
RESILIENCY IN NUMERICAL ALGORITHM DESIGN FOR
EXTREME SCALE SIMULATIONS

Emmanuel Agullo
Inria

Mirco Altenbernd
Universität Stuttgart

Hartwig Anzt
KIT – Karlsruher Institut für Technologie

Leonardo Bautista-Gomez
Barcelona Supercomputing Center

Tommaso Benacchio
Politecnico di Milano

Luca Bonaventura
Politecnico di Milano

Hans-Joachim Bungartz
TU München

Sanjay Chatterjee
NVIDIA Corporation

Florina M. Ciorba
Universität Basel

Nathan DeBardeleben
Los Alamos National Laboratory

Daniel Drzisga
TU München

Sebastian Eibl
Universität Erlangen-Nürnberg

Christian Engelmann
Oak Ridge National Laboratory

Wilfried N. Gansterer
University of Vienna

Luc Giraud
Inria

Dominik Göddeke
Universität Stuttgart

Marco Heisig
Universität Erlangen-Nürnberg

Fabienne Jézéquel
Université Paris 2 – Paris

Nils Kohl
Universität Erlangen-Nürnberg

Xiaoye Sherry Li
Lawrence Berkeley National Laboratory

Romain Lion
University of Bordeaux

Miriam Mehl
Universität Stuttgart

Paul Mycek
Cerfacs

Michael Obersteiner
TU München

Enrique S. Quintana-Ortı́
Universitat Politècnica de València

Francesco Rizzi
NexGen Analytics

Ulrich Rüde
Universität Erlangen-Nürnberg

Martin Schulz
TU München

Fred Fung
Australian National University

Robert Speck
Jülich Supercomputing Centre

Linda Stals
Australian National University

Keita Teranishi
Sandia National Laboratories – California

Samuel Thibault
University of Bordeaux

Dominik Thönnes
Universität Erlangen-Nürnberg

Andreas Wagner
TU München

Barbara Wohlmuth
TU München

October 27, 2020

ar
X

iv
:2

01
0.

13
34

2v
1 

 [
cs

.D
C

] 
 2

6 
O

ct
 2

02
0



ABSTRACT

This work is based on the seminar titled “Resiliency in Numerical Algorithm Design for Extreme
Scale Simulations” held March 1-6, 2020 at Schloss Dagstuhl, that was attended by all the authors.
Advanced supercomputing is characterized by very high computation speeds at the cost of involving
an enormous amount of resources and costs. A typical large-scale computation running for 48 hours
on a system consuming 20 MW, as predicted for exascale systems, would consume a million kWh,
corresponding to about 100k Euro in energy cost for executing 1023 floating-point operations. It is
clearly unacceptable to lose the whole computation if any of the several million parallel processes
fails during the execution. Moreover, if a single operation suffers from a bit-flip error, should the
whole computation be declared invalid? What about the notion of reproducibility itself: should
this core paradigm of science be revised and refined for results that are obtained by large scale
simulation?
Naive versions of conventional resilience techniques will not scale to the exascale regime: with a
main memory footprint of tens of Petabytes, synchronously writing checkpoint data all the way to
background storage at frequent intervals will create intolerable overheads in runtime and energy
consumption. Forecasts show that the mean time between failures could be lower than the time to
recover from such a checkpoint, so that large calculations at scale might not make any progress if
robust alternatives are not investigated.
More advanced resilience techniques must be devised. The key may lie in exploiting both advanced
system features as well as specific application knowledge. Research will face two essential ques-
tions: (1) what are the reliability requirements for a particular computation and (2) how do we best
design the algorithms and software to meet these requirements? While the analysis of use cases can
help understand the particular reliability requirements, the construction of remedies is currently wide
open. One avenue would be to refine and improve on system- or application-level checkpointing and
rollback strategies in the case an error is detected. Developers might use fault notification interfaces
and flexible runtime systems to respond to node failures in an application-dependent fashion. Novel
numerical algorithms or more stochastic computational approaches may be required to meet accu-
racy requirements in the face of undetectable soft errors. These ideas constituted an essential topic
of the seminar.
The goal of this Dagstuhl Seminar was to bring together a diverse group of scientists with expertise
in exascale computing to discuss novel ways to make applications resilient against detected and un-
detected faults. In particular, participants explored the role that algorithms and applications play in
the holistic approach needed to tackle this challenge. This article gathers a broad range of perspec-
tives on the role of algorithms, applications, and systems in achieving resilience for extreme scale
simulations. The ultimate goal is to spark novel ideas and encourage the development of concrete
solutions for achieving such resilience holistically.



Acronyms

Acronyms

ABFT Algorithm-Based Fault Tolerance. 18, 27
AMR Adaptive Mesh Refinement. 20, 25
API Application Programming Interface. 10, 13

BLCR Berkeley Lab Checkpoint/Restart. 9

CDs Containment Domains. 12
CPU Central Processing Unit. 10
CRC Cyclic Redundancy Checks. 9

DLS Dynamic Loop Self-scheduling. 13
DLS4LB Dynamic Loop Scheduling for Load Balancing. 12
DMR Double modular redundancy. 17
DRAM Dynamic Random-Access Memory. 12
DSL Domain Specific Languages. 29
DUE Detectable, but Uncorrectable Error. 24

ECC Error Correcting Codes. 9, 10, 24

FEM Finite Element Method. 26
FFT Fast Fourier Transforms. 15
FPGA Field-Programmable Gate Arrays. 13

GPU Graphics Processing Units. 10, 13, 25
GVR Global View Resilience. 12

HBM High-Bandwidth Memory. 12
HPC High Performance Computing. 7, 9, 10, 11, 12, 13, 14, 24, 25, 30

LFLR Local-Failure Local-Recovery. 17, 21

MDS Meta Data Service. 10
MPI Message Passing Interface. 9

NVM Non-Volatile Memory. 12

ODE ordinary differential equations. 16, 27
OS Operating Systems. 9, 25

PCG Preconditioned Conjugate Gradient. 15, 16, 18
PDE Partial Differential Equations. 16, 17, 19, 26, 27
PFS Parallel File System. 8, 10, 12
PMPI MPI Profiling Interface. 11
PVFS Parallel Virtual File System. 10

QOS Quality of Service. 10

rDLB robust Dynamic Load Balancing. 13

SDC Silent Data Corruption. 8, 9, 11



Acronyms

SSD Solid-State Drives. 12

TMR Triple Modular Redundancy. 17

ULFM User Level Failure Mitigation. 12, 13



1 Introduction

Numerical simulation is the third pillar in science discovery at the same level as theory and experiments. To cope
with the ever demanding computational resources needed by complex simulations, the computational power of high
performance computing systems continues to increase by using an ever larger number of cores or by specialized
processing. On the technological side, the continuous shrinking of transistor geometry and the increasing complexity
of these devices affect their sensitivity to external effects and thus diminish their reliability. A direct consequence
is that High Performance Computing (HPC) applications are increasingly prone to errors. Therefore the design of
resilient systems and numerical algorithms that are able to exploit possible unstable HPC platforms has became a
major concern in the computational science community. To tackle this critical challenge on the path to extreme scale
computation an holistic and multidisciplinary approach is required that needs to involve researchers from various
scientific communities ranging from the hardware/system community to applied mathematics for the design of novel
numerical algorithms. In this article, we summarize and report on the outcomes of a Dagstuhl seminar held March 1-6,
2020,1 on the topic Resiliency in Numerical Algorithm Design for Extreme Scale Simulations. We should point out
that, although error and resiliency was already quoted by J. von Neumann in his first draft report on EDVAC [260, P.1,
Item 1.4], it became again a central concern for the HPC community in the late 2000’ when the availability of the first
exascale computers was envisioned for the forthcoming decades. In particular, several workshops were organized in
the IESP (International Exascale Software Project) and EESI (European Exascale Software Initiative) framework [52].

The hardware/system resilience community has previously defined terminology related to how faults, errors, and fail-
ures occur on computing systems [18]. In this article our focus is less on the cause of an error (or the underlying fault),
and more on how an error presents itself at the algorithmic level (or layer), impacting algorithms and applications. We
thus simplify the terminology often used in the hardware resilience and fault-tolerance community by not using terms
like soft error or hard error, and generally do not concern ourselves with the reproducibility of an error (e.g., transient,
intermittent or permanent). This abstraction keeps the algorithmic techniques discussed herein general and applicable
to a variety of fault models, current architectures, and hopefully of use in future technologies.

To this end, we broadly categorize errors presenting themselves to the algorithmic layer as either detected or un-
detected. Note that this categorization does not mean an error is undetectable but rather that when it reached the
algorithmic layer it was not detected by earlier layers (e.g., hardware, operating system or middleware/system soft-
ware). This suggests the algorithmic layer has the opportunity to detect a previously undetected error and, if possible,
to deploy mitigation methods to make the algorithm resilient; effectively transforming an undetected error at the al-
gorithmic layer into a detected error. This in turn may result in a failure if the algorithm is unable to handle it. For
example, an undetected data corruption which results in an application accessing an incorrect memory address may be
detectable by the algorithm but it may not be possible for the algorithm to recover what the original memory address
was and it may be forced to fail. If the algorithm could not detect the corruption before accessing the memory region,
this would conventionally end in a failure (e.g., SIGSEGV issued by the operating system).

Many computing-intensive scientific applications that are dependent on HPC performance upgrades can end up with
disrupted schedules because of lack of resilience. A typical example is related to current efforts towards exascale
numerical weather prediction [31, 32]. On one side, regular upgrades in weather forecast models in operations at
weather centres and their spatial resolution have gone hand in hand with expanding computational resources. On
the other side, scientific and socioeconomic significance of forecasts crucially hinges on tight time-bound computing
schedules and timely forecast dissemination, most notably for high-impact weather events. Current disk-checkpointing
schedules still take up acceptable portions of forecast runtimes, but are hardly sustainable - indeed, they already
saturate file systems bandwidth. In addition, many weather forecast codes feature preconditioned iterative solvers of
linear systems with several hundred thousand unknowns, many thousand times per run. Such components represent
vulnerable points in a context of increasingly frequent detected and undetected errors. Novel low-overhead solutions
to enhance algorithmic fault-tolerance or provide higher-level system resilience are therefore in high demand in this
and other fields where nonlinear dynamics is simulated.

In this article we take a different approach at the classification of errors in HPC systems. In general, we try to
divide errors in two main groups, those that are detected and corrected by the hardware/system (which is the focus
of Section 2) and those that are detected and sometimes corrected by the numerical algorithms (Section 3). However,
the HPC resilience ecosystem is not black and white, but it rather shows a wide palette of greys in between, with
multiple fault tolerance tools implemented at the middleware level that are assisted by the applications/algorithms and
vice-versa. Figure 1 shows this wide range of different error classifications depending on how much effort is needed
at the application/algorithmic level in order to detect/correct the error.

1https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=20101

https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=20101


System De-
tected?

Transparent
Correction? Algorithmic

Detecting Step?

Assisted
Correction?

Detected and
Corrected Error

Error Detect-
ing Algorithms

Error Oblivi-
ous Algorithms

Corrected Error
with Assistance

Error Aware Algorithms

cost

Sy
ste

m
Num

er
ica

l

Algo
rit

hm
s

Error

Yes
No

Yes

No

Yes No

Yes No Detection

Figure 1: A classification of error handling.

The first category we observe in the leftmost leaf of the tree (blue color) is the case of errors that are both detected
and transparently corrected by the hardware/middleware but without any intervention of the applications/algorithms.
The clearest example would be a detectable and correctable error in the memory generated by a single bit flip. These
types of errors are transparently corrected by the system without any knowledge at the application/algorithmic level
that such error mitigation occurred. Other examples could be process replication, system-level checkpointing, process
migration, among many others (see Section 2.1).

The second category is the case of errors that are detected at the hardware/system level and are mitigated at the
system/middleware level (not at the algorithmic level) but with assistance from the application/algorithm (green color).
The most clear example of this is application-based checkpointing libraries, which handle all or most of the data
transfers between the compute nodes and the Parallel File System (PFS) independently from the application, but
it gets hints from it to know what datasets need to be checkpointed and when should the checkpoint happen. Other
relevant examples are fault tolerant message passing programming models and resilient asynchronous tasks. We divide
these sections in those approaches that require just a minor addition in the application code versus those that require a
complete change in the programming paradigm (see Section 2.2).

The other leaves of the tree (red color) correspond to those errors that cannot be corrected or mitigated at the hard-
ware/system level and have to be mitigated by changing the algorithm or numerical methods to be able to tolerate
those errors. We observe three different types of algorithms in this branch of the tree.

The first type of algorithms focuses on the mitigation of errors that have been detected (first red leaf from left to right),
we call them error-aware algorithms. Please note that these algorithms are not in charge of detecting the errors but
only of mitigating them. Also, it is important to notice that these algorithms do not depend on how the error was
actually detected; it could be hardware/middleware detection as well as algorithmic detection, in the end the process
of detection is irrelevant for the mitigation algorithm (see Section 3.2).

The second type of algorithms are those dedicated to the detection of errors that were not detected at the lower levels
(fourth leaf from left to right). A good example would be Silent Data Corruption (SDC) errors that pass invisibly
through the hardware but then can be caught at the algorithmic level using some numerical techniques (e.g., checksum).
These algorithms do not try to mitigate the error per se but only detect it. Once the error has been detected, it can be
passed to a error aware algorithm in order to attempt a correction/mitigation (see Section 3.1).



Finally, there also exist algorithms that can operate, tolerate and absorb errors without ever being aware that the error
ever occurred (last leaf to the right); we called these, error oblivious algorithms. These are somehow similar to the
very first (blue) category, in that the errors are transparently corrected/absorbed, see Section 3.3.

In the following sections we discuss algorithmic and application approaches to address these two categories of errors
and distinguish how the approaches vary or are similar. Broadly speaking, the report is divided into two parts. In
Section 2 and Section 3 we discuss the state-of-the-art in the areas of infrastructure and algorithms, while in Section 4
we propose possible areas of interest in future research.

2 System infrastructure techniques for resilience

In this section we describe the state-of-the-art of hardware and system level error detection and mitigation. As previ-
ously mentioned, we divide these methods in two categories, the ones that mitigate the error in a completely transparent
fashion, and those that require assistance from the algorithmic/application level. The following subsection, Section
2.1, concentrates on the methods falling in the first category. The second category is explored in Section 2.2.

2.1 Detected and transparently corrected errors

A wide range of errors can be detected and immediately corrected by various layers in the system, i.e., these errors
become masked or absorbed and higher level layers do not have to be involved. The detection/correction mechanisms
have an extra cost in terms of storage, processing and energy consumption.

Hardware reliability At the hardware level several techniques exist to detect and correct errors. Most common
examples are Error Correcting Codes (ECC) to detect and correct single bit-errors, Cyclic Redundancy Checks (CRC)
error correction for network packets or RAID-1 (or higher) for I/O systems. A more comprehensive discussion of these
features can be found in the report “Towards Resilient EU HPC Systems: A Blueprint” by Radojkovic et al. [207].

Operating system reliability Operating Systems (OS) have certain capabilities to interact with architectural re-
silience features, such as ECC and machine check exceptions. OSs are mostly concerned with resource management
and error notification. However, some advanced OS resilience solutions exist such as Mini-ckpts [92]. It is a frame-
work that enables application survival despite the occurrence of a fatal operating system failure or crash. It ensures that
the critical data describing a process is preserved in persistent memory prior to the failure. Following the failure, the
OS is rejuvenated via a warm reboot and the application continues execution effectively making the failure and restart
transparent. The mini-ckpts rejuvenation and recovery process is measured to take 3 s to 6 s and has a failure-free
overhead of 3% to 5% for a number of key HPC workloads.

System-level checkpoint/restart Berkeley Lab Checkpoint/Restart (BLCR) [125] is a system-level check-
point/restart solution that transparently saves and restores process state. In conjunction with a Message Passing
Interface (MPI) [95] implementation, it can transparently save and restore the process states of an entire MPI ap-
plication. An extension of BLCR [257, 262, 263] includes enhancements in support of scalable group communication
for MPI membership management, reuse of network connections, transparent coordinated checkpoint scheduling, a
job pause feature, and full/incremental checkpointing. The transparent mechanism for job pause allows live nodes
to remain active and roll back to the last checkpoint, while failed nodes are dynamically replaced by spares before
resuming from the last checkpoint. A minimal overhead of 5.6% is reported in case migration takes place, while the
regular checkpoint overhead remains unchanged.

The hybrid checkpointing technique [111] alternates between full and incremental checkpoints: At incremental check-
points, only data changed since the last checkpoint is captured. This results in significantly reduced checkpoint sizes
and overheads with only moderate increases in restart overhead. After accounting for cost and savings, the benefits
due to incremental checkpoints are an order of magnitude larger than the overheads on restarts.

Silent Data Corruption (SDC) protection FlipSphere [93] is a tunable, transparent Silent Data Corruption (SDC)
detection and correction library for HPC applications. It offers comprehensive SDC protection for application program
memory using on-demand memory page integrity verification. Experimental benchmarks show that it can protect 50%
to 80% of program memory with time overheads of 7% to 55%.

Proactive fault tolerance using process or virtual machine migration Proactive fault tolerance [88, 187, 264]
prevents compute node failures from impacting running applications by migrating parts of an application, i.e., tasks,
processes, or virtual machines, away from nodes that are about to fail. Pre-fault indicators, such as a significant



increase in temperature, can be used to avoid an imminent failure through anticipation and reconfiguration. As com-
putation is migrated away, application failures are avoided, which is significantly more efficient than checkpoint/restart
if the prediction is accurate enough. The proactive fault tolerance framework consists of process and virtual machine
migration, scalable system monitoring and online/offline system health analysis. The process-level live migration
supports continued execution of applications during much of process migration and is integrated into an MPI exe-
cution environment. Experiments indicate that 1 s to 6.4 s of prior warning are required to successfully trigger live
process migration, while similar operating system virtualization mechanisms require 13 s to 24 s. This error oblivious
approach complements checkpoint/restart by nearly cutting the number of checkpoints by half when 70% of the faults
are handled proactively.

Resiliency using task-based runtime systems Task-based runtime systems have appealing intrinsic features for
resiliency due to the fault isolation they provide by design as they have a view of the task flow and dynamically
schedule task on computing units (often to minimize the time to solution or energy consumption). Once an error is
detected and identified by the hardware or the algorithm, the runtime system can limit its propagation through the
application by reasoning about the data dependencies among tasks [176]. For example, one can envision the scenario
where an uncorrectable hardware error is detected triggering the runtime system to dynamically redistribute the tasks
to the remaining resources available.

Task-based runtime systems can also limit the size of the state needed to be saved to enable restarting computations,
when an error is encountered [171, 172, 254]. In classical checkpoint-restart mechanisms, the size of the checkpoint
can become very large for large-scale applications, and managing it can take up a significant portion of the overall
execution. A task-based runtime system simplifies the identification of points during the application execution when
the state size is small, since only task boundaries need to be considered for saving the state. Further, identification
of idempotent tasks can greatly help task-based runtimes to further reduce the overheads by completely avoiding data
backups specific to those tasks. Recent works on on-node task parallel programming models suggest that a simple
extension of the existing task-based programming framework enables efficient localized recovery [200, 236, 238].

The checkpointing itself can also be achieved completely asynchronously [171, 172, 254]. The runtime allows tasks
to read data being saved, and only blocks those tasks that attempt to overwrite data being saved. Since the runtime
system knows which data will soon be overwritten by some tasks, it can prioritize the writing of the different pieces
so as to have as little impact on the execution as possible. At the restarting point, the runtime also has all information
to be able to achieve a completely local recovery. The replacement node can restart from the last valid checkpoint of
the previously-failed node, while the surviving nodes can just replay the required data exchanges.

With the recent emergence of heterogeneous computing systems utilizing Graphics Processing Units (GPU), the task
programming model is being used to offload computation from the Central Processing Unit (CPU) to the GPU. VOCL-
FT [202] offers checkpoint/restart for computation offloaded to GPU using OpenCL [118]. It transparently intercepts
the communication between the originating process and the local or remote GPU to automatically recover from ECC
errors experienced on the GPU during computation. Another preliminary prototype design extends this concept in the
context of OpenMP [42] using a novel concept for Quality of Service (QOS) and a corresponding Application Pro-
gramming Interface (API) [89]. While the programmer is specifying the resilience requirements for certain offloaded
tasks, the underlying programming model runtime decides on how to meet them using a QOS contract, such as by
employing task-based checkpoint-restart or redundancy.

Resilience via complete redundancy The use of redundant MPI processes for error detection has been widely
analyzed in the last decade [55, 70, 208, 273]. Modular redundancy incurs high overhead, but offers excellent error
detection accuracy and coverage with few to no false positive or false negatives.

Complete modular redundancy is typically too expensive for actual HPC workloads. However, it can make sense for
certain subsystems such as parts of a PFS. The Meta Data Service (MDS) of a networked PFS is a critical single point
of failure. An interruption of service typically results in the failure of currently running applications utilizing its file
system. A loss of state requires repairing the entire file system, which could take days on large-scale systems, and may
cause permanent loss of data. PFSs such as Lustre [67] often offer some type of active/standby fail-over mechanism for
the MDS. A solution [128] for the MDS of the Parallel Virtual File System offers symmetric active/active replication
using virtual synchrony with an internal replication implementation. In addition to providing high availability, this so-
lution is taking advantage of the internal replication implementation by load balancing MDS read requests, improving
performance over the non-replicated MDS.

Resilience via partial redundancy Partial redundancy has been studied to decrease the overhead of complete re-
dundancy [85, 234, 239, 240]. Adaptive partial redundancy has also been proposed wherein a subset of processes is
dynamically selected for replication [108]. Partial replication (using additional hardware) of selected MPI processes



has been combined with prediction-based detection to achieve SDC protection levels comparable with those of full
duplication [37,38,188]. A Selective Particle Replication approach for meshfree particle-based codes protects the data
of the entire application (as opposed to a subset) by selectively duplicating 1% to 10% of the computations within
processes incurring a 1% to 10% overhead [57].

Resilience via complete and/or partial redundancy RedMPI [91] enables a transparent redundant execution of
MPI applications. It sits between the MPI library and the MPI application, utilizing the MPI Profiling Interface
(PMPI) to intercept MPI calls from the application and to hide all redundancy-related mechanisms. A redundantly
executed application runs with r ∗m MPI processes, where m is the number of MPI ranks visible to the application
and r is the replication degree. RedMPI supports partial replication, e.g., a degree of 2.5 instead of just 2 or 3,
for tunable resilience. It also supports a variety of message-based replication protocols with different consistency.
Not counting in the need for additional resources for redundancy, results show that the most efficient consistency
protocol can successfully protect HPC applications even from high SDC rates with runtime overheads from 0% to
30%, compared to unprotected applications without redundancy. Partial and full redundancy can also be combined
with checkpoint/restart [85]. Non-linear trade-offs between different levels of redundancy can be observed when
additionally using checkpoint/restart, since computation on non or less redundant resources is significantly less reliable
than computation on fully or more redundant resources.

Interplay between resilience and dynamic load balancing Scheduling of application jobs at the system level
contributes to exploiting parallelism by placing and (dynamically) balancing the batch jobs on the local site resources.
The jobs within a batch are already heterogeneous; yet, current batch schedulers rarely co-allocate, and most often only
allocate, computing resources (while network and storage continue to be used as shared resources). Dynamic system-
level parallelism can arise when certain nodes become unavailable (due to hard and permanent errors) or recover
(following a repair operation). This can be exploited during execution by increasing opportunities for system-level
co-scheduling in close proximity of jobs that exhibit different characteristics (e.g., co-scheduling a classical compute-
intensive job in close proximity to a data-intensive job) and by dynamic resource reallocation to jobs that have lost
resources due to failures or to waiting jobs in the queue.

2.2 Detected errors mitigated with assistance

In this section we focus on correction methods that need assistance from the upper layers in order to achieve resilience
and correctness. It is important to note that there are multiple methods that offer assisted fault tolerance but some
of them involve a few additional lines of code while others require rewriting the whole applications using a specific
programming model. Therefore, we will divide this section into subsections depending on the programming and/or
redesign effort that is required.

2.2.1 Correction with incremental redesign

As explained in Section 2.1, it is possible to perform system-level checkpointing without any feedback from the
application or the algorithm or any upper layer. The issue with system-level checkpointing is that the size (and
therefore the time and energy cost) of checkpointing is much larger than what is really required to perform a restart
of the application. Thus, application-level checkpointing is an attempt to minimize the size of checkpoints to the
minimum required for the application to be able to restart.

Performance modeling and optimization of checkpoint-restart methods Research on simulation tools assessing
the performance of certain checkpoint-restart strategies is presented in various publications [15,73,87,165]. Different
theoretical approaches are used and tools are developed that either simulate a fictional software or wrap an actual
application.

A lot of work has been done to examine and model the performance of multilevel checkpointing approaches [28, 34,
156, 274]. Here, the parallel distribution of the snapshots as well as the target storage system are considered as ob-
jectives for performance optimization. Asynchronous techniques are considered, such as non-blocking checkpointing,
where a subset of processes are dedicated to manage the creation and reconstruction of snapshots [69, 219]. As a
measure to saving storage and speeding up I/O, data compression is another subject that is considered in the literature
as, e.g., by Di and Cappello [74], and in one of the case studies in Section 3.2.2.

Resilient checkpointing has been considered with the help of nonvolatile memory, as for instance implemented in
PapyrusKV [154], a resilient key-value blob-storage. Other resilient checkpointing techniques include the self-
checkpoint technique [245], which reduces common redundancies while writing checkpoints, or techniques reducing
the amount of required memory through hierarchical checkpointing [182], or differential checkpointing [153].



Message logging Message logging is a mechanism to log communication messages in order to allow partial restart
as for example examined by Cantwell et al. [51]. While improving on basic checkpointing strategies, message logging-
based approaches can themselves entail large overheads because of log sizes. The checkpointing protocol developed
by Ropars et al. [213] does not require synchronization between replaying processes during recovery and limits the size
of log messages. Other approaches combine task-level checkpointing and message logging with system-wide check-
pointing [237]. This protocol features local message logging and only requires the restart of failing tasks. It is also
possible to combine message logging with local rollback and User Level Failure Mitigation (ULFM) (Section 2.2.2)
to improve log size [173].

Multilevel checkpointing libraries Current HPC systems have deep storage hierarchies involving High-Bandwidth
Memory, Dynamic Random-Access Memory, Non-Volatile Memory, Solid-State Drives and the PFS, among others.
Multilevel Checkpointing libraries offer a way to leverage the different storage layers in the system through a simple
interface. The objective is to abstract the storage hierarchy to the user, so that one does not need to manually take care
of where the data is stored or the multiple data movements required between storage levels. Each level of checkpointing
provides a different trade-off between performance and resilience, where usually lower levels use close storage that
offers higher performance but limited resilience, and higher levels rely on stable storage (e.g., PFS), which is more
resilient but slower. Mature examples of multilevel checkpoint libraries are SCR [183], FTI [28], CRAFT [226] and
VeloC [189]. Both SCR and FTI provide support via simple interfaces for storing application checkpoint data on
multiple levels of storage, including RAM disk, burst buffers, and the parallel file system. Both SCR and FTI provide
redundancy mechanisms to protect checkpoint data when it is located on unreliable storage and can asynchronously
transfer checkpoint data to the parallel file system in the background while the application continues its execution. In
addition, FTI also supports transparent GPU checkpointing. Finally, VeloC is a merge of the interfaces of both FTI
and SRC. Note that some of these libraries offer the option for keeping multiple checkpoints so that the application
can roll-back to different points in the past if necessary.

Containment Domains Containment Domains (CDs) provide a programming construct to facilitate the
preservation-restoration model, including nesting control constructs, and durable storage [248]. The following fea-
tures are attractive for large-scale parallel applications. First, CDs respect the deep machine and application hierar-
chies expected in exascale systems. Second, CDs allow software to preserve and restore states selectively within the
storage hierarchy to support local recovery. This enables preservation to exploit locality of storage, rather than requir-
ing every process to recover from an error, and limits the scope of recovery to only the affected processors. Third,
since CDs nest, they are composable. Errors can be completely encapsulated, or escalated to calling routines through
a well-defined interface. We can easily implement hybrid algorithms that combine both preservation-restoration and
data encoding.

Use cases include an implementation of a parallel resilient hierarchical matrix multiplication algorithm using a com-
bination of ABFT (for error detection) and CDs (for error recovery) [16]. It was demonstrated that the overhead for
error checking and data preservation using the CDs library is exceptionally small and encourages the use of frequent,
fine-grained error checking when using algorithm based fault tolerance.

Application versioning Global View Resilience (GVR) [64] accommodates APIs to enable multiple versioning of
global arrays for the single program, multiple data programming model. The core idea is the fact that naive data redun-
dancy approaches potentially store wrong applications states due to the large latency associated with error detection
and notification. In addition to multiple versioning, GVR provides a signaling mechanism that triggers the correc-
tion of application states based on user-defined application error conditions. Use cases include an implementation of
resilient Krylov subspace solvers [275].

Mitigating performance penalties due to resilience via dynamic load balancing Detected and corrected errors
induce variation in the execution progress of applications when compared to error-free executions. This can manifest
itself as load imbalance. Many application-level load balancing solutions have been proposed over the years and can
help to address this problem. We mention here a few available packages.

Available load balancing software includes Zoltan [252] that requires users to describe the workload across processes
as a graph and offers an object oriented interface. Further we mention Dynamic Loop Scheduling for Load Balancing
(DLS4LB) [54], a recently developed library for MPI applications that contains a portfolio of self-scheduling based
algorithms for load balancing. StarPU [254] proposes support for asynchronous load-balancing [172] for task-based
applications. The principle is to let the application submit only a part of its task graph, let some of it execute on the
platform and observe the resulting computation balance. A new workload distribution can then be computed and the
application is allowed to submit more of the task graph, whose execution can be observed as well. OmpSs [80] is
an effort to extend OpenMP in order to support asynchronous execution of tasks including a transparent interface for



hardware accelerators such as GPUs and FPGAs. OmpSs is built on top of the Mercurium compiler [251] and the
nanos++ runtime system [249].

HCLib [271] is a task-based programming model that implements locality-aware runtime and work-stealing. It offers
a C and C++ interface and can be coupled with inter-process communication models, such as MPI. Charm++ [151]
features an automatic hierarchical dynamic load balancing method that overcomes the scalability limitation of cen-
tralized load balancing as well as the poor performance of completely distributed systems. Such a technique can be
triggered dynamically after a failure hits the system and the workload needs to be redistributed across workers.

2.2.2 Correction with major redesign

The correction of some detected errors might have a strong impact of the algorithm that has to implement the mitiga-
tion. The mitigation design can be made more affordable if some components of the software stack have already some
appealing features to handle such situations.

Resilience support in the Message Passing Interface (MPI) Most MPI implementations by default are designed to
terminate all processes when errors are detected. However, this termination occurs irrespective of the scope of the error,
requiring global shut-down and restart even for local errors in a single process. This inherent scalability issue can be
mitigated if MPI keeps all survived processes to continue and/or if restart overheads are reduced. The MPI community
has proposed several recovery approaches, such as FA-MPI [127] or MPI-ULFM [41] to enable alternatives of global
shut-down, as well as better error handling extensions, like MPI Reinit [159], to reduce overhead and impact of
failures. Among these approaches, MPI-ULFM is the most advanced and well known. It provides a flexible low-level
API that allows application specific recovery via new error handling approaches and dynamic MPI communicator
modification under process failures, although with significant complexities for the application developer using the new
APIs. Several approaches have been proposed to mitigate this complexity by creating another set of library APIs built
atop of MPI-ULFM [51,99,100,225,253]. However, as of now, in part due to its complexity when used on real-world
applications and limited support in system software, MPI-ULFM as a whole has not been adopted in the MPI standard
and hence is not readily usable for typical HPC application programmers. Nevertheless, various aspects of ULFM
are in the process of standardization and will provide more mechanisms in MPI to build at least certain fault tolerant
applications, starting with the upcoming MPI 4.0 standard.

Resilience abstractions for data-parallel loops Data-parallel loops are widely encountered inN -body simulations,
computational fluid dynamics, particle hydrodynamics, etc. Optimizing the execution and performance of such loops
has been the focus of a large body of work involving dynamic scheduling and load balancing. Maintaining the per-
formance of applications with data-parallel loops running in computing environments prone to errors and failures is a
major challenge. Most self-scheduling approaches do not consider fault-tolerance or depend on error and failure detec-
tion and react by rescheduling failed loop iterations (also referred to as tasks). A study of resilience in self-scheduling
of data-parallel loops has been performed using SimGrid-based simulations of highly unpredictable execution condi-
tions involving various problem sizes, system sizes, and application and systemic characteristics (namely, permanent
node failures), that result in load imbalance [241]. Upon detecting a failed node, re-execution is employed to resched-
ule the loop iterations assigned to the failed node.

A robust Dynamic Load Balancing (rDLB) approach has recently been proposed for the robust self-scheduling of in-
dependent tasks [180]. The rDLB approach proactively and selectively duplicates the execution of assigned chunks of
loop iterations and does not depend on failure or perturbation detection. For exponentially distributed permanent node
failures, a theoretical analysis shows that rDLB is linearly scalable and its cost decreases quadratically with increasing
system size. The reason is that increasing the number of processors increases the opportunities for selectively and
proactively duplicating loop iterations to achieve resilience. rDLB is integrated into a dynamic loop scheduling library
(DLS4LB, see Section 2.2.1) for MPI applications. rDLB enables the tolerance of up to (P − 1) process failures,
where P is the number of processes executing an application. For execution environments with performance-related
fluctuations, rDLB boosts the robustness of Dynamic Loop Self-scheduling (DLS) techniques by a factor up to 30 and
decreases application execution time up to 7 times compared to their counterparts without rDLB.

Resilience extension for performance portable programming abstractions With the increasing diversity of the
node architecture of HPC systems, performance portability has become an important property to support a variety of
computing platforms with the same source code while achieving a comparative performance to those programmed
with the platform specific programming models. Today, Kokkos [82] and Raja [30, 250] accommodate modern C++
APIs to permit an abstraction of data allocation and parallel loop execution for a variety of runtime software and node
architectures. This idea can be extended to express the redundancy of data and computation to achieve resilience while
hiding the details of the data persistence and redundant computation. Recently, the resilient version of Kokkos was



proposed for a natural API extension of Kokkos’ data (memory space) and parallel loop (execution space) abstractions
to (1) enable resilience with minimal code refactoring for the applications already written with Kokkos and (2) provide
common interface to call any external resilience libraries such as VeloC [189]. The new software will be released in a
special branch in https://github.com/kokkos/kokkos.

The resilience abstraction idea has also been applied to task parallel programming models such as Charm++ [151],
HClib [271], HPX [150], OmpSs [80] and StarPU [254] to integrate a variety of resilient task program execution
options such as replay, replication, algorithm-based fault tolerance and task-based checkpointing. Task-based pro-
gramming models indeed have a very rich view over the structure of the application computation, and notably its
data, and have a lot of control over the computation execution, without any need for intervention from the application.
Replaying a failed task consists of issuing it again with the same input, discarding the previous erroneous output, and
replicating a task consists of issuing it several times with different output buffers and comparing the result. Dynamic
runtime systems can then seamlessly introduce replay and replication heuristics, such as trying to run different im-
plementations and/or computation units, without the application having to be involved beyond optionally providing
different implementations to be tried for the same task.

The task graph view also allows for very optimized checkpointing [171, 172, 254]. In the task-based programming
model, each checkpoint is a cut in the task graph, which can be expressed trivially within the task submission code,
and only the data of the crossing edges need to be saved. Even better, the synchronization between the management
of checkpoint data and application execution can be greatly relaxed. The transfer of the data to the checkpoint storage
can indeed be started as soon as the data is produced within the task graph, and not only once all tasks before the
checkpoint are complete. A checkpoint is then considered complete when all its pieces of data have been collected. It
is possible that tasks occurring after the checkpoint may run to completion before the checkpoint itself is completed.
All in all, this allows for a lot more time for the data transfers to complete, and lessens the I/O bandwidth pressure.

Software engineering approaches for resilience by design Resilience design patterns [141,142] offer an approach
for improving resilience in extreme-scale HPC systems. Frequently used in computer engineering, design patterns
identify problems and provide generalized solutions through reusable templates. Reusable programming templates
of these patterns can offer resilience portability across different HPC system architectures and permit design space
exploration and adaptation to different (performance, resilience, and power consumption) design trade-offs. An early
prototype [14] offers multi-resilience for detection, containment and mitigation of silent data corruption and MPI
process failures.

3 Numerical algorithms for resilience

In this section, we focus on the handling of errors at the algorithmic level. We see three different classes of problems
to tackle here: (i) detection of un-signaled errors (mostly bit flips and other instances of silent data corruption, Sec-
tion 3.1), (ii) correction of errors that have been signaled but could not be corrected at the hardware or middleware
layer (by error aware algorithms, Section 3.2), (iii) design of error oblivious algorithms that deliver the correct result
even in the presence of (not too frequent) errors (Section 3.3).

In addition to correctness in the presence of errors, an important challenge in all our considerations is efficiency in
terms of algorithm runtime. In this context, additional algorithmic components such as work stealing and asynchronous
methods (where missing data are simply an extreme case of delay) have to be considered. We mention these methods
when describing methods that can make use of such runtime optimizing measures.

3.1 Error detecting algorithms

In this section, we focus on mechanisms to numerically detect errors that have not been detected by the underlying
system or middleware. We have identified several techniques that allow us to (likely) notice the occurrence of an error
at several layers of numerical algorithms. Table 1 gives an overview of some detection techniques and the algorithmic
components or numerical methods where they are applicable.

3.1.1 Exceptions

Exceptions are a way a program signals that something went wrong during execution. We consider the case where
exceptions are caused by data corruption that can, for example, lead to division by zero or out-of-range access. Most
programming languages support a way of handling exceptions. The algorithm programmer can register an exception
handler that gets called whenever an exception occurs. If the error is recoverable, the exception handler will specify
how best to continue afterwards. If the error is not recoverable, the program will be aborted. Exceptions are a straight-

https://github.com/kokkos/kokkos


Table 1: Numerical error detection: Overview of error detection techniques and numerical ingredients and methods
where they are applied. Note that we mark a method as applicable only if it is or can be used in the respective algorithm
itself, not only at lower level functionality, i.e., we do not mark checksums for multigrid as checksums are only used
in the BLAS 2/3 kernels used as inner loops or in the GS/J/SOR smoothers.

ex
ce

pt
io

ns

ch
ec

ks
um

co
ns

tr
ai

nt
s

te
ch

er
ro

r

m
ul

ti
re

so
lu

tio
n

re
du

nd
an

c y

BLAS 2/3 × × ×
Direct Solvers × × ×
Krylov × × × ×
Multilevel / Multigrid × × × ×
Domain Decomposition × ×
GS/Jac/SOR × × ×
Nonlinear Systems × × ×
Time Stepping (ODEs) × × (×) ×
PDEs × × × × × ×
Quadrature × × × × ×

forward way to detect certain types of errors and can be applied to all numerical algorithms. However, they obviously
only see a small subset of all possible errors and it is not trivial to decide when to use exceptions handlers in the light
of a trade-off between correctness, robustness and runtime efficiency.

3.1.2 Checksums

Checksums could be used at the hardware or middleware layer to detect errors, but here we will discuss checksums
as employed on the algorithmic layer where we have a more detailed knowledge about the existence of numerical or
algorithmic invariants. Checksum techniques have been used in various numerical algorithms. We list some examples
below.

BLAS 2/3: Checksum encoding matrices, introduced by Huang and Abraham [137] requires (i) adding redundant
data in some form (encoding), (ii) redesign of the algorithm to operate on the respective data structures (processing),
and (iii) checking the encoded data for errors (detection). We ignore the recovery phase here and refer to Section 3.2.
Checksums are used in FT-ScaLAPACK [267] for dense matrix operations such as MM, LU and QR factorization and
more recently in hierarchical matrix multiplication [16]. Wu et al. give a good survey of checksum deployment in
dense linear algebra [268].

Gauss-Seidel/Jacobi/SOR and multigrid: In [179], checksums are used to detect errors in the Jacobi smoother, the
restriction and interpolation operators of a multigrid method solving a two-dimensional Poisson equation.

Krylov subspace methods: Tao et al. propose a new checksum scheme using multiple checksum vectors for sparse
matrix-vector multiplication, which is shown to be generally effective for several preconditioned Krylov iterative
algorithms [247]. Also [1, 227] use checksums for protection within the conjugate gradient (CG) algorithm.

FFT: Checksum can also be used in Fast Fourier Transforms (FFT)s similarly as in matrix-vector multiplication.
Liang et al. [167] develop a new hierarchical checksum scheme by exploiting the special discrete Fourier transform
matrix structure and employ special checksum vectors. Checksums are applicable to many important kernels such as
matrix-matrix multiplication, but are costly. In addition, it can be difficult to specify a suitable threshold for ‘equality’
in the presence of round-off errors. For many numerical calculations such as scalar products, checksums are not
applicable at all.

3.1.3 Constraints

In some applications, constraints for different types of variables are known. Examples are positivity constraints,
conservation laws for physical quantities or known bounds for internal numerical variables.

Krylov subspace methods: Resilience was already of importance in the early days of digital computers. In the
original PCG paper [132], Hestenes and Stiefel noticed that the reciprocal value of α (the step length) is bounded above



(repectively, below) by the reciprocal of the smallest eigenvalues (respectively the inverse of the largest eigenvalue)
of the matrix. The inequality involving the largest eigenvalue (for which in practice it may be cheaper to get an
approximation) was used to equip PCG with error detection capabilities in [1].

Partial differential equations: Checking for bounds can be associated with minimal or extremely high cost de-
pending on whether extra information has to be computed (such as eigenvalues of matrices) or not. Reliability is, in
general, an issue as only those errors leading to violation of these constraints can be detected. An example of the
use of problem-informed constraints can be found in [186]. In this work, the authors derive a priori bounds for the
discrete solution of second-order elliptic PDEs in a domain decomposition setting. Specifically, they show that the
bounds take into account the boundary conditions, are cheap to compute, general enough to apply to a wide variety of
numerical methods such as finite elements or finite differences, and provide an effective way to handle faulty solutions
synthetically generated.

3.1.4 Technical error information

In many numerical large scale applications, the main computational task involves the approximate computation of
integrals, algebraic systems, systems of ODEs or PDEs. For all these problems, various types of error information
such as residuals, differences between iterations, round-off error estimates and discretization error estimates can be
used as indicators of errors either by their size or by monotonicity criteria. We give several examples from literature
for different classes of numerical algorithms.

Krylov subspace methods: Round-off error bounds can be used in Krylov subspace methods. They fit in the general
framework of round-off error analysis [133] and have been considered in the context of Krylov subspace methods in
finite precision arithmetic [169, 178].

Vorst and Ye proposed a residual gap bound [256] (bound for the norm of the residual gap between the true and the
computed residuals) based on round-off error analysis that was later used as a criterion for actual error detection in [1]
when bit flips occur. The detection of errors in Krylov methods via violation of orthogonality is proposed in [63].

Multigrid: Calhoun et. al [50] apply a residual/energy norm-based error detection for algebraic multigrid. They use
two criteria: (i) the reduction of the residual norm as a weak criterion and (ii) the reduction of the quadratic form

E(x) = 〈Ax,x〉 − 2〈x, b〉,

when solving the linear system Ax = b for symmetric positive matrices.

The quadratic for E calculated at level i during the down-pass of a V-cycle should be less than the energy calculated
at level i during the down-pass of the next V-cycle.

When using the full approximation scheme residual norm reductions can also be verified at each level in the hierarchy
of a multigrid-cycle. The structure of the full approximation scheme additionally provides smart recovery techniques
utilizing its lower resolution approximations [11].

Time-stepping: For iterative time-stepping with spectral deferred corrections, monitoring the residual of the iteration
can be used to detect errors in the solution vectors [119]. In the context of parallel-in-time integration with parareal,
consecutive iterates are considered in [191] to detect errors in the solution vector. In [35], an auxiliary checking scheme
in contrast to the original base scheme is used to detect and correct errors during implicit and explicit time-integration.
Estimating the local truncation error with two different methods is used in [121] to implement a resilient, high-order
Runge-Kutta method. This “Hot Rod” approach is then also used for error correction.

3.1.5 Multi-resolution

Multi-resolution means that information is available at different resolution levels, in terms of spatial discretization
(PDE), time discretization (ODE and PDE), order of discretization (PDE in space and time), matrix dimensions (nu-
merical linear algebra, multigrid), frequencies, and so on. This leads to a certain redundancy – not an artificially
introduced, but an inherently available one. This redundancy can be used to detect discrepancies or anomalies and,
hence, errors that could not be detected by the system. There are numerous examples for the mentioned problem
classes, we outline one example in more detail here.

Sparse grids / Combination technique: Sparse grids [48] are one particular class of multi-resolution methods. There,
via the use of hierarchical bases, certain structures often seen in d-dimensional data can be exploited to alleviate the
curse of dimensionality, without a significant loss of accuracy. Sparse grids have been successfully used in a wide
range of problem classes where spatial discretization plays a role, such as interpolation [145], quadrature [47,109,110],
solvers for PDEs [124, 129], or machine learning tasks [104, 105, 201] (e.g., classification, regression, clustering, or



density estimation). One particular incarnation of sparse grid methods is the so-called combination technique [117].
There, based on an extrapolation-style approach, a linear combination of a specific set of full, but very coarse-grid
solutions is used to get a sparse fine-grid solution. The various coarse grid solutions can be obtained in a completely
independent way, using (parallel) standard solvers. This opens the way to (1) a natural two-level parallelization and to
(2) an easy and cheap detection of system undetected errors: Since we actually compute solutions for the same problem
on different (i.e., differently discretized) grids anyway, we can use these to detect anomalies – just by comparing the
available solutions. And the detection leads immediately to a mitigation strategy (see Section 3.2.2), since we can
easily exchange coarse grids in case of errors, just by changing the combination pattern [8, 9, 123, 130, 134, 192].
Therefore, this is an example for a smart algorithm that is able to do both detection and mitigation.

Further examples are mentioned in Section 3.1.4 as multi-resolution typically comes with corresponding error esti-
mates based on differences between solutions at different resolution levels: multigrid and parallel time stepping.

3.1.6 Redundancy

Redundancy is a strategy for error detection that can be applied to all of the numerical algorithms mentioned in
Table 1. It covers two approaches. In the first approach computational resources may be replicated twice or thrice.
Such instances are called DMR [144, 265] or TMR [223, 261]. In the second approach the computations are repeated
twice or thrice on the same resource [17,259]. An advantage of this approach is the flexibility at the application level.
Note that the first approach costs more in space or resources, the second approach costs more in time.

The redundancy based error detection technique described in [33] relies on in-depth analysis of application and plat-
form dependent parameters (such as the number of processors and checkpointing time) to formalise the process of
both resource and computation replication. It provides a closed-form formula for optimal period size, resource usage
and overall efficiency.

Ainsworth et. al [5] use replication of fault-prone components as an error detection technique in a multigrid method.
Also error detection in the time stepping methods from [35] mentioned in Section 3.1.4 can be interpreted as redun-
dancy based error detection.

The main disadvantage of replication is its cost in terms of performance, although recomputing only some instructions
instead of the whole application lowers the time redundancy overhead [193]. However, redundancy in some calcula-
tions should in particular be considered as a possible strategy for error detection as in modern supercomputers the cost
of arithmetic operations tends to decrease compared to communication time.

3.2 Error aware algorithms

In this section, we look at error correction techniques within an application. We assume that the application has been
notified that part of the algorithm’s data is corrupted or lost. In that context, mitigation or containment actions have to
be undertaken at the algorithmic design level, where the appropriate actions depend on the data detection granularity
and how the notification mechanism was activated. It is possible to design both lossy and lossless mitigation procedures
that are tailored to the numerical algorithms under consideration.

In Section 3.2.1 we give a brief literature overview of ideas that can be used to complement numerical mitigation or
containment procedures. Then, in Section 3.2.2 we offer a more detailed discussion of some recent successful attempts
by presenting a few case studies in the context of the solution of Partial Differential Equations (PDE).

3.2.1 Error aware algorithms for the solution of linear systems

A wealth of literature already exists on various, mostly isolated ideas and approaches that have appeared over time.
Checkpoint-restart methods are the most generic approaches towards resilience for a broad spectrum of applications,
see Section 2.2.1 for an introduction. We first describe a general mental model to design resilient numerical algorithms
independent of actual machine specifications that lead to what is nowadays referred to as Local-Failure Local-Recovery
(LFLR) techniques. Then we move to ‘classical’ algorithm-based fault tolerance, which originally was developed to
detect and correct single bit flips on systolic architectures devoted to basic matrix computations, see Section 3.1.2.
Finally, we discuss a range of ideas and techniques not covered by the case studies below.

Local-failure local-recovery As far back as a decade ago, an abstract framework was developed to separate algo-
rithm design from unclear machine specifications, see also Section 2.2.1. The idea of a selective reliability model as
introduced by Hoemmen [45, 135] is machine-oblivious and highly suitable for algorithm design for machines with
different levels of (memory) reliability. It has led to the concept of Local-Failure Local-Recovery (LFLR) [253]. This
model provides application developers with the ability to recover locally and continue application execution when a



process is lost. In [253], Teranishi and Heroux have implemented this framework on top of MPI-ULFM (Section 2.2.2)
and analyzed its performance when a failure occurs during the solution of a linear system of equations.

Original algorithm-based fault tolerance with checksums The term Algorithm-Based Fault Tolerance (ABFT)
was originally coined in conjunction with protecting matrix operations with checksums to handle bit flips [136],
mostly assuming exact arithmetic calculation for detection and mitigation. (See Section 3.1.2 for a more detailed
discussion on checksums). The main drawback of checksums is that only limited error patterns can be corrected and
its robust practical implementation in finite precision arithmetic can be complicated to tune to account for round-
off errors. A second drawback is that the checksum encoding, detection and recovery methods are specific to a
particular calculation. A new scheme needs to be designed and proved mathematically for each new operation. A
further drawback is to tolerate more errors, more encoded data is needed, which may be costly both in memory and in
computing time.

ABFT concepts have been extended to process failures for a wide range of matrix operations both for detection and
mitigation purposes [44, 62, 79, 147, 269] and general communication patterns [149]. ABFT has also recently been
proposed for parallel stencil-based operations to accurately detect and correct silent data corruptions [58]. In these
scenarios the general strategy is a combination of checkpointing and replication of checksums. In-memory check-
pointing [147] can be used to improve the performance. The main advantage of these methods is their low overhead
and high scalability.

In practice, the significance of a bit flip strongly depends on its location, i.e., which bit in the floating point represen-
tation is affected. Classical ABFT has been extended to take into account floating point effects in the fault detection
(checksums in finite precision) as well as in the fault correction and to recover from undetected errors (bit flips) in all
positions without additional overhead [181].

Iterative linear solvers Iterative linear solvers based on fixed point iteration schemes are, in general, examples of
error oblivious algorithms, as described in Section 3.3. The convergence history of the scaled residual norm observed
within the iterative scheme often resembles the curves displayed in Figure 2. In this case the iterative scheme is a
multigrid method, as in [115, 138]. The peaks in the residual occur after data has been lost and when the iterations
are allowed to restart with some form of replacement of the lost data. In the simplest case, the lost data may just be
re-initialized with the value of zero, and recovery techniques to obtain better solutions are discussed in Section 3.2.2.

It can be seen that, depending on when in the course of the iteration a small portion of the approximate solution suffers
from an error, we observe a delay in convergence, directly proportional to an increase in runtime. In the case where
errors appear too often, the solver might not recover and other mitigation actions might have to be considered.

0 10 20

102

10−2

10−6

10−10

faultfree
information-loss

0 10 20

102

10−2

10−6

10−10
0 10 20

102

10−2

10−6

10−10

Figure 2: Convergence history of the residual norm as a function of the iteration count for three examples of informa-
tion loss. From left to right: early, late, and multiple times

Explicit recovery at the algorithmic level from undetected errors have been studied for iterative linear solvers [195]. In
contrast to restarting, a number of algorithm based recovery strategies have been proposed, including approximate or
heuristic interpolation methods [2]. An approach of exactly recovering the state of the iterative solver before the node
failure has been investigated for the Preconditioned Conjugate Gradient (PCG) and related methods [164, 196]. This
also includes studying scenarios with multiple simultaneous node failures [197] and scenarios where no replacement
nodes are available [194].

Approximated recovery and restart in sparse numerical linear algebra For matrix computations, eigensolvers
or basic kernels such as iterative linear system solvers, some recovery ideas rely on forming a small dimensional linear
algebra problem where the inputs are the still valid data and the unknowns are the lost/corrupted ones. The outcome of



this procedure is subsequently used to replace the lost/corrupted data and the numerical algorithm is somehow started
again from that meaningful initial guess. The recovery procedure is tailored to the actual numerical algorithm. As an
example, consider a fixed point iteration scheme for a linear system and suppose the lost data are entries of the iterate
vector, the most dynamically evolving data in this computational scheme. Matrix entries of the iteration scheme
related to the lost data, as well as some neighbouring entries, serve to build the left-hand side of a linear problem
(either a linear system or a least-square problem) while the right-hand side is built from valid data. The solution of
this small problem is then used to replace the corresponding lost entries of the iterate vector. The complete, updated
vector is taken as a new initial guess when restarting the fixed point iteration. If the data is not corrupted too often the
classical convergence theory still applies and because the new initial guess incorporates updates from the calculations
performed before the error was detected, the global convergence rate is not strongly affected. The method described in
adaptive recovery techniques for extreme scale multigrid in Section 3.2.2 is an example application of this technique.

For numerical schemes based on nested subspace search, such as Krylov subspace methods, closely related techniques
have been successfully applied both for eigensolvers and linear solvers that further exploit the sparsity structure of the
matrices to reduce the computational cost associated with the recovery procedure. At the cost of a light checkpoint
performed once when starting the linear solver (mostly the matrix and the right-hand side vector in case of linear
system solution) this mitigation approach has no overhead if the data is not corrupted during the solution computation.
We refer to [2, 3, 161] for some illustrations on those numerical remedies in a parallel distributed memory framework
and to [146] where these ideas are exploited for a lower granularity of data loss in a task-based runtime system. See
Section 2 for references relevant to task-based runtime systems.

We also note that these ideas can be extended to hybrid iterative/direct numerical schemes, that have a domain de-
composition flavor, where the recovery procedure can be enriched with additional features of the parallel numerical
scheme such as redundancy or properties of the preconditioners [4]. They can also be extended to the time domain in
the context of multilevel parallel-in-time integration techniques [229].

3.2.2 Error aware algorithms for the solution of partial differential equations

The ideas introduced above in Section 3.2.1 are application agnostic but naturally apply to linear systems arising from
the discretization of a PDE. In that latter case, more information from the underlying PDE can be closely tailored
to intrinsic features of solvers such as multigrid. In this section we discuss some research works on mitigation and
containment that exploit the properties of PDEs to aid the recovery techniques. We also present some mitigation
processes that are only relevant in the PDE setting.

Adaptive recovery techniques for extreme scale multigrid Some of the most efficient solvers of PDE, such as
parallel geometric multigrid methods [114, 143], can be based on the exchange of ghost layers in a non-overlapping
domain partitioning. This automatically leads to a redundancy in interface data between subdomains that in turn
permits the design of an efficient two-step recovery strategy for iterative solvers. This is of particular interest in large-
scale parallel computations. When each subdomain is large, then the ratio between the data on its surface and the
volume data in its interior becomes small.

When a processor fails, the information within one or several subdomains is lost. For the recovery and continued solu-
tion, the redundant ghost layer information is used in a first step, to recover locally either Dirichlet- or Neumann-type
data for the subdomains. The global problem can then be formulated in two partitions, the outer healthy subdo-
main and the inner faulty subdomain, where the recovery must reconstruct the lost data. Both subproblems must be
bi-directionally coupled via the interface and the corresponding ghost layers of unknowns.

After re-initialization, the corrupted and reinitialized data could pollute the solution globally, meaning that the locally
increased error in the faulty domain can spread globally and thus also affect the healthy subdomain. In order to avoid
this pollution, the communication between the healthy and faulty sub-problems is interrupted during the second step
of the recovery process. In the second step, we continue with the original iterative solver restricted to the healthy
sub-problem and select a suitable one for the faulty one. After some number of asynchronous iteration steps both sub-
problems are reconnected, see [138], and the global iterative solver strategy is resumed. Note that the reconnecting
step is mandatory for the convergence of the iterative solver. The tearing step separating the subdomains is mandatory
to preserve the accuracy of the dynamic data in the healthy sub-problem, and without this step the corrupted data from
the faulty sub-domain pollutes the global solution. Of critical importance for the performance of the method are the
accuracy of the faulty sub-problem solver at re-connection time and the time spent in the recovery mode. In the faulty
domain, the lost data can be initialized with 0, or, alternatively, compressed checkpointed data can be used as described
in the following section on compression techniques for checkpoint-restart. Note, however, that with straight-forward
compression techniques, compressed checkpoint data will only be useful to recover the low frequency components in



Figure 3: Illustration of the steps in the adaptive recovery technique for extreme scale multigrid. Left: A detectable
error occurred. Middle: The communication between the healthy and faulty sub-domains is interrupted. Right: The
original iterative solver restricted to the healthy domain continues while another suitable solver is asynchronously used
in the faulty domain. Once the solution in the faulty domain reaches a certain accuracy, the communication between
the domains is re-enabled.

the faulty domain. If the local recovery is performed with multigrid, then the low frequencies are in any case cheap to
recover, as compared to the cost of recomputing the lost high frequency components.

The accuracy within a multigrid strategy can be easily controlled by a hierarchical sum of weighted residuals [216].
The overhead cost for the a-posterior error indicator is quite small compared to the overall solver cost. Having an
estimate for the algebraic error in both sub-problems at hand, the re-connection step is determined automatically. To
speed up the time which is spent in the recovery, a so-called ‘superman strategy’ is applied [138], see also Figure 3
for an illustration. More resources compared to the situation before the fault are allocated to the faulty sub-problem.
A short recovery phase in combination with carefully selected re-coupling criteria then guarantees a highly efficient
fault-tolerant solver.

Of special interest is a massively parallel multigrid method as base solver. In combination with the tearing and
intersection approach for the recovery, it results in a hybrid approach. In case of a Stokes-type system, yielding after
discretization a saddle point problem, the strategy can either be applied on the positive definite Schur complement for
the pressure or, as it was done in [139], on the indefinite velocity-pressure system. In that case an all-at-once multigrid
method with an Uzawa-type smoother acting on both solution components turns out to be most efficient, see [78].
Numerical and algorithmic studies including multiple faults and large-scale problems with more than 5 · 1011 degrees
of freedom and more than 245000 cores have been demonstrated [138, 139]. The automatic re-coupling strategy is
found to be robust with respect to the fault location and size and also handling multiple fault. In many scenarios
a complete recovery can be achieved with almost no increase in runtime and while maintaining excellent parallel
efficiency.

Adaptive mesh refinement, load balancing, and application level checkpointing Adaptive Mesh Refinement
(AMR) functionality and load balancing require similar data linearization- and transfer functionality as is needed
for application level checkpointing. This is exploited in the waLBerla framework [24, 221, 222] that features an ob-
ject oriented design for composing coupled multiphysics simulation software. waLBerla’s load balancing is based on
routines to transfer simulation data between processors so that functionality to serialize, pack, send, and unpack all rel-
evant data is already available as a by-product of the AMR functionality. Note that the waLBerla software architecture
imposes this structure for Eulerian mesh based data as well as for Lagrangian particle-based models and it canonically
extends to coupled Eulerian-Lagrangian multiphysics models. For this to work transparently, the routines for migrat-
ing simulation data must be suitably encapsulated. Then this functionality can be used to write user level checkpoints
either on disk or in memory. Note that writing checkpoints will inevitably imply overheads in memory consump-
tion and communication time, but that restoring a checkpoint is cheap, since it initially only requires re-activating
the redundantly stored data. This is especially true when in-memory checkpointing is used as explored and analyzed
in [156]. The simple restoration of checkpointed data may of course lead to load imbalance, but the functionality to
redistribute load is also available as part of the parallel AMR functionality. In this sense, user-level checkpointing can
be based in a natural, efficient, and straightforward way on the functionality of parallel AMR algorithms combined
with load balancing functionality.

Compression techniques to accelerate checkpoint-restart for Kryloy-MG solvers Compressed checkpointing is
a possibility to improve the efficiency of classical checkpoint-restart schemes, both in terms of the overhead to generate
the checkpoints and to recover the data if an error occurs. The added efficiency mainly comes from a reduced memory
footprint which is beneficial for communication and storage. It is particularly efficient if the compression method



is tailored to the target application. As an example, in-memory compressed checkpoints combined with LFLR (see
Section 3.2.1) for iterative linear solvers, e.g., multigrid preconditioners in Krylov schemes, are described below.

Lossy Compression: As already mentioned in Section 3.2.2, paragraph ‘Approximated recovery and restart’, initially
only the dynamical data, i.e., the approximate solution, are protected. Lossy compression allows a balance between
the accuracy of the discretization error of the assembled system and the numerical error within the solver. Specifically
in [10], the SZ library [72, 166, 246] is employed, which prefers, by construction, structured data ideally associated
with a structured grid. Another important feature is that the compression accuracy can be prescribed and adapted
to the situation. Unfortunately, a higher compression accuracy usually leads to a lower compression rate and higher
compression time, which is crucial in terms of resilience overhead.

Note that multigrid can be interpreted as a lossy compression technique in itself, with a number of mathematical
peculiarities that need consideration [115]. Multigrid algorithms use a hierarchy of grids to solve linear systems in
an asymptotically optimal way. This hierarchy can be used to restrict, i.e., lossily interpolate, the iterate from fine
to coarse grids. Such a lower-resolution representation of the iterate can then be stored as a compressed checkpoint.
Conversely, the multigrid prolongation (coarse-to-fine grid interpolation) operator is used to decompress the data. With
only small additional computations, the multigrid hierarchy can also be used for error detection.

Recovery: Several recovery techniques can be devised [10]. As a baseline approach checkpoint-restart is mimicked and
the global iterate is simply replaced with its decompressed representation, independently of the compression strategy.
The second proposed approach follows the LFLR strategy and re-initializes only the local data that is lost on faulty
computing nodes by using checkpoint data stored on neighbouring computing nodes. Contrary to the first approach,
this is mostly local and only needs minimal communication to receive a remotely stored backup. In particular, the
recovery procedure itself does not involve the participation of other processes except those sending the checkpointed
data. As a worst-case fallback when the backup data is not sufficient, a third recovery approach is established, which is
still mostly local. Here, an auxiliary problem is solved iteratively with boundary data from the neighbouring computing
nodes. This is similar to the adaptive recovery techniques for extreme scale multigrid from above or the approximated
recovery and restart of Section 3.2.1. An auxiliary problem is constructed, either by domain decomposition overlap or
the operator structure, and solved with an initial guess based on the checkpoint data to accelerate the iterative recovery
phase. Experiments show that this approach can almost always restore the convergence speed of the fault-free scenario
independently of the used backup technique, only the number of additional local recovery iterations varies. For more
details, we refer to [10].

Resilience with sparse grids Resilience can be added on various abstraction levels of the algorithm. For PDE
problems one traditionally adds resilience on the level of linear algebra operations, on the solver level for linear/non-
linear equations, or on the time-stepping algorithm. However, this may in some cases not be coarse-grained enough to
minimize the overhead of resilience techniques, especially when errors occur rarely. In [123, 129, 130, 134, 192, 199]
the authors demonstrate a fault-tolerant framework for solving high-dimensional PDEs that applies fault tolerance
on top of the individual PDE solver. The framework boosts the scalability of black-box PDE solvers while making
it simultaneously resilient to faults by applying the sparse grid combination technique. In this technique the PDE
simulation is distributed over many coarse grids, which can be processed in parallel. At regular intervals the results of
these grids are combined to obtain the final sparse grid result. In presence of faults the affected grids can be neglected
and an alternative combination scheme is calculated via an optimization routine. If too many grids are lost, the last
combination result serves as an in-memory checkpoint to recompute the required grids. In [192] it is shown that this
lossy recovery provides very good results even with high error frequencies. At the same time the parallel efficiency is
only slightly affected.

Adaptive mesh refinement Adaptive refinement techniques in combination with finite element methods are well
established for fault-free computations. In terms of fault tolerance, this means that in addition to the assembled
linear system, the geometric mesh structure must be protected. This requires the reconstruction of the data structures
containing the mesh hierarchy. For the use of multigrid or multilevel methods, we also need to recover multiple levels
of adaptive grid refinement after a fault has occurred. The recovery process must take into account the intra-grid as
well as the inter-grid data dependencies.

We refer to [233] for a parallel adaptive multigrid method that uses a sophisticated dynamic data structures to store a
nested sequence of meshes and the iterative evolving solution. Stals demonstrates that it is possible to implement a
fault recovery procedure that builds on the original parallel adaptive multigrid refinement algorithm [232] in the case
of a fail-stop fault. It is assumed that a copy of the coarsest grid can always be accessed after a fault has occurred, i.e., it
is stored off the processor. The challenge in recovering an adaptively refined grid is that the mesh distribution changes
during any load balancing procedures, i.e., the local information that was available during the original refinement
process will have been modified or removed. Nevertheless it is demonstrated that the neighbouring healthy processors



contain enough intact information so that the necessary structure can be recovered to pass into the refinement routine.
In the case of uniform refinement, the original multilevel grid is recovered. In the case of an adaptively refined grid,
enough of the structure is recovered to re-establish the correct communication pattern allowing the solution process
to run to completion, but potentially with reduced accuracy. The neighbouring healthy processors will only contain
enough information to guide the refinement around the edge of the recovered subgrid. Further refinement within the
interior of the recovered subgrid may be required to improve the accuracy of the solution.

These techniques were implemented with minimal disruption to the original code. An example of one the few nec-
essary modifications is that in the original code, communication was used to ensure that the elements were refined in
the appropriate order to avoid degenerate grids. In the resilient version of the the code that communication had to be
removed as the refinement was restricted to the faulty processor.

3.3 Error oblivious algorithms

In this section, we give examples of algorithms that are error oblivious in the sense that they can recover without
assistance from errors that do not occur too frequently. For example, many fixed point iterative solvers are able to
execute to completion if, e.g., a bit flip error occurs in the solution vector. However, every error likely increases the
execution time of the algorithm. We thus define two quality criteria for error oblivious algorithms and use to assess
the examples in the remainder of this section: (i) correctness, and (ii) efficiency in terms of execution time.

Finding an algorithm that fulfills (i) and can also compete against error aware algorithms as described in Section 3.2
remains an open problem.

Error oblivious usually means that an error slowly ‘leaves the system’ during several iterative sweeps over the data.
Error mitigation in error aware algorithms, on the other hand, requires specific measures to correct the error, and can
only be applied when the error has been detected on a hardware, middleware or algorithmic layer, but removes the
disturbance of the calculation process by the error immediately.

We do not expect the error oblivious algorithms to be impervious to all types of errors. An iterative method may be not
error oblivious if the error changed the matrix entries. This concept is defined as selective reliability, see Section 3.2.1.

3.3.1 Gossip based methods

A potentially interesting alternative in large-scale parallel environments that does not require any explicit error de-
tection mechanisms utilizes gossip-based methods and their inherent resilience properties. Such algorithms by nature
build up redundancy in the system and can thus can efficiently recover automatically from various types of faults/errors
without any need to explicitly detect them. In particular, Gansterer et al. have studied and extended the resilience of
gossip-based aggregation and reduction methods [56, 101, 190]. Based on these building blocks, they have developed
and analyzed several more complex resilient numerical algorithms, such as orthogonalization methods [101, 102],
eigensolvers [235], and least squares solvers [205].

While the strong resilience properties and execution-time robustness of these approaches are promising, there is a
certain price in terms of basic runtime compared to classical deterministic numerical high performance algorithms. It
remains to be investigated whether they can be competitive in a fault-prone, but otherwise classical system with global
view and centralized control. Their competitiveness can be expected to increase significantly if some of these classical
properties have to be weakened at the extreme scale.

3.3.2 Fixed-point methods

We view fixed-point methods as methods that converge globally when certain conditions are satisfied. For example,
the Jacobi iterative schemes will converge for any initial guess if the matrix is diagonally dominant. Fixed-point based
iterative methods are by design resilient to bit flips. However, the convergence delay can be significant. Anzt et
al. [12, 13] propose techniques improving the cost-robustness with little overhead.

A class of numerical algorithms that by design have properties attractive for resilience are asynchronous iterative
methods [23,29,39,40,97,230,231,242]. In order to avoid misunderstandings, we point out that this class of methods is
unrelated to the idea of asynchronous dynamic load balancing [155] as addressed in Section 2.1. Instead, asynchronous
iterative methods, stemming from the concept of chaotic iterations [60], are fixed-point methods that seek the solution
of a problem by independently updating subdomains – which can be subdomains in the geometric sense, subsets,
or individual components of the solution approximation – according to some fixed-point linear or nonlinear iterative
scheme. A particularity of the asynchronous methods is that the independent updates neither adhere to a specific
update order, nor synchronize in terms of a handshake with other updates, but still converge globally in the asymptotic



sense. In particular, these methods are robust with respect to some subdomains being updated at a much lower pace
as each update just uses the most recent non-local information available. In that sense, asynchronous solvers can have
good performance in unreliable environments where messages can be dropped or processes can become unresponsive
for limited time. Also, in cases where messages are corrupted (and corruption can be detected), an asynchronous solver
can simply drop such a message. In cases where processes remain unresponsive, a mechanism is still needed to recover
that process and its state, but the remaining processes can continue computing unchanged. Therefore, asynchronous
methods are somehow error oblivious.

With the increasing cost of global synchronizations, and the attractive properties concerning fine-grained paralleliza-
tion and resilience against communication delays and errors, asynchronous methods have gained attention in partic-
ular for numerical computations [243]. Chow et al. [65, 66] developed an asynchronous algorithm for generating
incomplete factorizations, Coleman et al. [68] further improved this algorithm by employing measures that reduce
the runtime overhead when encountering errors. More general is the idea of asynchronously updating subdomains
in Schwarz decompositions. In particular asynchronous restricted additive Schwarz methods and asynchronous opti-
mized Schwarz methods have been identified to combine algorithm-inherent resilience with scalability on pre-exascale
hardware architectures [83, 103, 112, 175, 270].

Independently, asynchronous multilevel methods have been proposed and analyzed under the name Fully Adaptive
Multigrid method [214]. Here the multigrid smoothing process is executed asynchronously so that it can be employed
for concurrent operations on different levels of the mesh hierarchy. The iteration is executed in a Southwell style [228]
and is controlled by efficient hierarchical error estimators [216]. The parallel implementation [215] will automatically
correct errors. More recently, asynchronous methods have been proposed for nonlinear multi-splitting [244] and eigen-
value computations like Google’s Pagerank algorithm [157]. More recently, also the idea of asynchronously solving
coarse-grid error correction equations has been investigated, leading to an asynchronous multigrid algorithm [266].
While case studies reveal attractive properties, these newly developed asynchronous iterative methods (such as asyn-
chronous multigrid) are not fixed-point iterations, and developing a convergence theory for those algorithms remains
a challenge.

3.3.3 Krylov subspace solvers

A comprehensive overview about the use of selective reliability with Krylov methods in the presence of bit flips is
given in James Elliott’s PhD thesis [86]. Elliott evaluates the CG and GMRES solvers with the algebraic multigrid pre-
conditioner, see also [10] for a more recent study. Coleman et al. [68] consider Krylov subspace solvers in combination
with the incomplete ILU algorithm ParILUT. In [84] Elliot et al. investigate the effect of bit flips on the convergence
of GMRES and propose strategies for minimizing the numerical impact.

The authors of [31] present a monotonicity-based fault detection and correction procedure for a Generalized Conjugate
Gradient Krylov solve and perform tests with manual fault injection. While the solver manages to converge even with
large amounts of corrupted data, the basic recovery procedure speeds up convergence with minimal detection and
correction overhead.

In [218] the authors use a slightly different terminology and call their method numerically self-stabilizing, a term which
originates in the context of distributed systems [77]. They introduce two error oblivious [77] iterative linear solvers:
one for the steepest descent and one for conjugate gradient. In the latter case, they consider necessary conditions
for conjugate gradient to converge. Those conditions are borrowed from non-linear conjugate gradient [276] and are
maintained in a correction step (typically performed every other ten iterations). The correction step does not explicitly
correct errors, but re-computes quantities such as the residual at regular intervals. Therefore, we classify these methods
as error oblivious instead of error aware.

3.3.4 Domain decomposition

In [116] Griebel and Oswald use probabilistic analysis to model the effect of errors on the convergence of the classical
overlapping Schwarz algorithm. They conclude that this method does indeed converge in the presence of errors.
Glusa et al. [113] mention that asynchronous domain decomposition methods are by definition fault-tolerant. In
[184,210,211], the authors discuss resiliency of a task-based domain decomposition preconditioner for elliptic PDEs.
By leveraging the domain decomposition approach, the problem is reformulated as a sampling problem, followed by a
regression-based solution update. The regression is formulated and implemented such that it is oblivious to corrupted
samples. The authors combine this algorithmic approach with a server-client implementation based on ULFM, see
Section 2.2.2. They show promising results of this approach in terms of resiliency to missing tasks, corrupted data and
hardware failure.



3.3.5 Time stepping

In [119], iterative time-stepping using spectral deferred corrections are shown to be error oblivious at the cost of
more iterations for the affected time-step. With error-estimators in place, time-integration techniques like Runge-
Kutta methods will repeat the calculation of a time-step with smaller step sizes, if errors in the solution vectors are
relevant [61]. This type of algorithms is resilient against errors in the solution vector of the new time step. Repeating
the new time step with a reduced time step size is not the optimal measure in case of an error where repeating the step
with the same time step size would be more efficient, but it leads to correct results.

4 Future directions

In the final section we focus on the future direction of resilient algorithms. We highlight what changes need to be made
to current infrastructures to support the goals proposed by algorithm and application developers. Furthermore, we list
those algorithms that are likely to come to the forefront as resiliency plays a more important role in the cost-benefit
analysis of extreme scale simulations. And we mention some numerical methods that are yet to be fully explored in
the context of resilient algorithms.

4.1 Systems in support of resilient algorithms

We propose that resiliency will only be obtained by a multilayered approach incorporating operating systems, file
systems, communication, programming models, algorithms, applications and education. In terms of the layers covered
by infrastructure, the goal is to increase systems and delivered performance while keeping the detectable errors in the
upper algorithm based layers constant. We refer the reader to the recently published report by Radojkovic et al. [207]
for an overview of the needs of the next generation HPC systems.

4.1.1 Error correcting codes

Poulos et al. [204] propose hardware ECC assistance that can pass error syndrome information through to an ap-
plication and use this to fix detected errors. When an ECC hardware error occurs that results in a Detectable, but
Uncorrectable Error (DUE), the ECC hardware generates a syndrome which is a byproduct of the error detection. For
many ECC schemes, a syndrome that corresponds to a DUE can be used to generate a list of possible corrections, one
of which is taken to be the original uncorrupted data. In this work, the authors show that this set is relatively small,
meaning that the set of potential values for an application to search for their correct answer (before corruption) is also
small. They also study the error value distribution and show that for certain classes of problems it can be easy to
identify obviously wrong answers. For the application studied in [204], work was done to correct a hydrodynamics
application using conservation laws and average of neighbor cells. This work requires changes to the hardware error
reporting techniques and modification to the operating system to determine which application observed the DUE and
pass it to an interrupt handler.

4.1.2 Improving checkpoint/restart

Independent of any additions, changes or new developments in the algorithmic or the system area, checkpoint/restart
will remain a necessary component for any system. For one, no other technique can provide the needed resilience
against full system outages; further, checkpoint/restart is also needed for developers to deal with limited job execution
times and possible migration between systems or debugging purposes at large scale.

Improving classical checkpoint/restart for homogeneous systems Observing the necessity of checkpoint/restart
makes it critical to further optimize, enhance and support efficient checkpoint/restart mechanisms—even on classical,
homogeneous systems—and provide users with library based solutions for core checkpoint/restart functionality. In
particular, the following avenues should be pursued to optimize checkpoint/restart.

• Use additional algorithmic techniques to be able to reduce checkpoint frequency.
• Reduce data to be written to disk by eliminating redundancy and possibly compressing checkpoint informa-

tion. Note that suitable data compression will typically require user-level knowledge, suitable interfaces must
be provided.

• Overlap/Offload checkpoint operations to allow for asynchronous checkpoint/restart operations.
• Integrate checkpoint/restart with novel programming approaches to minimize checkpointable state.
• Keep the restart requirements local to the neighbour nodes of the failed node.



• Localize checkpoint data to own or localized nodes. This could be supported by local non-volatile memory,
as targets for checkpoint data. While this has the potential to reduce communication, as it avoids remote
data transfers, it may require additional hardware support to retrieve data from non-functional nodes, e.g., by
accessing data through fast JTAG-like interfaces.

• In memory checkpointing.

• Exploit user-level knowledge for serializing, packing, compressing data, see e.g. how existing AMR func-
tionality [156] can be exploited for efficient checkpointing in Section. 2.2.1.

Checkpoint/Restart for heterogeneous systems In addition to classical checkpoint/restart for homogeneous sys-
tems, node-local checkpoint/restart support for heterogeneous systems will help containing error and failure propa-
gation. Such support may be provided transparently to the application by the underlying infrastructure, such as GPU
drivers or task-based environments, or exposed in the programming model, such as OpenMP Offload [76].

4.1.3 Scheduler and resource management

Support for resilience, especially at the workflow-level, has a direct impact on resource management in HPC systems
and hence requires new developments in this area as well.

Node-level parallelism With increasing node-level parallelism, the impact of OS noise (typically caused by unpre-
dictable interrupts) becomes even more important. Therefore, dedicated node-level resources are needed to exclusively
run the OS and minimize the impact of OS noise on the multi-threaded application running on the other cores.

Adaptive system and application load balancing The batch scheduler needs to adaptively balance the system load
onto the available resources, via seamless application migration. While the application needs to adapt to the capabili-
ties of the newly allocated resources, if different from the original allocation, without incurring performance penalties.
The former has typically been implemented via checkpointing and process migration [174]. The latter has typically
been implemented for applications that can adjust their granularity, e.g. from finer to coarser, depending on resource
availability either triggered by the application or the system [46]. When exposing and expressing parallelism in appli-
cations, in addition to accounting for and matching the multiple levels of hardware parallelism (nodes, sockets, cores),
the decomposition granularity needs to be flexible to support evolvability and malleability and allow for adaptive load
balancing at the application and system levels.

Adaptive resource management The batch scheduler in conjunction with the distributed runtime system employed
by the application (e.g., MPI, Charm++, HPX) needs to support resources errors/failures and recover them without
terminating the applications in the process. This approach should work both with rigid and moldable applications as
well as with evolving and malleable applications.

4.2 Programming models with inherent resiliency support

Certain applications and algorithms may naturally be resilient against errors. This may lend them as natural candidates
for asynchronous parallel execution (via asynchronous many-task programming). While this mitigates the challenges
associated with bulk synchronous parallel execution, asynchronous parallel execution may influence, in the presence
of silent errors, the convergence rate of the numerical algorithms and might lead to incorrect results.

Programming model and runtime support for resilience can offer transparent handling of errors and failures or can
assist the application in handling them. Consistent programming model support for resilience based on realistic er-
ror/failure models is needed to properly handle such events with low overhead. Higher-level abstractions for program-
ming resilient applications are needed to help with error/failure handling complexities and to offer reuse of concepts
and codes across applications.

4.3 Future directions for the solution of partial differential equations

In this section, we focus on discretizations for linear and non-linear partial differential equations as well as solvers for
the resulting discrete and sparse systems of equations. We introduce a list of algorithmic properties that we found are,
or can be, contributing to the resilience of the algorithms described in Section 3. Table 2 lists these properties and
indicates where we found relevant examples of how they can foster resilience for either linear or non-linear solvers or
for spatial or time discretization. In the following subsections we describe these examples in more detail and highlight
the several (mutually related) properties that could be of interest in the context of resilient algorithms.



Table 2: Properties of numerical algorithms fostering or helping resilience

categories solvers discretization
redundancy × ×
replication ×
hierarchical methods × ×
mixed precision × ×
error control × ×
locality-emphasizing schemes ×
asynchronous methods × ×
embarassingly parallel ×
stochastic ¿ deterministic ×
iterative vs direct solvers ×
matrix-free / low memory footprint × ×

4.3.1 Redundancy and replication

A failure that is not fixed by the system (hardware and middleware) typically results in a loss or corruption of data.
To tackle this problem, redundancy techniques can be used to detect and recover from data corruption and data loss.
The performance of these algorithms is usually measured in the amount of memory and computational overhead
they entail, the detection rate of errors, the rate of false-positives they achieve, and the accuracy of the recovery.
Optimizing these performance indicators should be of main concern for future algorithm design. One existing class of
algorithms that apply redundancy are multiresolutional techniques such as multigrid and the sparse grid combination
technique described in Section 3.2. They inherently add redundancy through the hierarchical structure. Sparse grid
combination techniques calculate the same solution on different anisotropic grids. The coefficients of the combinations
of the components grids can be recalculated if one or more nodes are lost due to faults. This redundancy of the
component grids allows the algorithm to obtain an alternative approximation of the solution. However, if a component
grid is distributed on too many nodes, then the approximation will fail if a fault occurs on any one of those nodes.
Another class of algorithms add redundancy through recomputation with different models and configurations such
as in ensemble or multifidelity techniques. A more straight-forward approach is to directly add redundancy through
replication of certain algorithmic paths, cf. the following subsection on recalculation techniques.

Depending on the underlying architecture, replication can be a competitive option to increase detected and undetected
error robustness. If computation speed significantly outpaces memory access and communication, each operation can
be executed multiple times while the data is still accessible in the RAM. This can be used for redundancy-based sanity
checks of low-level operations or even for checksum-like approaches.

Overlapping data in parallel algorithms can serve as a starting point for mitigation, albeit not for detection. In the
case studies explored in Section 3.2.2, these are applied to elliptic PDEs, though an extension to other models should
be feasible. Furthermore by even increasing the ghost layer size and thereby adding extra redundancy, other recon-
struction possibilities might become possible. This could already be taken into account during the domain partitioning
process.

4.3.2 Hierarchy and mixed precision

Hierarchical discretizations have proven to be advantageous in various respects. Related notions are multi-resolution
or multi-level discretizations, but also (recursive) sub-structuring in the engineering nomenclature of the Finite El-
ement Method (FEM). Built into the hierarchy are problem-inherent information and structures that are well-suited
for modern hierarchy-based solvers. In FEM, for example, hierarchical bases carry information about both location
and frequency, which leads to a special built-in redundancy that can be exploited for error detection (see Section 3.1).
Therefore, from a resilience perspective, hierarchy should be a core paradigm for discretization design. This applies
irrespectively of whether the hierarchical bases are formulated in the spatial (h) or the order (p) sense.

From a solver perspective, multigrid methods for elliptic and parabolic PDE problems are relevant approaches towards
resilient numerical algorithms. They inherently act on different granularities, representations, scales, and levels and
can be used to quantify differences between these levels. For local recovery, local multigrid methods are highly
efficient, especially when they can be accelerated with the superman strategy [138]. Additionally the low-resolution
duplicates can be used for some kind of approximate recovery or minimal rollback like re-application of the smoother
on a specific level in a multigrid scheme. Detection of errors within multigrid is often possible due to algebraic



relations or on the basis of hierarchical multi-grid-inherent error estimates [11, 139, 216], which hold true inside such
schemes. As stated in Section 4.3.1, the inherent redundancy incorporated in these algorithms is also beneficial.

Mixed-precision arithmetics are typically used within the numerical solver parts to speed-up computations. However,
the discretization can enable the flexibility to store data at varying precision. Examples for this are hierarchical
approaches such as hierarchical bases, where a function value is stored as a hierarchical surplus only. As another
example, the usage of wavelets in multiresolutional analysis can serve. In both cases, contributions of higher levels
typically require less accuracy, as only the most significant bits contribute to the overall point values.

4.3.3 Error control

For many numerical methods, a wide range of classical a priori and a posteriori error estimation techniques are avail-
able, see among many others [6, 22, 122, 152, 160, 206, 216], which constitute the basis of many adaptive numerical
algorithms.

Adaptive time discretization methods are the state of the art for ODE solvers, while, for PDE solvers, spatial adaptivity
techniques are also widely used. Local time step adaptation is feasible in the framework of so called local time
stepping or multirate approaches, where different components of the system can have different time step sizes, see
[43, 53, 94, 106, 217, 220, 224], which are however still far from mainstream for most applications. For PDE solvers,
local spatial adaptivity techniques are also very common [20, 21], but their incorporation in operational applications
is still a research topic, see e.g. [36, 163, 185, 203, 255] for developments concerning oceanography and numerical
weather forecasting.

The error estimations on which all these methods rely on also constitute the basis of an error detection mechanism,
since some undetected errors, like bit flips on significant floating point digits, will result in errors exceeding the allowed
error tolerances. To some extent, these techniques are also examples of ABFT or error oblivious approaches, since bit
flips and other silent errors occurring during the computation of the solution at the next time step or on a refined mesh
could be automatically corrected by the repeated computations triggered by the error threshold violation. Furthermore,
silent errors in the data at the current time or mesh level could be identified by the failure of the time step or mesh
refinement to correct the error.

Combined with other ABFT strategies, adaptive discretization strategies based on error estimators can be a powerful
and so far rather underrated tool for protecting a simulation from undetected errors in the solution vectors. On the
other hand, error estimators should not be used as a black box for resiliency purposes. Indeed, errors can lead to severe
over-resolution or, potentially, even under-resolution in space or time and the error estimators themselves could be
affected by undetected errors.

As seen in Section 3.1.4, some iterative solvers for the solution of linear systems have invariants, such as monotonicity
for Krylov solvers. These properties can be put to good use in devising resilience strategies, for example activating an
additional restart of the Arnoldi procedure as soon as an increase in the residual norm is observed.

The idea of interval arithmetic is to compute bounds of intervals that always contain the exact result [7, 158]. Proba-
bilistic methods for rounding error estimation [71,96,98,198,258] require several executions of arithmetic operations
with different perturbations or different rounding modes (for instance three executions for Discrete Stochastic Arith-
metic [81]). With both approaches, the comparison of several computed results enables one to control rounding errors
(or detect and mitigate actually wrong results).

4.3.4 Locality, asynchronicity and embarassingly parallelism

One important aspect of resilient algorithms is error confinement as global dependencies propagate errors to other
processors and complicate recovery. Locality-emphasizing numerical algorithms achieve this by limiting dependencies
to local areas or completely removing them. Consequently, error mitigation can be limited to a local subdomain.
Typical examples for these schemes are domain decomposition, which splits the domain into several subareas, and
classical discretization schemes such as finite elements, finite differences and finite volumes.

As mentioned in Section 3.2.1, domain decomposition schemes such as additive Schwarz methods, or substructuring-
inspired FETI [90] or also the fully adaptive multigrid method [214] are naturally asynchronous and resilient to mes-
sage loss. In this context, we use the term asynchronous primarily in the sense of reducing the time synchronicity in
parallel computations – from communication-avoiding schemes via a reduction of synchronization points up to vastly
decoupled schemes. Using this inherent property, a failure in a subdomain would result in a message loss that does
not hinder convergence in other subdomains, because a global wait for a message update and synchronization are not
necessary. In addition, asynchronous methods may better adapt to heterogeneous processors and networks than their
synchronous counterparts as it has been shown in the context of Grid computing [19, 59]. Both the localized and



asynchronous approaches, achieve their impact through a decoupling of computations. Going further in this direction
leads to embarrassingly or nearly embarrassingly parallel algorithms. These represent a group of algorithms where it
is relatively easy to decouple subproblems in time or space. The subproblems can therefore be calculated completely
independently, and errors do not propagate to other subproblems. Examples of such methods are Monte Carlo simu-
lations and computations with the sparse grid combination technique. Since it is expected that only a few tasks will
encounter errors and the scheduling is automatically balancing the load, the overall execution time does not suffer
too much. Future algorithmic design should therefore aim at increasing asynchronicity and locality to move towards
embarrassingly parallel problems.

4.3.5 Stochastic

Stochastic methods can be superior to deterministic methods when it comes to resilience. Stochastic methods do not
require the program to take a deterministic path, faulty parts can be neglected or exchanged easily by other results.
A popular example are Monte Carlo methods where we sample randomly in the computation domain and can simply
neglect failed samples. Ensemble methods are examples where different instances or models of a concrete problem
setting are computed. Even if one of these computation fails, the ensemble computation can still return a – maybe
slightly less accurate – result. Stochastic elements can therefore help the future algorithm design to reduce the depen-
dencies on specific results of the computation. These methods, however, need to be evaluated not just by highlighting
their resilience properties, but also taking into account the cost of a single run: if a single run is expensive to complete,
simply discarding it might be impractical.

4.3.6 Iterative methods

Iterative solvers may be viewed as inherently more robust than direct solvers because they do not compute their
solution using a pre-defined sequence of numerical operations as direct solvers typically do. Indeed, by their nature,
they perform a sequence of operations to update and improve their current approximation. If an error is encountered
during computation, the probability of deleting this error or at least its effect may be higher than in a direct solver.
Especially fixed-point-based methods (domain decomposition, relaxation, . . . ) may be viewed as inherently resilient as
they have the property to always converge to the correct solution independent of the initial state (global convergence).
Some errors may induce a low influence on convergence speed and can thus be safely ignored. In other cases, a restart
– optionally with recovery techniques – may be employed to ensure both resilience and efficiency in terms of runtime.

4.3.7 Low memory footprint – matrix-free

The classical approach to represent linear operators as sparse matrices produces large amounts of static data which
has to be restored upon failure. Checkpoint-restart approaches feature high memory cost, naturally multiples of the
storage needed for the solution vector. Algorithmic alternatives to checkpoint-restart require possibly complicated or
costly re-assembly. Matrix-free methods do not represent the operators as static data in the first place. Therefore,
large sparse matrix data structures do not have to be restored upon failure as they are computed on the fly anyway.
Extreme-scale applications will benefit from matrix-free approaches due to their low memory footprint, also in terms
of runtime, (due to high memory access cost) and higher limits for the overall problem size [25, 27].

In addition to saving memory and, therewith, reducing the risk of memory corruption, matrix-free methods can also
be combined with automatic code generation [162] in a stencil-based approach, i.e., for finite difference methods on
uniform structured grids. In such cases, the matrix entries may be ‘hard wired’ into code, such as 5-point stencils
for Laplace’s equation. Automatic code generation provides a means to increase resiliency in the code generator or
domain specific language and, thus, facilitate resilience aware software development.

For finite element methods, one can use local assembly kernels [26]. Here, the trade-off between computation and
storage and, in the future, resilience is relevant in particular for higher order elements.

4.4 The final mile: towards a resilient ecosystem

The future directions described above will provide critical enhancements towards providing resilient computation for
numerical simulations. Alone, however, they are insufficient, as they must be embedded in the larger ecosystem and
in the efforts to make that ecosystem support such novel resilience approaches. This requires another set of crucial
developments.



4.4.1 Tools to support resilience software development

Developers will need the right tools to support their algorithmic efforts. These tools, as they exist today, are often
designed without faults and errors in mind and, therefore, do not sufficiently support the development of resilient sys-
tems. In particular, we identified three areas in which enhanced tool support for resiliency is needed: a) introspection
to help track errors and failures along with their root causes, b) validation through controlled fault scenarios to enable
targeted testing of new error mitigation features, and c) transformation to transparently add error and failure checks
into codes.

Tools for introspection Introspection is critical to ensuring early error detection and the timely activation of correc-
tion and mitigation mechanisms throughout the various layers of the software ecosystem.

System Monitoring: Knowing about the health state of a system requires monitoring it and understanding its behav-
ior. Future work needs to focus on scalable system monitoring, real-time analyzes of system monitoring data, and
autonomous decision making on corrective actions for self-aware resilient systems. In order to gain a deeper under-
standing, types of monitored data should be homogenized across system and sites, and, if possible, sanitized logs
should be available to the community.

Application and Data Structures Monitoring: Applications need to automatically monitor their performance and cor-
rectness with the use of tools. The tools can be developed in abstraction, at the compiler-level, or at the runtime-level.

Tools for validation Currently, there are no standard tools to test the correctness and performance of resilient algo-
rithms under undetected errors and fault. This is due to a lack of fault injection tools that reflect realistic situations.
DeBardeleben et al. [120] have developed a hardware error simulator tool to understand the behavior of numerical al-
gorithms under faulty hardware with a great accuracy, but this approach cannot evaluate the execution time of resilient
algorithms at scale. Vendors provide fault injection tools [126, 148] for better execution efficiency, compromising the
accuracy of the hardware behavior. Compiler approaches or other in-house error injections [49, 107] could allow the
program to execute as efficiently as the original binary, but the correctness is further compromised. There are also tools
that can analyze an application’s vulnerability very quickly but do not actually produce the application’s faulty output.
One technique for this, DiSCvar [177], uses algorithmic differentiation and exposes how changes to each variable im-
pact output results. It is important to note that these techniques do not actually produce that corrupted output. Hence,
they are very fast but they may not be useful to developers looking to explore precisely how corruption changes their
application. It is likely that a combination of these techniques, which identify most critical regions of an application
coupled with fault injection at those locations, may serve as a good compromise between the two techniques.

Any novel approaches that fill the gap between the accuracy and execution efficiency of error injections will facilitate
the code development of resilient algorithms, and the new tools should be built with the existing continuous integration
infrastructure. Such tools likely require hardware knowledge that is considered intellectual property by the semicon-
ductor vendors. However, efforts which explore this space using open hardware technologies (RISC-V, Sparc, etc.)
can shed light on this space but may be of varying usefulness when application developers look to understand how
their applications will perform on hardware that has not been fault injected at the register transfer or microcode level.

Tools for code transformation Compilers are able to generate binaries with resilience capability as suggested in the
work by [209]; the generated binary instruments redundant computation, register allocations to enable error detection
and correction during program execution. The recent work by Lin [170] leverages LLVM to generate SIMD instruc-
tions to perform redundant computation and verification. Source-to-source code transformation has been proposed to
enable triple modular redundancy in loops [168] and automatic instrumentation of checkpointing [212]. Similarly, this
idea can be extended to redundant threading for error mitigation, facilitated with OpenMP-like programming language
extension [140]. These approaches automatically introduce resilience with some performance penalty, preventing
the users from selective adaptation of resilience for performance optimization, and these redundant computations are
benefited from the memory hierarchy, preventing doubling (or tripling) of the execution time.

In addition to such specific systems that support the addition of resilience to existing codes, automated generation
of code, e.g., via Domain Specific Languages (DSL) can help with the transparent support of resilient computation.
Examples for this can be stencil generators, as already discussed in Section 4.3.7.

4.4.2 User/Programmer education

According to the system log study by [75], many application job failures are triggered by the mistakes of the users
such as script errors and program bugs including excessive file and thread creations. This means that better software



engineering practices and training of users should be pursued with similar efforts to the deployment of resilience
strategies.

The Exascale Computing Project (ECP) by the US DOE has made a substantial investment on educating tools, software
engineering and HPC system usage for a variety of the users. Additionally, the scientific and mathematical library
teams in the ECP have introduced software engineering policies [272] to improve the software quality, documentation
and testing process for better interoperability and composability of multiple library packages. This activity, though not
directly relevant to resilience, will gradually help to reduce application errors and failures for large scale HPC systems.

5 Conclusions

This article presents a snapshot of current research on resilience for extreme scale computing. It has grown out of
the Dagstuhl seminar 20101 held March 1-6, 2020, bringing experts from the field together on the topic Resiliency
in Numerical Algorithm Design for Extreme Scale Simulations. This seminar became a starting point to develop a
synthesis between the system perspective on resilience and the algorithmic perspective.

While resilience is undoubtedly an issue for extreme scale computing, it is less clear what algorithms on the user or
application level can contribute to mitigate faults. The seminar provided ample room to discuss these topics and thus
became the starting point for this article. Many diverse aspects were found to be relevant, that require a holistic and
multidisciplinary approach involving different and complementary scientific communities.

In particular, it clearly appeared that a fundamental distinction lies in whether faults are detected or not, and if they
are not automatically detected, whether they are detectable. If they are, algorithms can often be developed to detect
errors and in a second stage to correct them. It was found that some algorithms are naturally tolerant against faults or
have the intrinsic feature to be error oblivious. They can thus be naturally applied on a system subject to errors.

Besides redundancy and checkpointing as classical techniques to mitigate faults, new algorithm-based resilience tech-
niques have been developed for several classes of numerical algorithms. This includes linear algebra and solvers for
partial differential equations, two classes of algorithms that are prominent in many scientific workloads on super-
computers. Some of these mitigation methods show remarkable success in the sense that faults can be compensated
algorithmically by recovery procedures with only little extra cost in time or in silicon. On the other hand it also
becomes clear that integrating such techniques in a computational infrastructure is still facing many obstacles. This
includes the still poorly defined interface between user-level fault mitigation techniques and system level functionality,
as, it is, e.g., necessary to reliably and quickly detect a device (core, memory, ...) failure on a large parallel machine.

Despite its breadth, the article is far from being comprehensive. The selection of topics is a subjective overview of
current research in the field of resilience for extreme scale computing and it delivers an outlook into possible and
promising future research topics and solutions.

References

[1] Emmanuel Agullo, Siegfried Cools, Emrullah Fatih-Yetkin, Luc Giraud, Nick Schenkel, and Wim Vanroose.
On soft errors in the Conjugate Gradient method: sensitivity and robust numerical detection - revised. Research
Report RR-9330, Inria, March 2020. URL: https://hal.inria.fr/hal-02495301.

[2] Emmanuel Agullo, Luc Giraud, Abdou Guermouche, Jean Roman, and Mawussi Zounon. Numerical recovery
strategies for parallel resilient Krylov linear solvers. Numerical Linear Algebra with Applications, 23(5):888–
905, August 2016. URL: https://hal.inria.fr/hal-01323192, doi:10.1002/nla.2059.

[3] Emmanuel Agullo, Luc Giraud, Pablo Salas, and Mawussi Zounon. Interpolation-restart strategies for resilient
eigensolvers. SIAM Journal on Scientific Computing, 38(5):C560–C583, 2016. URL: https://hal.inria.
fr/hal-01347793, doi:10.1137/15M1042115.

[4] Emmanuel Agullo, Luc Giraud, and Mawussi Zounon. On the resilience of parallel sparse hybrid solvers. In
HiPC 2015 - IEEE International Conference on High Performance Computing, Bangalore, India, December
2015. URL: https://hal.inria.fr/hal-01256316.

[5] Mark Ainsworth and Christian Glusa. Is the multigrid method fault tolerant? the multilevel case. SIAM Journal
on Scientific Computing, 39(6):C393–C416, 2017.

[6] Mark Ainsworth and J Tinsley Oden. A posteriori error estimation in finite element analysis, volume 37. John
Wiley & Sons, 2011.

[7] G. Alefeld and J. Herzberger. Introduction to interval analysis. Academic Press, 1983.

https://hal.inria.fr/hal-02495301
https://hal.inria.fr/hal-01323192
https://doi.org/10.1002/nla.2059
https://hal.inria.fr/hal-01347793
https://hal.inria.fr/hal-01347793
https://doi.org/10.1137/15M1042115
https://hal.inria.fr/hal-01256316


[8] Md Mohsin Ali, Peter E. Strazdins, Brendan Harding, and Markus Hegland. Complex scientific applications
made fault-tolerant with the sparse grid combination technique. International Journal of High Performance
Computing Applications, 30(3):335–359, 2016.

[9] Md Mohsin Ali, Peter E. Strazdins, Brendan Harding, Markus Hegland, and Jay W Larson. A fault-tolerant
gyrokinetic plasma application using the sparse grid combination technique. In Proceedings of the 2015 Interna-
tional Conference on High Performance Computing & Simulation (HPCS 2015), pages 499–507, Amsterdam,
The Netherlands, July 2015.

[10] Mirco Altenbernd, Nils-Arne Dreyer, Christian Engwer, and Dominik Göddeke. Towards local-failure local-
recovery in PDE frameworks. In Proceedings of HPCSE’19. Springer, 2020. accepted.

[11] Mirco Altenbernd and Dominik Göddeke. Soft fault detection and correction for multigrid. The Inter-
national Journal of High Performance Computing Applications, 32(6):897–912, November 2018. doi:
10.1177/1094342016684006.

[12] Hartwig Anzt, Jack Dongarra, and Enrique Quintana-Ortı́. Fine-grained bit-flip protection for relaxation
methods. Journal of Computational Science, 36:100583, 2019. URL: http://www.sciencedirect.com/
science/article/pii/S1877750316303891, doi:https://doi.org/10.1016/j.jocs.2016.11.013.

[13] Hartwig Anzt, Jack Dongarra, and Enrique S. Quintana-Ortı́. Tuning stationary iterative solvers for fault re-
silience. In Proceedings of the 6th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Sys-
tems, New York, NY, USA, 2015. Association for Computing Machinery. doi:10.1145/2832080.2832081.

[14] Rizwan Ashraf, Saurabh Hukerikar, and Christian Engelmann. Pattern-based modeling of multiresilience so-
lutions for high-performance computing. In Proceedings of the 9th ACM/SPEC International Conference on
Performance Engineering (ICPE) 2018, pages 80–87, Berlin, Germany, April 9-13, 2018. ACM Press, New
York, NY, USA. doi:10.1145/3184407.3184421.

[15] Rizwan A. Ashraf and Christian Engelmann. Performance efficient multiresilience using checkpoint recovery
in iterative algorithms. In European Conference on Parallel Processing, pages 813–825. Springer, 2018.

[16] B. Austin, E. Roman, and X. Li. Resilient matrix multiplication of hierarchical semi-separable matrices. In
Proceedings of the 5th Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS), pages 19–26, Portland,
Oregon, June 2015. doi:10.1145/2751504.2751507.

[17] Todd M. Austin. DIVA: A reliable substrate for deep submicron microarchitecture design. In Proceedings of the
32nd Annual ACM/IEEE International Symposium on Microarchitecture, MICRO 32, IEEE Computer Society,
Washington, DC, USA, 1999.

[18] A. Avizienis, J. . Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy of dependable and
secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1):11–33, Jan 2004. doi:
10.1109/TDSC.2004.2.

[19] J. M. Bahi, S. Contassot-Vivier, and R. Couturier. Evaluation of the asynchronous iterative algorithms in the
context of distant heterogeneous clusters. Parallel Computing, 31(5):439–461, 2005.

[20] Wolfgang Bangerth, Carsten Burstedde, Timo Heister, and Martin Kronbichler. Algorithms and data structures
for massively parallel generic adaptive finite element codes. ACM Transactions on Mathematical Software
(TOMS), 38(2):1–28, 2012.

[21] Wolfgang Bangerth and Rolf Rannacher. Adaptive finite element methods for differential equations. Birkhäuser,
2013.

[22] Randolph E. Bank and R Kent Smith. A posteriori error estimates based on hierarchical bases. SIAM Journal
on Numerical Analysis, 30(4):921–935, 1993.

[23] G. Baudet. Asynchronous iterative methods for multiprocessors. Journal of the Association for Computing
Machinery, 25:226 – 244, 1978.

[24] Martin Bauer, Sebastian Eibl, Christian Godenschwager, Nils Kohl, Michael Kuron, Christoph Rettinger, Flo-
rian Schornbaum, Christoph Schwarzmeier, Dominik Thönnes, Harald Köstler, et al. walberla: A block-
structured high-performance framework for multiphysics simulations. Computers & Mathematics with Ap-
plications, 2020.

[25] Simon Bauer, Daniel Drzisga, Marcus Mohr, U Rüe, Christian Waluga, and Barbara Wohlmuth. A stencil
scaling approach for accelerating matrix-free finite element implementations. SIAM Journal on Scientific Com-
puting, 40(6):C748–C778, 2018.

[26] Simon Bauer, Markus Huber, S Ghelichkhan, Marcus Mohr, Ulrich Rüde, and B Wohlmuth. Large-scale simu-
lation of mantle convection based on a new matrix-free approach. Journal of Computational Science, 31:60–76,
2019.

https://doi.org/10.1177/1094342016684006
https://doi.org/10.1177/1094342016684006
http://www.sciencedirect.com/science/article/pii/S1877750316303891
http://www.sciencedirect.com/science/article/pii/S1877750316303891
https://doi.org/https://doi.org/10.1016/j.jocs.2016.11.013
https://doi.org/10.1145/2832080.2832081
http://icpe2018.spec.org
http://icpe2018.spec.org
http://www.acm.org
http://www.acm.org
https://doi.org/10.1145/3184407.3184421
https://doi.org/10.1145/2751504.2751507
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/TDSC.2004.2


[27] Simon Bauer, Marcus Mohr, Ulrich Rüde, Jens Weismüller, Markus Wittmann, and Barbara Wohlmuth. A
two-scale approach for efficient on-the-fly operator assembly in massively parallel high performance multigrid
codes. Applied Numerical Mathematics, 122:14–38, 2017.

[28] Leonardo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello, Naoya Maruyama, and Satoshi
Matsuoka. FTI: high performance fault tolerance interface for hybrid systems. In Proceedings of 2011 interna-
tional conference for high performance computing, networking, storage and analysis, pages 1–32, 2011.

[29] D. El Baz, P. Spitéri, J.C. Miellou, and D. Gazen. Asynchronous iterative algorithms with flexible communica-
tion for non linear network flow problems. Journal of Parallel and Distributed Computing, 38:1–15, 1996.

[30] D. A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A. J. Kunen, O. Pearce, P. Robinson, B. S.
Ryujin, and T. R. Scogland. RAJA: Portable performance for large-scale scientific applications. In 2019
IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC), pages 71–
81, Nov 2019. doi:10.1109/P3HPC49587.2019.00012.

[31] T. Benacchio, L. Bonaventura, M. Altenbernd, C.D. Cantwell, P.D. Düben, M. Gillard, L. Giraud, D. Göddeke,
E. Raffin, K. Teranishi, and N. Wedi. Report on local data recovery approaches suitable for weather and climate
prediction. FET-HPC ESCAPE-2 project deliverable, 2020. doi:10.2172/1607968.

[32] T. Benacchio, L. Bonaventura, M. Altenbernd, C.D. Cantwell, P.D. Düben, M. Gillard, L. Giraud, D. Göddeke,
E. Raffin, K. Teranishi, and N. Wedi. Resilience and fault-tolerance in high-performance computing for numer-
ical weather and climate prediction. International Journal of High Performance Computing Applications, 2020.
Under revision.

[33] Anne Benoit, Aurélien Cavelan, Franck Cappello, Padma Raghavan, Yves Robert, and Hongyang Sun. Identify-
ing the right replication level to detect and correct silent errors at scale. In FTXS ’17: Proceedings of the 2017
Workshop on Fault-Tolerance for HPC at Extreme Scale, pages 31–38, 06 2017. doi:10.1145/3086157.
3086162.

[34] Anne Benoit, Aurélien Cavelan, Yves Robert, and Hongyang Sun. Optimal resilience patterns to cope with fail-
stop and silent errors. In 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 202–211. IEEE, 2016.

[35] Austin R. Benson, Sven Schmit, and Robert Schreiber. Silent error detection in numerical time-stepping
schemes. IJHPCA, 29(4):403–421, 2015. arXiv:https://doi.org/10.1177/1094342014532297, doi:
10.1177/1094342014532297.

[36] Marsha J. Berger, David L. George, Randall J. LeVeque, and Kyle T. Mandli. The GeoClaw software for
depth-averaged flows with adaptive refinement. Advances in Water Resources, 34(9):1195–1206, 2011.

[37] Eduardo Berrocal, Leonardo Bautista-Gomez, Sheng Di, Zhiling Lan, and Franck Cappello. Exploring partial
replication to improve lightweight silent data corruption detection for HPC applications. In Euro-Par 2016:
Parallel Processing - 22nd International Conference on Parallel and Distributed Computing, Grenoble, France,
August 24-26, 2016, Proceedings, pages 419–430, 2016. doi:10.1007/978-3-319-43659-3_31.

[38] Eduardo Berrocal, Leonardo Bautista-Gomez, Sheng Di, Zhiling Lan, and Franck Cappello. Toward general
software level silent data corruption detection for parallel applications. IEEE Trans. Parallel Distrib. Syst.,
28(12):3642–3655, 2017. doi:10.1109/TPDS.2017.2735971.

[39] D. Bertsekas. Distributed asynchronous computation of fixed points. Math. Programming, 27:107 – 120, 1983.

[40] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computation, Numerical Methods. Prentice Hall,
Englewood Cliffs N.J., 1989.

[41] Wesley Bland, Aurelien Bouteiller, Thomas Herault, Joshua Hursey, George Bosilca, and Jack J. Dongarra. An
evaluation of user-level failure mitigation support in MPI. In Proceedings of the 19th European Conference
on Recent Advances in the Message Passing Interface, EuroMPI’12, pages 193–203, Berlin, Heidelberg, 2012.
Springer-Verlag. doi:10.1007/978-3-642-33518-1_24.

[42] The OpenMP Architecture Review Boards. OpenMP (Open Multi-Processing), 2019. URL: https://www.
openmp.org/.

[43] L. Bonaventura, F. Casella, L. Delpopolo Carciopolo, and A. Ranade. A self adjusting multirate algorithm
for robust time discretization of partial differential equations. Computers and Mathematics with Applications,
79:2086–2098, 2020.

[44] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou. Algorithm-based fault tolerance applied to high performance
computing. Journal of Parallel and Distributed Computing, 69(4):410 – 416, 2009.

https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.2172/1607968
https://doi.org/10.1145/3086157.3086162
https://doi.org/10.1145/3086157.3086162
http://arxiv.org/abs/https://doi.org/10.1177/1094342014532297
https://doi.org/10.1177/1094342014532297
https://doi.org/10.1177/1094342014532297
https://doi.org/10.1007/978-3-319-43659-3_31
https://doi.org/10.1109/TPDS.2017.2735971
https://doi.org/10.1007/978-3-642-33518-1_24
https://www.openmp.org/
https://www.openmp.org/


[45] Patrick G. Bridges, Kurt B. Ferreira, Michael A. Heroux, and Mark Hoemmen. Fault-tolerant linear solvers via
selective reliability, 2012. arXiv:1206.1390.

[46] S. Buchwald, Manuel Mohr, and Andreas Zwinkau. Malleable invasive applications. CEUR Workshop Pro-
ceedings, 1337:123–126, 01 2015.

[47] H.-J. Bungartz and S. Dirnstorfer. Multivariate quadrature on adaptive sparse grids. Computing, 71(1):89–114,
Aug 2003. doi:10.1007/s00607-003-0016-4.

[48] Hans-Joachim Bungartz and Michael Griebel. Sparse grids. Acta Numerica, 13:147–269, 2004. doi:10.
1017/S0962492904000182.

[49] Jon Calhoun, Luke Olson, and Marc Snir. Flipit: An llvm based fault injector for hpc. In Revised Selected
Papers, Part I, of the Euro-Par 2014 International Workshops on Parallel Processing - Volume 8805, page
547–558, Berlin, Heidelberg, 2014. Springer-Verlag. doi:10.1007/978-3-319-14325-5_47.

[50] Jon Calhoun, Luke Olson, Marc Snir, and William D. Gropp. Towards a more fault resilient multigrid solver.
In Proceedings of the Symposium on High Performance Computing, San Diego, CA, USA, 2015. Society for
Computer Simulation International.

[51] C. D. Cantwell and A. S. Nielsen. A minimally intrusive low-memory approach to resilience for existing
transient solvers. Journal of Scientific Computing, 78(1):565–581, 2019.

[52] Franck Cappello, Al Geist, Bill Gropp, Laxmikant Kale, Bill Kramer, and Marc Snir. Toward exascale re-
silience. The International Journal of High Performance Computing Applications, 23(4):374–388, 2009.

[53] L. Delpopolo Carciopolo, L. Bonaventura, A. Scotti, and L. Formaggia. A conservative implicit multirate
method for hyperbolic problems. Computational Geosciences, 23:647–664, 2019.

[54] Ricolindo L. Carino, Ali Mohammed, and Florina M. Ciorba. Dynamic Loop Self-scheduling For Load Bal-
ancing (DLS4LB), 2020. URL: https://github.com/unibas-dmi-hpc/DLS4LB.

[55] Henri Casanova, Yves Robert, Frédéric Vivien, and Dounia Zaidouni. On the impact of process replication on
executions of large-scale parallel applications with coordinated checkpointing. Future Generation Comp. Syst.,
51:7–19, 2015.

[56] Marc Casas, Wilfried N. Gansterer, and Elias Wimmer. Resilient gossip-inspired all-reduce algorithms for
high-performance computing: Potential, limitations, and open questions. IJHPCA, 33(2), 2019. doi:10.
1177/1094342018762531.

[57] A. Cavelan, R. M. Cabezón, and Florina M. Ciorba. Detection of silent data corruptions in smoothed particle
hydrodynamics simulations. In Proceedings of the 19th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid 2019), May 2019.

[58] A. Cavelan and F. M. Ciorba. Algorithm-based fault tolerance for parallel stencil computations. In IEEE
International Conference on Cluster Computing (Cluster 2019), Albuquerque, September 2019.

[59] M. Chau, T. Garcia, and P. Spiteri. Asynchronous Schwarz methods applied to constrained mechanical struc-
tures in grid environment. Advances in Engineering Software, 74:1 – 15, 2014.

[60] D. Chazan and W. Miranker. Chaotic relaxation. Linear Algebra and its Applications, 2(2):199 –
222, 1969. URL: http://www.sciencedirect.com/science/article/pii/0024379569900287, doi:
https://doi.org/10.1016/0024-3795(69)90028-7.

[61] S. Chen, G. Bronevetsky, M. Casas-Guix, and L. Peng. Comprehensive algorithmic resilience for numeric
applications. Technical report, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States),
2013.

[62] Z. Chen and J. Dongarra. Algorithm-based fault tolerance for fail-stop failures. IEEE Transactions on Parallel
and Distributed Systems, 19(12):1628–1641, 2008.

[63] Zizhong Chen. Online-ABFT: An online algorithm based fault tolerance scheme for soft error detection in
iterative methods. SIGPLAN Not., 48(8), February 2013. doi:10.1145/2517327.2442533.

[64] Andrew A. Chien, Pavan Balaji, Nan Dun, Aiman Fang, Hajime Fujita, Kamil Iskra, Zachary A. Rubenstein,
Ziming Zheng, Jeff R. Hammond, Ignacio Laguna, D. Richards, Anshu Dubey, Brian van Straalen, Mark Hoem-
men, Michael A. Heroux, Keita Teranishi, and Andrew R. Siegel. Exploring versioned distributed arrays for
resilience in scientific applications. IJHPCA, 31(6):564–590, 2017. doi:10.1177/1094342016664796.

[65] Edmond Chow, Hartwig Anzt, and Jack J. Dongarra. Asynchronous iterative algorithm for computing in-
complete factorizations on GPUs. In Julian M. Kunkel and Thomas Ludwig, editors, High Performance

http://arxiv.org/abs/1206.1390
https://doi.org/10.1007/s00607-003-0016-4
https://doi.org/10.1017/S0962492904000182
https://doi.org/10.1017/S0962492904000182
https://doi.org/10.1007/978-3-319-14325-5_47
https://github.com/unibas-dmi-hpc/DLS4LB
https://doi.org/10.1177/1094342018762531
https://doi.org/10.1177/1094342018762531
http://www.sciencedirect.com/science/article/pii/0024379569900287
https://doi.org/https://doi.org/10.1016/0024-3795(69)90028-7
https://doi.org/https://doi.org/10.1016/0024-3795(69)90028-7
https://doi.org/10.1145/2517327.2442533
https://doi.org/10.1177/1094342016664796


Computing - 30th International Conference, ISC High Performance 2015, Frankfurt, Germany, July 12-
16, 2015, Proceedings, volume 9137 of Lecture Notes in Computer Science, pages 1–16. Springer, 2015.
doi:10.1007/978-3-319-20119-1\_1.

[66] Edmond Chow and Aftab Patel. Fine-grained parallel incomplete LU factorization. SIAM J. Scientific Comput-
ing, 37(2), 2015. doi:10.1137/140968896.

[67] Cluster File Systems, Inc. Lustre: A scalable, high-performance file system. White paper, Available at https:
//cse.buffalo.edu/faculty/tkosar/cse710/papers/lustre-whitepaper.pdf, 2007.

[68] Evan Coleman, Masha Sosonkina, and Edmond Chow. Fault tolerant variants of the fine-grained parallel in-
complete LU factorization. In Lukás Polok, Masha Sosonkina, William I. Thacker, and Josef Weinbub, editors,
Proceedings of the 25th High Performance Computing Symposium, Virginia Beach, VA, USA, April 23 - 26,
2017, pages 15:1–15:12. ACM, 2017. URL: http://dl.acm.org/citation.cfm?id=3108111.

[69] Camille Coti, Thomas Herault, Pierre Lemarinier, Laurence Pilard, Ala Rezmerita, Eric Rodriguezb, and Franck
Cappello. Blocking vs. non-blocking coordinated checkpointing for large-scale fault tolerant MPI. In SC’06:
Proceedings of the 2006 ACM/IEEE conference on Supercomputing, pages 18–18. IEEE, 2006.

[70] S. P. Crago, D. I. Kang, M. Kang, R. Kost, K. Singh, J. Suh, and J. P. Walters. Programming models and
development software for a space-based many-core processor. In 4th Int. Conf. on Space Mission Challenges
for Information Technology, pages 95–102. IEEE, 2011.

[71] C. Denis, P. de Oliveira Castro, and E. Petit. Verificarlo: checking floating point accuracy through Monte Carlo
arithmetic. In ARITH’23, Silicon Valley, USA, Jul 2016.

[72] S. Di and F. Cappello. Fast error-bounded lossy HPC data compression with SZ. In 2016 IEEE IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), pages 730–739. IEEE, 2016.

[73] Sheng Di, Mohamed Slim Bouguerra, Leonardo Bautista-Gomez, and Franck Cappello. Optimization of multi-
level checkpoint model for large scale HPC applications. In 2014 IEEE 28th International Parallel and Dis-
tributed Processing Symposium, pages 1181–1190. IEEE, 2014.

[74] Sheng Di and Franck Cappello. Fast error-bounded lossy HPC data compression with SZ. In 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pages 730–739. IEEE, 2016.

[75] Catello Di Martino, Zbigniew Kalbarczyk, Ravishankar K Iyer, Fabio Baccanico, Joseph Fullop, and William
Kramer. Lessons learned from the analysis of system failures at petascale: The case of blue waters. In 2014
44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, pages 610–621. IEEE,
2014. doi:10.1109/DSN.2014.62.

[76] Jose Monsalve Diaz, Swaroop Pophale, Kyle Friedline, Oscar Hernandez, David E Bernholdt, and Sunita Chan-
drasekaran. Evaluating support for openmp offload features. In Proceedings of the 47th International Confer-
ence on Parallel Processing Companion, pages 1–10, 2018.

[77] Edsger W Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of the ACM,
17(11):643–644, 1974.

[78] Daniel Drzisga, Lorenz John, Ulrich Rüde, Barbara Wohlmuth, and Walter Zulehner. On the analysis of block
smoothers for saddle point problems. SIAM Journal on Matrix Analysis and Applications, 39(2):932–960, 2018.
arXiv:https://doi.org/10.1137/16M1106304, doi:10.1137/16M1106304.

[79] P. Du, A. Bouteiller, G. Bosilca, T. Herault, and J. Dongarra. Algorithm-based fault tolerance for dense matrix
factorizations. ACM SIGPLAN notices, 47(8):225–234, 2012.

[80] Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesús Labarta, Luis Martinell, Xavier Martorell, and Ju-
dit Planas. OmpSs: a proposal for programming heterogeneous multi-core architectures. Parallel Process-
ing Letters, 21(2):173–193, 2011. URL: http://dblp.uni-trier.de/db/journals/ppl/ppl21.html#
DuranABLMMP11.

[81] P. Eberhart, J. Brajard, P. Fortin, and F. Jézéquel. High performance numerical validation using stochastic
arithmetic. Reliable Computing, 21:35–52, 2015.

[82] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos: Enabling manycore performance
portability through polymorphic memory access patterns. Journal of Parallel and Distributed Computing,
74(12):3202 – 3216, 2014. Domain-Specific Languages and High-Level Frameworks for High-Performance
Computing. URL: http://www.sciencedirect.com/science/article/pii/S0743731514001257,
doi:https://doi.org/10.1016/j.jpdc.2014.07.003.

[83] Mireille El Haddad, José C. Garay, Frédéric Magoulès, and Daniel B. Szyld. Synchronous and asynchronous
optimized Schwarz methods for one-way subdivision of bounded domains. Numerical Linear Algebra and
Applications, 27:e2279, 2020. 30 pages.

https://doi.org/10.1007/978-3-319-20119-1_1
https://doi.org/10.1137/140968896
https://cse.buffalo.edu/faculty/tkosar/cse710/papers/lustre-whitepaper.pdf
https://cse.buffalo.edu/faculty/tkosar/cse710/papers/lustre-whitepaper.pdf
http://dl.acm.org/citation.cfm?id=3108111
https://doi.org/10.1109/DSN.2014.62
http://arxiv.org/abs/https://doi.org/10.1137/16M1106304
https://doi.org/10.1137/16M1106304
http://dblp.uni-trier.de/db/journals/ppl/ppl21.html#DuranABLMMP11
http://dblp.uni-trier.de/db/journals/ppl/ppl21.html#DuranABLMMP11
http://www.sciencedirect.com/science/article/pii/S0743731514001257
https://doi.org/https://doi.org/10.1016/j.jpdc.2014.07.003


[84] J. Elliott, M. Hoemmen, and F. Mueller. Evaluating the impact of SDC on the GMRES iterative solver. In
2014 IEEE 28th International Parallel and Distributed Processing Symposium, pages 1193–1202, May 2014.
doi:10.1109/IPDPS.2014.123.

[85] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. Engelmann. Combining partial redundancy
and checkpointing for HPC. In 2012 IEEE 32nd International Conference on Distributed Computing Systems
(ICDCS), pages 615–626, June 2012. doi:10.1109/ICDCS.2012.56.

[86] James Elliott. Resilient Iterative Linear Solvers Running Through Errors. PhD thesis, North Carolina State
University, 2015.

[87] Christian Engelmann and Thomas Naughton. Toward a performance/resilience tool for hardware/software co-
design of high-performance computing systems. In 2013 42nd International Conference on Parallel Processing,
pages 960–969. IEEE, 2013.

[88] Christian Engelmann, Geoffroy R. Vallée, Thomas Naughton, and Stephen L. Scott. Proactive fault tolerance
using preemptive migration. In Proceedings of the 17th Euromicro International Conference on Parallel, Dis-
tributed, and network-based Processing (PDP) 2009, pages 252–257, Weimar, Germany, February 18-20, 2009.
IEEE Computer Society, Los Alamitos, CA, USA. doi:10.1109/PDP.2009.31.

[89] Christian Engelmann, Geoffroy R. Vallée, and Swaroop Pophale. Concepts for OpenMP target offload re-
silience. In Lecture Notes in Computer Science: Proceedings of the 15th International Workshop on OpenMP
(IWOMP) 2019, volume 11718, pages 78–93, Auckland, New Zealand, September 11-13, 2019. Springer Ver-
lag, Berlin, Germany. doi:10.1007/978-3-030-28596-8_6.

[90] Charbel Farhat and Francois-Xavier Roux. A method of finite element tearing and interconnecting and its
parallel solution algorithm. International Journal for Numerical Methods in Engineering, 32(6):1205–1227,
1991.

[91] David Fiala, Frank Mueller, Christian Engelmann, Kurt Ferreira, Ron Brightwell, and Rolf Riesen. Detection
and correction of silent data corruption for large-scale high-performance computing. In Proceedings of the 25th
IEEE/ACM International Conference on High Performance Computing, Networking, Storage and Analysis (SC)
2012, pages 78:1–78:12, Salt Lake City, UT, USA, November 10-16, 2012. ACM Press, New York, NY, USA.
doi:10.1109/SC.2012.49.

[92] David Fiala, Frank Mueller, Kurt Ferreira, and Christian Engelmann. Mini-Ckpts: Surviving OS failures in
persistent memory. In Proceedings of the 30th ACM International Conference on Supercomputing (ICS) 2016,
pages 7:1–7:14, Istanbul, Turkey, June 1-3, 2016. ACM Press, New York, NY, USA. doi:10.1145/2925426.
2926295.

[93] David Fiala, Frank Mueller, and Kurt B. Ferreira. Flipsphere: A software-based DRAM error detection and
correction library for HPC. In Proceedings of the 20th IEEE/ACM International Symposium on Distributed
Simulation and Real Time Applications (DS-RT) 2016, pages 19–28, London, UK, September 21-23, 2016.
IEEE Computer Society, Los Alamitos, CA, USA. doi:10.1109/DS-RT.2016.27.

[94] P.K. Fok. A linearly fourth order multirate Runge–Kutta method with error control. Journal of Scientific
Computing, pages 1–19, 2015.

[95] MPI Forum. The Message Passing Interface standard, 2019. URL: https://www.mpi-forum.org/.
[96] Michael Frechtling and Philip H. W. Leong. MCALIB: measuring sensitivity to rounding error with monte

carlo programming. ACM TOPLAS, 37(2):1–25, 2015.
[97] Andreas Frommer and Daniel B. Szyld. On asynchronous iterations. Journal of Computational and Applied

Mathematics, 123:201–216, 2000.
[98] François Févotte and Bruno Lathuilière. Debugging and optimization of HPC programs in mixed precision with

the verrou tool. In Computational Reproducibility at Exascale Workshop (CRE2018), in conjunction with the
International Conference on High Performance Computing, Networking, Storage and Analysis (SC18), Dallas,
USA, 2018.

[99] M. Gamell, D. S. Katz, H. Kolla, J. Chen, S. Klasky, and M. Parashar. Exploring automatic, online failure
recovery for scientific applications at extreme scales. In SC ’14: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, pages 895–906, Nov 2014. doi:10.
1109/SC.2014.78.

[100] Marc Gamell, Daniel S. Katz, Keita Teranishi, Michael A. Heroux, Rob F. Van der Wijngaart, Timothy G.
Mattson, and Manish Parashar. Evaluating online global recovery with Fenix using application-aware in-
memory checkpointing techniques. In ICPP Workshops, pages 346–355. IEEE Computer Society, 2016. URL:
http://dblp.uni-trier.de/db/conf/icppw/icppw2016.html#GamellKTHWMP16.

https://doi.org/10.1109/IPDPS.2014.123
https://doi.org/10.1109/ICDCS.2012.56
http://www.pdp2009.org
http://www.pdp2009.org
http://www.computer.org
https://doi.org/10.1109/PDP.2009.31
http://parallel.auckland.ac.nz/iwomp2019
http://parallel.auckland.ac.nz/iwomp2019
http://www.springer.com
http://www.springer.com
https://doi.org/10.1007/978-3-030-28596-8_6
http://sc12.supercomputing.org
http://sc12.supercomputing.org
http://sc12.supercomputing.org
http://www.acm.org
https://doi.org/10.1109/SC.2012.49
http://ics16.bilkent.edu.tr
http://www.acm.org
https://doi.org/10.1145/2925426.2926295
https://doi.org/10.1145/2925426.2926295
http://ds-rt.com/2016
http://ds-rt.com/2016
http://www.computer.org
https://doi.org/10.1109/DS-RT.2016.27
https://www.mpi-forum.org/
https://doi.org/10.1109/SC.2014.78
https://doi.org/10.1109/SC.2014.78
http://dblp.uni-trier.de/db/conf/icppw/icppw2016.html#GamellKTHWMP16


[101] Wilfried N. Gansterer, Gerhard Niederbrucker, Hana Straková, and Stefan Schulze Grotthoff. Robust distributed
orthogonalization based on randomized aggregation. In Vassil N. Alexandrov, Al Geist, and Jack J. Dongarra,
editors, Proceedings of the second workshop on Scalable algorithms for large-scale systems, ScalA@SC 2011,
Seattle, WA, USA, November 14, 2011, pages 7–10. ACM, 2011. doi:10.1145/2133173.2133177.

[102] Wilfried N. Gansterer, Gerhard Niederbrucker, Hana Straková, and Stefan Schulze Grotthoff. Scalable and fault
tolerant orthogonalization based on randomized distributed data aggregation. J. Comput. Sci., 4(6):480–488,
2013. doi:10.1016/j.jocs.2013.01.006.

[103] José C. Garay, Frédéric Magoulès, and Daniel B. Szyld. Synchronous and asynchronous optimized Schwarz
method for Poisson’s equation in rectangular domains. Technical Report 17-10-18, Department of Mathematics,
Temple University, October 2017. Revised April 2018.

[104] Jochen Garcke. Regression with the optimised combination technique. In Proceedings of the 23rd international
conference on Machine learning, pages 321–328. ACM Press, 2006.

[105] Jochen Garcke. A dimension adaptive sparse grid combination technique for machine learning. ANZIAM
Journal, 48:725–740, 2007.

[106] C.W. Gear and D.R. Wells. Multirate linear multistep methods. BIT, 24:484–502, 1984.

[107] Giorgis Georgakoudis, Ignacio Laguna, Dimitrios S. Nikolopoulos, and Martin Schulz. Refine: Realistic fault
injection via compiler-based instrumentation for accuracy, portability and speed. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis, SC ’17, New York,
NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3126908.3126972.

[108] Cijo George and Sathish S. Vadhiyar. ADFT: An adaptive framework for fault tolerance on large scale systems
using application malleability. Procedia Computer Science, 9:166 – 175, 2012.

[109] T. Gerstner and M. Griebel. Dimension–adaptive tensor–product quadrature. Computing, 71(1):65–87, Aug
2003. doi:10.1007/s00607-003-0015-5.

[110] Thomas Gerstner and Michael Griebel. Numerical integration using sparse grids. Numerical Algorithms,
18(3):209, Jan 1998. doi:10.1023/A:1019129717644.

[111] Roberto Gioiosa, Jose Carlos Sancho, Song Jiang, and Fabrizio Petrini. Transparent, incremental checkpointing
at kernel level: a foundation for fault tolerance for parallel computers. In SC’05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing, pages 9–9. IEEE, 2005.

[112] Christian Glusa, Erik G. Boman, Edmond Chow, Sivasankaran Rajamanickam, and Daniel B. Szyld. Scalable
asynchronous domain decomposition solvers. Technical Report 19-10-11, Department of Mathematics, Temple
University, October 2019.

[113] Christian Glusa, Paritosh Ramanan, Erik G. Boman, Edmond Chow, and Sivasankaran Rajamanickam. Asyn-
chronous one-level and two-level domain decomposition solvers. CoRR, abs/1808.08172, 2018. URL:
http://arxiv.org/abs/1808.08172, arXiv:1808.08172.

[114] Björn Gmeiner, Ulrich Rüde, Holger Stengel, Christian Waluga, and Barbara Wohlmuth. Towards textbook
efficiency for parallel multigrid. Numerical Mathematics: Theory, Methods and Applications, 8(1):22–46,
2015.

[115] Dominik Göddeke, Mirco Altenbernd, and Dirk Ribbrock. Fault-tolerant finite-element multigrid algorithms
with hierarchically compressed asynchronous checkpointing. Parallel Computing, 49:117–135, October 2015.
doi:10.1016/j.parco.2015.07.003.

[116] Michael Griebel and Peter Oswald. Stochastic subspace correction methods and fault tolerance. Mathematics
of Computation, 89(321):279–312, 2020.

[117] Michael Griebel, Michael Schneider, and Christoph Zenger. A combination technique for the solution of sparse
grid problems. In Iterative Methods in Lin. Alg., pages 263–281, 1992.

[118] The Khronos Group. OpenCL (Open Computing Language), 2020. URL: https://www.khronos.org/
opencl/.

[119] Ray Grout, Hemanth Kolla, Michael Minion, and John Bell. Achieving algorithmic resilience for temporal
integration through spectral deferred corrections. Communications in Applied Mathematics and Computational
Science, 12(1):25–50, 2017.

[120] Q. Guan, N. Debardeleben, S. Blanchard, and S. Fu. F-SEFI: A fine-grained soft error fault injection tool
for profiling application vulnerability. In 2014 IEEE 28th International Parallel and Distributed Processing
Symposium, pages 1245–1254, May 2014. doi:10.1109/IPDPS.2014.128.

https://doi.org/10.1145/2133173.2133177
https://doi.org/10.1016/j.jocs.2013.01.006
https://doi.org/10.1145/3126908.3126972
https://doi.org/10.1007/s00607-003-0015-5
https://doi.org/10.1023/A:1019129717644
http://arxiv.org/abs/1808.08172
http://arxiv.org/abs/1808.08172
https://doi.org/10.1016/j.parco.2015.07.003
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://doi.org/10.1109/IPDPS.2014.128


[121] Pierre-Louis Guhur, Hong Zhang, Tom Peterka, Emil Constantinescu, and Franck Cappello. Lightweight and
accurate silent data corruption detection in ordinary differential equation solvers. In European Conference on
Parallel Processing, pages 644–656. Springer, 2016.

[122] E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I: Nonstiff Problems. Springer-
Verlag, Berlin Heidelberg, 3rd corr. edition, 2008.

[123] Brendan Harding et al. Fault tolerant computation with the sparse grid combination technique. SIAM Journal
on Scient. Comp., 37(3):C331–C353, 2015.

[124] Brendan Harding and Markus Hegland. Robust solutions to PDEs with multiple grids. In Jochen Garcke
and Dirk Pflüger, editors, Sparse Grids and Applications - Munich 2012 SE, volume 97 of Lecture Notes in
Computational Science and Engineering, pages 171–193. Springer International Publishing, 2014.

[125] Paul H. Hargrove and Jason C. Duell. Berkeley Lab Checkpoint/Restart (BLCR) for Linux clusters. In Journal
of Physics: Proceedings of the Scientific Discovery through Advanced Computing Program (SciDAC) Confer-
ence 2006, volume 46, pages 494–499, Denver, CO, USA, June 25-29, 2006. Institute of Physics Publishing,
Bristol, UK. doi:10.1088/1742-6596/46/1/067.

[126] Siva Kumar Sastry Hari, Timothy Tsai, Mark Stephenson, Stephen W. Keckler, and Joel S. Emer. SASSIFI:
an architecture-level fault injection tool for GPU application resilience evaluation. In 2017 IEEE International
Symposium on Performance Analysis of Systems and Software, ISPASS 2017, Santa Rosa, CA, USA, April 24-25,
2017, pages 249–258. IEEE Computer Society, 2017. doi:10.1109/ISPASS.2017.7975296.

[127] Amin Hassani, Anthony Skjellum, and Ron Brightwell. Design and evaluation of FA-MPI, a transactional
resilience scheme for non-blocking MPI. In 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2014, Atlanta, GA, USA, June 23-26, 2014, pages 750–755. IEEE Computer
Society, 2014. doi:10.1109/DSN.2014.78.

[128] Xubin (Ben) He, Li Ou, Christian Engelmann, Xin Chen, and Stephen L. Scott. Symmetric active/active meta-
data service for high availability parallel file systems. Journal of Parallel and Distributed Computing (JPDC),
69(12):961–973, December 2009. doi:10.1016/j.jpdc.2009.08.004.

[129] Mario Heene, Alfredo Parra Hinojosa, Michael Obersteiner, Hans-Joachim Bungartz, and Dirk Pflüger. EX-
AHD: An exa-scalable two-level sparse grid approach for higher-dimensional problems in plasma physics and
beyond. In High Performance Computing in Science and Engineering’17, pages 513–529. Springer, 2018.

[130] Mario Heene, Alfredo Parra Hinojosa, Hans-Joachim Bungartz, and Dirk Pflüger. A massively-parallel, fault-
tolerant solver for high-dimensional PDEs. In Euro-Par 2016: Parallel Processing Workshops, 2016.

[131] Thomas Herault and Yves Robert, editors. Fault-Tolerance Techniques for High-Performance Computing.
Springer Verlag, 2015.

[132] Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear systems. Journal of
Research of the National Bureau of Standards, 46(6):409–436, December 1952.

[133] N.J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 1st edition, 1996.

[134] Alfredo Parra Hinojosa, Brendan Harding, Markus Hegland, and Hans-Joachim Bungartz. Handling silent data
corruption with the sparse grid combination technique. In Software for Exascale Computing-SPPEXA 2013-
2015, pages 187–208. Springer, 2016.

[135] Mark Hoemmen and Michael Allen Heroux. Fault-tolerant iterative methods via selective re-
liability. Proceedings of the IEEE/ACM conference on supercomputing (SC’11), 2011. URL:
http://www.researchgate.net/publication/228940928_Fault-Tolerant_Iterative_Methods_
via_Selective_Reliability/file/79e41508060305e4ad.pdf.

[136] K.-H. Huang and J.A. Abraham. Algorithm-based fault tolerance for matrix operations. IEEE Transactions on
Computers, 100(6):518–528, 1984.

[137] Kuang-hua Huang and Jacob a Abraham. Algorithm-based fault tolerance for matrix operations. IEEE Trans-
actions on Computers, c(6):518–528, 1984. doi:10.1109/TC.1984.1676475.

[138] Markus Huber, Björn Gmeiner, Ulrich Rüde, and Barbara Wohlmuth. Resilience for massively parallel multigrid
solvers. SIAM Journal on Scientific Computing, 38(5):S217–S239, 2016.

[139] Markus Huber, Ulrich Rüde, and Barbara Wohlmuth. Adaptive control in roll-forward recovery for extreme
scale multigrid. The International Journal of High Performance Computing Applications, 33(5):817–837, 2019.

https://doi.org/10.1088/1742-6596/46/1/067
https://doi.org/10.1109/ISPASS.2017.7975296
https://doi.org/10.1109/DSN.2014.78
http://www.elsevier.com/locate/jpdc
https://doi.org/10.1016/j.jpdc.2009.08.004
http://www.researchgate.net/publication/228940928_Fault-Tolerant_Iterative_Methods_via_Selective_Reliability/file/79e41508060305e4ad.pdf
http://www.researchgate.net/publication/228940928_Fault-Tolerant_Iterative_Methods_via_Selective_Reliability/file/79e41508060305e4ad.pdf
https://doi.org/10.1109/TC.1984.1676475


[140] S. Hukerikar, K. Teranishi, P. C. Diniz, and R. F. Lucas. An evaluation of lazy fault detection based on adaptive
redundant multithreading. In 2014 IEEE High Performance Extreme Computing Conference (HPEC), pages
1–6, 2014.

[141] Saurabh Hukerikar and Christian Engelmann. A pattern language for high-performance computing resilience.
In Proceedings of the 22nd European Conference on Pattern Languages of Programs (EuroPLoP) 2017, pages
12:1–12:16, Kloster Irsee, Germany, July 12-16, 2017. ACM Press, New York, NY, USA. doi:10.1145/
3147704.3147718.

[142] Saurabh Hukerikar and Christian Engelmann. Resilience design patterns: A structured approach to resilience
at extreme scale (version 1.2). Technical Report ORNL/TM-2017/745, Oak Ridge National Laboratory, Oak
Ridge, TN, USA, August 2017. doi:10.2172/1436045.

[143] Frank Hülsemann, Markus Kowarschik, Marcus Mohr, and Ulrich Rüde. Parallel geometric multigrid. In
Numerical Solution of Partial Differential Equations on Parallel Computers, pages 165–208. Springer, 2006.

[144] R. K. Iyer, N. M. Nakka, Z. T. Kalbarczyk, and S. Mitra. Recent advances and new avenues in hardware-level
reliability support. IEEE Micro, 25(6):18–29, Nov 2005. doi:10.1109/MM.2005.119.

[145] John D. Jakeman and Stephen G. Roberts. Local and dimension adaptive sparse grid interpolation and quadra-
ture. arXiv preprint arXiv:1110.0010, September, 2011. arXiv:1110.0010v1.

[146] L. Jaulmes, M. Casas, M. Moretó ans E. Ayguadé, J. Labarta, and M. Valero. Exploiting asynchrony from
exact forward recovery for detected and uncorrected errors in iterative solvers. In SC ’15: Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis, Austin, TX,
2015.

[147] Y. Jia, G. Bosilca, P. Luszczek, and J. J. Dongarra. Parallel reduction to Hessenberg form with algorithm-based
fault tolerance. In Proceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis, SC ’13, New York, NY, USA, 2013. Association for Computing Machinery. doi:
10.1145/2503210.2503249.

[148] A. Jin, J. Jiang, J. Hu, and J. Lou. A pin-based dynamic software fault injection system. In 2008 The 9th
International Conference for Young Computer Scientists, pages 2160–2167, Nov 2008. doi:10.1109/ICYCS.
2008.329.

[149] U. Kabir and D. Goswami. An ABFT scheme based on communication characteristics. In 2016 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER), pages 515–523, Sep. 2016. doi:10.1109/CLUSTER.
2016.68.

[150] Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio, and Dietmar Fey. HPX: A task based
programming model in a global address space. In Proceedings of the 8th International Conference on Parti-
tioned Global Address Space Programming Models, PGAS’14, New York, NY, USA, 2014. Association for
Computing Machinery. doi:10.1145/2676870.2676883.

[151] Laxmikant V. Kale and Sanjeev Krishnan. Charm++: A portable concurrent object oriented system based on
C++. In Proceedings of the Eighth Annual Conference on Object-Oriented Programming Systems, Languages,
and Applications, OOPSLA’93, page 91–108, New York, NY, USA, 1993. Association for Computing Machin-
ery. doi:10.1145/165854.165874.

[152] George Karniadakis and Spencer Sherwin. Spectral/hp element methods for computational fluid dynamics.
Oxford University Press, 2013.

[153] Kai Keller and Leonardo Bautista-Gomez. Application-level differential checkpointing for HPC applications
with dynamic datasets. In 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
CCGRID 2019, Larnaca, Cyprus, May 14-17, 2019, pages 52–61. IEEE, 2019. doi:10.1109/CCGRID.2019.
00015.

[154] Jungwon Kim, Seyong Lee, and Jeffrey S. Vetter. PapyrusKV: A high-performance parallel key-value store for
distributed NVM architectures. In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3126908.3126943.

[155] Axel Klawonn, Martin J. Kühn, and Oliver Rheinbach. Parallel adaptive FETI-DP using lightweight asyn-
chronous dynamic load balancing. International Journal for Numerical Methods in Engineering, 121(4):621–
643, 2020. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6237, arXiv:https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6237, doi:10.1002/nme.6237.

http://europlop.net
http://www.acm.org
https://doi.org/10.1145/3147704.3147718
https://doi.org/10.1145/3147704.3147718
https://doi.org/10.2172/1436045
https://doi.org/10.1109/MM.2005.119
http://arxiv.org/abs/1110.0010v1
https://doi.org/10.1145/2503210.2503249
https://doi.org/10.1145/2503210.2503249
https://doi.org/10.1109/ICYCS.2008.329
https://doi.org/10.1109/ICYCS.2008.329
https://doi.org/10.1109/CLUSTER.2016.68
https://doi.org/10.1109/CLUSTER.2016.68
https://doi.org/10.1145/2676870.2676883
https://doi.org/10.1145/165854.165874
https://doi.org/10.1109/CCGRID.2019.00015
https://doi.org/10.1109/CCGRID.2019.00015
https://doi.org/10.1145/3126908.3126943
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6237
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6237
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6237
https://doi.org/10.1002/nme.6237


[156] Nils Kohl, Johannes Hötzer, Florian Schornbaum, Martin Bauer, Christian Godenschwager, Harald Köstler,
Britta Nestler, and Ulrich Rüde. A scalable and extensible checkpointing scheme for massively parallel simu-
lations. The International Journal of High Performance Computing Applications, 33(4):571–589, 2019.

[157] Giorgos Kollias, Efstratios Gallopoulos, and Daniel B. Szyld. Asynchronous iterative computations with Web
information retrieval structures: The PageRank case. In G.R. Joubert, W.E. Nagel, F.J. Peters, O. Plata,
P. Tirado, and E. Zapata, editors, Parallel Computing: Current and Future Issues of High-End Computing (Pro-
ceedings of the International Conference Parco05), volume 33 of NIC Series, pages 309–316, Jülich, Germany,
2006. John von Neumann-Institut für Computing (NIC).

[158] U.W. Kulisch. Advanced Arithmetic for the Digital Computer. Springer, Wien, 2002.

[159] Ignacio Laguna, David Richards, Todd Gamblin, Martin Schulz, Bronis Supinski, Kathryn Mohror, and Howard
Pritchard. Evaluating and extending user-level fault tolerance in MPI applications. The International Journal
of High Performance Computing Applications, 30, 01 2016. doi:10.1177/1094342015623623.

[160] J.D. Lambert. Numerical Methods for Ordinary Differential Systems. Wiley, Chirchester, England, 1991.

[161] Julien Langou, Zizhong Chen, George Bosilca, and Jack Dongarra. Recovery patterns for iterative methods
in a parallel unstable environment. SIAM J. Sci. Comput., 30:102–116, November 2007. doi:10.1137/
040620394.

[162] Christian Lengauer, Sven Apel, Mathias Bolten, Shigeru Chiba, Ulrich Rüde, Jürgen Teich, Armin Größlinger,
Frank Hannig, Harald Köstler, Lisa Claus, Alexander Grebhahn, Stefan Groth, Stefan Kronawitter, Sebastian
Kuckuk, Hannah Rittich, Christian Schmitt, and Jonas Schmitt. ExaStencils – Advanced Multigrid Solver
Generation. In Hans-Joachim Bungartz, Severin Reiz, Philipp Neumann, Benjamin Uekermann, and Wolfgang
Nagel, editors, Software for Exascale Computing – SPPEXA 2016-2019, Lecture Notes in Computer Science
and Engineering. Springer, 2020. URL: https://www12.cs.fau.de/downloads/hannig/publications/
ExaStencils_Advanced_Multigrid_Solver_Generation.pdf.

[163] Randall J. LeVeque, David L. George, and Marsha J. Berger. Tsunami modelling with adaptively refined finite
volume methods. Acta Numerica, 20:211–289, 2011.

[164] Markus Levonyak, Christina Pacher, and Wilfried N. Gansterer. Scalable resilience against node fail-
ures for communication-hiding preconditioned conjugate gradient and conjugate residual methods. In Pro-
ceedings of the 2020 SIAM Conference on Parallel Processing for Scientific Computing, pages 81–92.
SIAM, 2020. URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611976137.8, arXiv:https:
//epubs.siam.org/doi/pdf/10.1137/1.9781611976137.8, doi:10.1137/1.9781611976137.8.

[165] Scott Levy, Bryan Topp, Kurt B Ferreira, Dorian Arnold, Torsten Hoefler, and Patrick Widener. Using simu-
lation to evaluate the performance of resilience strategies at scale. In International Workshop on Performance
Modeling, Benchmarking and Simulation of High Performance Computer Systems, pages 91–114. Springer,
2013.

[166] X. Liang, S. Di, D. Tao, Si. Li, Sh. Li, H. Guo, Z. Chen, and F. Cappello. Error-controlled lossy compression
optimized for high compression ratios of scientific datasets. 2018 IEEE International Conference on Big Data
(Big Data), pages 438–447, 2018.

[167] Xin Liang, Jieyang Chen, Dingwen Tao, Sihuan Li, Panruo Wu, Hongbo Li, Kaiming Ouyang, Yuanlai Liu,
Fengguang Song, and Zizhong Chen. Correcting soft errors online in fast Fourier transform. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage and Analysis, New York,
NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3126908.3126915.

[168] J. Lidman, D. J. Quinlan, C. Liao, and S. A. McKee. ROSE::FTTransform - a source-to-source translation
framework for exascale fault-tolerance research. In IEEE/IFIP International Conference on Dependable Sys-
tems and Networks Workshops (DSN 2012), pages 1–6, June 2012. doi:10.1109/DSNW.2012.6264672.

[169] J. Liesen and Z. Strakoš. Krylov Subspace Methods. Numerical Mathematics and Scientific Computation.
Oxford University Press, 2013.

[170] S. Lin and P. Chen. A simd-based software fault tolerance for arm processors. In 2017 International Conference
on Applied System Innovation (ICASI), pages 910–913, 2017.

[171] Romain Lion. Tolérance aux pannes dans l’exécution distribuée de graphes de tâches. In Conférence
d’informatique en Parallélisme, Architecture et Système, Anglet, France, June 2019. URL: https://hal.
inria.fr/hal-02296118.

[172] Romain Lion and Samuel Thibault. From tasks graphs to asynchronous distributed checkpointing with local
restart. In Fault Tolerance for HPC at eXtreme Scale (FTXS) Workshop, 2020.

https://doi.org/10.1177/1094342015623623
https://doi.org/10.1137/040620394
https://doi.org/10.1137/040620394
https://www12.cs.fau.de/downloads/hannig/publications/ExaStencils_Advanced_Multigrid_Solver_Generation.pdf
https://www12.cs.fau.de/downloads/hannig/publications/ExaStencils_Advanced_Multigrid_Solver_Generation.pdf
https://epubs.siam.org/doi/abs/10.1137/1.9781611976137.8
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611976137.8
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611976137.8
https://doi.org/10.1137/1.9781611976137.8
https://doi.org/10.1145/3126908.3126915
https://doi.org/10.1109/DSNW.2012.6264672
https://hal.inria.fr/hal-02296118
https://hal.inria.fr/hal-02296118


[173] N. Losada, G. Bosilca, A. Bouteiller, P. González, and M. J. Martı́n. Local rollback for resilient MPI applications
with application-level checkpointing and message logging. Future Generation Computer Systems, 91:450–464,
2019.

[174] Kaoutar Maghraoui, Travis Desell, Boleslaw Szymanski, and Carlos Varela. Dynamic malleability in iterative
MPI applications. In In: 7th International Symposium on Cluster Computing and the Grid, pages 591–598, 05
2007. doi:10.1109/CCGRID.2007.45.

[175] Frédéric Magoulès, Daniel B. Szyld, and Cédric Venet. Asynchronous optimized Schwarz methods with and
without overlap. Numerische Mathematik, 137:199–227, 2017.

[176] Tim Mattson, Romain Cledat, Vincent Cave, Vivek Sarkar, Zoran Budimlic, Sanjay Chatterjee, Josh Fryman,
Ivan Ganev, Robin Knauerhase, Min Lee, Benoit Meister, Brian Nickerson, Nick Pepperling, Bala Seshasayee,
Sagnak Tasirlar, Justin Teller, and Nick Vrvilo. The open community runtime: A runtime system for extreme
scale computing. In 2016 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–7, 09
2016. doi:10.1109/HPEC.2016.7761580.

[177] Harshitha Menon and Kathryn Mohror. DisCVar: Discovering critical variables using algorithmic differentia-
tion for transient faults. SIGPLAN Not., 53(1), February 2018. doi:10.1145/3200691.3178502.

[178] G. Meurant and Z. Strakoš. The Lanczos and Conjugate Gradient algorithms in finite precision arithmetic. Acta
Numerica, 15:471–542, 2006.

[179] Amitabh Mishra and Prithviraj Banerjee. An algorithm-based error detection scheme for the multigrid method.
IEEE Trans. Comput., 52(9), September 2003. doi:10.1109/TC.2003.1228507.

[180] A. Mohammed, A. Cavelan, and F. M. Ciorba. rDLB: A novel approach for robust dynamic load balancing of
scientific applications with independent tasks. In Proceedings of the 2019 International Conference on High
Performance Computing & Simulation (HPCS 2019), Dublin, July 2019.

[181] Michael Moldaschl, Karl E. Prikopa, and Wilfried N. Gansterer. Fault tolerant communication-optimal 2.5D
matrix multiplication. J. Parallel Distributed Comput., 104:179–190, 2017. doi:10.1016/j.jpdc.2017.
01.022.

[182] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. Design, modeling, and evaluation of a scalable
multi-level checkpointing system. In SC ’10: Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 1–11, Nov 2010. doi:10.1109/SC.
2010.18.

[183] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R. de Supinski. Design, modeling, and eval-
uation of a scalable multi-level checkpointing system. In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’10, page 1–11, USA,
2010. IEEE Computer Society. doi:10.1109/SC.2010.18.

[184] K. Morris, F. Rizzi, B. Cook, P. Mycek, O. LeMaitre, O. M. Knio, K. Sargsyan, K. Dahlgren, and B. J. Debuss-
chere. Performance scaling variability and energy analysis for a resilient ULFM-based PDE solver. In 2016
7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA), pages 41–48, Nov
2016. doi:10.1109/ScalA.2016.010.

[185] Andreas Müller, Jörn Behrens, Francis X Giraldo, and Volkmar Wirth. Comparison between adaptive and
uniform discontinuous Galerkin simulations in dry 2D bubble experiments. Journal of Computational Physics,
235:371–393, 2013.

[186] Paul Mycek, Francesco Rizzi, Olivier Le Maı̂tre, Khachik Sargsyan, Karla Morris, Cosmin Safta, Bert De-
busschere, and Omar Knio. Discrete a priori bounds for the detection of corrupted PDE solutions in exascale
computations. SIAM Journal on Scientific Computing, 39(1):C1–C28, 2017. arXiv:https://doi.org/10.
1137/15M1051786, doi:10.1137/15M1051786.

[187] Arun B. Nagarajan, Frank Mueller, Christian Engelmann, and Stephen L. Scott. Proactive fault tolerance for
HPC with Xen virtualization. In Proceedings of the 21st ACM International Conference on Supercomputing
(ICS) 2007, pages 23–32, Seattle, WA, USA, June 16-20, 2007. ACM Press, New York, NY, USA. doi:
10.1145/1274971.1274978.

[188] X. Ni and L. V. Kale. FlipBack: Automatic targeted protection against silent data corruption. In Conference
for High Performance Computing, Networking, Storage and Analysis (SC), pages 335–346, Nov 2016. doi:
10.1109/SC.2016.28.

[189] Bogdan Nicolae, Adam Moody, Elsa Gonsiorowski, Kathryn Mohror, and Franck Cappello. VeloC: Towards
high performance adaptive asynchronous checkpointing at large scale. In IPDPS’19: The 2019 IEEE Inter-
national Parallel and Distributed Processing Symposium, pages 911–920, Rio de Janeiro, Brazil, May 2019.
URL: https://hal.archives-ouvertes.fr/hal-02184203.

https://doi.org/10.1109/CCGRID.2007.45
https://doi.org/10.1109/HPEC.2016.7761580
https://doi.org/10.1145/3200691.3178502
https://doi.org/10.1109/TC.2003.1228507
https://doi.org/10.1016/j.jpdc.2017.01.022
https://doi.org/10.1016/j.jpdc.2017.01.022
https://doi.org/10.1109/SC.2010.18
https://doi.org/10.1109/SC.2010.18
https://doi.org/10.1109/SC.2010.18
https://doi.org/10.1109/ScalA.2016.010
http://arxiv.org/abs/https://doi.org/10.1137/15M1051786
http://arxiv.org/abs/https://doi.org/10.1137/15M1051786
https://doi.org/10.1137/15M1051786
http://ics07.ac.upc.edu
http://ics07.ac.upc.edu
http://www.acm.org
https://doi.org/10.1145/1274971.1274978
https://doi.org/10.1145/1274971.1274978
https://doi.org/10.1109/SC.2016.28
https://doi.org/10.1109/SC.2016.28
https://hal.archives-ouvertes.fr/hal-02184203


[190] Gerhard Niederbrucker and Wilfried N. Gansterer. Robust gossip-based aggregation: A practical point of view.
In Peter Sanders and Norbert Zeh, editors, Proceedings of the 15th Meeting on Algorithm Engineering and
Experiments, ALENEX 2013, New Orleans, Louisiana, USA, January 7, 2013, pages 133–147. SIAM, 2013.
doi:10.1137/1.9781611972931.12.

[191] Allan S. Nielsen and Jan S. Hesthaven. Fault tolerance in the Parareal method. In Proceedings of the ACM
Workshop on Fault-Tolerance for HPC at Extreme Scale, FTXS ’16, pages 1–8, New York, NY, USA, 2016.
ACM. URL: http://dx.doi.org/10.1145/2909428.2909431, doi:10.1145/2909428.2909431.

[192] Michael Obersteiner, Alfredo Parra Hinojosa, Mario Heene, Hans-Joachim Bungartz, and Dirk Pflüger. A
highly scalable, algorithm-based fault-tolerant solver for gyrokinetic plasma simulations. In Proceedings of the
8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, pages 1–8, 2017.

[193] N. Oh, P. P. Shirvani, and E. J. McCluskey. Error detection by duplicated instructions in super-scalar processors.
IEEE Transactions on Reliability, 51(1):63–75, March 2002. doi:10.1109/24.994913.

[194] C. Pachajoa, C. Pacher, and W. N. Gansterer. Node-failure-resistant preconditioned conjugate gradient method
without replacement nodes. In 2019 IEEE/ACM 9th Workshop on Fault Tolerance for HPC at eXtreme Scale
(FTXS), pages 31–40, Nov 2019. doi:10.1109/FTXS49593.2019.00009.

[195] Carlos Pachajoa and Wilfried N. Gansterer. On the resilience of conjugate gradient and multigrid methods to
node failures. In Dora Blanco Heras, Luc Bougé, Gabriele Mencagli, Emmanuel Jeannot, Rizos Sakellariou,
Rosa M. Badia, Jorge G. Barbosa, Laura Ricci, Stephen L. Scott, Stefan Lankes, and Josef Weidendorfer,
editors, Euro-Par 2017: Parallel Processing Workshops - Euro-Par 2017 International Workshops, Santiago de
Compostela, Spain, August 28-29, 2017, Revised Selected Papers, volume 10659 of Lecture Notes in Computer
Science, pages 569–580. Springer, 2017. doi:10.1007/978-3-319-75178-8\_46.

[196] Carlos Pachajoa, Markus Levonyak, and Wilfried N. Gansterer. Extending and evaluating fault-tolerant pre-
conditioned conjugate gradient methods. In IEEE/ACM 8th Workshop on Fault Tolerance for HPC at eX-
treme Scale, FTXS@SC 2018, Dallas, TX, USA, November 16, 2018, pages 49–58. IEEE, 2018. doi:
10.1109/FTXS.2018.00009.

[197] Carlos Pachajoa, Markus Levonyak, Wilfried N. Gansterer, and Jesper Larsson Träff. How to make the precon-
ditioned conjugate gradient method resilient against multiple node failures. In Proceedings of the 48th Inter-
national Conference on Parallel Processing, ICPP 2019, Kyoto, Japan, August 05-08, 2019, pages 67:1–67:10.
ACM, 2019. doi:10.1145/3337821.3337849.

[198] D. Stott Parker, Brad Pierce, and Paul R. Eggert. Monte Carlo arithmetic: a framework for the statistical analysis
of roundoff error. IEEE Computation in Science and Engineering, 2001.

[199] Alfredo Parra Hinojosa, Christoph Kowitz, Mario Heene, Dirk Pflüger, and H-J Bungartz. Towards a fault-
tolerant, scalable implementation of GENE. In Recent Trends in Computational Engineering-CE2014, pages
47–65. Springer, 2015.

[200] Sri Raj Paul, Akihiro Hayashi, Nicole Slattengren, Hemanth Kolla, Matthew Whitlock, Seonmyeong Bak, Keita
Teranishi, Jackson Mayo, and Vivek Sarkar. Enabling resilience in asynchronous many-task programming mod-
els. In Ramin Yahyapour, editor, Euro-Par 2019: Parallel Processing, pages 346–360. Springer International
Publishing, 2019.

[201] Benjamin Peherstorfer, Dirk Pflüge, and Hans-Joachim Bungartz. Density estimation with adaptive sparse
grids for large data sets. In Proceedings of the 2014 SIAM international conference on data mining, pages
443–451. SIAM, 2014. URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611973440.51,
arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611973440.51, doi:10.1137/1.
9781611973440.51.

[202] A. J. Pena, W. Bland, and P. Balaji. VOCL-FT: Introducing techniques for efficient soft error coprocessor re-
covery. In Proceedings of the International Conference on High Performance Computing, Networking, Storage
and Analysis (SC’15), pages 1–12, Nov 2015. doi:10.1145/2807591.2807640.

[203] M.D. Piggott, P.E. Farrell, C.R. Wilson, G.J. Gorman, and C.C. Pain. Anisotropic mesh adaptivity for multi-
scale ocean modelling. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences, 367(1907):4591–4611, 2009.

[204] A. Poulos, D. Wallace, R. Robey, L. Monroe, V. Job, S. Blanchard, W. Jones, and N. DeBardeleben. Improving
application resilience by extending error correction with contextual information. In 2018 IEEE/ACM 8th Work-
shop on Fault Tolerance for HPC at eXtreme Scale (FTXS), pages 19–28, Nov 2018. doi:10.1109/FTXS.
2018.00006.

https://doi.org/10.1137/1.9781611972931.12
http://dx.doi.org/10.1145/2909428.2909431
https://doi.org/10.1145/2909428.2909431
https://doi.org/10.1109/24.994913
https://doi.org/10.1109/FTXS49593.2019.00009
https://doi.org/10.1007/978-3-319-75178-8_46
https://doi.org/10.1109/FTXS.2018.00009
https://doi.org/10.1109/FTXS.2018.00009
https://doi.org/10.1145/3337821.3337849
https://epubs.siam.org/doi/abs/10.1137/1.9781611973440.51
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611973440.51
https://doi.org/10.1137/1.9781611973440.51
https://doi.org/10.1137/1.9781611973440.51
https://doi.org/10.1145/2807591.2807640
https://doi.org/10.1109/FTXS.2018.00006
https://doi.org/10.1109/FTXS.2018.00006


[205] Karl E. Prikopa and Wilfried N. Gansterer. Fault-tolerant least squares solvers for wireless sensor networks
based on gossiping. J. Parallel Distributed Comput., 136:52–62, 2020. doi:10.1016/j.jpdc.2019.09.006.

[206] Alfio Quarteroni and Alberto Valli. Numerical approximation of partial differential equations, volume 23.
Springer Science & Business Media, 2008.

[207] Petar Radojkovic, Manolis Marazakis, Paul Carpenter, Reiley Jeyapaul, Dimitris Gizopoulos, Martin Schulz,
Adria Armejach, Eduard A Ayguade, François Bodin, Ramon Canal, Franck Cappello, Fabien Chaix, Guillaume
Colin De Verdiere, Said Derradji, Stefano Di Carlo, Christian Engelmann, Ignacio Laguna, Miquel Moreto,
Onur Mutlu, Lazaros Papadopoulos, Olly Perks, Manolis Ploumidis, Bezhad Salami, Yanos Sazeides, Dimitrios
Soudris, Yiannis Sourdis, Per Stenstrom, Samuel Thibault, Will Toms, and Osman Unsal. Towards Resilient
EU HPC Systems: A Blueprint. Research report, European HPC resilience initiative, April 2020. URL:
https://hal.inria.fr/hal-02922257.

[208] M. Wasiur Rashid and Michael C. Huang. Supporting highly-decoupled thread-level redundancy for parallel
programs. In Conf. on High-Performance Computer Architecture (HPCA), pages 393–404. IEEE, 2008.

[209] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August. Swift: software implemented fault
tolerance. In International Symposium on Code Generation and Optimization, pages 243–254, 2005.

[210] F. Rizzi, K. Morris, K. Sargsyan, P. Mycek, C. Safta, O. Le Maı̂tre, O.M. Knio, and B.J. Debusschere.
Exploring the interplay of resilience and energy consumption for a task-based partial differential equations
preconditioner. Parallel Computing, 73:16 – 27, 2018. Parallel Programming for Resilience and En-
ergy Efficiency. URL: http://www.sciencedirect.com/science/article/pii/S0167819117300753,
doi:https://doi.org/10.1016/j.parco.2017.05.005.

[211] Francesco Rizzi, Karla Morris, Khachik Sargsyan, Paul Mycek, Cosmin Safta, Bert Debusschere, Olivier
LeMaitre, and Omar Knio. ULFM-MPI implementation of a resilient task-based partial differential equations
preconditioner. In Proceedings of the ACM Workshop on Fault-Tolerance for HPC at Extreme Scale, New York,
NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2909428.2909429.

[212] Gabriel Rodrı́guez, Marı́a J. Martı́n, Patricia González, Juan Touriño, and Ramón Doallo. Cppc: A compiler-
assisted tool for portable checkpointing of message-passing applications. Concurr. Comput.: Pract. Exper.,
22(6):749–766, April 2010.

[213] T. Ropars, T. V. Martsinkevich, A. Guermouche, A. Schiper, and F. Cappello. SPBC: Leveraging the charac-
teristics of MPI HPC applications for scalable checkpointing. In SC ’13: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, pages 1–12, Nov 2013.
doi:10.1145/2503210.2503271.

[214] Ulrich Rüde. Fully adaptive multigrid methods. SIAM Journal on Numerical Analysis, 30(1):230–248, 1993.

[215] Ulrich Rüde. Mathematical and computational techniques for multilevel adaptive methods. SIAM, 1993.

[216] Ulrich Rüde. Error estimators based on stable splittings. In David E Keyes and Jinchao Xu, editors, Domain
Decomposition Methods in Scientific and Engineering Computing: Proceedings of the Seventh International
Conference on Domain Decomposition, October 27-30, 1993, the Pennsylvania State University, volume 180
of Contemporary Mathematics, pages 111–118. American Mathematical Soc., 1994.

[217] Adrian Sandu. A class of multirate infinitesimal gark methods. SIAM Journal on Numerical Analysis,
57(5):2300–2327, 2019.

[218] Piyush Sao and Richard Vuduc. Self-stabilizing iterative solvers. Proceedings of the Workshop on Latest
Advances in Scalable Algorithms for Large-Scale Systems - ScalA ’13, pages 1–8, 2013. URL: http://dl.
acm.org/citation.cfm?doid=2530268.2530272, doi:10.1145/2530268.2530272.

[219] Kento Sato, Naoya Maruyama, Kathryn Mohror, Adam Moody, Todd Gamblin, Bronis R de Supinski, and
Satoshi Matsuoka. Design and modeling of a non-blocking checkpointing system. In SC’12: Proceedings of
the International Conference on High Performance Computing, Networking, Storage and Analysis, pages 1–10.
IEEE, 2012.

[220] V. Savcenco, W. Hundsdorfer, and J.G. Verwer. A multirate time stepping strategy for stiff ordinary differential
equations. BIT, 47:137–155, 2007.

[221] Florian Schornbaum and Ulrich Rude. Massively parallel algorithms for the lattice Boltzmann method on
nonuniform grids. SIAM Journal on Scientific Computing, 38(2):C96–C126, 2016.

[222] Florian Schornbaum and Ulrich Rüde. Extreme-scale block-structured adaptive mesh refinement. SIAM Journal
on Scientific Computing, 40(3):C358–C387, 2018.

https://doi.org/10.1016/j.jpdc.2019.09.006
https://hal.inria.fr/hal-02922257
http://www.sciencedirect.com/science/article/pii/S0167819117300753
https://doi.org/https://doi.org/10.1016/j.parco.2017.05.005
https://doi.org/10.1145/2909428.2909429
https://doi.org/10.1145/2503210.2503271
http://dl.acm.org/citation.cfm?doid=2530268.2530272
http://dl.acm.org/citation.cfm?doid=2530268.2530272
https://doi.org/10.1145/2530268.2530272


[223] M. Schölzel. Reduced triple modular redundancy for built-in self-repair in vliw-processors. In Signal
Processing Algorithms, Architectures, Arrangements, and Applications SPA 2007, pages 21–26, Sep. 2007.
doi:10.1109/SPA.2007.5903294.

[224] Bruno Seny, Jonathan Lambrechts, Thomas Toulorge, Vincent Legat, and Jean-François Remacle. An efficient
parallel implementation of explicit multirate Runge–Kutta schemes for discontinuous Galerkin computations.
Journal of Computational Physics, 256:135–160, 2014.

[225] F. Shahzad, J. Thies, M. Kreutzer, T. Zeiser, G. Hager, and G. Wellein. CRAFT: A library for easier application-
level checkpoint/restart and automatic fault tolerance. IEEE Transactions on Parallel and Distributed Systems,
30(3):501–514, March 2019. doi:10.1109/TPDS.2018.2866794.

[226] Faisal Shahzad, Jonas Thies, Moritz Kreutzer, Thomas Zeiser, Georg Hager, and Gerhard Wellein. CRAFT:
A library for easier application-level checkpoint/restart and automatic fault tolerance. IEEE Transactions on
Parallel and Distributed Systems, 30(3):501–514, 2018. doi:10.1109/TPDS.2018.2866794.

[227] Manu Shantharam, Sowmyalatha Srinivasmurthy, and Padma Raghavan. Characterizing the impact of soft errors
on iterative methods in scientific computing. Proceedings of the international conference on Supercomputing -
ICS ’11, page 152, 2011. URL: http://portal.acm.org/citation.cfm?doid=1995896.1995922, doi:
10.1145/1995896.1995922.

[228] Richard V. Southwell. Relaxation methods in engineering science, a treatise on approximate computation.
Oxford, Oxford Univ. Pr., 1946. 1.ed., reprint.

[229] Robert Speck and Daniel Ruprecht. Toward fault-tolerant parallel-in-time integration with PFASST. Parallel
Computing, 62:20–37, 2017.

[230] P. Spitéri. Parallel asynchronous algorithms for solving boundary value problems. In M. Cosnard et al., editor,
Parallel Algorithms, pages 73–84. North-Holland, 1986.

[231] P. Spiteri. Parallel asynchronous algorithms: A survey. Advances in Engineering Software, 149:1 – 34, 2020.
[232] Linda Stals. Parallel multigrid on unstructured grids using adaptive finite element methods. PhD thesis, De-

partment Of Mathematics, The Australian National University, Australia, 1995.
[233] Linda Stals. Algorithm-based fault recovery of adaptively refined parallel multigrid grids. The International

Journal of High Performance Computing Applications, 33(1):189–211, 2019.
[234] J. Stearley, K. Ferreira, D. Robinson, J. Laros, K. Pedretti, D. Arnold, P. Bridges, and R. Riesen. Does partial

replication pay off? In IEEE/IFIP International Conference on Dependable Systems and Networks Workshops
(DSN 2012), pages 1–6, June 2012. doi:10.1109/DSNW.2012.6264669.

[235] Hana Straková, Gerhard Niederbrucker, and Wilfried N. Gansterer. Fault tolerance properties of gossip-based
distributed orthogonal iteration methods. In Vassil N. Alexandrov, Michael Lees, Valeria V. Krzhizhanovskaya,
Jack J. Dongarra, and Peter M. A. Sloot, editors, Proceedings of the International Conference on Computational
Science, ICCS 2013, Barcelona, Spain, 5-7 June, 2013, volume 18 of Procedia Computer Science, pages 189–
198. Elsevier, 2013. doi:10.1016/j.procs.2013.05.182.

[236] O. Subasi, J. Arias, O. Unsal, J. Labarta, and A. Cristal. Nanocheckpoints: A task-based asynchronous dataflow
framework for efficient and scalable checkpoint/restart. In 2015 23rd Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, pages 99–102, 2015.

[237] O. Subasi, T. Martsinkevich, F. Zyulkyarov, O. Unsal, J. Labarta, and F. Cappello. Unified fault-tolerance
framework for hybrid task-parallel message-passing applications. The International Journal of High Perfor-
mance Computing Applications, 32(5):641–657, 2018.

[238] O. Subasi, G. Yalcin, F. Zyulkyarov, O. Unsal, and J. Labarta. A runtime heuristic to selectively replicate
tasks for application-specific reliability targets. In 2016 IEEE International Conference on Cluster Computing
(CLUSTER), pages 498–505, 2016.

[239] O. Subasi, G. Yalcin, F. Zyulkyarov, O. Unsal, and J. Labarta. Designing and modelling selective replication
for fault-tolerant HPC applications. In 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), pages 452–457, May 2017. doi:10.1109/CCGRID.2017.40.

[240] Omer Subasi, Javier Arias, Osman Unsal, Jesus Labarta, and Adrian Cristal. Programmer-directed partial re-
dundancy for resilient HPC. In Proceedings of the 12th ACM International Conference on Computing Frontiers
(CF), pages 47:1–47:2, New York, NY, USA, 2015. ACM. URL: http://doi.acm.org/10.1145/2742854.
2742903, doi:10.1145/2742854.2742903.

[241] N. Sukhija, I. Banicescu, and F. M. Ciorba. Investigating the resilience of dynamic loop scheduling in hetero-
geneous computing systems. In Proceedings of the 14th International Symposium on Parallel and Distributed
Computing (ISPDC 2015), pages 194–203, June 2015. doi:10.1109/ISPDC.2015.29.

https://doi.org/10.1109/SPA.2007.5903294
https://doi.org/10.1109/TPDS.2018.2866794
https://doi.org/10.1109/TPDS.2018.2866794
http://portal.acm.org/citation.cfm?doid=1995896.1995922
https://doi.org/10.1145/1995896.1995922
https://doi.org/10.1145/1995896.1995922
https://doi.org/10.1109/DSNW.2012.6264669
https://doi.org/10.1016/j.procs.2013.05.182
https://doi.org/10.1109/CCGRID.2017.40
http://doi.acm.org/10.1145/2742854.2742903
http://doi.acm.org/10.1145/2742854.2742903
https://doi.org/10.1145/2742854.2742903
https://doi.org/10.1109/ISPDC.2015.29


[242] Daniel B. Szyld. The mystery of asynchronous iterations convergence when the spectral radius is one. Technical
Report 98-102, Department of Mathematics, Temple University, Philadelphia, Pa., October 1998. Available at
http://www.math.temple.edu/szyld.

[243] Daniel B. Szyld. Perspectives on asynchronous computations for fluid flow problems. In K. J. Bathe, editor,
Computational Fluid and Solid Mechanics, pages 377–380. Elsevier, 2001.

[244] Daniel B. Szyld and Jian-Jun Xu. Convergence of some asynchronous nonlinear multisplitting methods. Nu-
merical Algorithms, 25:347–361, 2000.

[245] X. Tang, J. Zhai, B. Yu, W. Chen, W. Zheng, and K. Li. An efficient in-memory checkpoint method and its
practice on fault-tolerant HPL. IEEE Transactions on Parallel and Distributed Systems, 29(4):758–771, April
2018. doi:10.1109/TPDS.2017.2781257.

[246] D. Tao, S. Di, Z. Chen, and F. Cappello. Significantly improving lossy compression for scientific data sets
based on multidimensional prediction and error-controlled quantization. In 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 1129–1139. IEEE, 2017.

[247] Dingwen Tao, Shuaiwen Leon Song, Sriram Krishnamoorthy, Panruo Wu, Xin Liang, Eddy Z. Zhang, Darren J.
Kerbyson, and Zizhong Chen. New-sum: A novel online ABFT scheme for general iterative methods. In Hiroshi
Nakashima, Kenjiro Taura, and Jack Lange, editors, Proceedings of the 25th ACM International Symposium on
High-Performance Parallel and Distributed Computing, HPDC 2016, Kyoto, Japan, May 31 - June 04, 2016,
pages 43–55. ACM, 2016. iterative methods for linear systems: Krylov, stationary. doi:10.1145/2907294.
2907306.

[248] Containment Domain Team. Containment domains, 2014. URL: https://lph.ece.utexas.edu/public/
CDs/ContainmentDomains.

[249] Nanos team. Nanos++, 2020. URL: https://www.bsc.es/research-and-development/
software-and-apps/software-list/nanos-rtl.

[250] RAJA team. Raja performance portability layer. https://github.com/LLNL/RAJA, 2019.

[251] The Mercury Team. MERCURY programming language, 2020. URL: https://www.mercurylang.org/.

[252] The Zoltan Team. Zoltan: Parallel Partitioning, Load Balancing and Data-Management Services, 2013. URL:
https://cs.sandia.gov/Zoltan/.

[253] Keita Teranishi and Michael A. Heroux. Toward local failure local recovery resilience model using MPI-ULFM.
In Proceedings of the 21st European MPI Users’ Group Meeting, EuroMPI/ASIA’14, page 51–56, New York,
NY, USA, 2014. Association for Computing Machinery. doi:10.1145/2642769.2642774.

[254] Samuel Thibault. On Runtime Systems for Task-based Programming on Heterogeneous Platforms. Habili-
tation à diriger des recherches, Université de Bordeaux, December 2018. URL: https://hal.inria.fr/
tel-01959127.

[255] G. Tumolo and L. Bonaventura. A semi-implicit, semi-Lagrangian discontinuous Galerkin framework for adap-
tive numerical weather prediction. Quarterly Journal of the Royal Meteorological Society, 141(692):2582–
2601, 2015.

[256] Henk A. van der Vorst and Qiang Ye. Residual replacement strategies for Krylov subspace iterative methods
for the convergence of true residuals. SIAM Journal on Scientific Computing, 22(3):835–852, 2000.

[257] Jyothish Varma, Chao Wang, Frank Mueller, Christian Engelmann, and Stephen L. Scott. Scalable, fault-
tolerant membership for MPI tasks on HPC systems. In Proceedings of the 20th ACM International Conference
on Supercomputing (ICS) 2006, pages 219–228, Cairns, Australia, June 28-30, 2006. ACM Press, New York,
NY, USA. doi:10.1145/1183401.1183433.

[258] J. Vignes. Discrete Stochastic Arithmetic for validating results of numerical software. Numerical Algorithms,
37(1–4):377–390, December 2004.

[259] T. N. Vijaykumar, Irith Pomeranz, and Karl Cheng. Transient-fault recovery using simultaneous multithreading.
In In proceedings of the 29th annual international symposium on computer architecture, pages 87–98. IEEE
Computer Society, 2002.

[260] John von Neumann. First Draft of a Report on the EDVAC, 1945. URL: https://nsu.ru/xmlui/
bitstream/handle/nsu/9018/2003-08-TheFirstDraft.pdf?sequence=1&isAllowed=y.

[261] John von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable components.
Automata Studies, pages 43–98, 1956.

https://doi.org/10.1109/TPDS.2017.2781257
https://doi.org/10.1145/2907294.2907306
https://doi.org/10.1145/2907294.2907306
https://lph.ece.utexas.edu/public/CDs/ContainmentDomains
https://lph.ece.utexas.edu/public/CDs/ContainmentDomains
https://www.bsc.es/research-and-development/software-and-apps/software-list/nanos-rtl
https://www.bsc.es/research-and-development/software-and-apps/software-list/nanos-rtl
https://github.com/LLNL/RAJA
https://www.mercurylang.org/
https://cs.sandia.gov/Zoltan/
https://doi.org/10.1145/2642769.2642774
https://hal.inria.fr/tel-01959127
https://hal.inria.fr/tel-01959127
http://www.ics-conference.org/2006
http://www.ics-conference.org/2006
http://www.acm.org
http://www.acm.org
https://doi.org/10.1145/1183401.1183433
https://nsu.ru/xmlui/bitstream/handle/nsu/9018/2003-08-TheFirstDraft.pdf?sequence=1&isAllowed=y
https://nsu.ru/xmlui/bitstream/handle/nsu/9018/2003-08-TheFirstDraft.pdf?sequence=1&isAllowed=y


[262] Chao Wang, Frank Mueller, Christian Engelmann, and Stephen L. Scott. A job pause service under
LAM/MPI+BLCR for transparent fault tolerance. In Proceedings of the 21st IEEE International Parallel and
Distributed Processing Symposium (IPDPS) 2007, pages 1–10, Long Beach, CA, USA, March 26-30, 2007.
ACM Press, New York, NY, USA. doi:10.1109/IPDPS.2007.370307.

[263] Chao Wang, Frank Mueller, Christian Engelmann, and Stephen L. Scott. Hybrid checkpointing for MPI jobs
in HPC environments. In Proceedings of the 16th IEEE International Conference on Parallel and Distributed
Systems (ICPADS) 2010, pages 524–533, Shanghai, China, December 8-10, 2010. IEEE Computer Society, Los
Alamitos, CA, USA. doi:10.1109/ICPADS.2010.48.

[264] Chao Wang, Frank Mueller, Christian Engelmann, and Stephen L. Scott. Proactive process-level live migration
and back migration in HPC environments. Journal of Parallel and Distributed Computing (JPDC), 72(2):254–
267, February 2012. doi:10.1016/j.jpdc.2011.10.009.

[265] Chris Weaver and Todd M. Austin. A fault tolerant approach to microprocessor design. In Proceedings of the
2001 International Conference on Dependable Systems and Networks (Formerly: FTCS), USA, 2001. IEEE
Computer Society.

[266] Jordi Wolfson-Pou and Edmond Chow. Asynchronous multigrid methods. 2019 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 101–110, 2019.

[267] Panruo Wu and Zizhong Chen. FT-ScaLAPACK: Correcting soft errors on-line for ScaLAPACK Cholesky,
QR, and LU factorization routines. In Proceedings of the 23rd International Symposium on High-per formance
Parallel and Distributed Computing, HPDC ’14, pages 49–60, New York, NY, USA, 2014. ACM. URL: http:
//doi.acm.org/10.1145/2600212.2600232, doi:10.1145/2600212.2600232.

[268] Panruo Wu, Qiang Guan, Nathan DeBardeleben, Sean Blanchard, Dingwen Tao, Xin Liang, Jieyang Chen, and
Zizhong Chen. Towards practical algorithm based fault tolerance in dense linear algebra. In Proceedings of the
25th ACM International Symposium on High-Performance Parallel and Distributed Computing, New York, NY,
USA, 2016. Association for Computing Machinery. dense linear algebra. doi:10.1145/2907294.2907315.

[269] Y. Kim, J. S. Plank, and J. J. Dongarra. Fault tolerant matrix operations using checksum and reverse compu-
tation. In Proceedings of 6th Symposium on the Frontiers of Massively Parallel Computation (Frontiers ’96),
pages 70–77, Oct 1996. doi:10.1109/FMPC.1996.558063.

[270] Ichitaro Yamazaki, Edmond Chow, Aurelien Bouteiller, and Jack J. Dongarra. Performance of asynchronous
optimized Schwarz with one-sided communication. Parallel Comput., 86:66–81, 2019. doi:10.1016/j.
parco.2019.05.004.

[271] Yonghong Yan, Jisheng Zhao, Yi Guo, and Vivek Sarkar. Hierarchical place trees: A portable abstraction for
task parallelism and data movement. In International Workshop on Languages and Compilers for Parallel
Computing, pages 172–187. Springer, 2009.

[272] Ulrike Yang, Piotr Luszczek, Satish Baley, and Keita Teranishi. An introduction to the xsdk a community of
diverse numerical hpc software packages. Technical report, Sandia National Lab.(SNL-CA), Livermore, CA
(United States), 2019. doi:10.6084/m9.figshare.7779452.v1.

[273] J. Yu, D. Jian, Z. Wu, and H. Liu. Thread-level redundancy fault tolerant CMP based on relaxed input repli-
cation. In 2011 6th International Conference on Computer Sciences and Convergence Information Technology
(ICCIT), pages 544–549, Nov 2011.

[274] Gengbin Zheng, Xiang Ni, and Laxmikant V Kalé. A scalable double in-memory checkpoint and restart scheme
towards exascale. In IEEE/IFIP International Conference on Dependable Systems and Networks Workshops
(DSN 2012), pages 1–6. IEEE, 2012.

[275] Ziming Zheng, Andrew A. Chien, and Keita Teranishi. Fault tolerance in an inner-outer solver: A GVR-enabled
case study. In Michel J. Daydé, Osni Marques, and Kengo Nakajima, editors, High Performance Computing for
Computational Science - VECPAR 2014 - 11th International Conference, Eugene, OR, USA, June 30 - July 3,
2014, Revised Selected Papers, volume 8969 of Lecture Notes in Computer Science, pages 124–132. Springer,
2014. doi:10.1007/978-3-319-17353-5\_11.

[276] G Zoutendijk. Nonlinear programming, computational methods. Integer and nonlinear programming, pages
37–86, 1970.

http://www.ipdps.org/ipdps2007
http://www.ipdps.org/ipdps2007
http://www.acm.org
https://doi.org/10.1109/IPDPS.2007.370307
http://grid.sjtu.edu.cn/icpads10
http://grid.sjtu.edu.cn/icpads10
http://www.computer.org
http://www.computer.org
https://doi.org/10.1109/ICPADS.2010.48
http://www.elsevier.com/locate/jpdc
https://doi.org/10.1016/j.jpdc.2011.10.009
http://doi.acm.org/10.1145/2600212.2600232
http://doi.acm.org/10.1145/2600212.2600232
https://doi.org/10.1145/2600212.2600232
https://doi.org/10.1145/2907294.2907315
https://doi.org/10.1109/FMPC.1996.558063
https://doi.org/10.1016/j.parco.2019.05.004
https://doi.org/10.1016/j.parco.2019.05.004
https://doi.org/10.6084/m9.figshare.7779452.v1
https://doi.org/10.1007/978-3-319-17353-5_11
https://www.researchgate.net/publication/354799143

	1 Introduction
	2 System infrastructure techniques for resilience
	2.1 Detected and transparently corrected errors
	2.2 Detected errors mitigated with assistance
	2.2.1 Correction with incremental redesign
	2.2.2 Correction with major redesign 


	3 Numerical algorithms for resilience
	3.1 Error detecting algorithms
	3.1.1 Exceptions
	3.1.2 Checksums
	3.1.3 Constraints
	3.1.4 Technical error information
	3.1.5 Multi-resolution
	3.1.6 Redundancy

	3.2 Error aware algorithms
	3.2.1 Error aware algorithms for the solution of linear systems
	3.2.2 Error aware algorithms for the solution of partial differential equations

	3.3 Error oblivious algorithms
	3.3.1 Gossip based methods
	3.3.2 Fixed-point methods
	3.3.3 Krylov subspace solvers
	3.3.4 Domain decomposition
	3.3.5 Time stepping


	4 Future directions
	4.1 Systems in support of resilient algorithms
	4.1.1 Error correcting codes
	4.1.2 Improving checkpoint/restart
	4.1.3 Scheduler and resource management

	4.2 Programming models with inherent resiliency support
	4.3 Future directions for the solution of partial differential equations
	4.3.1 Redundancy and replication
	4.3.2 Hierarchy and mixed precision
	4.3.3 Error control
	4.3.4 Locality, asynchronicity and embarassingly parallelism
	4.3.5 Stochastic
	4.3.6 Iterative methods
	4.3.7 Low memory footprint – matrix-free

	4.4 The final mile: towards a resilient ecosystem
	4.4.1 Tools to support resilience software development
	4.4.2 User/Programmer education


	5 Conclusions



