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ARTICLE INFO ABSTRACT

Keywords: In this study, a hierarchical energy management system (EMS) is proposed, to coordinate different energy sources
Energy management systems in an islanded multi-good microgrid. The first layer deals with the daily scheduling problem, while the second
Off-grid Microgrid

layer balances the generation in real-time. A novel second layer formulation, relying on model predictive control
under a scenario-based stochastic approach (sMPC), is introduced and it is compared to a reference formulation,
based on a central proportional-integral controller following the indications set by the first layer. The proposed
sMPC explicitly accounts for uncertainty considering several scenarios of very-short term forecast errors, that
act as disturbances for the system. The sMPC evaluates the control actions and the correction rules required
to guarantee optimal operations through disturbance-feedback. The EMS is implemented in an experimental
setup and tested for daily operations under a rolling horizon approach. The accuracy of the numerical system
simulation is evaluated, resulting in an average discrepancy of 1.7%, in terms of operation cost, with respect to
the experimental operations. Then, a test case comparing the proposed EMS with the reference approach shows
that the adoption of sMPC allows to approach the lowest possible operation cost achievable by a second layer
with an advantage of 2.7 % against the reference case. Finally, the developed sMPC leads to only 0.5% additional
costs than an ideal controller working on the same control layer.

Stochastic model predictive control
MILP optimization

Indices Parameters
i General microgrid unit Ded Forecasted value of net demand of good gd
g Generator Dsd Realization of net demand of good gd
g Fossil fueled generator D& Nominal forecasted value of net demand of good
g;’; Generator producing good gd R gd
g;’; Generator consuming good gd Eed Forecast error estimation
s Storage system ged Realization of forecast error
sNS Storage system with non-simultaneous charge and discharge Tye Probability of scenario sc
behavior N, Number of real-time scenarios
Sgd Storage system participating in good gd balance C‘;”.n, C‘;l - Minimum and maximum levels of storage s
gd Microgrid good A gy Charging and discharging efficiency of storage
cu Curtailment (fictitious unit) system s
um Unmet good demand (fictitious unit) is Good losses in the storage system s (hourly
t First-layer timestep losses)
k Second-layer timestep IA]”'m.n, U o o Minimum and maximum set-point of unit i
At Absolute time between consecutive timesteps (first layer) @;}P, &\];W Ramp up and ramp down limit of unit i (hourly
At Absolute time between consecutive timesteps (second layer) ramp)
sc Scenario in stochastic problem AU fnax, su- AUriax, p Maximum set-point variation of generator g dur-
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ﬁg, DT Minimum up-time and down-time for generator
4

A B ,C', D' State space matrixes of unit i, dynamic represen-
tation with time resolution A¢

el Parameter to identify participation of unit i in the
balance of good gd

g Generic coefficients for linear formulation for
unit i

k Generic cost coefficient

& Upper storage state of charge flag

Variables First layer
z¢ Commitment status of generator g,

SUE, SD¥ Start-up and shut-down decisions of generator g

I8, U# Consumption and production of generator g

c’ Level of storage s

U’ Bus balance for storage s

Uf"'h , Uf'dh Charging and discharging power for storage s

z Binary variable for storage charge/discharge decision (if
required)

U M,gd, CU[gd Unmet demand and curtailment for good gd
Af 0Csgd SOC deviation among different storages participating in
the same good balance

Second layer

u Set-point to unit i

sui(£8?)  Set-point correction to unit i

x! State vector of unit i

y;' Output vector of unit i

f,gf Fuel consumption of generator g

zl, Aux!  Generic auxiliary variables, z/ € {0,1}, Aux; €R

1. Introduction

The microgrid (MG) concept has received large attention over the
past few years, offering a successful approach to integrate distributed
renewable energy sources (RES) with local loads. A typical MG config-
uration includes RES, energy storage systems (ESS), and dispatchable
generators (DG), representing a small-scale power system [1]. Multi-
goods microgrids (MGMG) or multi-energy systems (MES) represent an
extension of this concept, handling the management of different energy
forms to satisfy energy-related services (e.g. electricity, heating, cool-
ing, and energy-dependent production processes) [2]; for instance, the
successful integration of different services for an industrial consumer
was demonstrated in [3], in terms of both emissions and cost reduction.
A large penetration of RES leads to relevant challenges in operating the
MG units in a synergic way, due to the intermittent and uncertain nature
of RES power generation (i.e. solar and wind energy), that hinders the
perfect exploitation of the available natural resources. Many researchers
have focused on the development of intelligent energy management sys-
tems (EMS), to provide cost-effective solutions that ensure reliable op-
eration and minimum environmental impact [4]. A comprehensive EMS
must be designed to respect the control hierarchy required by such sys-
tems, usually including up to three levels of control [5]. Indeed, the
challenge posed by the MG paradigm concerns issues at different time
scales, ranging from primary control for voltage and frequency regula-
tion to scheduling decisions [6]. For these reasons, the EMS is usually
designed with a multi-layer structure: the first layer is in charge of the
medium-term operation schedule (usually dealing with the operating
strategy for the following 24 hours), while the second layer deals with
the real-time balancing of the system; nevertheless, single-layer EMS
have also been discussed in literature [7]. The evaluation of the opti-
mal operation schedule consists in the evaluation of the most effective
unit commitment (UC) of the controllable generators and loads, together
with the economic dispatch (ED) of all the MG subsystems, exploiting
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the forecasts of the various internal consumption profiles and RES gen-
eration, while providing enough flexibility and reserve margins, to com-
pensate for forecast errors, occurring in real-time operations [8]. A vari-
ety of solutions for predictive EMS algorithms has been proposed in the
literature. The most commonly adopted framework is represented by
mixed-integer linear problem (MILP) formulations, which identify the
global optimal solution, but require a sufficiently accurate linearized
model of the system [9]. Due to the high uncertainty of the forecasts,
upon which the predictive optimization is based, the formulation of de-
terministic MILP must account for power reserve of the programmable
generators, to ensure security-constrained ED [10]. Spinning reserve
constraints sometimes lead to conservative or unfeasible solutions, if
the reserve margins are not set correctly [11]. To overcome this issue,
stochastic and robust approaches, which explicitly account for forecasts’
uncertainty, have been widely used and validated as EMS in several ap-
plications [12, 13]. Stochastic models usually rely on a two-stage formu-
lation, where the second-stage variables are scenario dependent, while
the first-stage ones are common to all the scenarios. The aim of the op-
timization is to minimize the first-stage cost and the expected cost of
recourse (related to the second-stage decisions), while achieving a fea-
sible solution in all the considered scenarios [14]. Robust optimization
algorithms are based on the definition of an uncertainty set, that en-
sure the feasibility of the solution for all the potential realization of the
uncertain parameters [15]. Moretti et al. in [16] demonstrated the in-
crease of service reliability achieved by the day-ahead robust UC with
respect to the deterministic one, for MGMG both on-grid and off-grid
configurations. In [17], the robustness of the stochastic UC formulation
was improved by accounting for worst-case scenarios, which are itera-
tively added to the main problem Results show that efficient solutions
are achieved both in terms of expected and worst-case cost. An hybrid
robust-stochastic approach was introduced in [18]to optimize the mar-
ket participation of a MG with RES and micro-turbines accounting for
uncertainty of market prices, load and RES generation. Furthermore, a
detailed comparison among deterministic, stochastic and robust formu-
lations as EMS for microgrids has been carried out in [19], highlighting
the fact that stochastic policies perform better in terms of total cost. In
general, the pervasive employment of RES, combined with the aleatory
load demand, brings about a large uncertainty of the power production
requirements by the programmable MG units and storage systems, that
may prevent the maximum exploitation renewable power generation
(Figure 1). An EMS must consider the uncertain and stochastic behav-
ior of net load demand, to compensate for its unpredicted variations,
also at different time scales. Stochastic optimization applied to power
management control problems has been recognized as an useful tool to
obtain interesting results in terms of reduction of operation cost, RES
integration and storage management [20].

The purpose of this paper is to introduce a novel stochastic formu-
lation to improve the performances of the two-layer hierarchical EMS
presented in previous works [21, 22]. The first layer is based on de-
terministic optimization to solve the optimal UC, evaluating the opera-
tion scheduling of the MG according to a rolling horizon approach and
dealing indirectly with forecast uncertainty through the enforcement of
spinning reserve requirements. In the previous work, the second layer
was based on heuristic rules and proportional-integral (PI) control for
the real time balance of the MG. This work focuses on the adoption of
stochastic control systems as second layer of the EMS to evaluate the
advantages that can be obtained enhancing the real-time dispatch of
the MG. The employment of stochastic programming to solve an op-
timal control problem is named stochastic Model Predictive Control
(sMPC) [23]. In this context, the presence of uncertainty requires the
implementation of closed-loop instead of open-loop policies: therefore,
a state-feedback controller or a disturbance-feedback controller should
be applied [24]. A single-layer EMS based on sMPC is introduced in
[25] showing the operating cost reduction of an islanded MG. In [26],
a comparison among three different formulation of sMPC is considered.
The models are tested on a laboratory-scale MG, made of a battery bank,
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Netload Fig. 1. Example of typical Microgrid configu-

ration with uncertainty sources.
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a fuel cell, an electrolyzer, hydrogen storage, and electric loads, in grid-
connected mode. The authors showed that the scenario-based MPC is
useful if there is a high availability of historical data, and it can guaran-
tee a high level of demand satisfaction. An upper layer MPC is coupled
with a rule-based real-time controller in [27], to ensure the optimal
use of PV, BESS, and programmable appliances of a home microgrid. In
[28], the idea of hierarchical control is applied to a large-scale PV mi-
crogrid, with both levels formulated as MPC problems, demonstrating
the effectiveness of the approach both in numerical and hardware-in-
the-loop simulations. A two-layer structure for the EMS is implemented
in [29] to manage an on-grid microgrid composed of a microturbine,
BESS, and PV. While the first layer optimizes the daily usage of the BESS
and defines an energy exchange schedule with the main grid, the sec-
ond layer aims to minimize the discrepancies with the schedule. Other
works proved the effectiveness of sMPC approaches, demonstrating the
advantages of its implementation both at higher optimization level and
at lower control level. Improved control performances by a hierarchi-
cal sSMPC over deterministic approach are mentioned in [30], for the
management of electric vehicles in the context of a MG with wind un-
certainty. Other sMPC strategies are implemented in [31,32] together
with a scenario reduction method to reduce the computational burden
of the stochastic controller. In both works, the proposed sMPC allowed
a reduction of operation cost with respect to standard MPC approaches.
Time decomposition strategies can also be considered to reduce the com-
plexity of the optimization problem [33]. Even though there is a wide
variety of EMS in literature, most of them are only validated through
numerical simulations, whereas an experimental validation is manda-
tory to prove the physical soundness of the mathematical representa-
tion and the actual competitiveness of the proposed EMS architecture.
Some experimental activities have been carried out for on-grid applica-
tions based on rule-based management [34], genetic algorithms [35],
and MPC [36]. A two-layer EMS, with a MILP-based economic dispatch
and a rule-based real-time controller, was developed and tested for a
small grid-connected PV-BESS system, ensuring superior economic per-
formances compared to a peak-shaving rule-based strategy [37]. Other
works [26, 38] resort to an experimental on-grid MG to test the pro-
posed EMS adopting stochastic optimization approaches, but they do
not quantify the discrepancies between the EMS simulations and the ac-
tual operating profiles. In work [39], besides proposing an optimization
model, a strong focus on battery efficiency is presented, highlighting the
differences among three battery models: a constant efficiency model,
and two models with variable efficiency depending on the input/output
currents respectively in a linear and quadratic form. An optimization-
based online EMS architecture has been proposed and experimentally
tested in [40], considering a laboratory-scale microgrid comprising of
one BESS, simulated PV and wind power generation, a load, and a grid
connection: the experiments’ time-frame is scaled down from hours to
minutes, the online optimization model successfully manages the micro-
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grid with reduced operation costs, but the differences between schedul-
ing and control levels are not addressed, as no hierarchical structure is
implemented.

The main contributions of this paper regard:

1 Anovel formulation of the sMPC for real-time dispatch, that provides
optimal set-points and correction rules to the MG units. Those correc-
tion rules are evaluated as first-stage variables independent from the
particular scenarios considered during the optimization and directly
employed to balance the MG production in real-time. The model re-
lies on piecewise affine disturbance-feedback, considering as distur-
bances the future forecast errors of the net demands (i.e., loads minus
non dispatchable production). The formulation accounts for uncer-
tainty of one or more demands and can be extended to complex MG
configurations.

2 The implementation of the hierarchical EMS on an experimental fa-
cility, the Multi-Good MicroGrid Laboratory (MG?Lab) [41]. Exper-
imental activities are carried out to demonstrate the successful de-
ployment of the EMS for off-grid systems and to validate the results
that are obtained by the corresponding numerical simulation.

This paper is organized as follows. Section 2 describes the hierarchi-
cal EMS and provides the mathematical formulation of the novel sMPC.
Section 3 provides details on the implementation of the EMS on the ex-
perimental facility and its architecture for on-line applications, while
section 4 Shows the validation of the numerical results with experimen-
tal data for different days of operation. After the validation, a compar-
ison between the proposed EMS and several benchmarks is presented
in section 5, for an off-grid MGMG, providing potable water and elec-
tricity. In the paper, the first-layer variables are indicated with capital
letters, the second-layer variables with lowercase letters. In addition,
the parameters are expressed as .7., the values of the variables corre-
sponding to the solution of the optimization problems as .7., and the
measurements or the realization of uncertain parameters with .7. .

2. Energy management System description

The hierarchical EMS developed in this work is designed for the op-
timal management of single-bus islanded MGMGs. The description of
the EMS is schematized in Figure 2. The first layer adopts a determin-
istic MILP formulation of the optimal scheduling problem, determin-
ing the UC and tentative ED plans that minimize the operating cost,
based on the expected forecasts of demand and renewable generation.
Reserve constraints ensure operating margins for real-time corrections
to the scheduling plan defined in the first-layer, taken as a reference by
the second layer. The optimization is periodically updated according to
the rolling horizon approach, suitable for online applications [42]. The
commitment status determined by the first layer is not modified dur-
ing the advancement period: the second layer is therefore in charge of
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adjusting the set-points of the committed units, to guarantee safe op-
eration and competitive economic performance. Regardless of the algo-
rithm adopted in the second-layer of the EMS, the conceptual structure
remains the same. A scenario-based sMPC formulation for the second-
layer controller is presented in the following section, to track the ESS
state of charge (SOC) reference trajectory throughout the day modulat-
ing the total power output from the dispatchable generators, account-
ing for very short-term uncertainty of MG demands end RES generation.
The proposed formulation is an alternative to the non-predictive second
layer considered in a previous work [21]. The two alternative EMS are
identified respectively as EMSgypc and EMSy,, according to the second-
layer control strategy adopted. A bottom layer that handles the control
of electrical variables is not considered in this architecture, as it will be
directly implemented in the local controllers of the MG units. The com-
plete EMS must also include a forecast generation module, to provide
the inputs required by the optimization model, as well as a feedback
loop with the MG, to read the status of the units. The next paragraphs
explain in detail the concept behind first and second layer, focusing on
the sMPC formulation.

2.1. First-layer model

The model employed in this work was introduced in [21]. The ob-
jective function consists in the minimization of the microgrid operating
cost, namely (i) fuel consumption, (ii) start-up cost of programmable
units, (iii) wearing cost of storage systems and generators and (iv) pe-
nalization for unmet critical demands as well as curtailment of RES gen-
eration. The operating space of the dispatchable generators is defined
by their technical limits, including minimum/maximum load, minimum
up/downtime, and ramping limitations. The storage systems are con-
strained by their minimum and maximum capacity, and by their maxi-
mum capability of exchanging stored goods with the MG. As [21] con-
siders only one BESS, a slight variation on the objective function has
been introduced in this model. Indeed, when considering several identi-
cal BESS, the MILP solver does not show any preference in their dispatch,
as long as all the related constraints are not violated. Therefore, a pe-
nalization was introduced, to minimize the deviation of the SOC of all
the identical BESS which participate to the balance of the same good.
Moreover, to improve the repeatability of the simulation, the cost co-
efficients related to controllable generators and the curtailment are set
as decreasing time-varying parameter; this artifice allows to reduce the
number of equivalent solutions when solving the optimization problem.

The mathematical formulation of the first-layer layer model is detailed
in appendix A.

2.2. Second-layer model of EMSpc

According to the hierarchical control structure of the EMS, the pur-
pose of the second layer is to track the first-layer reference dispatch
plan as closely as possible, while defining the unavoidable deviations
mainly related to forecast errors (uncertain demands, wind and PV gen-
erations). For linear systems, the general MPC formulation for tracking
of reference signals takes the following form [43, 44]:

H
min J = Y |lu, = Oyllg + [1xe = Xl o)
k=1
s.t.
Xpy1 = Ax, + Bu, + Md, 2)
Vi1 = Cx; + Duy, 3)

Due to the uncertain nature of the control problem, a determinis-
tic approach is not suitable for the second layer. As suggested by [29],
the employment of a stochastic approach at the lower-layer is beneficial
and efficient for MG management. Therefore, an sMPC with disturbance-
feedback based on scenarios of forecast errors is proposed. The distur-
bances are identified as the forecast errors of the net demands, with
respect to the predictions considered by the first layer. The second layer
optimizes the power sharing among the MG units, and it does not mod-
ify the commitment status of the programmable generators, only set and
updated by the first layer. Some features of the model and of typical MG
units (i.e., piecewise formulations), make it necessary to include logical
conditions and auxiliary binary variables in the MPC model, that makes
it no longer linear. This holds true especially if a correct characteriza-
tion of the BESS is foreseen as simultaneous charge and discharge are
not allowed, and the two operations are characterized by different effi-
ciencies. To overcome this issue, authors in [29] defined two separate
problems, to be solved in parallel: one imposing only BESS charge and
the other one only discharge along the optimization horizon. The actual
BESS set-point is decided a posteriori, checking which problem has the
lowest objective function; then, it is applied for the first time-step and
the two models are solved again, following the rolling horizon approach.
In work [25], an sSMPC formulation is proposed, with a disturbance-
feedback approach with fixed recourse coefficients, and employing a
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simplified formulation for the storage system. The proposed sMPC con-
siders an accurate description of the storage system while computing the
optimal affine policies that define the power-sharing among the units of
the microgrid as a function of the future forecast errors. To explicitly
account for the uncertainty, the formulation relies on variable recourse
coefficients to define the affine laws under a disturbance-feedback ap-
proach (see eq (12)). Those policies will be used in real-time to adjust
the set-points of the units. The detailed model is presented in the next
sections, while Figure 3 shows the conceptual scheme of the second-
layer formulation.

2.2.1. Objective function

In the stochastic framework, the objective is to minimize the ex-
pected cost among a set of scenarios; therefore, the objective function
is written according to eq. (4):

N
minJ = Z b

se=1

“

The objective function commonly adopted in MPC formulations in-
cludes the norms which represent the tracking of the reference signals
(both in terms of state and control variables). The mathematical expres-
sion of the objective function for each scenario is shown in eq. (5), com-

prising tracking cost cT’,f”‘ , fuel cost cgf unmet demand cost c and
curtailment cost cC””
T/
_ track track, SOC Curt
Jo= 2| X ek +Z ZC ngﬁZ Cedk A
k=1 i & gd
sc
)
Where:
k 2,
e = Nk = Uillps ©®
racks0C o | K (Co=x3); 7
Cs,k = 0. ( )
f UM 7 um . CU _ 7 cu .
Cork = fsck’ edk = KumViers Coan = KeuVse i ®

In particular, clff]ka represents the tracking cost on the control sig-
nal with respect to the set-point computed by the first layer. The cost
for tracking the state of the system has been neglected for all the pro-
grammable generators. Indeed, no state reference is retrieved for these
components by the first layer with the exception of the unmodifiable
commitment status, as the first layer does not account for the dynamic
response of those units due to its coarse time discretization. On the con-
trary, tracking the state of the ESS is a very crucial task, to guarantee

>

that the reserve margins imposed by the first layer are satisfied. While
there is an interest in keeping the SOC as close as possible to the pre-
dicted value, higher SOC values do not affect the reliability of the MG
operation, while the economic competitiveness is ensured by the other
components of the objective function (i.e., the ESS will only be charged
to a higher SOC than the reference only if the RES generation was un-
derestimated in the first layer, but not by controllable generators). For
this reason, the correspondent cost c”‘“k $0Chas a piecewise behavior
to reflect the asymmetric requlrement for the state of the ESS; it is zero

when the storage state x; is higher than the reference value C;,, and

it takes positive otherwise. The generation cost C;f.k represents the eco-

nomic value of fossil fueled generation, with the same conversion effi-
ciency used in the first layer. The cost coefficients in matrixes Q, K, and
the remaining coefficients k,,, k.,, have been set based on a sensitivity
analysis on the case study.

2.2.2. General constraints for each unit

The dynamic behavior of the microgrid units is represented by a lin-
ear discrete-time state-space model, whose matrixes are derived from
the linearization of the original non-linear continuous state function in
correspondence of the current initial operating point. The resulting con-
straints are represented in eq. (9), (10):

i
Xsek+1 = A xsck + B,

Vi k,sc )

sck’

i stck+Du

Yk Vi k,sc

10)

sck’

For each scenario, the sMPC determines the control variable u ek 35
the sum of two contribution: the reference signal from the upper level
U;( (with k consistent with the related first-layer timestep ¢) and the

scenario-specific real-time set-point correction 5ui . ;> Which is a func-

tion of the uncertainty manifestation (i.e. forecast error) ff:k according
to the affine policy shown in eq. (12). Different responses are defined
depending on the value of the forecast error, effectively splitting the
uncertainty space into two regions and resulting in a piecewise affine
policy with a breakpoint in §k TRSH*

u =l71i+5”i~ck; Vi k,sc (11)

sc,k
= [(mi -8l ) + (i

gd

su'

se.k

§wk+qi_>]; Vikse (12)

Vi, k,sc (13)

. ped i—
Sy rrsm + Ak

l+
'fk TrRsH + qk

Where: &8¢+, £8d =

se,k 2 Psek
formulation.

are the values of the uncertainty in the piecewise
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In particular:

ced
g;gcdl:r — gsc,k 5sc k = ék TRSH Yk, sc (14)
0 otherwise.
2gd
éfcdk— — Ssck 5sc k ‘fk TRSH . vk, sc (15)
0 otherwise.

The state-state space formulation is a general way to represent the
dynamic behavior of the units, but further constraints are required to
fully characterize the various subsystems of the microgrid. The follow-
ing sections introduce the set of technical constraints that model the
dispatchable generators and storage systems, in addition to the state-
space equations.

2.2.3. Programmable generators constraints

The following constraints represent the operating space of the gener-
ators, in terms of minimum and maximum power output when the gen-
erator is on, ramp-up and ramp-down limitations, and fuel consumption
according to the generators’ part-load curve.

03,20 < i, <0878 Vakse 06
ufc,k - “fc,k—l < @ZPAII + Ei Uriax sus V& ke a7
ufc,k - ufc,k—l > @iwm/ + Ei Uriax sp> V&ksc (18)
Sle= i+ d ZE Vg kse (19)

Where, Z ,f represents the commitment status of the generator, iden-

tified by the first layer Eiand S_Direpresents the start-up and shut-
down flags, Ug and US,, are respectively the minimum and maximum
value of the output of the generator when it is committed, Z(\] § up and
AU f)w impose the limitation on ramping the units, U fmx’ sy and Umax s
are the maximum variations during start-up and shut-down phases. The
fuel consumption £/, %/ is linearized according to Eq. (19) with respect
to the generators’ output y e There could be generators that receive as
input forms of energy produced internally, as opposed to external fuels
(e.g., electric-powered machinery); in this case, the relationship between
input good and output good is implied in their state-space model.

2.2.4. Storage systems constraints

The description of the ESS is not univocal, as different storage sys-
tems can have limitation on their management, when dealing with their
charge/discharge behavior. On the other hand, simple ESS, such as the
storage tank for desalinated water, have no limitation on the simultane-
ity of charge and discharge, with unitary efficiency of those processes
[45]. Two different sets of constraints are proposed to model the ESS,
corresponding to two levels of physical soundness. Egs. (20), (21) rep-
resents the general constraints on minimum/maximum storage capacity
and maximum charge/discharge, which are always considered. If the
ESS allows concurrent charge and discharge with unitary efficiency, the
formulation relies on eq. (22), (23).

General storage constraints

C:nln - Cc k= Cmax’ Vs, k, s¢; (20)
S, dh us ch .
0<u xck = Urilax’ Ur;m = yck < O’ Vs, k, s (21)
Storage constraints for simultaneous charge and discharge mode
sdh | sch
uic,k = u;’fk + u;’:k; Vs sV k, sc (22)
s s s,ch s,dh ! TS A4 NS
Chupnr = g = (W + Wl ) A — Eoar's Vs & 5™ kse (23)
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Where: CS ,and C ».care the boundaries for the storage content,
Ammand U;mthlts the 1nput and output fluxes, u;, represents the net
flux at the storage bus, sum of the discharge and charge components
jcdf, 5 ”’ . In this formulation, jcd" > 0and us ”h < 0, as they are referred
to the balance on the bus of the microgrid.

The formulation for the BESS must rely on different constraints, em-
ploying the auxiliary variable z; to enforce the non-simultaneity of input
and output power. In this way when z; = 1, only charge is allowed, and
vice versa if z; =0 (see the eq (24), (25) below):

u

0< ™ < (1-2)08, ; VsgsVSk 4)
205, S u<0; Vs sNS ks 25)

The latter constraints cannot be directly implemented in the sMPC
formulation, as the affine response of the BESS is evaluated for the power
at the AC bus, controlled by u;_, . To act on this variable while linking all
the scenarios of the optimization problem, the following constraints are
considered Egs. (26)-((32)). The introduction of the auxiliary variables
zZ3, o0 Auxg, | s needed to address the scenario-dependent solution, while
U jmx is a parameter acting as Big-M for the constraints (28)(29). More-
over, &, is a parameter indicating when the storage system has reached
the maximum charge, forcing the RES generation systems to work in re-
duction power point tracking (RPPT); the introduction of this parameter
has been proven helpful, speeding up the solution time during RPPT.

Storage constraints for non-simultaneous charge and discharge mode

s.ch _ s s . s.dh _

usc,k - usc,k ’ rlch’ usc,k - uzc,k/rl;h; Vse st’ k’ s¢ (26)
2 U -1 <ud <0 (1—z5 ) Vs € sMS k, s @7
sc,k~ min k = sc k = “max se,k ) [

uij: - (1 - zick)ﬁjux < Auxick < u:cc: + (1 - Zick)U/iux; Vs € SNS’k’

(28)

s,dh sdh . NS

uxc,k sc kUISAux < Aux ck = usc,k sc kU/Siux Vs € ’ k’ se (29)

(o — Aux, A — LAY, Vs e sV k,sc (30)
sc k+1 c.k ’ (b

2, S1-6; Vses™S kse 31

Z5,, €10,1}, Aux’ , € R VS € sV k, sc (32)

Where:
. 1 if¢ >C —¢
o-k = SC max (33)
0 otherwise
xjc,k = Cjc,k; ylxc,k = ujc,k (34)

The latter constraints (26)-(34) describe the correct behavior of the
BESS systems. Indeed, for the scenarios that require BESS discharge

25 =0, then 0 <uf , < U’fmx and Aux?_, = u dh , from constraint (29);

in this case, the constramt (28) is not limitmg, as it becomes —Ufm <

Auxi, | < UA' .- During BESS charge, z{ , =1, thus, U < ., <0and
sc. min
Aux?®

ek = uf" Furthermore, if RPPT is requlred 6, =1, only dlscharge
will be allowed (see constraint (32)), and the chargmg power is no
longer limited by U”‘“." but by LS. For BESS coupled with inverters, the
parameter L’represents the consumption of the auxiliary systems of the
inverter, which withdraw power directly from the BESS. The param-
eters representing the storage efficiency (1,, 7)) are constant values
that include both BESS and inverter/rectifier efficiencies. The combina-

tion of L+, 13, My, leads to a characterization of a variable efficiency of
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the whole BESS and inverter system, even though those parameters are
constant.

The indications in (34), identifies the matching between the state-
space representation and the storage constraints formulation; while the
storage internal state is represented by its energy content C%, the dis-
tinction between set-point and power output is neglected. This is true
for BESS, as the coupled inverter works at a much higher bandwidth
than the second-layer control. Regarding other types of storage systems
characterized by a slower response to power set-points or strongly non-
linear characteristics (e.g., thermal storage), the previous constraints are
no longer valid, and a different formulation would be required, which
is out of the scope of this work.

2.2.5. Good balance constraint

The following constraints ensure that the demand of each good f)fz i
is satisfied for each scenario, combining the output of all the units of the
MG. In this formulation, the possibility of unmet demand and curtail-
ment are implicitly represented in the state space representation, indeed
both are considered as virtual units with instantaneous response, mean-

M um — um Cu — cu
ing that Voore = U and Yoo r = Weo e

Doyl =D Vik,se (35)
i
Where:

1 If unit is producing good gd’;

sigd _ —1  If unit is consuming good gd; Vi, gd, k, sc
770 If unit i is not participating in the production/
consumption of good gd
(36)

If unit i is not participating in the production/consumption of good
gd.

Asd _ pgd _ zed
Dsc,k - Dk ésc,k

Vgd, k, sc 37

The parameter ﬁfik represents the net demand of good gd for sce-
nario sc at time step k. For instance, when the good is electric power,
ﬁfi . is the difference between the electric load and the total renewable
generation (before the eventual curtailment if required). The parameter
#7444 is the participation factor of unit i for the good balance; in par-
ticular, for unmet demand and curtailment, the parameters are set as

)?um,gd =1and )?cu,gd =—1.
2.3. Second-layer model of EMSp;

The developed second layer based on sMPC is compared against a
real-time non-predictive method which makes use of the predicted solu-
tion to continuously balance the MG production (EMSy). It is based on
proportional-integral (PI) control, in charge of SOC tracking of the BESS
systems. From the on-field measurements of actual SOC, the PI com-
putes the total required variation of power output from programmable
generation, complying with their ramp limitations, to follow as close as
possible the SOC trajectory evaluated by the first layer. Then, a linear
program is solved to optimize the power sharing among those units. The
detailed description of the algorithm can be found in [21].

3. Online EMS implementation and experimental set-up

The optimization problems described in section 2 are the core of the
hierarchical EMS proposed in this paper. In this work, the first layer
problem is defined over a horizon of 24 hours, with a resolution of 15
minutes; forecasts profiles for demand and RES production are gener-
ated accordingly. On the other hand, the second layer works with a
resolution of 1 minute, with forecast horizon up to 15 minutes if SMPC
is employed. The forecasting module is employed to provide the ex-
pected values of critical electricity demand (corresponding to the non-
programmable electric loads) and water demand, as well as wind and
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PV generation (if present in the MG configuration under study). A sea-
sonal autoregressive integrated moving average (SARIMA) model is used
for the medium-term prediction of electrical loads, water demand, and
wind power, as in [25], based on historical time series of the related
profiles [46].0n the contrary, ARIMA model are outperformed by artifi-
cial intelligence algorithms in predicting PV production [47], therefore
PV generation forecasts are obtained through neural networks, trained
on the historical data collected at the MG2Lab [48] These profiles will
constitute the input for the first-layer optimization model. Additionally,
the sMPC requires as inputs the scenarios of forecast errors of the net
demand profiles for all goods (i.e., good demand minus the related re-
newable generation). The scenarios are obtained through Monte Carlo
simulation of expected forecast errors by an ARIMA model, whose pa-
rameters have been estimated based on past measurements of forecast
errors (z;‘f,d for ¢/ = 0... k) through least-squared fitting of the model. The
PV forecast considered in the second layer is based on a persistent model
along the sMPC optimization horizon, therefore the PV forecast error is
the difference between the predicted value and the last PV output mea-
surement. This error is then combined with the Monte Carlo simulation
of the ARIMA model to obtain the error of net electricity demand. The
net demands scenarios are then determined subtracting the simulated
forecast errors to the value of the net demand considered in the first
layer (see eq. (37)). There are two contrasting needs regarding the se-
lection of representative scenarios. A large number of scenarios would
be required, to have a good representation of all the possible outcomes
of the uncertainty, while a small set of scenarios is desirable to reduce
the computational complexity and solving time of the sMPC. For this
reason, several scenarios (> 500) are obtained through Monte Carlo sim-
ulation, as in [31]; then, a scenario reduction technique is implemented,
following the algorithms in [49].

Both the EMSp; and EMSgpc are tested and validated experimen-
tally. The online implementation was done using Matlab, directly com-
municating with the PLC of the microgrid; its architecture is shown in
Figure 4 and a schematic representation of the information flow in the
EMS, together with the indication of the task periods in given in Figure 5.

The MILP problems are formulated through YALMIP [50] and solved
with Gurobi [51] on a on a workstation with Intel® Core™ i9-7900X
CPU @ 3.3 GHz. The two-layer structure is arranged on two separate
workspaces and the cyclic tasks are performed through timer objects,
built-in Matlab functions to schedule periodic commands:

e The first workspace corresponds to the first-layer of the hierarchical
EMS, thus, it includes the forecasting module and the optimization
module. The first-layer MILP is solved considering as termination
criteria a MIP gap of 1% and a maximum time limit of 1 minute.
The second workspace manages the communication with the PLC,
through the MODBUS interface, with a period of 20 seconds. When
employing EMSgpc, the optimization of the second-layer problem is
performed in this workspace, within a cyclic task with a period of 1
minute; then, the control decisions and the correction rules are sent
to the PLC. The stochastic solution is obtained for a MIP gap of 1%
and a maximum solution time of 30 seconds. On the other hand, the
second layer of the EMSy; is directly implemented in the PLC. In this
case, the communication module only sends the tentative ED and
the reference SOC trajectory to be tracked during the advancement
period. The PLC performs its tasks with a resolution of 100 ms, as
common industrial practice.

The workspaces communicate through the exchange modules, exe-
cuted every 20 seconds: while one exchange module sends the required
measurements to the first-layer block, the other one sends the scheduling
solution to the second layer. The periods of the cyclic tasks are chosen
according to the viability of the implementation in the experimental set-
up. In particular, the communication time between Matlab and PLC was
set to 20 seconds as a compromise between fast communication (i.e., fre-
quent monitoring of the microgrid status) and idle time requirements of
the Matlab software among consecutive tasks, imposed by the exchange
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module and the sMPC solution time. The average solution time is about Table 1
20 seconds for the first-layer model, and about 5 seconds for the second Technical limits of controllable units.
layer. Min out Max out Ramp limit
BESS1/2 -70 kW +70 kW —
4. Model validation ICE 12.5 kW 25 kW 3 kW/min
WP 650 L/h 1000 L/h 150 L/min

This section introduces the case study employed for the validation
of the proposed EMS. The experimental activities were carried out at
MG?Lab, a low-voltage multigood microgrid at the Department of En-
ergy of Politecnico di Milano whose complete description can be found
[22, 41].

4.1. Case study definition

The case study is defined so to assess the level of accuracy of the
simulation compared to the actual behavior, to validate the proposed
numerical models and certify the relevance of the numerical results.

The configuration considered for this study aims at emulating the
operation of a rural MG, providing electricity and potable water to its
users. Specifically, the set-up comprises:

* Three PV fields, for a total installed capacity of 75 kW,

e A Back-To-Back (B2B) converter, simulating a net electric load pro-
file (in this study, the profile consists of electric load minus wind
generation).

e Two identical 70 kW/67.5 kWh battery energy storage systems, from
now on named as BESS; and BESS,.

e A 25 kW, asynchronous generator, fueled by natural gas (ICE).

¢ A reverse osmosis desalination system, or water purifier (WP), with
an associated water tank, to increase the flexibility of potable water
production.

The technical limitations of the controllable assets are summarized
in Table 1. The MG2Lab has been operated in islanded mode, with one
BESS inverter operating in stiff grid-forming mode, and the other one
in grid following mode. Thus, the former imposes frequency and volt-
age to the microgrid system and acts as slack-node for both active and
reactive power, while the latter precisely follows the active power set-
points calculated by the EMS. As a matter of fact, the reactive power
flow has not been considered in the EMS control layers since the limited
extension of the experimental facility coupled with the low voltage of
the system (i.e., 400 V) and the low load level of the lines made the sys-
tem equivalent to a single node system. The whole voltage regulation
has thus been assigned to the grid-forming inverter. The programmable
generator has been simulated with a first-order transfer function and the
resulting output power has been subtracted from the net profile of the
B2B to provide the right energy balance in the islanded microgrid.

All the power measures have been acquired through the PLC net-
work thanks to the dedicated power measurement modules properly
connected to line voltages and class-1 current transformers. As far as
the BESS SOC is concerned, the integrated Battery Management Systems
(BMS) directly provided these measurements and made them available
through MODBUS communication to the PLC. The BMS estimates the
SOC using a combined approach that exploits both current and voltage
methods. The former measures the SOC through continuous current in-
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Fig. 6. Power and BMS measurements example.

tegration over time, while the latter corrects the drifting of the current
method by updating the SOC through look-up-tables and voltage mea-
surements when certain SOC levels are reached (i.e., 60%, 40% and 8%).
As it is possible to notice in Figure 6, around 19:00, during the discharge
phase of the batteries, the BMS stops updating the SOC value, while it
continues discharging, until the previous indication matches the correct
value.

Electric load and wind generation profiles are taken from the data
provided by Engie-EPS [52], and scaled to values compatible with
MG?Lab assets, while the water demand has been estimated by the NREL
tool [53]. Typical profiles employed in MG2Lab operations are reported
in Figure 7. In the next sections, the normalized root mean squared error
(nRMSE) is used as error metric to quantify forecast accuracy; the nor-
malization is given dividing the RMSE by the maximum observed value
during the considered interval.

During the experimental operation, when employing the EMSgypc,
the set-point correction rules are updated every minute at software level,
and then sent to the PLC, that stores them until a new solution is re-
ceived: the commands consist in the reference set-points U;, and the
coefficients mj(*, q;:, m;‘, q;;_. However, the set-point correction is ap-
plied according to the PLC resolution, following eq. (12), as the PLC
constantly measures the actual forecast error: a continuous adaptation
of the power sharing among the units is then achieved. The numerical
simulations need to mimic PLC tasks assignment and feedback to the
EMS. This is done adding an external layer, called MG status estimation,
which evaluates the states of the units according to their transfer func-
tion with PLC time discretization. In this way it is possible to account
for all the communication delays elapsed during the experimental ac-
tivities between the MG and the EMS, reducing the mismatch between
numerical simulation and the experiments. Indeed, there is always a lag
of 10 second between the collection of the measurements by the com-

Critical electricity

Water d d
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Fig. 8. BESS inverter-rectifier input-output characteristic.

munication layers and the initialization of sMPC, while a longer lag (up
to 2 minutes) is found between the reading of the inputs for the first-
layer optimization and the collection of the solution by the second layer.
The EMSp; has a simpler structure: the second-layer control is directly
implemented in the PLC, therefore, there is no need to differentiate the
time discretization between the control decisions and their actuation. In
the MG status estimation, the efficiency of BESS and inverter is no longer
kept constant. The variable efficiency of the coupled BESS/inverter unit
is considered according to a measurement campaign (Figure 8).

Numerical simulations are carried out after the experiment, to col-
lect the relevant measurements required to run the simulations (such as
the actual load profile of the B2B and PV production). Regarding the
real PV production, when the fields are operated in RPPT, the required
PV curtailment is estimated by determining the PV output at MPPT,
through irradiation and temperature measurements and adopting the
power coefficient approach [54].

4.2. Experimental EMSgpc

This section shows the results of two days of MG2Lab operation with
EMSgpc and the comparison with the respective numerical simulations.

Table 2 details the summary of energy fluxes during two days of op-
eration, while Figure 9 shows the experimental and simulated profiles.
The simulated MG operating profiles comply with the observed experi-
mental operation, in terms of commitment and operating cost; the sim-
ulated fuel consumption is very close to the measured value, main com-
ponent of the EMS objective function. It is important to point out that

Fig. 7. Example of demand and generation

0 200 400 600 800 1000 1200 1400 0 200 400
Time [min

PV generation

600 800 1000 1200 1400

Wind generation

profiles for one day of MG operation.

Time [min

kW]
8
kW]

0 200 400 600 800 1000 1200 1400 0 200 400
Time [min]

Real Forecasted |

0 AN fad A LA
600 800 1000 1200 1400

i L

Time [min]



S. Polimeni, L. Meraldi, L. Moretti et al.

Advances in Applied Energy 2 (2021) 100028

Table 2
Energy summary of experimental MG?Lab operation and comparison with numerical simulation for EMSypc.
Day 1 Day 2
EMSvipc . . . .
Experimental  Simulated  Experimental Simulated

nRMSE Critical electricity demand [%] 6.01 6.71

Water demand [%] 18.15 12.08

PV generation [%] 10.21 13.42

Wind generation [%] 5.89 6.92
Critial electricity demand [kWh] 413.8 417.0
Total electricity demand [kWh]  452.7 453.0 459.1 462.1
ICE generation [kWh] 183.6 185.0 192.7 197.3
PV generation [kWh]  267.2 267.8 287.7 284.2
Wind generation [kWh]  69.9 69.4 533 52.4
RES curtailment’ [kWh] 8.2 8.1 34.0 384
Unmet electricity demand [kwh] 0.0 0.0 0.0 0.0
Battery discharge [kWh] 126.3 120.4 127.3 119.5
Battery charge [kWh] 192.3 189.7 195.1 1914
Final Storage Energy [%] 17.8 17.4 18.0 21.2
Fuel Consumption [Nm3]  63.2 63.4 65.3 66.9
A fuel consumption [%] — 0.15 — 2.38

1 RES curtailment value is not reliable, as it is computed from an estimate of PV generation
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out
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even limited variations between the measured values of the MG status
and the ones obtained by MG status estimator can affect the solution of
the MILP problems. The differences of the operations can be attributed
to a slightly different management of the water purifier. Moreover, a
crucial role is played by SOC estimation, whose value affects both the
scheduling and the tracking problem. Indeed, there is a discrepancy be-
tween the measurements and the simulated energy fluxes through the
BESS, that cannot be corrected in the numerical simulation, due to the
working principle of the BMS. During day 1, simulation and experiment
show similar final storage energy content. Looking at the experiment,
the BMS updates, occurring at SOC 40% and 20% during the evening
discharging phase, did not refresh the SOC measures while cumulatively
7.4 kWh were discharged by both BESS, amount compatible with the
total difference between the estimated and the measured energy fluxes
(of about 6.5 kWh). The numerical simulation, where no BMS update is
considered, anticipates by 15 minutes the start-up of the ICE generator,
but keeps the same number operating hours. In day 2, a slightly differ-
ent behavior is observed. Even though the BMS missed 8.3 kWh, value

LI B m‘m Jd

Sep 30, 06:00

Sep 30, 06:00

10

Fig. 9. Experimental and simulated profiles
with EMSg;pc. The plots on the left refer to day
1, the ones on the right refer to day 2.
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Sep30,12:00  Sep 30, 18:00

Sep30,12:00 Sep30,18:00  Oct 01, 00:00

coherent with the difference in energy discharged between experiment
and simulation (7.8 kWh), the EMS decisions in the simulation led to
a higher production from the ICE generator anticipating its start-up of
15 minutes, thus, increasing the number of operating hours, resulting
also in a higher final SOC. Figure 10 underlines the ICE management,
both in terms of commitment and control actions. At the beginning of
the day, when the estimated SOC is in agreement to the measured one,
the simulated sMPC behaves very closely to what observed experimen-
tally, whereas, during the operation, the cumulated SOC estimation er-
ror affects the control decision, leading to a slightly different dispatch
(Figure 11).

4.3. Experimental EMSp;

The validation of the EMS also includes the architecture with PI con-
trol as second layer, analyzing two days of operation. The comparative
results are reported in Table 3.

During the first day, due to cloudy conditions, low PV yield was ob-
served, that affected the charging phase of the BESS, as the maximum
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Fig. 10. ICE commitment and power output
comparison between experiment and simula-
tion with EMSgype for day 1 (top figure) and
day 2 (bottom figure).

Fig. 11. Experimental and simulated profiles
with EMS,,;. The plots on the left refer to day 1,
the ones on the right refer to day2.

Table 3
Energy summary of experimental MG?Lab operation and comparison with numerical simulation for EMSp,.
Day 1 Day 2
EMSp; - - - -
Experimental  Simulated  Experimental  Simulated

nRMSE Critical electricity demand [%] 6.75 8.14

Water demand [%] 24.01 26.22

PV generation [%] 9.30 8.72

Wind generation [%] 5.05 7.49
Critial electricity demand [kWh]  413.8 393.8
Total electricity demand [kwWh]  431.6 433.0 451.6 452.1
ICE generation [kwh]  305.5 309.0 183.2 1913
PV generation [kWh] 93.2 92.7 259.8 256.1
Wind generation [kwWh]  94.5 94.2 82.3 82.0
RES curtailment [kwh] 0.0 0.0 2.7 6.7
Unmet electricity demand [kwh] 0.0 0.0 0.0 0.0
Battery discharge [kwh]  84.5 81.9 136.2 127.5
Battery charge [kwWh]  145.1 144.7 206.9 204.8
Final Storage Energy [%] 16.4 16.7 20.6 20.7
Fuel Consumption [Nm?3] 103.2 104.0 62.5 64.7
A fuel consumption [%] — 0.76 — 3.40

11
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Table 4
Test case characteristics.

2020

Peak Daily demand or generation nRMSEEMS [%] nRMSEPF-EMS [%] nRMSEPF-MILP [%]

Critical electricity demand 65 kW 831.7 kWh 6.12 3.93 0.00

Water demand 1m3/h 10.0 m? 6.08 3.54 0.00

PV generation 75 kW 488.8 kWh 7.98 6.03 0.00

Wind generation 40 kW 201.8 kWh 29.19 11.97 0.00
SOC reached during the day was about 35 %. For this reason, no BMS up- Table 5
date occurred during the experiment, and a limited mismatch between qharacteristics of controllable units and technical limita-
simulated and experimental quantities related to the BESS is observed tions.
(in terms of energy fluxes and final SOC). The remaining differences Generators
can be addressed to uncertainty of measurements and fitting errors of Min out — Ramp limit
the non-linear efficiency of the BESS/inverter units, used in MG status
estimation. The absence of high discrepancy in between measured and G1 2.5 kw 10 kw 3 kwW/min
estimated SOC leads to a very high compatibility of simulated operation g 125 Sk:NW ;g :(a f ;( \:v\/NmmA
with experimental ones. Indeed, the same schedule of ICE generator and WP 950 rr<13 Mmoo 50:) m3/h 150 (ms//r:lnlirrll
very similar dispatch can be noticed, as shown in Figure 12. Storages

On the other hand, on day 2, a larger mismatch between experimen- Size SOCpin SOCax
tal results and numerical simulations was observed. Considering the first BESS 150 kwh  10% 90%
. . - ) - Water tank 5 m? 0% 100%

part of the day, the first layer in the numerical simulation computes a
different commitment of the ICE, which starts to diverge at 3:30, even
though, in both the experiment and the simulation, the ICE followed the Table 6

same dispatch, and the was no relevant difference in SOC up to that mo-
ment. On the other hand, the number of ICE operating hours until 9:00
remains unaffected. Considering the remaining part of the day, the BMS
update occurring during the discharge phase miscounted 11.3 kWh of
energy provided by the BESS, amount that the simulated EMS decided
to supply employing the ICE for one timestep more, leading to a higher
fuel consumption.

5. Model application to a test case

This section introduces a comparative analysis based on numerical
simulations of EMSp; and EMSypc. The EMS has been tested for an off-
grid MG aimed at satisfying the demand of electricity and potable water
of a small rural community, for two weeks of operation. Relevant data
regarding the test case MG are taken from [52, 53], and summarized in
Table 4 and Table 5.

The results of the optimal grid management based on EMSp; and
EMSgypc are reported in Table 6. The application of EMSypc, instead
of EMSy,,leads to a reduction of 2.7 % in fuel consumption, that is con-
sidered one of the key performance indexes when evaluating the effec-
tiveness of the EMS. The fuel consumption is evaluated as the sum of
fixed and variable fuel consumption, according to eq (19): the former
represents the amount of fuel related to the commitment status of the
generators, operated at minimum load; the latter is related to their ac-
tual power output.
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Results summary for the proposed EMS on the test case.

EMS;,; EMS \pc
Critial electricity demand [kWh] 11643.5
Total electricity demand [kWh] 12687.0 12683.5
ICE generation [kWh]  4800.5 4660.2
PV generation [kWh] 5652.1 5903.1
Wind generation [kWh]  2825.4 27203
RES curtailment [kWh] 1191.1 1045.1
Unmet electricity demand [kWh] 6.2 32
Final Storage Energy [%] 37.6 303
RMSE,;.cic [kwh]  14.2 12.7
SOC surplus [kWh] 1986.0 1448.8
SOC deficit [kwh]  -1012.5 -1094.4
Fixed fuel consumption [Nm3]  805.9 828.3
Variable fuel consumption  [Nm?] 782.4 716.0
Total fuel consumption [Nm?3] 1588.3 1544.3
A fuel consumptions [%] — -2.7

The resulting operation cost can be traced back to the ability of the
second layer to follow the reference SOC trajectory, preserving the en-
ergy fluxes optimized by the first layer; a SOC tracking error is observed,
with a lower RMSE,,,« when employing the SMPC. Generally speaking,
a SOC overprediction is observed when the net demand is higher than
forecasted, either because of insufficient total generation capacity or
due to the impossibility of increasing the power output of the genera-
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tors quickly enough to compensate for the unbalancing. It is important
to notice that a SOC overprediction leads to an over-commitment by the
next first layer update so to restore the spinning reserve. Conversely, a
SOC underprediction represents an excessive generation due to the in-
ability of reducing the power output of the programmable generators,
because of ramp limits or minimum power output. In the simulations,
EMSgypc causes a lower SOC surplus than EMSp;, due to its capability of
anticipating future forecast errors. Indeed, EMSg,;pc shows a responsive
and efficient reduction of the power output of the committed genera-
tors when required, thus a lower variable fuel cost. On the other hand,
the higher SOC surplus of EMSy; leads to a saving in commitment cost
with respect to EMSgpc, yet a larger variable cost: the generators op-
erate closer to their maximum power output to guarantee the tracking,
but the set-point reduction is not fast enough to reduce the SOC sur-
plus once the negative deviation is balanced. All these aspects reflect in
reduction of 12% of curtailment when employing EMSpc instead of
EMSp;, favoring a larger RES penetration.

Once identified the advantages of sMPC with respect to the PI ap-
proach, it is important to understand the limits of EMSgpc. These lim-
its are determined by introducing three benchmark approaches, which
correspond to increasing level of solution accuracy, with the following
differences in terms of inputs and second layer:

e EMSpp \pc utilizes a deterministic optimization problem as second
layer with a unique net demand profile, representing the actual fu-
ture realization (perfect forecast). This benchmark is intended to
give the best possible outcome by the application of an optimal sec-
ond layer when forecast errors from the first layer are still present.

e PF-EMS has the same structure of EMSpp \pc, but the demand and
generation profiles are given as the average of the real profiles cor-
responding to the related first-layer time step. In this way, the total
amount of demand and RES generation seen by the first layer per-
fectly matches the actual ones, but there are still fluctuations to be

PF-MILP

150
100
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Fig. 13. Example of load demand profiles as input of the first layer of EMS and
PF-EMS.

balanced by the second layer. PF-EMS results will represent the best
possible achievements, given exact forecasts with coarser time reso-
lution than the one considered when dispatching the MG. Figure 13
shows the difference between the load demand profile used in all the
EMS and in PF-EMS.

e PF-MILP corresponds to a single layer optimization problem, solved
with the discretization of the EMS second-layer, thus, the real pro-
files of demand and RES generation are considered with the correct
time resolution. In this case, reserve constraints are no longer en-
forced, as PF-MILP perfectly observes future profiles, making the re-

Fig. 14. Comparison of proposed EMS and
benchmarks.
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Table 7
EMSgypc and benchmarks results.
EMSgypc EMSprypc PF-EMS  PF-MILP

Critial electricity demand [kWh] 11643.5
Total electricity demand [kWh] 12683.5 12677.6 12689.5 12683.4
ICE generation [kWh]  4660.2 4631.1 4474.0 4287.5
PV generation [kWh]  5903.1 5918.1 5992.1 6591.4
Wind generation [kWh]  2720.3 2728.8 2825.4 2796.2
RES curtailment [kWh]  1045.1 1021.6 851.0 280.9
Unmet electricity demand [kwh] 3.2 13 0.0 0
Final Storage Energy [%] 30.3 28.8 35.1 12.5
RMSE ;¢ [kwWh] 127 123 39 —
SOC surplus [kWh]  1448.8 1414.6 355.9 —
SOC deficit [kWh]  -1094.4 -974.8 -522.9 —
Fixed fuel consumption [Nm3] 828.3 836.3 7343 578.6
Variable fuel consumption [Nm?3] 716.0 700.9 732.6 771.6
Total fuel consumption [Nm3] 1544.3 1537.2 1466.9 1350.2
A fuel cons. (wrt EMSpp yipc)  [%] 0.5 — — —
A fuel cons. (wrt PF-EMS) [%] 5.3 4.8 — —
A fuel cons. (wrt PF-MILP) [%] 14.4 13.9 8.6 —

serve requirements unnecessary. This solution is the lower bound for
the performance of all EMS.

A comparative analysis between the EMSgpc and the benchmarks
is reported in Table 7, and sample profiles are shown in Figure 14. PF-
EMS has a higher fuel consumption by 8.6% with respect to PF-MILP
due to spinning reserve constraints, that are enforced in PF-EMS to en-
sure the MG capability of balancing forecast errors in the second layer.
Moreover, inexact forecasts in the first layer of EMSpg ypc cause a fur-
ther increase of fuel consumption leading to an overall 13.9% difference
with respect to PF-MILP. Once the influence of reserve constraints and
forecast errors has been underlined and isolated, the performances of
the EMSgypc (14.4% gap relating to PF-MILP) can be better explained:
indeed, its solution approaches the one of EMSpg y;pc (0.5% difference
in fuel consumption), which represents the best results achievable by a
perfect second layer. It is worth noticing that, even though EMSy; leads
to a 3.3% gap with respect to EMSpg \ipc, its performance is still satisfac-
tory given the non-predictive formulation. On the other hand, lowering
the 4.8% difference between EMSpg yipc and PF-EMS would require a
solution of the first-layer scheduling problem with very accurate fore-
cast throughout the whole optimization horizon, not usually possible in
real operation.

6. Conclusions

This paper presents a two-layer hierarchical EMS for the optimal
management of multi-goods microgrids under demands and RES gener-
ation uncertainty. While the first layer is based on state-of-the-art de-
terministic MILP model with spinning reserve constraints to compute
the optimal unit commitment, a strong focus is given to the second
layer problem. The proposed algorithm is formulated as a scenario-based
stochastic model predictive control (EMSgypc). The main features are (i)
the introduction of affine piecewise recourse on future disturbances (i.e.,
forecast errors of net good demands), (ii) the capability of on-line im-
plementation through optimized coefficients for power sharing in the
microgrid, and (iii) the mathematical formulation for the proper mod-
elling of BESS with non-simultaneous charge and discharge. An EMS
with a PI-based second layer is also considered (EMSy;) as reference
case. Both algorithms are conceived for on-field deployment, employ-
ing an external workstation to solve the MILP problems, and industrial
PLC that receives the schedule and the dispatch rules from the worksta-
tion and manages the units in real-time. The implementation was carried
out in the Multi-Goods MicroGrid Laboratory of Politecnico di Milano,
showing the capability of the EMS to correctly manage an off-grid mi-
crogrid that satisfies the demand of electricity and potable water, for
several hours of operation and under different PV yields. The experi-
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mental activities validated numerical simulation of the EMS, with high
accuracy, but some important aspects must be considered:

¢ SOC estimation plays a crucial role when performing rolling horizon
scheduling, as even slight SOC variation between experimental and
simulation can lead to different unit commitment, even though the
total number of hours of the programmable generator is consistent
between the two.

Non-linear efficiency curves have been used for SOC estimation, but
a mismatch can still be observed, due to the working principle of the
BMS, that updated the BESS status through voltage measurements of
all the cells.

o The average advantage corresponds to 1.7% fuel savings with max-

imum equal to 3.4%.

Once the two EMS were validated, their performances have been nu-
merically evaluated on a real test case. Assuming the same commitment,
the proposed algorithm reduces the fuel costs by 2.7% with respect to
PI controller. In addition, it has been demonstrated that it approaches
the best possible outcome acting only on the second layer (0.5% gap).
The difference between the performances of EMSp; and EMSgypc is pro-
duced by the presence of the wind generator, that causes the uncertainty
to spread throughout the day. For MG with only PV systems as RES, the
uncertainty is concentrated in few hours during the day (that diminish if
the PV fields operate in RPPT), reducing the margin of improvement that
EMSgypc could exploit in optimizing the dispatch. Besides improving
forecast accuracy, a further cost reduction can be achieved acting on the
first layer model. Future work will consider the development of stochas-
tic first layer formulation, that allow to reduce the over-commitment of
dispatchable generators that was noticed in the numerical simulations,
mainly due to spinning reserve requirements. Moreover, new interaction
paradigms between first and second layer will be considered.
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Appendix

This section reports the detailed first-layer model, which is a de-
terministic MILP based predictive optimization with spinning reserve

constraints on the various goods’ demands.

T
obj= Y13 (cif; +cO%M 4 cﬁf”) +Y ( UM+ cg;‘j’) +e30Cd | A
t=1 i gd
(A1)
Where:
ol = i, (UL + 8, Z0) Ak Ry, SUL =y 180+ Ky SUL Vi€ gt
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Us dh
s,ch 7 .
Cf+1 Cl—| —— + U JAr = L°At; Vst (A.21)
i
Spinning reserve constraints and good balance
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