiency of buildings is implemented as

formulated in Ref. [10]. Similarly, the assumption that in all
refurbished buildings there is the switch from boilers to heat

Table 3
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pumps to cover the remaining space heating is implemented.
The incremental value I, for this source is 1% of energy effi-
ciency refurbishment. The costs connected to this decision var-
iable results from the following: the decrease of fuels, decrease
of installed capacity of individual boilers and the increase of
heat pumps. In addition, the costs related to energy refurbish-
ment are considered by the model. These costs can be found in
Ref. [10].

Transport sector. The decision variable considered in this sector
is electric vehicles. The assumptions regarding this decision
variable are reported in Ref. [68]. The model considers only the
infrastructural costs of electric mobility and does not take into
account the costs of the vehicles.

4. Results and discussion

Fig. 2 shows the MAC curve (top part) and the Cost of CO,
Abatement (bottom part) of the different decision variables at each
step. The MAC curve allows the visualisation of the potential CO;
abatement of each decision variable for each step through the
width of each bar. The height of each bar shows the cost of CO,
abatement for a specific decision variable at a specific step. At the
successive step the energy system characteristics are changed. The
impact of the same decision variable in terms of potential CO;
abatement and CCA can change in two different steps.

The subplot on the bottom in Fig. 2 allows to compare the values
of different decision variables at each step. The lowest value for
each step in this subplot is depicted in the first subplot through the
bar plot mode. The subplot on the bottom in Fig. 2 it is particularly
important to highlight the dynamic, synergies and correlations
between the decision variables in the decarbonisation process and
to understand the reasons why certain best energy mixes are
reached.

Looking at the results depicted in Fig. 2 it is possible to point out
the following key aspects.

i) In the first part of the curve (below 10 Mt of CO, abatement),
electric mobility is the only decision variable selected. This is
due to the lowest CCA driven by the considered assumptions
(only cost of electric mobility infrastructure is considered). It
is also possible to see that the implementation of electric
mobility and the consequent increase of electric vehicles
share does not affect the CCA of the other decision variables.
Electric mobility affects the electricity sector by increasing
the electric demand. In energy systems with high penetra-
tion of renewables in the electricity sector this would have
had an impact on CCA of the others generation sources as
well. However, the renewable energy share in the Italian
power sector is contained and equal to 35% in 2015. The
overgeneration is negligible and the potential installation of
additional installed power of VRES is far from the production
of overgeneration. The increase of overgeneration from VRES

List of decision variables per sector and type, their current state dvﬁ,’;), their incremental value I, their maximum potential dvﬁ,’,J ).

(U)

Sector Type Name Unit Current state, dvﬁ,L,) Incremental value, I, Maximum potential, dv;,
Power sector Generation source Residential photovoltaic MW 15863 1000 120000
Utility scale photovoltaic MwW 4245 1000 70000
Wind power MW 10265 1000 49000
Offshore wind power MW 0 1000 10000
Balancing & storage Batteries GWh 0 10 600
Power to gas TWh 0 1 15
Transport sector Dump charge Vehicle electrification % 0 1 20
Heating sector Energy refurbishment Energy efficiency % 0 1 75
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Fig. 2. MAC curve at 2030 for the Italian case study (subplot on the top) and comparison of the Cost of CO, Abatement of the different decision variables (subplot on the bottom).

in absence of balancing and storage technologies produces
lower CO; emission reduction due to the lower reduction in
the generation from fossil fuels power plants.

ii) In the second part of the curve (between 10 and 100 Mt of
CO, abatement), high installation of VRES occurs starting
with utility scale PV which has the lowest cost of electricity
[€/MWHh] in 2030. At the beginning it has a negative CCA,
then increasing the overall installed power of this source
leads to overgeneration reducing the benefits; CCA becomes
positive for the last steps of utility scale PV installation. It is
interesting to see the behaviour of CCA of the others gener-
ation sources decision variables in this segment. CCA of
residential PV increases with the same trend of utility scale
PV as they share the same hourly generation profile. The
potential installation of residential PV after the installation of
utility scale PV and without balancing and storage solutions
would increase the overgeneration in the middle hours of the
day without any additional relevant benefits in CO, emis-
sions reduction. The CCA of onshore and offshore wind also
increases but with a different trend. In fact, the difference in
the hourly profile of generation would favour the integration
of PV and wind generation profiles, as already demonstrated
by Weitemeyer et al. [71]. They showed how a mix of PV and
wind power generation allows a better integration of re-
newables compared to the case with only PV or only wind
power. It is possible to observe also how installing utility
scale PV the CCA of VRES reduces the CCA of balancing and
storage solutions such as batteries and power to gas. After
the installation of utility scale PV which reaches its
maximum potential, there is a segment in which the less
expensive passive measures of energy efficiency refurbish-
ment of buildings are chosen. After that, onshore wind power
is chosen until its maximum potential is reached, after that

another part of energy efficiency measures and then offshore
wind power.

iii) In the third and last part of the MAC curve (from 100 Mt of
CO, abatement), different decision variables alternates:
passive measures of energy efficiency refurbishment of
buildings, residential PV, batteries and power to gas. The
introduction of batteries and power to gas results in small
discontinuities affecting the successive steps where the de-
cision variable chosen is mainly residential PV (the last
remaining generation source which has not reached its
maximum potential yet). Its CCA is lower than the previous
one due to the fact that the additional VRES generation can
exploit the balancing and storage benefits introduced in the
last step. These discontinuities are mainly driven by the
introduced discretisation method. Tending to smaller incre-
mental values for all the decision variables would decrease
these discontinuities.

Fig. 3 describes the power sector highlighting the following
aspects: the electricity consumption, generation, curtailments and
overgeneration together with the MAC curve depicting the changes
in the power sector among the expansion capacity path found by
EPLANoptMAC. The electricity consumption shows how the electric
boiler contribution disappears due to energy efficiency of buildings.
As a consequence of energy efficiency of buildings conventional
boilers are replaced with heat pumps. In fact, the electric demand
contribution for heat pumps increases from left to right. Electric
demand due to electric vehicles increases at the beginning and then
remains constant. The graph also shows the electric demand plus
overgeneration to better understand how this overgeneration is
used or unused giving rise of curtailments. This is used from the
beginning by pumped hydro storage (PHS) which is already present
in the Italian energy system and does not have any additional
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Fig. 3. MAC curve at 2030 for the Italian case study (first subplot on the top), different contributions to the electricity consumption (second subplot from the top), electricity
generation from different sources (third subplot from the top) and comparison between curtailments and overgeneration (subplot on the bottom).

potential in terms of installed power and capacity. The contribution
of electric consumption from batteries and power to gas instead
particularly increases in the last part of the curve.

The electricity generation depicted in Fig. 3 allows the following
considerations:

- The initial part of the curve presents an increase of electricity
demand due to electric mobility. This cause an increase of
electricity produced by natural gas power plants. This increase
of fossil fuels is balanced by a decrease of fossil fuels con-
sumption in the transport sector due to the highly efficient
electric engines.

- After this first part, the installation of VRES is visible and pro-
duces a decrease of natural gas power plants generation and an
increase of overgeneration.

The last subplot (on the bottom) shows the overgeneration and
the curtailments. The overgeneration increases until the maximum
potential of the different VRES decision variables is reached. The
curtailments rise in the first part (until almost 65 Mt of CO,
abatement), then decrease due to the introduction of balancing and
storage measures (until almost 120 Mt of CO, abatement) and
finally rise again in the last part of the curve. A counter-intuitive but
important message can be highlighted: in the first phase of the
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decarbonisation of the energy system it will be cheaper to generate
overgeneration and curtailments from VRES than save these cur-
tailments through balancing and storage solutions. This is driven by
the low cost of generation of VRES and the high cost of balancing
and storage solutions. This is also in line with several studies: Perez
etal.[72], Pierro et al. [73], Budischak et al. [74] and Perez et al. [ 75].

Fig. 4 shows the installed power of the VRES decision variables
and the achieved Renewable Energy Sources (RES) share in the
electricity sector. The graph shows that the initial adoption of
electric mobility results in a decrease of the RES share in the
electricity sector. After this initial part the RES share of the elec-
tricity sector increases. The increase is higher in correspondence of
the sections in which the installed capacity of VRES rises. RES share
of electricity sector also increases in sections in which balancing
and storage solutions are adopted due to the better exploitation of
the existing overgeneration. RES share also increases when energy
efficiency measure is selected by the algorithm, the segment
around 40 Mt of CO, abatement clearly shows this. This is due to the
higher electricity demand of heat pumps in the central hours of the
day in which the overgeneration from PV is high.

Fig. 5 depicts the trends of the fuels consumption of the heating
sector. It shows the decrease of fuel consumption as consequence of
energy efficiency measures. In the refurbished buildings the

Smart Energy 1 (2021) 100002

algorithm substitutes the conventional boilers with heat pumps.
This is reflected in the results of Fig. 5. With the increasing of en-
ergy efficiency it is possible to observe an additional reduction of
fuel with the following order of priorities: electric boilers, oil
boilers and natural gas boilers.

Fig. 6 shows the total annual costs evolution trough the solution
on the MAC curve. Costs of fossil fuels decrease due to the lower
consumption. Over 100 Mt of CO, emissions can be reduced with a
slight increase of the annual costs of the system, equal to about 10%.
The graph particularly highlights the effort in terms of costs that
needs to be done in the space heating sector for passive energy
efficiency measures and the electrification of the sector.

5. Conclusions

In order to overcome the limitations in literature about methods to
create Marginal Abatement Cost curves the novel EPLANoptMAC
model has been presented in this paper. The main limitations found in
literature for this type of models are the following: i) model-based
Marginal Abatement Cost curve methods carry around the limits of
the bottom-up models used for the analysis. The literature review has
showed how bottom-up models used for developing model-based
MAC curves lack of simultaneous resolution in time and in sector
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Fig. 6. MAC curve at 2030 for the Italian case study (subplot on the top), costs trends (subplot on the bottom).
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coupling. ii) The model-based MAC curve achieved with bottom-up
models found in literature produces a smooth curve which is trans-
formed in step-wise only through a decomposition method. This
latter is particularly important for providing the explicit technological
detail in the graphical representation. EPLANoptMAC overcomes
these limitations through the creation of a method for marginal
abatement cost curves based on a static bottom-up energy system
model which couples EnergyPLAN software and a hill climbing al-
gorithm for the expansion capacity optimisation.

However, the algorithm presents some limitations. The hill
climbing optimisation algorithm presents the possibility to remain
stuck in local minima. Moreover, static or short-term models do not
consider the whole transition but focus on a future target year. The
consequence is the difficulty to include in the study time-
dependent phenomena like plant decommissioning or costs
evolutions.

The EPLANoptMAC model has been applied to the Italian energy
system and its results have been presented with the aim of showing
the potentialities of the novel method. The results have shown the
potentialities of the model in studying the competing decision
variables, their interactions and how a certain best energy mix is
reached. It has highlighted the dynamics between the Cost of CO2
abetment of the different decision variables belonging to different
energy sectors. This has been possible thanks to the smart energy
concept included in the EPLANoptMAC method through the
implementation of sector coupling. The results have shown how
the increase of overgeneration by variable renewable energy
sources produces a decrease of the Cost of CO2 abetment of
balancing and storage solutions such as batteries and power to gas.
The introduction of electrification decision variables in the heating
and transport sectors can increase the renewable energy share in
the power sector depending on the availability of overgeneration
and the contemporaneity with the increase of electric demand.

The results have shown a counter-intuitive but important
message. In the initial phase of the decarbonisation process it will
be cheaper to generate overgeneration and curtailments from
Variable Renewable Energy Sources than save these curtailments
through balancing and storage solutions. This is driven by the low
cost of generation of VRES and the high cost of balancing and
storage solutions.

The results have shown how over 100 Mt of CO2 emissions can
be cut with a very contained increase of total annual costs by
installing variable renewable energy sources and electrifying the
transport and heating sectors. This once again underlines the
importance of the smart energy system concept and the imple-
mentation in the modelling of a high resolution in time and sector-
coupling.

Declaration of competing interests

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

The authors wish to acknowledge the use of EURAC internal
funding for the project “Regional Energy Modelling”. The research
leading to these results has received funding from the EFRE/
FESR Provincia autonoma di Bolzano-Alto Adige 2014-2020, under
Project number FESR 1042 “Integrids”.

1

Smart Energy 1 (2021) 100002

Glossary

Nomenclature

Overgeneration; Overgeneration for timestep t

Pt Electric power production [GW]

d; Electricity demand [GW]

Overgeneration Overall annual overgeneration [GWh]

Curtailment; Electric power which is not used by the system in a
determined hour, it exceeds the demand and it is not
used by balancing and storage solutions [GW]

bss; Electric demand requested by balancing and storage
solutions for charging or generation of different energy
vectors [GW]

Curtailment Overall annual curtailments [GWh]

t Index of the hourly time-step

T Vector of the timesteps, hours in a year

m Decision variable index

dv Vector of decision variables

step Index for the step

Avstep Vector of decision variables at step step

dvsepm  Decision variables m at step step

Costs;,;  Total annual costs of the case implementing decision

variable m [M<€]
COStS reference TOtal annual costs of the reference case [M<€]
CO; reference Total annual CO; emissions of the case implementing
decision variable m [Mt]

COym Total annual CO, emissions of the reference case [Mt]

CCA Cost of CO, Abatement [€/t]

dvil) Lower bound of the decision variable m

dvg) Upper bound of the decision variable m

I Vector of the incremental values, one for each decision
variable

Im Incremental value of decision variable m

Nsteps Number of steps

Acronyms

MAC Marginal abatement cost

MGA Modelling to Generate Alternatives

SPORES  Spatially explicit, practically optimal results

CGE Computable General Equilibrium

VRES Variable renewable energy sources

SO Single-Objective

MO Multi-Objective

CCA Cost of CO, Abatement

PV Photovoltaics

HRE4 Heat Roadmap Europe 4

PHS Pumped hydro storage

RES Renewable Energy Sources
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