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Abstract: Reflectarray antennas are low-profile high-gain systems widely applied in the aerospace
industry. The increase in their application is leading to the problem of getting more advanced
performance while keeping the system as simple as possible. In these cases, their design cannot be
conducted via analytical methods, thus evolutionary optimization algorithms are often implemented.
Indeed, the design is characterized by the presence of many local minima, by high number of design
variables, and by the high computational burden required to evaluate the antenna performance.
The purpose of this paper is to develop, implement, and test a complete Optimization Environment
that can be applied to achieve high scanning capabilities with a reflectarray. The design of the
optimization environment has been selected to be flexible enough to be applied also with other
different algorithms.

Keywords: Evolutionary Algorithms; reflectarray optimization; Particle Swarm Optimization;
Genetic Algorithm; Social Network Optimization

1. Introduction

In recent years, Evolutionary Algorithms (EAs) have been successfully applied to
many engineering problems thanks to their capability to find optimal solutions in non-
linear and multimodal problems [1]. Another important aspect of EAs is their flexibility:
similar frameworks can be applied to different engineering problems [2].

Most of the problems faced with EAs require complex models to simulate the system
and to define performance parameters. The model complexity, required for providing an
accurate output of the optimization process, is usually time expensive; consequently, it
requires an effective optimization process management to achieve the optimal result in
reasonable time [3].

The design optimization of Reflectarray Antennas (RAs) is a clear example of this
problem: in fact, these systems are composed by hundreds or even thousands of elements
that can be optimized, leading to a very large non-linear multimodal optimization prob-
lem [4]. RAs are a group of powerful and efficient high-gain antennas; they are highly
adopted in many different conditions thanks to their numerous advantages, such as low
profile, low cost, good radiation performance, and ease of manufacturing [5]. Compared
to traditional phased arrays, RA have a less complex feeding system and, thus, lead to a
reduction in the losses introduced by the feeding networks [6].

Among all the antenna configurations, reflector antennas have been exploited for the
high demand of radar and satellite communication, where a point-to-point connection was
needed and, consequently, a high gain was required. In order to reduce the space required
by the reflector, Reflectarray Antennas have been introduced, especially in aerospace
applications: in fact, they have low weight, low profile, and the possibility to be easily
folded [7]. Reflectarray Antennas consist in a planar array made up of different re-radiating
elements illuminated by a feed source (typically a horn antenna) placed in central or offset
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position. In these antennas, changing one or more geometrical parameter of each patch is
used to control the phase of the re-radiated field changes and to obtain the desired radiation
pattern [8].

The design process complexity for RA depends on the type of radiation pattern
that is required: for the simple case of a pencil beam RA, the design can be carried out
analytically [9]. In the case of more complex requirements in terms of radiation pattern,
optimization methods are fundamental. In this context, Evolutionary Algorithms (EAs) are
very valuable tools.

Genetic Algorithms (GAs) have been widely adopted in the field of reflectarray opti-
mization. In [10] the authors propose the application of GA to create the reflection layer
of an RA: with respect to other works, in this one the reflection element shape is not fixed
and can be tuned with the GA. A similar approach has been implemented in [11] for a dual
band RA. In [12], a reconfigurable RA composed by a two layer pixel patches is proposed.
The second layer height can be mechanically adjustable to change the beam direction. Both
the pixel patches are optimized by means of a binary GA.

Other EAs have been applied to this problem: for example, Particle Swarm Opti-
mization has been implemented in [13] to design a dual band RA and also Differential
Evolution has been applied for the design of RAs [14]. In order to improve the optimization
performance, variations of known algorithms are proposed: in [15] an dynamic clustering
process is introduced in PSO to improve the trade-off between exploration and exploitation.
The application of a single algorithm is not always sufficient due to the problem complex-
ity: for this reason, hybrid approaches have been proposed in literature. The first tested
hybridization consists in the combination of GA and PSO [16], while further improvements
can be achieved combining EAs with deterministic methods, like the Taguchi one [17,18].
Finally, local search techniques can be applied for the final refinement of the solutions found
by the EA. This approach has been applied successfully in [19] for a single optimization
problem and in [20] for a multi-objective one.

A recent problem in reflectarray antenna design is to improve their scanning capabili-
ties, i.e., the possibility to modify the direction of the radiation pattern main beam [21]. In
our paper this capability is achieved by steering the feeder with respect to a fixed reflector.
Thus, the latter must be designed to reach good reflection proprieties with different scan
angles. This system is much simpler than electronic scanning, because it does not require a
complex biasing system for the reflector; however, the radiation pattern worsens quickly
with increasing scan angles. The lack of optimal deterministic solutions to this problem
make it suitable to be addressed by an Evolutionary Optimization approach.

The aim of this paper is to analyze the entire Optimization Environment that has
been implemented for the design of a beam-scanning RA. The problem is characterized
by a large number of design variables (148) and is highly non-linear. The Optimization
Environment has been designed to be easily adaptable to different EA: to prove this, seven
EAs have been tested on this problem. With respect to other papers available in literature,
here the entire optimization process has been analyzed to maximize the EAs performances.

The paper is structured as follows: in Section 2 the optimization problem is described
and the optimization environment presented. Section 3 presents a brief description of the
adopted Evolutionary Algorithms. In Section 4, the results of the antenna optimization are
presented and, finally, in Section 5 some conclusions are drawn.

2. Antenna and Optimization Environment Description

In this section, the analyzed optimization problem will be deeply described. In
particular, the antenna is analyzed and then, accordingly to the specific features of the
analyzed problem, the optimization environment is properly designed and described.
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2.1. Antenna Geometry

Reflectarrays (RAs) are antenna structures originally aimed to improve directivity.
They consist of a low profile planar array of printed radiating elements illuminated by a
primary feed source [22].

Usually these antennas are characterized by a flat reflector: this solution reduces the
production costs and the antenna volume which represents an important aspect especially
in aerospace applications. Moreover, with respect to parabolic reflectors, it is possible to
have more customizable solutions, such as conformal reflectors [23].

The planar reflector consists of several patches with different geometrical parame-
ters, which affects their reflection proprieties, such as the reflection phase shift and the
attenuation in the field amplitude. A proper selection of the geometrical parameters and
electromagnetic response of all the patches can be used for obtaining the desired antenna
performance [24].

Figure 1 shows the design scheme of the two most important components of the
analyzed antenna: the upper element is the feed, that in this specific case is a horn antenna,
while the lower element is the reflector. The reflector properties are achieved by properly
selecting the patches (red elements in the figure). The analyzed geometry is composed by
24× 24 square patches of different size.

Figure 1. Geometry of the planar reflectarray antenna: feeder (upper dark red horn antenna) and the
reflector with in red the all patches.

The selected patches are square shaped because they are able to provide good reflection
properties at different sizes. These are shown in Figure 2: the upper diagram shows the
reflection amplitude as function of the patch size, while the bottom part shows the angle
variation induced by the reflection. This patch is suitable for the specific application because
the reflection losses are low for all the analyzed patch sizes, and the reflection angles almost
cover 360°.

The analyzed problem is the achievement of scanning capabilities, i.e., the possibility
of changing the main radiation direction. In this application, the reflector has a fixed
geometry, while the feeder can move in the space creating a relative angle to the reflector
normal direction (θinc). This movement causes a rotation of the output radiation pattern of
the entire antenna.

The radiation pattern properties can be modified by means of two different groups of
design variables: the first one consists in the patches’ sizes. Changing these, the radiation
pattern is modified for all scan angles. The second group of design variables are the beam
deviation factors.
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Figure 2. Reflection characteristics of the selected patch: the upper diagram shows the reflection
amplitude as function of the patch size, while the bottom part shows the angle variation induced by
the reflection.

For a given scan angle (the desired output angle of the radiation pattern with respect
to the vertical line, indicated with the symbol θscan), the beam deviation factor (BDF) is
defined as the difference between the incident angle (θinc) and the direction of the maximum
amplitude of the radiation pattern (θmax). This is shown in Figure 3.

Figure 3. Definition of Beam Deviation Factor.

2.2. Performance Parameters

For each antenna configuration, it is possible to use the Aperture Field Method to
compute the radiation pattern of the antenna. This is an approximated approach that
provides good results in the identification of the Radiation Pattern for RAs. With respect to
a complete FEM solution, the performance worsening is acceptable, and the computational
time is a couple of orders of magnitude lower in the aperture field method [25].
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Each element of the planar reflector is identified by its position, assuming a reference
system located in the plane of the reflector and centered with respect to the antenna:

~rmn =


xmn
ymn

0

 (1)

Hence, the distance between each patch and the center of the array is:

rmn =
√

x2
mn + y2

mn (2)

The feeder location is identified with spherical coordinates: in this way, the radial
coordinate d f is representative of the amount of energy radiated outside the reflector, and
the tilting angles represent the position of the offset feeder that is oriented towards the
center of the array.

Due to the fact that generally the feeder is tilted only with the θ coordinate, its vector
position is:

~r f =


−d f sin θ f

0
d f cos θ f

 (3)

Thus, the distance between the feed and each patch is:

r f mn =
√

x2
mn + y2

mn + z2
f (4)

The two important elements that are used for the evaluation of the radiation pattern
are the radiated field from the feeder and the reflection properties of each patch that are
characterized by the two parameters qE and qH .

In order to evaluate the field received by the reflector, it is necessary to evaluate the
angles φFmn and θF,mn of each patch, seen from the feeder:

φF,mn = arccos

 xmn + d f sin θ f√
(xmn + d f sin θ f )2 + y2

mn

 (5)

θF,mn = arccos

 d2
f + |~rmn −~r f |2 − r2

mn

2d f

√
(xmn + d f sin θ f )2 + y2

mn

 (6)

The field received by each patch, expressed in spherical coordinates in the feeder
reference system, is:

EF =

(
EF

θ
EF

φ

)
=

 j
k0

2πr f mn
e−jk0r f mn · cosq f e θF,mn · cos φF,mn

−j
k0

2πr f mn
e−jk0r f mn · cosq f h θF,mn sin φF,mn

 (7)

where q f e and q f h are the two parameters that characterize a feed horn.
Then, this field projected in Cartesian coordinates of the feeder reference system is:

EF =

 EF
x

EF
y

EF
z

 =

 cos θmn cos φmnEF
θ − sin φmnEF

φ

cos θmn sin φmnEF
θ + cos φmnEF

φ

− sin θmnEF
θ

 (8)
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Finally, it is possible to calculate the field in the reference system of the reflector:

ER
mn =

(
ER

mn,x
ER

mn,y

)
=

(
cos θ f EF

x − sin θ f EF
z

−EF
y

)
(9)

The field calculated is the one that each patch receives as input from the feeder. Then
it is possible to calculate the reflected field. With this aim, the geometrical characteristics of
the patch (design variable of the antenna design problem) should be considered, since they
affect the reflection coefficient.

For a given patch length Lmn, it is possible to calculate the reflection proprieties
(amplitude SMN and phase φmn). Thus, the reflected field from each patch is:

amn =

(
ER

mn,x · Smnejφmn

ER
mn,y · Smnejφmn

)
(10)

The combination of the radiated fields of all the patches is:

ER(θ, φ) =

(
ER

x
ER

y

)
=

(
∑Nx

m=1 ∑
Ny
n=1 amn,x · ejk0(u·xnm+v·ynm)

∑Nx
m=1 ∑

Ny
n=1 amn,y · ejk0(u·xnm+v·ynm)

)
(11)

Finally, this field is rotated in the θ, φ reference system:

E(θ, φ) =


− jk0r f f

2πr f f
(ER

x cos φ + ER
y sin φ)

− jk0r f f

2πr f f
(−ER

x cos θ sin φ + ER
y cos θ cos φ)

 (12)

The radiation pattern of an antenna is the module of the radiated field and generally it
is expressed in decibels.

Due to the scanning capabilities required for the antenna, several radiation patterns
should be calculated to assess the radiating performance: in fact, the radiation pattern
depends on the incident field.

From each of the calculated radiation patterns, i.e., for each scan angle (indicated in
the following equations by means of s), it is possible to define two important performance
parameters that are affected by the design variables, denoted with the symbol d.

The first performance parameter regards the general shape of the radiation pattern,
and in particular it is useful to limit the side lobe levels. This objective can be achieved my
means of the definition of a mask that defines the upper level that the radiation pattern
can achieve for each scan angle. Thus, the radiation pattern error (RE) can be computed
as follows:

REs(d) =
∫∫

∆E(θ, φ)dθdφ (13)

where ∆E is the radiation pattern error, defined by means of the Heavyside function H:

∆E(θ, φ) = [|E(θ, φ)|dB −M(θ, φ)] · H[|E(θ, φ)|dB −M(θ, φ)] (14)

The second performance parameter is the scanning direction error, i.e., the difference
between the desired scanning direction (θscan) and the direction of the maximum amplitude
of the radiation pattern (θmax):

∆θs(d) = (θscan − θmax)
2 (15)

These two objective functions can be used to properly direct the optimization pro-
cess [26]. In fact, the integral error between the mask and the radiation pattern is a very
common cost value, but it cannot detect accurately the scan angle error. Thus, the second
cost should also be used in the optimization procedure.
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2.3. Optimization Environment

The Optimization Environment (OE) includes all the elements and the interactions be-
tween them that are required to properly conduct the optimization process. The definition
of all the elements of the OE is fundamental to have a proper convergence of the optimiza-
tion toward the function global optimum. The two main pillars of the environment are the
optimization algorithm and the optimization problem (see Figure 4).

The complete definition of the algorithm requires four choices: the first is which of
the algorithms available in literature is the most suitable for the specific problem; then, it
is necessary to select which are the optimization variables, how many objective function
calls are required, and which set of algorithm internal parameters is the most suitable.
For what concerns the optimization variables, they can differ from the problem design
variables: in fact, it is possible to define the design variables as the combination of two or
more optimization variables, or it is possible to reduce the problem size considering the
physical knowledge or the constraints.

Figure 4. Optimization environment: it is composed by all the elements involved in the optimization
process and it guarantees the quality of the final solution.

The process of converting the optimization variables into the design variables consists
of two steps: the first one is the decodification, i.e., the mapping procedure from the
mathematical variables to the physical ones. The second step is the analysis of the variables
with the feasibility function that takes into account the constraints on the problem variables.
The most common constraints that are managed by the feasibility function are the box
boundary conditions, i.e., the minimum and the maximum values that a variable can
achieve. There are two main approaches to the feasibility function: it can edit the variables
in order to satisfy the constraints, or it can reject the candidate solutions, bypassing the
optimization problem.

The feasible candidate solutions are used in the optimization problem definition to
compute the system behavior and, thus, the performance parameters. Generally, engineer-
ing problems can have more than one performance index that should be considered in the
optimization procedure.

Once the performance parameters are computed, this information is fed back to the
optimization algorithm by means of the cost function: this combines the performance
indexes to obtain one (single-objective problem) or more (multi-objective problem) cost
values. They can take into account different aspects, like the penalization of unfeasible
solutions or solutions in which the system behavior is not acceptable. Once the optimization
process is concluded, the final solution should be assessed.

For the RA optimization problem, the general Optimization Environment can be
tailored as follows.
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The design variables of this problem are size of all the patches (24× 24 = 576 in this
antenna) and, for each of the analyzed scan angles, the beam deviation factor. In order
to reduce both the number of optimization variables and the computational effort in the
system behavior calculation, it is possible to exploit the system symmetries: in fact, the
required masks are symmetric in the φ plane and the scanning requirements are symmetric
for positive and negative θscan angles. Due to this reason, the system geometry should have
two symmetries, thus reducing the number of optimization variables related to the patch
size to 144. Similarly, it is possible to compute the system behavior with only positive scan
angles, and the number of analyzed θscan is reduced to 4.

The optimization variables are allowed to vary in the range [0, 1], while in the decodi-
fication process, these values should be mapped in the range [0.5, 4.5] for the patch size and
[−6, 6] for the BDF. The only constraint directly connected to the design variables is the sat-
isfaction of the box boundary conditions. Solutions that violate these constraints are edited
to fit them. Different approaches have been tested in this work for the feasibility function.

As previously described, the Aperture Field Method is used to calculate the radiation
pattern for each tested scan angle. For each of them, the two performance parameters
(the radiation pattern error RE and the scanning direction error ∆θs) are calculated. The
computation of the radiation pattern takes 1.73 s on Intel Core i7 for this antenna, which
corresponds to 23.8 h for the entire optimization considering 50,000 objective function calls.

The obtained performance parameters are combined by the cost function with a two-
level scalarization procedure: the first level aims to obtain a single cost value for each
scan angle, while the second level combines these costs to reduce the problem to a single
objective one.

The first level of scalarization is obtained by means of a single parameter (λ) that tunes
the relative importance of the two performance indexed:

cs(d) = REs(d) + λ · ∆θs(d) (16)

The second scalarization level combines the four obtained cost values: for each scan
angle a different scalar value (µs) is used to adjust the convergence of the procedure. This is
very important for two reasons: firstly, solutions for larger scan angles are less effective than
for small angles and secondly, the performance calculation procedure inside the Aperture
Field Method penalizes errors closer to θ = 0 more than the others. Thus, the final cost
value is defined as follows:

C(d) =
4

∑
s=1

µs · cs(d) (17)

The final solution is assessed using a Finite Element Method, called full wave analysis:
it cannot be introduced in the optimization loop because it requires many hours to compute
the performance of a single antenna configuration.

3. Evolutionary Algorithms

In this section, the adopted Evolutionary Algorithms are briefly described, explaining
the operators implemented for this application.

3.1. Differential Evolution

Differential Evolution (DE) has been introduced in [27] for solving continuous opti-
mization problems with the aim to handling non-differentiable, non-linear, and multimodal
cost functions. Moreover, it has been designed to be easy for the user (robustness of the
parameters choice) and suitable for parallelization. The algorithm has been applied to a
wide range of problems, obtaining very good results [28].

The algorithm is based on the vector-based mutation: this operator has the objective
to create the new population starting from the existing one. As a first step, two individuals
of the population are selected (all the selection possibilities can be used) and the difference
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vector is calculated. Then a third individual is selected, and it is moved in the search space
by a quantity that is proportional to the difference vector:

xi(t + 1) = xr1(t) + F · (xr2(t)− xr3(t)) (18)

where F is an user defined parameter and it has been set equal to 0.5.
This algorithm is native for real-valued problems, like the reflectarray antenna opti-

mization. The algorithm has been implemented with an elitism-based replacement of the
individuals, i.e., each element of the population is replaced with a new one only if the cost
value is improved.

3.2. Genetic Algorithm

The Genetic Algorithm (GA) is the most popular among the Evolutionary Optimization
algorithms and it is based on the three basic operators: selection, crossover, and mutation.

The GA implemented in this work is real-coded due to the intrinsic continuous nature
of the variables of this problem. For what concerns the selection operator, one of the
two parents is selected with the stud selection, which extracts the best individual of the
population at every iteration. The GA with this operator is often considered as a separate
algorithm called Stud-GA [29]. This modification of the GA has been used because it has
been proved to be more effective than the GA itself on antenna applications [30]. The other
parent has been selected with a roulette wheel selection with pressure ration equal to 1.

The crossover operator implemented is an arithmetic crossover that is specifically
designed for real-coded problems. The crossover probability is set to 1. A Gaussian
mutation has been used for creating the offspring generation, with a mutation rate equal to
0.1. The mutation amplitude, defined as the standard deviation of the Gaussian random
distribution, is equal to 0.06.

3.3. Biogeography Based Optimization

Biogeography Based Optimization (BBO) is a biologically inspired algorithm devel-
oped in [31]. The main idea of this algorithm is to mimic the migrations of species in an
archipelago. BBO has been used in antenna optimization, but it often leads to an early
convergence: with the aim of reducing this behavior, two different modifications have been
implemented and here adopted.

The first one, called mBBO, has been presented in [32] and introduces a new operator in
the algorithm, the cataclysm. It aims to renovate the entire population when the algorithm
stagnates for more than 10 iterations. The second modification used in mBBO is the use of
a cosine immigration and emigration probability functions.

A second modification of the original algorithm has been tested: it is called nBBO and
it introduces seasonality, i.e., an important modification of the island environment. This
operator has been implemented with a Gaussian mutation with 0.01 as standard deviation.

3.4. Particle Swarm Optimization

The Particle Swarm Optimization (PSO) is another well-known population-based
evolutionary algorithm implemented for real-value problems [33].

This algorithm has been widely studied and applied: its performance is highly depen-
dent on the specific selection of the parameters and, with respect to GA, it is characterized
by an higher convergence rate that in some cases leads to a premature stagnation in lo-
cal minima.

The algorithm parameters have been selected according to [34]: the inertia has been
set equal to 0.8, and both the social and personal knowledge parameters have been set
to 0.5.
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3.5. Social Network Optimization

Social Network Optimization (SNO) is a population-based algorithm that mimics the
information sharing process in common online social networks. The population of this
algorithm consists in the social network users that share their ideas and interact online.

Each user is characterized by its opinion that it is shared by means of a post (out of
the metaphor, the candidate solution of the optimization problem). The post is evaluated
by the social network and it receives a visibility value (the cost value of the problem) that
indicates how much it is probable that another user can read it [35].

The online interaction takes place through two different networks: the friend one,
characterized by strong connections among users and by a slow evolution rate, and the
trust network, characterized by weaker interactions and by an evolution based on the posts’
visibility value. Each user exchanges opinions with other individuals and is influenced by
both the people networks. The interaction is based on the following equation:

o(t + 1) = o(t) + α[o(t)− o(t− 1)] + β[a(t)− o(t)] (19)

where o it the user opinion and a is the mix of the ideas deriving from the two networks.
The values of the parameters α and β have been set respectively to 0.8 and 0.3

The post has been created for the user’s idea according to the linguistic transposition
operator, implemented as a Gaussian random mutation with standard deviation 0.015 and
mutation probability 0.1.

4. Antenna Optimization Results and Discussion

In this section, firstly, the results of Optimization Environment analysis are provided
and discussed. These results are obtained with SNO because, from the preliminary analysis
shown before, it achieves the best results, especially in terms of robustness. Secondly, the
antenna optimization problem is used to compare the different Evolutionary Algorithms
described in Section 3. Finally, some comments on the optimal solution are here provided.

4.1. Feasibility Function

There are several approaches to the solutions that are outside the box boundary
domain [36].

The first one considers the boundary as an impenetrable wall. If one or more com-
ponents of the candidate solution exceed the limit, they are curtailed in the search space
S and all the other components are not altered. This kind of feasibility boundary is very
useful if the optimal solution can be close to the search space limits; on the other hand, the
exploration is reduced. The mathematical formulation of this boundary condition is the
following [36]:

x̃i =


Li, xi < Li
Ui, xi > Ui
xi, otherwise

(20)

where x̃i is the i-th component of the modified candidate solution, xi is the candidate
solution, Ui is the upper bound for the i-th component, and Li is the lower bound.

Another approach is to model the boundary as an elastic bound. If one or more
components of the candidate solution exceed the bound, they are reflected inside the
domain accordingly to the following rule [36]:

x̃i =


Li + |Li − xi|, xi < Li
Ui − |Ui − xi|, xi > Ui
xi, otherwise

(21)

In this condition, the exploration is slightly increased; however, the capability of
finding the best on the search space limits is drastically reduced.
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Another choice is to eliminate the solutions that go outside the search domain; then a
new random solution is created in the domain. In this case the exploration is drastically
increased, even if the convergence can be worsened for the algorithms that work with
trajectories, like, for example, the Particle Swarm Optimization. In fact, this boundary
condition completely destroys the original trajectory. Its mathematical formulation is [36]:

x̃i =


r, xi < Li
r, xi > Ui
xi, otherwise

(22)

where r is a random value inside the search domain.
Then, it is possible to define the search domain as it is a closed surface, and the

boundary can be written in the following way [36]:

x̃i =


Ui − (Li − xi), xi < Li
Li + (xi −Ui), xi > Ui
xi, otherwise

(23)

This condition is rarely used, but it can improve the optimization if the design variables
refer to periodic elements (angles for example).

The box boundary condition has been analyzed because it can change the convergence
proprieties of the algorithm. In particular, in the antenna problem they can highly influence
the convergence due to the fact that a physical propriety of the patches, the reflection angle,
is characterized by a periodic behavior.

All the four different functions seen before have been tested on the antenna problem.
For each of them, 25 independent trials have been done with 50,000 objective function calls.
Figure 5 shows the convergence curves with the four tested feasibility functions.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Objective function calls 104

102

103

104

105

C
o
s
t

Impenetrable wall

Elastic wall

Eliminating wall

Closed space

Figure 5. Comparison among the different convergence curves obtained with the four box boundary
conditions. The curves are represented in semilogarithmic scale.

Here, it is possible to notice that the eliminating wall has a much worse convergence
since the early iterations: this type of condition highly affects the final solution. In fact, the
best solution obtained with this condition has no patches with length equal to the minimum
or the maximum: in this case, the feasibility condition is reducing the number of solutions
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that can be easily reached by the optimizer. Moreover, this problem requires a good amount
of exploitation, especially in the central part of the optimization time.

The closed search space has an intermediate behaviour, but the convergence is slower
than the two best conditions. In fact, the continuous oscillation of the individuals from
one side of the domain to the other can create in some parts of the optimization process an
alternate attraction on the other individuals, resulting in a slower convergence.

The other two conditions are characterized by a very similar convergence. Similar
considerations can be drawn analyzing the numerical results shown in Table 1.

Table 1. Comparison of the results with the four feasibility function tested. The results are obtained
with 12 independent trials and with 50,000 objective function calls. In bold the best values.

Box Condition Mean Standard Deviation Best Result

Impenetrable wall 191.41 19.75 164.14
Elastic wall 201.08 52.76 159.1

Eliminating wall 2566.66 527.95 1452.67
Closed space 291.09 62.12 219.96

4.2. Cost Function Parameter Definition

The cost function parameters (λ and µs) definition is one of the most challenging tasks
of for the objective function analysis. In fact, it is highly computational expansive and it
requires the final solution analysis.

For the analysed problem, the definition of λ is easier because this is a single pa-
rameter that combines two performance indexes. In order to analyse the behaviour of
the optimization process with different values of λ, a set of optimization trials have been
performed.

Seven values of λ have been tested: for each of them, 25 independent optimization
trials have been done with 50,000 objective function calls. For each trial, the values of the
radiation pattern and scanning errors have been stored. Figure 6 shows the results of this
analysis: each plot corresponds to a different scan angle. The left axis of all of them shows
the values of REs: the blue line is the average of all the trials, while the light blue area
represents the confidence interval of 90%. Similarly, the right axis represents the same
values for the ∆θs.

The optimal value of the λ parameter is the one for which both the errors are minimum
in all the scan angles. The selected value in this application is λ = 102, which has been able
to provide more reliable results for θs = 40◦.

The analysis of the second scalarization level, characterized by the values of µs, is
harder because it is possible to perform neither full nor a one-at-time analysis due to the
high computational cost of the antenna optimization.

The parameter selection has been done with a trial-and-error procedure aimed to have
similar performances for all the four scan angles. These values have been selected starting
from the physical knowledge of the problem: the radiation pattern error is calculated in a
more accurate way for low values of θscan; in addition, a higher scan angle implies a harder
optimization problem, because they are characterized by a lower value of the directivity.



Mathematics 2022, 10, 33 13 of 19

(a) (b)

(c) (d)

Figure 6. Analysis of scalarization factor λ for the four scan angles: for each plot, the left axis shows
the average values of REs (solid line) and the confidence interval of 90% (light area). Similarly, the
right axis represents the same values for the ∆θs. (a) Results for θs = 10◦; (b) Results for θs = 20◦;
(c) Results for θs = 30◦; (d) Results for θs = 40◦.

4.3. Algorithm Comparison

The defined optimization procedure is flexible to be adapted to different EAs. Here,
the algorithm previously described has been compared on the optimization of the beam
scanning RA.

The population size has been set for each algorithm according to a preliminary sensi-
tivity analysis on a smaller antenna problem. The population sizes for each algorithm are
reported in Table 2. For what concerns all the other algorithm parameters, they have been
set according to a sensitivity analysis performed on Schwefel-226 function because it is the
benchmark in which the algorithm has a behavior closer to the antenna problem.

Table 2. Numerical results of the comparison.

Algorithm DE GA SGA mBBO nBBO PSO SNO

Population size 25 50 25 25 25 25 100
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In order to have a fair comparison between algorithms, the number of objective
function calls has been used as termination criterion: in fact, for problems in which the
system behavior calculation is computationally expensive, this value is proportional to
the total optimization time [37]. In this specific case, the total required time for one trial is
around 1h, while the self time of the algorithms ranges from 2 s to 3 s. The selected number
of objective function calls is 50,000 because it guarantees an optimal trade-off between the
quality of the final results and the optimization time.

In this comparison, 25 independent trials have been done for each algorithm in order
to guarantee a statistical reliability of the obtained results. These results are reported in
Table 3, in which the average value of the independent trials, the standard deviation, and
the best results are reported.

Table 3. Numerical results of the comparison between different EAs. In bold the best values.

Algorithm Mean Standard Deviation Best Result

DE 196.57 67.49 125.13
GA 6124.97 1329.65 4224.91

SGA 873.38 1778.9 234.97
mBBO 539.64 106.72 335.32
nBBO 402.39 106.84 269.46
PSO 26,823.4 6314.18 13,603.59
SNO 195.95 27.65 154.14

In Table 3, the best results obtained have been indicated again with the bold font.
The most performative algorithms are DE and SNO: the first one is able to achieve the
best solution over the different trials, while the second one has the best mean value and
the lowest standard deviation. These two values confirm the very good reliability of
the optimization with SNO: this is a very important aspect for the problem scalability
because in the optimization of larger antennas, it is impossible to perform a large number
of independent trials.

In order to have more information regarding the behaviour of the algorithms, in
Figure 7 the average convergence curves are reported with a semi-logarithmic scale.
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Figure 7. Average convergence curves for the analyzed algorithms.

This plot shows that, even if the final results of DE and SNO are quite similar, they
convergence behaviour is different. In fact, on one hand, DE has a very fast initial conver-
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gence and then the performance improvement is very low, while SNO has a more constant
convergence rate. This means that, if more time is given to the algorithms, SNO is more
likely to improve its solutions.

A deeper investigation has been performed on the convergence curves of the four
most promising algorithms. Figure 8 shows the complete convergence curves of mBBO,
nBBO, DE, and SNO: each thin line corresponds to a single optimization trial, while the
thick red line is the average one.
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Figure 8. Convergence curves of mBBO, nBBO, DE, and SNO: each thin line corresponds to a single
optimization trial, while the thick red line is the average one. (a) mBBO; (b) nBBO; (c) DE; (d) SNO.

These curves clearly show the differences between DE and SNO: for the first algorithm
after half of the optimization process all of the trials have already reached convergence,
while for SNO they continue to improve until the end of the available time. For what
concerns the reliability, the DE trials have a higher dispersion of the results than SNO ones.

Therefore, it is clear that SNO, in this specific electromagnetic problem, is able to reach
the same performance of DE, but its reduced standard deviation makes it reliable for this
computationally intensive problem.

4.4. Analysis of the Final Solution

The final analysis has been conduced on the best solution found by SNO. The geometry
of this solution is shown in Figure 9.

An interesting feature of this solution is the regularity of the patch size in the central
parts of the reflector. This feature is important because it leads to a higher reliability of the
model used in the optimization with respect to a full wave analysis.

The patch size distribution is less regular in the corners. This is a common feature
of the solutions found with optimization procedures because these patches have a lower
impact on the final radiation pattern: in fact, the incident field intensity is much lower in
these parts of the reflector.
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Figure 9. Optimal geometry obtained by SNO.

Finally, the solution has been assessed using a full wave simulation. The results are
presented in Figure 10, the radiation patterns computed in E- and H- planes with the
aperture field method (indicated in the legend with optimization) and of the full-wave are
compared for all the analyzed scan angles.

(a)

(b)

Figure 10. Cont.
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(c)

(d)

Figure 10. Comparison between radiation patterns of the aperture field method and of the full-
wave. Each subfigure represents a different scan angle; the right diagram is the radiation pattern
on the E-plane and the left one in the H-planes. (a) θscan = 10◦; (b) θscan = 20◦; (c) θscan = 30◦;
(d) θscan = 40◦.

It is important to notice that the radiation patterns are very similar, especially in the
areas close to the main beam: there are some slight variations because the full-wave model
takes into account also the interaction of the reflected field with the feeder.

5. Conclusions

In this paper a complete Optimization Environment has been designed to improve the
results of the design optimization for a reflectarray antenna capable of beam scanning. This
problem is an interesting benchmark for the evolutionary optimization due to the large
number of its design variables and because it is highly non-linear.

The Optimization Environment has been proposed and all its components have been
analyzed both theoretically and experimentally. Then, such designed environment has
been applied with seven different Evolutionary Algorithms.

The results show that the best performance is achieved by Differential Evolution
and Social Network Optimization: the first algorithm has better optimal results, but the
dispersion of the independent trials is much higher than for SNO. This second algorithm
has been considered the most relevant in this kind of application. In fact, these problems
have a high computational cost, thus the reliability is a fundamental aspect because it allows
a reduction of the number of independent trials required. Additionally, the reliability is
very important for the scalability of the problem, i.e., the design of larger reflectarray and
other engineering problems with increased complexity.
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Finally, considering the addressed engineering problem, the proposed optimization
environment and the related procedures have been validated by the significant improve-
ments provided to the performance of beem-steering reflectarray antennas, as assessed by
full-wave simulation of the optimized configurations.
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