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Abstract: Identifying the source camera of images and videos has gained significant importance in

multimedia forensics. It allows tracing back data to their creator, thus enabling to solve copyright

infringement cases and expose the authors of hideous crimes. In this paper, we focus on the problem

of camera model identification for video sequences, that is, given a video under analysis, detecting

the camera model used for its acquisition. To this purpose, we develop two different CNN-based

camera model identification methods, working in a novel multi-modal scenario. Differently from

mono-modal methods, which use only the visual or audio information from the investigated video to

tackle the identification task, the proposed multi-modal methods jointly exploit audio and visual

information. We test our proposed methodologies on the well-known Vision dataset, which collects

almost 2000 video sequences belonging to different devices. Experiments are performed, considering

native videos directly acquired by their acquisition devices and videos uploaded on social media

platforms, such as YouTube and WhatsApp. The achieved results show that the proposed multi-

modal approaches significantly outperform their mono-modal counterparts, representing a valuable

strategy for the tackled problem and opening future research to even more challenging scenarios.

Keywords: camera model identification; video forensics; audio forensics; convolutional neural networks

1. Introduction

Camera model identification has gained significant importance in multimedia foren-
sic investigations as digital multimedia contents (i.e., digital images, videos and audio
sequences) are increasingly widespread and will continue to spread in the future with the
advance of technological progress. This phenomenon is mainly attributable to the advent of
the internet and social media, which have allowed a very rapid diffusion of digital contents
and, consequently, made it extremely difficult to trace their origin.

For instance, in forensic investigations, tracing the origin of digital contents can be
essential to identify the perpetrators of such crimes as rape, drug trafficking or acts of
terrorism. There is also the possibility that certain private content become viral through the
internet, as has sadly happened in recent times with revenge porn. Being able to retrieve
the source of multimedia content, therefore, assumes a fundamental role.

This paper aims at determining the smartphone model used to acquire digital video
sequences by jointly exploiting visual and audio information from the videos themselves.
We mainly focus on video source identification because little work has been done specifi-
cally for digital video sequences in the forensic literature [1]. On the contrary, the analysis
of digital images is widely addressed [2]. We can identify the camera model used to
acquire an image, thanks to the various peculiar traces left on the photograph at the time of
shooting. In this vein, the two main families of approaches related to image camera model
identification are defined as model-based and data-driven.

Model-based approaches specifically rely on exploiting the traces released by the
digital image acquisition process in order to identify the camera model. Several works
in the literature exploit specific features associated with the Color Filter Array (CFA)
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configuration (i.e., the specific arrangement of color filters in the sensor plane) [3,4] and
the CFA interpolation algorithm [5–9] to retrieve information about the source camera
model. Undesired optical aberration effects generated by the lens are exploited as well
in [10–14]. Moreover, other processing operations and defects (typical of the image acqui-
sition pipeline), such as dust particles left on the sensor [15] and noise patterns [16], have
been demonstrated to carry information about the used camera model.

In the last few years, the availability of digital data and computational resources has
lead to the growth of data-driven approaches, which have greatly outperformed many
model-based solutions proposed in the past. Instead of focusing on a specific trace left
by the image acquisition process, as is typically done in model-based methodologies,
data-driven approaches are able to capture model traces, due to various components’
interplay [2]. The most recent and best-performing data-driven methodologies are those
based on learned features, that is, methods directly feeding digital images to a deep-
learning paradigm in order to learn model-related features and to associate images with
their original source. In this field, Convolutional Neural Networks (CNNs) are now the
most widespread solution [17–22].

To our knowledge, the only work that investigates the problem of camera model
identification on video sequences is proposed in [1]. The authors exploit a CNN to produce
camera model identification scores for small patches extracted from video frames, and then
fuse the achieved scores to produce a single accurate classification result per video.

In this paper, we rely on advanced deep-learning approaches to develop effective
methods for camera model identification on video sequences. Specifically, our proposed
method involves the use of CNNs capable of classifying videos by jointly extracting suitable
features from their visual and audio content. We define the proposed strategy as multi-
modal since we exploit both visual and audio information coming from the query video to
solve the identification task. Given a video, as visual content, we use patches cropped from
the frames; as audio content, we use patches cropped from the Log-Mel Spectrogram (LMS)
of its audio track. In this vein, the approach suggested by [1] falls into the mono-modal
category, as the authors only exploit the visual content to classify a query video.

We propose two distinct multi-modal camera model identification approaches. In
both proposed approaches, we make use of CNNs and feed them with pairs of visual and
audio patches. In the first approach, we compare and fuse the scores individually obtained
from two CNNs, trained following a mono-modal strategy, i.e., one CNN only deals with
visual information and the other one only with audio. In the second approach, we train
a single multi-input CNN, which deals with both visual and audio patches. Moreover,
for each proposed approach, we investigate three different network configurations and
data pre-processings, exploiting effective CNN architectures that are well known in the
state of the art [23,24].

We evaluate results on the Vision dataset, which contains approximately 650 native
video sequences with their related social media versions, collecting almost 2000 videos
recorded by 35 modern smartphones. The videos on which we conduct experiments are not
only the original native ones; we also use those compressed by the WhatsApp and YouTube
algorithms so as to explore the effects of data recompression and to investigate challenging
scenarios in which the training and testing datasets do not share common characteristics.

To provide a baseline strategy for comparing the achieved results, we investigate
the mono-modal attribution problems as well. Indeed, the vast majority of state-of-the-
art works in multimedia forensics always deal with video sequences by only exploiting
their visual or audio content in a separate way [25–29]. Only a few works have been
proposed that employ both visual and audio cues for multimedia forensics purposes,
but they do not tackle the camera model identification task [30–33]. We evaluate the mono-
modal results achieved by exploiting only visual or audio patches to classify the query
video sequence. The performed experimental campaign highlights the effectiveness of the
proposed multi-modal methodology with respect to mono-modal strategies. In general,
the pursued multi-modal approaches demonstrate to be significantly more effective than
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standard mono-modal solutions. As expected, we verify that data that undergo stronger
compression (e.g., videos uploaded to the WhatsApp application) are more challenging
to classify. Nonetheless, the proposed multi-modal methods outperform the mono-modal
strategies also in this complicated scenario.

Our work is organized as follows. In Section 2, we introduce some general concepts
in order to better understand the tackled problem and the proposed methodology. In
Section 3, we report the formulation of the problems of mono-modal and multi-modal
camera model attribution. In Section 4, we report a detailed explanation of the resolution
method proposed. In Section 5, we analyze the achieved results. Finally, Section 6 draws
some conclusions.

2. Background

Identifying the camera model used to acquire an image or a video frame is possible,
thanks to the many peculiar traces left on them at the shooting time. To better understand
the traces that we are referring to, in this section, we provide the reader with some back-
ground on the generic acquisition pipeline of digital images. Then, since we investigate
also the audio content of video sequences, we introduce the definition of the Mel scale
and Log-Mel Spectrogram (LMS) of digital audio signals. In particular, the LMS is a very
powerful tool for analyzing the spectral and temporal evolution of an audio track.

2.1. Digital Image Acquisition Pipeline

Whenever we take a photograph with a digital camera or smartphone, we trigger an
elaborate process consisting of several operations. This process, which lasts a few fractions
of a second, starts when we press the shutter button and ends when we can visualize the
shot taken. In general, the acquisition pipeline of a digital image is not unique. There can
be differences among the vendors, the device models and the on-board technologies that
are available. Nonetheless, we can reasonably model the image acquisition pipeline as a
series of common steps [34], as depicted in Figure 1.

Figure 1. Typical steps of a common digital image acquisition pipeline.

Light rays hit a lens that focuses them on the sensor [35]. The surface of a sensor is
covered by a grid of microscopic pits called photosites, which represent the pixels of a
digital image and return a different voltage depending on the intensity of the light that
hits them. To capture colors, most sensors use color filters. The most common one is the
Color Filter Array (CFA) (or Bayer filter), which covers each photosite with a colored filter
(red, green or blue), specializing it in capturing that particular color. The shape of the
CFA determines the color captured by each pixel, and this is a vendor choice. Beyond
the CFA grid, we end up with three partially sampled color layers, where only one color
(i.e., red, blue or green) is impressed at each pixel location. To retrieve the missing color
information (e.g., blue and red for pixels that only acquired green light), an interpolation
is made between the color captured by the photosite itself and the colors captured by
the neighboring photosites. This procedure, namely the demosaicing, debayering or
CFA interpolation process, allows to obtain a raw version of color images and can be
implemented using proprietary interpolation techniques.

After that, we have a processing phase consisting of additional operations. For
instance, as lenses may introduce various kinds of optical aberrations (e.g., radial lens dis-
tortion, chromatic aberration, and vignetting), camera vendors typically apply some digital
correction; this may introduce forensic traces. Furthermore, other common operations that
are vendor-specific are the white balancing and the color correction. Eventually, a step
of image compression is typically applied. In this regard, JPEG compression is the most
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widespread operation and again introduces implementation-specific and quality degrees
of freedom.

2.2. Mel Scale and Log-Mel Spectrogram

The Mel scale is a perceptual scale of pitches proposed in 1940 by [36]. In particular,
the Mel scale aims at mimicking the non-linear human ear perception of sound by being
more discriminative at lower frequencies and less discriminative at higher frequencies. The
relation between pitch (in Mel scale) and frequency (in Hz) is as follows:

p = Mel( f ) = 2595 · log

(

1 +
f

700

)

, (1)

where p = Mel( f ) indicates the perceived pitch p[Mel] of a sound at frequency f [Hz].
Conversely, we can define as f = Mel−1(p) the inverse relationship, by means of which
we can compute the frequency (Hz) starting from the pitch (Mel).

The human ear’s behavior can be simulated with the so-called Mel filterbank, a set of
K triangular filters, where each filter has a maximum response at the center frequency and
decreases linearly toward 0 until it reaches the center frequency of the two adjacent ones.
Specifically, the filter centered around the pitch p in Mel scale can be modeled as follows:

Hp( f ) =



















f−Mel−1(p−1)

Mel−1(p)−Mel−1(p−1)
, Mel−1(p − 1) ≤ f < Mel−1(p)

Mel−1(p+1)− f

Mel−1(p+1)−Mel−1(p)
, Mel−1(p) ≤ f ≤ Mel−1(p + 1)

0, otherwise

. (2)

The entire Mel filterbank can be modeled as a two-dimensional matrix H with size
F × K, where columns contain the coefficients associated with the different filters Hp( f )
(related to K distinct pitches), and rows are associated with frequencies.

By applying the Mel filterbank H to the spectrogram of an audio signal, we can
compute the Log-Mel Spectrogram (LMS), which is an important tool widely used for
speech and audio processing [24,37,38]. Considering a signal evaluated over T temporal
samples and F frequency bins, LMS can be represented as a 2D matrix L with size T × K,
computed as follows:

L = ln(S · H + ǫ). (3)

where S is a 2D matrix with size T × F containing the spectrogram of the audio signal (i.e.,
the magnitude of the Short-Time Fourier Transform (STFT), with frequency information
along columns and time information along rows), · computes the matrix multiplication,
ln(·) computes the natural logarithm, and ǫ is a small constant used to avoid feeding zeros
to the logarithm. The resulting LMS brings information about the spectral content of the
audio signal (in Mel scale) as a function of the temporal evolution: along columns, we find
pitches in Mel scale; along rows, the temporal evolution.

3. Problem Formulation

The problem we address in this paper is that of camera model identification on video
sequences. We mainly focus on identifying the source camera model of digital video
sequences, as the analysis of digital images has been widely addressed in the forensic
literature, with excellent results [2,18,21,22]. In particular, we work with video sequences
recorded from different smartphone models and propose an innovative approach that
combines visual and audio information of the considered videos. In the following sections,
we first introduce the standard mono-modal problem, which aims at identifying the source
camera model of a video sequence, exploiting only its visual or audio information. Then,
we introduce the actual multi-modal problem tackled in this paper, which employs both
visual and audio cues to identify the source camera model from videos.



J. Imaging 2021, 7, 135 5 of 20

3.1. Mono-Modal Camera Model Identification

The problem of mono-modal camera model identification consists of detecting the
device model used to acquire a specific kind of media at a single modality, for instance,
given a photograph, understanding the model of the camera used to take it, or, alternatively,
given an audio recording, detecting the used recorder model. Given a video, which is the
case of our interest, the mono-modal model attribution consists of identifying the device
model that shot it, using only the visual or audio information of the video itself.

3.2. Multi-Modal Camera Model Identification

Given a video sequence, the problem of multi-modal camera model identification
converts to identifying the device model that shot it, using both the visual and audio
information of the video itself. In our case, we consider a closed-set identification, which
consists of detecting the camera model used to shoot a video sequence within a set of
known devices. In this scenario, the investigator assumes that the video being analyzed is
taken with a device belonging to a family of devices that she/he knows. If the video does
not come from any of those devices, the investigator will wrongly attribute the video to
one of those.

4. Methodology

In this paper, we propose to solve the problem of closed-set multi-modal camera
model identification on video sequences. Figure 2 represents the general scheme of the
proposed methodology. Starting from the video under analysis, we jointly exploit its visual
and audio content to retrieve the smartphone model used to shoot it. In particular, we
extract both visual and audio cues of query video sequences and feed these data into one or
multiple CNNs that can discriminate among different source camera models. In a nutshell,
the proposed method includes two main steps:

1. Content extraction and pre-processing: extraction of visual and audio content from
the video sequence under analysis and manipulation of data prior to feeding them
to CNNs;

2. CNN processing: feature extraction and classification block composed of one or
multiple CNNs.

Figure 2. Pipeline of the proposed method to solve multi-modal camera model identification on

video sequences. Given a query video sequence, we extract and pre-process its visual and audio

content, then feed these data to CNNs in order to identify the actual source camera model.

In the following lines, we enter more in detail for each step of the proposed pipeline.

4.1. Content Extraction and Pre-Processing

The extraction and pre-processing phase consists of visual and audio content manipu-
lation and data normalization.
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Considering the extraction and pre-processing of visual content from the video under
analysis, this phase consists of three steps (see Figure 3):

1. Extraction of Nv color frames equally distant in time and distributed over its entire
duration. The video frames have size Hv × Wv, which depends on the resolution of
the video under analysis;

2. Random extraction of NPv color patches of size HPv × WPv ;
3. Patch normalization in order to have zero mean and unitary variance as is commonly

done prior to feeding data to CNNs.

Figure 3. Extraction of visual patches from a video sequence. We extract Nv color frames, with size

Hv and Wv. From these frames, we randomly extract NPv
visual patches with size HPv

× WPv
.

Regarding the audio content of the video under analysis, the extraction and pre-
processing phase consists of three steps as well (see Figure 4):

1. Extraction of the LMS L of the audio content related to the video sequence. Indeed,
the LMS represents a very informative tool for audio data and was used several times
as a valuable feature for audio and speech classification and processing [24,37–41].
During some preliminary experiments, we compared different audio features ex-
tracted from the magnitude and phase of the signal STFT, and we verified that the
LMS (based on the STFT magnitude) was the most informative one. Phase-based
strategies reported accuracy of lower than 80%, achieved by LMS. The LMS L has
size Ha × Wa, where rows refer to the temporal information (varying with the video
length) and columns to the frequency content in Mel scale;

2. Random extraction of NPa patches of size HPa × WPa from L;
3. Patch normalization in order to have zero mean and unitary variance, as previously

described for visual patches.

Figure 4. Extraction of audio patches from a video sequence. Once we select the audio content, we

compute the LMS, which has size Ha × Wa. Then, we randomly extract NPa
audio patches with size

HPa
× WPa

.

4.2. CNN Processing

In the CNN processing step, the extracted pre-processed content is fed to one or
multiple CNNs to extract distinguishable features among the different source camera
models and classify the original one.
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The mono-modal camera identification problem can be solved by feeding the visual
or audio information extracted as shown in Section 4.1 to a CNN. In principle, any CNN
architecture performing classification could be used at this point; in the next section, we
comment our choice in detail. The final layer of the classification network is a fully-
connected layer with a number of nodes equal to the total number of models, M, where
each node is associated with a particular camera model. The output value is an M-element
vector defined as y, where each element ym represents the probability that input data
have been acquired by the model associated with that node. To extract the predicted
model m̂ in the classification process, we can select the node associated with the maximum
score obtained:

m̂ = argmax
m

ym. (4)

Considering multi-modal camera model identification, which is our actual task, we
propose two distinct methods to solve the problem:

1. Late Fusion methodology: compare the classification scores of visual and audio
patches, separately obtained from two single-input CNNs;

2. Early Fusion methodology: build one multi-input CNN, feed this with both visual
and audio content and exploit it to produce a single classification score.

In both proposed methods, we always provide pairs of patches as input to the net-
work(s), composed of one visual patch and one audio patch extracted from the same video
sequence under analysis.

4.2.1. Late Fusion Methodology

In the first method, defined as Late Fusion methodology, we follow three steps to
determine the predicted model m̂ for a visual/audio patch pair coming from the same
query video sequence:

1. Separately feed a CNN with a visual patch and a CNN with an audio patch;
2. Extract the classification scores associated with the two patches. In particular, we

define yv as the classification scores related to the visual patch and ya as those related
to the audio patch;

3. Select the classification score vector (choosing between yv and ya) that contains the
highest score; the estimated source model m̂ by the Late Fusion methodology is
related to the position in which that score is found:

m̂ = argmax
m

yLFm , (5)

where yLFm is the m-th element of the score vector yLF, defined as follows:

yLF =







yv if max
m

yvm ≥ max
m

yam

ya if max
m

yvm < max
m

yam

. (6)

To summarize, Figure 5 depicts the pipeline of the proposed Late Fusion method.
The training phase of Late Fusion method consists of training the two networks

(one dealing with visual patches and the other one with audio patches) separately. More
specifically, the network working with visual patches updates its weights by optimizing
the classification problem on the scores returned by yv; the network working with audio
patches is optimized basing on the scores returned by ya. The two networks are separately
trained following the very same mono-modal methodology seen at the beginning of
Section 4.2. In the evaluation phase, the results obtained from the two CNN branches are
compared and fused.
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Figure 5. Late Fusion method pipeline. Given a query video, we extract and pre-process its visual

and audio content. Then, we separately feed two distinct CNNs: one only with visual information

and the other one only with audio information. Eventually, we compare and fuse the classification

scores to identify the actual source camera model.

4.2.2. Early Fusion Methodology

In the second method, defined as Early Fusion, we build a multi-input CNN by joining
together two CNNs. The union is made by concatenating the final fully-connected layers
of the two networks and by adding three fully-connected layers up to the prediction of
the camera model (see Figure 6 for details about the layers dimensionality). For each
visual/audio patch pair, Early Fusion predicts the estimated camera model based on the
scores obtained at the output of the last fully-connected layer, namely yEF:

m̂ = argmax
m

yEFm . (7)

In the training phase, we train the whole network in its entirety using visual and
audio patch pairs. Unlike Late Fusion, there is no separate training between the visual
and audio branches. Both training and testing phases are analogous to those of the mono-
modal methodology, but this time, we provide the whole network with visual/audio patch
pairs, not single patches only (e.g., limited to visual or audio content). Figure 6 draws
the pipeline of the Early Fusion method. The dimensions of input and output features to
the fully-connected layers are reported as well. Notice that the output feature at the last
network layer has size equal to M, i.e., the number of investigated camera models.

Figure 6. Early Fusion method pipeline. Given a query video, we extract and pre-process its visual

and audio content. Then, we feed these data to one multi-input CNN, composed of two CNNs

whose last fully-connected layers are concatenated. Three additional fully-connected layers follow to

identify the actual source camera model.

4.3. CNN Architectures

The CNNs we use to solve the problem are the EfficientNetB0 [23] and the VGGish [24].
The EfficientNetB0 belongs to the recently proposed EfficientNet family of CNN

models [23], which has achieved very good results in multimedia forensics tasks [21].
It is the simplest EfficientNet model; we selected this in order to have faster training
phases and, consequently, much more time to experiment with different evaluation setups.
Moreover, as shown in [21] and verified by means of preliminary tests, there is no significant
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difference between the performance of EfficientNetB0 with respect to computationally
heavier network models requiring more parameters. The VGGish [24] is a CNN widely
used for audio classification [42], and it is inspired by the famous VGG networks [43] used
for image classification.

We use EfficientNetB0 for processing visual patches; audio patches can be processed
by means of both EfficientNetB0 and VGGish. To solve the proposed multi-modal camera
model identification problem, we make some modifications to the network architectures
in order to match the input audio data. In particular, to correctly process audio patches,
we add an extra convolutional layer at the beginning of EfficientNetB0. We need this
additional layer because EfficientNetB0 accepts three-channel patches as input (i.e., color
patches). The extra layer applies a 2D convolution using 3 × 3 × 3 kernels, resulting in a
transformed color patch suitable for EfficientNetB0.

5. Results

In this section, we first present the dataset we work with, and the experimental setup
(i.e., the network training parameters and the configurations we use in the experiments).
Then, we report the evaluation metrics and comment on the achieved results.

5.1. Dataset

We select video sequences from the Vision dataset [44], a recent image and video
dataset, purposely designed for multimedia forensics investigations. The Vision dataset
collects approximately 650 native video sequences captured by 35 modern smart-
phones/tablets, including also their related social media versions. Overall, the dataset
comprises almost 2000 video sequences, clearly indicating the source device used to ac-
quire them. To perform our experiments, we select non-flat videos (i.e., videos depicting
natural scenes containing objects): both the original native ones (i.e., videos acquired by
the smartphone camera without any post-processing) and those compressed by WhatsApp
and YouTube algorithms. Since our analysis is aimed at the granularity model-level, we
group videos from different devices that belong to the same model. Videos from devices
D04, D12, D17 and D22 (considering the Vision dataset nomenclature provided in [44]) are
excluded because they give problems in the extraction of the frames or the audio track. We
also exclude the original videos that do not feature a WhatsApp or YouTube compressed
version. Notice that we do not limit our investigations to high resolution videos: even
though the majority of native videos presents resolutions higher than or equal to 720p, we
also explore native sequences limited to 640× 480. In doing so, we end up with 1110 videos
of about 1 min, belonging to 25 different camera models. For each video sequence, we
exploit the provided information about its source camera model as the ground truth to
evaluate the classification performance of our proposed method.

For what concerns the visual content of videos, we extract 50 frames per video se-
quence, equally distant in time and distributed over its entire duration. Then, we extract
10 patches per frame (taken in random positions), for a total of NPv = 500 color patches
per video. We select a patch-size equal to 256 × 256 pixels as suggested in [1].

As for the audio, we extract the LMS based on the default parameters purposely
designed for the VGGish network [24]. The investigated frequency range spans from
125 Hz to 7500 Hz; we exploit a sampling rate of 16,000 Hz and a window length of 0.025 s
with hop length of 0.010 s. We end up with an LMS consisting of Ha temporal samples and
64 Mel bins. Notice that the number of rows of LMS depends on the temporal length of the
audio content, while the 64 Mel bins belong to the default parameters required by VGGish.
Furthermore, after some preliminary experiments on how the exploited frequency range
influences the classification performance, we propose to expand the investigated frequency
range from 125 Hz to 20,000 Hz, changing the sampling rate to 44,100 Hz. Being that the
investigated spectrum is enlarged by almost three times, we consider also three times as
much the amount of Mel bins for computing the LMS. Therefore, we end up with an LMS
with 192 Mel bins. In both the two situations, we randomly extract NPa = 500 patches
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per LMS. As regards HPa (i.e., the temporal dimension associated with the audio patches),
we exploit the default parameter required by VGGish, i.e., 96 temporal bins. Thus, in the
former scenario, the audio patch size is 96 × 64; in the latter one, the audio patch size is
96 × 192.

5.2. Network Setup and Training

As reported in Section 4.3, we always employ the EfficientNetB0 architecture for
processing visual patches. On the contrary, we can use both VGGish and EfficientNetB0
architectures for processing the audio patches. Furthermore, the LMS can be calculated
either on a reduced frequency range purposely designed for being processed by VGGish,
or on an expanded range. In light of these considerations, we can work with three different
network configurations per multi-modal method:

• Configuration EV, which uses EfficientNetB0 for processing visual patches and VG-
Gish for audio patches, considering the default audio frequency range required by
VGGish (i.e., 64 Mel bins);

• Configuration EE64, which uses EfficientNetB0 for both visual and audio patches,
considering the same audio frequency range required by VGGish (i.e., 64 Mel bins);

• Configuration EE192, which uses EfficientNetB0 for both visual and audio patches,
considering an expanded audio frequency range (i.e., 192 Mel bins).

Following a common procedure applied in CNN training, we initialize the Efficient-
NetB0 weights, using those trained on ImageNet database [45], while we initialize the
VGGish ones using those trained on the AudioSet database [46]. We initialize in the same
way also the weights of the EfficientNetB0 and of the VGGish networks that are part of
the multi-input CNNs in the Early Fusion methodology. All CNNs are trained using the
Cross-Entropy Loss and Adam optimizer with default parameters. The learning rate is
initialized to 0.001 and is decreased by a factor of 10 whenever the validation loss does
not improve for 10 epochs. We train the networks for at most 50 epochs, and training
is stopped if the validation loss does not decrease for more than 20 epochs. The model
providing the best validation loss is selected.

Concerning the dataset split policy, we always keep 80% of the video sequences of
each device for the training phase (further divided in 85–15% for training set and validation
set, respectively), leaving the remaining 20% to the evaluation set. All tests were run on a
workstation equipped with one Intel® Xeon E5-2687W v4 (48 Cores @3 GHz), RAM 252 GB,
one TITAN V (5120 CUDA Cores @1455 MHz), 12 GB, running Ubuntu 20.04.2. We resort
to Pytorch [47] as the Deep Learning framework.

5.3. Evaluation Metrics

To evaluate the goodness of the system in classifying video sequences we use con-
fusion matrices, where rows and columns are associated with the smartphone models
under analysis. The value at position (i, j) represents the probability that a patch of a
video recorded by the i-th model is classified as a patch of a video recorded by the j-th
model. The more effective the method, the more the confusion matrix tends to be diagonal.
In particular, we evaluate results by means of the achieved balanced classification accu-
racy. These metrics can be computed as the average of the values lying on the confusion
matrix diagonal.

5.4. Mono-Modal Results

In order to provide a baseline comparison with our proposed multi-modal attribution,
we start showing the results achieved in the case of standard mono-modal attribution on
the same dataset. Specifically, for both visual-based and audio-based attributions, we select
the networks’ configuration achieving the average highest accuracy. In doing so, we select
the EfficientNetB0 network for evaluating visual patches and the VGGish architecture for
the audio ones, i.e., the networks’ configuration defined as EV.
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We report in Figures 7 and 8 the confusion matrices obtained in the mono-modal
scenarios, considering only visual patches or audio patches of native video sequences,
respectively. As previously specified in Section 5.1, we group devices of the same camera
model, such as D05, D14 and D18 (using the Vision dataset nomenclature), which are
different instances of the Apple iPhone 5c model. It is worth noticing that there is some
uncertainty in classification, especially in the second scenario. Nonetheless, as regards the
visual mono-modal approach (see Figure 7), mismatches in classification only appear be-
tween very similar camera models, e.g., Apple iPhone 6 Plus (D19) is sometimes confused
with Apple iPhone 6 (D06-D15). For what concerns the audio counterpart (see Figure 8),
the classification errors are more distributed and may also occur between models of differ-
ent vendors, e.g., OnePlus A3003 (D32) can be confused with Huawei P8 GRA-L09 (D28),
and Asus Zenfone 2 Laser (D23) can be confused with Apple iPhone 5c (D05-D14-D18).
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Figure 7. Confusion matrix achieved by mono-modal camera model identification exploiting visual

patches only. We report results by training and testing on the native video set, and we only show the

numbers which exceed 0.3. Device nomenclature is that of [44].

Having available the compressed versions of the videos with WhatsApp and YouTube
algorithms, we investigate further by evaluating the cross test results, i.e., scenarios in
which the data being tested have different characteristics than the training ones. For
instance, we evaluate the achieved accuracy in testing WhatsApp video sequences by
exploiting a network trained on native or YouTube compressed data. Table 1 shows the
accuracy of cross tests and non-cross tests in both visual and audio modalities. We achieve
the highest accuracy on the visual patches (82%) in the non-cross test configuration by
working with native video sequences. Both the two mono-modal methods report similar
performance on the WhatsApp and YouTube data in non-cross tests. Overall, we can
leverage the visual content to achieve a better or comparable non-cross test performance.
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Figure 8. Confusion matrix achieved by mono-modal camera model identification exploiting audio

patches only. We report results by training and testing on the native video set, and we only show the

numbers which exceed 0.3. Device nomenclature is that of [44].

Not surprisingly, the cross test results are worse than the non-cross test results, es-
pecially those including data from WhatsApp. In particular, we focus on the setup in
which we train on native sequences and test on videos passed through WhatsApp and
YouTube (see the first row of Table 1). Indeed, this represents a realistic scenario in which
the forensics analyst has only available original data, but must investigate videos coming
from social networks. The audio-based method is actually the best performing solution,
outperforming its visual counterpart by almost 20% accuracy points. We think this superior
performance may be due to a lighter compression applied by social media to the audio
content with respect to the visual content. Since the audio content requires considerably
less storage space than video frames, the audio track might undergo reduced compression
operations, thus reporting weaker compression artifacts than those occurring in video
frames. Therefore, the network trained on native audios can be better representative of
WhatsApp and YouTube audio with respect to the network trained only on native visual
content and tested on social network visual patches.

Table 1. Classification accuracy of mono-modal methods as a function of training/testing sets. In bold is the highest

achieved classification accuracy.

- Visual—EfficientNetB0 Audio—VGGish

Testing Set →
Native WhatsApp YouTube Native WhatsApp YouTube

Training Set ↓

Native 0.8202 0.3579 0.4869 0.6578 0.5304 0.6654

WhatsApp 0.5599 0.6739 0.5158 0.5028 0.6757 0.5245

YouTube 0.7271 0.5531 0.7404 0.6954 0.5924 0.7010
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Figure 9. Confusion matrix achieved by mono-modal camera model identification, exploiting audio

patches only. We report results by training on the native video set and testing on the WhatsApp set,

and we only show the numbers that exceed 0.3. The device nomenclature is that of [44].
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Figure 10. Confusion matrix achieved by mono-modal camera model identification, exploiting audio

patches only. We report results by training on the native video set and testing on the YouTube set,

and we only show the numbers which exceed 0.3. The device nomenclature is that of [44].
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Figures 9 and 10 draw the confusion matrices achieved in cross test scenarios by
training on original audio patches and testing on WhatsApp and YouTube audio patches,
respectively. WhatsApp data (see Figure 9) are the most challenging to model, and many
camera models are confused with others of different vendors. This may be due to the
compression operations performed by WhatsApp, which are more significant than those
of YouTube, making classification more difficult. On the contrary, on YouTube data (see
Figure 10), misclassifications mostly occur on models from the same brand, e.g., Huawei
P9 Lite VNS-L31 (D16) is confused with Huawei P9 EVA-L09 (D03), and OnePlus A3003
(D32) is sometimes confused with OnePlus A3000 (D25).

5.5. Multi-Modal Results

As seen in Section 5.2, we can work with three different network configurations
per multi-modal method: configuration EV (i.e., EfficientNetB0 for visual patches and
VGGish for audio patches), configuration EE64 (i.e., EfficientNetB0 for both visual and
audio patches, considering an audio frequency range composed by 64 Mel bins as required
by VGGish), and configuration EE192 (i.e., EfficientNetB0 for both visual and audio patches,
considering an expanded audio frequency range).

In Figures 11 and 12, we show the confusion matrices related to multi-modal camera
model identification in a non-cross test scenario on the native video sequences. Specifically,
Figure 11 refers to Early Fusion EV and Figure 12 to Late Fusion EV. In both cases, we
consider the network’s configuration EV and the native video set to make a direct compari-
son with the mono-modal results previously reported in Figures 7 and 8. The confusion
matrix of Early Fusion has a similar behavior to the visual mono-modal results reported in
Figure 7; the matrix approaches a diagonal style, but classification is not yet very effective.
On the contrary, Late Fusion reports better performance; some misclassifications still occur
(especially among models of the same vendor) but it shows a reduced error percentage.
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Figure 11. Confusion matrix achieved by multi-modal camera model identification exploiting Early

Fusion EV. We report results by training and testing on the native video set, and we only show the
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Figure 12. Confusion matrix achieved by multi-modal camera model identification exploiting Late

Fusion EV. We report results by training and testing on the native video set, and we only show the

numbers which exceed 0.3. Device nomenclature is that of [44].

Tables 2 and 3 report the classification accuracy of Early Fusion and Late Fusion
multi-modal methods, respectively. In particular, we investigate both non-cross and cross
test scenarios, considering all the network configurations. As regards the non-cross tests on
the native video set, the results obtained with multi-modal methods are always greater or
comparable to those obtained with mono-modal methods. For instance, configuration EE192

achieves extremely high accuracy (up to 99%). In general, we obtain substantially better
results also in the other non-cross tests, including YouTube and WhatsApp. For example,
configuration EE192 always exceeds 91% accuracy on WhatsApp and 95% on YouTube.

Cross tests, including native and YouTube video sequences, follow this trend as well.
On the other hand, cross tests on WhatsApp do not always significantly outperform the
results achieved by mono-modal methods, being often comparable or superior.

In particular, as was previously done for the mono-modal problem, we investigate
the challenging scenario in which the training set consists of native video sequences,
and testing data are picked from social media platforms (see the first row of Tables 2 and 3).
In this scenario, for WhatsApp, the proposed multi-modal methodologies achieve the best
results with the Early Fusion EV configuration, outperforming the highest mono-modal
accuracy by more than 15%. Interestingly, it is worth noticing that Early Fusion EV is the
configuration that achieves the lowest non-cross test accuracy if compared to the remaining
options. We think that a reduced overfitting on the training native set enables better
results’ generalization also on testing data, which show quite different characteristics than
training ones, WhatsApp videos being an example. Figure 13 depicts the confusion matrix
corresponding to Early Fusion EV in the analyzed cross-test scenario. Contrarily to Figure 9
(which shows the confusion matrix for the same cross test scenario in the mono-modal
setup), few misclassifications mainly occur among same-brand models.
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Table 2. Classification accuracy of Early Fusion as a function of training/testing sets. In bold is the highest achieved

accuracy in non-cross test scenarios.

- Early Fusion EV Early Fusion EE64 Early Fusion EE192

Testing
Set →

Native WhatsApp YouTube Native WhatsApp YouTube Native WhatsApp YouTube
Training

Set ↓

Native 0.8210 0.6879 0.7784 0.8396 0.6120 0.7956 0.9598 0.1795 0.7968

WhatsApp 0.5810 0.7519 0.5766 0.5930 0.8076 0.5873 0.5091 0.9120 0.4954

YouTube 0.7548 0.6212 0.7590 0.8071 0.6903 0.8090 0.8731 0.4146 0.9513

Table 3. Classification accuracy of Late Fusion as a function of training/testing sets. In bold, the highest achieved accuracy

in non-cross test scenarios.

- Late Fusion EV Late Fusion EE64 Late Fusion EE192

Testing
Set →

Native WhatsApp YouTube Native WhatsApp YouTube Native WhatsApp YouTube
Training

Set ↓

Native 0.9039 0.5960 0.7069 0.8945 0.6020 0.8039 0.9900 0.4544 0.8389

WhatsApp 0.6413 0.7610 0.6368 0.6262 0.8198 0.6208 0.5703 0.9163 0.5602

YouTube 0.8163 0.6595 0.8274 0.8321 0.6976 0.8390 0.9172 0.4957 0.9519

Cross-test performance, by training on the native set and testing on YouTube, always
exceeds that achieved by mono-modal methods. More specifically, Late Fusion EE192

outperforms the best mono-modal accuracy by 17%. In general, YouTube data are less
prone to classification errors than WhatsApp. We are convinced that this is due to the
weaker compression operations applied by YouTube, compared to WhatsApp, which
render YouTube data more similar to the native ones. To provide an example, Figure 14
depicts the confusion matrix of Late Fusion EE192 in the analyzed cross-test scenario. Notice
the diagonal behavior of the matrix; however, misclassifications sometimes occur among
models of different vendors.

Comparing the two proposed multi-modal methods, Late Fusion always outperforms
Early Fusion in non-cross tests scenarios. Nonetheless, the cross-test results show compara-
ble accuracy between the two methods, and, on average, both the proposed methodologies
report valid performance. Based on the scenario of our interest, we can prefer one proposed
method over the other.

As for the comparison between the three networks’ configurations, EE192 obtains the
best results in all non-cross-test scenarios for both the two proposed fusion methodologies.
This consideration is valid for cross tests as well, considering data from the native and
YouTube sets. However, when evaluating the cross test results with highly compressed
data, such as those of WhatsApp, this is the configuration that works worst.
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Figure 13. Confusion matrix achieved by multi-modal camera model identification exploiting Early

Fusion EV. We report results by training on the native video set and testing on WhatsApp videos,

and we only show the numbers that exceed 0.3. Device nomenclature is that of [44].
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Figure 14. Confusion matrix achieved by multi-modal camera model identification exploiting Late

Fusion EE192. We report results by training on the native video set and testing on YouTube videos,

and we only show the numbers which exceed 0.3. Device nomenclature is that of [44].
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In general, we believe that the Late Fusion methodology associated with the EE192

configuration can be chosen as the best-preferred strategy among all the others. Indeed,
it always reports the highest accuracy in both non-cross and cross test scenarios when
dealing with native and YouTube video sequences. Cross-test results, including WhatsApp
data, are comparable to the other two configurations, even if slightly worse. This lower
performance can be attributable to the fact that, in this configuration, the trained CNNs
adapt very well to the data seen in the training phase (i.e., visual and audio patches selected
from native or YouTube video sequences), thus resulting in being less general and being
more sensitive to significant data compression, such as that applied by WhatsApp.

6. Conclusions and Future Works

This paper proposes a novel multi-modal methodology for closed set camera model
identification related to digital video sequences. In a nutshell, we propose to determine
the smartphone model used to acquire a query video by exploiting both visual and audio
information from the video itself. The devised methodology is based on CNNs capable
of classifying videos by extracting suitable features from their visual and audio content.
Given a video, as visual content, we use patches cropped from its video frames, while as
audio content, we use patches cropped from the Log-Mel Spectrogram of its audio track.

We propose two multi-modal camera model identification approaches: in the Late
Fusion method, we combine the scores individually obtained from two mono-modal
networks (one working with visual patches and the other with audio patches) to classify
the query video; in the Early Fusion method, we build one multi-input network and feed
it with visual/audio patch pairs extracted from the query video. For each methodology,
we compare three different networks’ configurations, exploiting distinct architectures and
data pre-processing.

We evaluate our experimental campaign over video sequences selected from the
Vision dataset. The videos on which we experiment are not only the original native ones,
i.e., those directly acquired by the smartphone camera. We also use videos compressed
by the WhatsApp and YouTube algorithms so as to explore many different training and
testing configurations as well as to simulate realistic scenarios in which we have to classify
data compressed through internet services (e.g., social media, and upload sites). Moreover,
we compare our proposed multi-modal methodologies with a mono-modal attribution
strategy selected as the baseline.

The achieved results show that the proposed multi-modal methods are significantly
more effective than standard mono-modal methods; on average, the Late Fusion approach
reports the best results. In general, we can correctly identify native and YouTube video
sequences with accuracy of up to 99%. WhatsApp videos are yet the most challenging
to model, probably due to the massive data compression applied. This opens the door
to future challenges and improvements focused on identifying the source camera model
on video sequences shared (or re-shared multiple times) on social media. Furthermore,
it is worth noticing that the proposed multi-modal strategies could be straightforwardly
extended to potential situations, including more data modalities (i.e., more than two). The
Late Fusion methodology would only require separately training one CNN per modality,
while the Early Fusion methodology would require training one multi-input CNN with a
number of inputs equal to the available modalities.
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