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We develop and test a modeling approach to quantify turbulence-driven solute transport and mixing in porous media.

Our approach addresses two key elements: (a) the spatial variability of the effective diffusion coefficient which is typ-

ically documented in the presence of a sediment-fluid interface and (b) the need to provide a model that can yield the

complete distribution of the concentration probability density function, not being limited only to the mean concentration

value and thus fully addressing solute mixing. Our work is motivated by the importance of solute transport processes

in the hyporheic zone, which can have strong implications to natural attenuation of pollutants. Our approach combines

Lagrangian schemes to address transport and mixing in the presence of spatial variability of effective diffusion. An

exemplary scenario we consider targets a set-up constituted by a homogeneous (fully saturated) porous medium under-

lying a clear water column where turbulent flow is generated. Solute concentration histories obtained through a model

based solely on diffusive transport are benchmarked against an analytical solution. These are then compared against the

results obtained by modeling the combined effects of diffusion and mixing. A rigorous sensitivity analysis is performed

to evaluate the influence of model parameters on solute concentrations and mixing, the latter being quantified in terms

of the scalar dissipation rate.

I. INTRODUCTION

Reliable modeling of mass and momentum transport at the

interface between free flow and a porous medium is key to

enhance our understanding of the functioning of aquatic sys-

tems and their interaction with the groundwater compartment.

A notable example in this context is the hyporheic zone, which

corresponds to the portion of the stream bed characterized by

the mixing between surface water and groundwater. This re-

gion significantly contributes to mitigation of water pollution

through a combined effect of bio-degradation, mixing, and

sorption/desorption processes1,2. Mass and flow exchange be-

tween groundwater and the free surface stream drives pollu-

tants into the bed sediment, where these are temporarily re-

tained and can be subject to transformation by chemical re-

actions. Such interaction is typically termed as hyporheic

exchange and takes place mainly across the region close to

the water-sediment interface (i.e., the benthic biolayer). Hy-

porheic solute exchange is driven by physical and chemical

gradients3, molecular diffusion, turbulent shear-driven flow,

and advective phenomena arising in the presence of river

bedforms4.

Quantification of the relative contributions of the above-

mentioned processes on solute exchange at the sediment-

water interface is challenging also considering the natural

variability of physical attributes of sediments. The distinc-

tion between transport and mixing processes driving solute

migration across a porous medium is an important element

to consider in this context. While modeling of transport

mainly focuses on the assessment of volume averaged con-

centration values, mixing is typically defined as the ensem-

ble of processes favoring a scenario where two substances

initially residing into diverse volumes end up occupying the

same (common) volume5,6. Mixing and transport features in

natural systems are strongly interrelated and are affected by

heterogeneities of system attributes/properties which are dis-

tributed across a variety of scales7. From a physical stand-

point, advection and molecular diffusion are key drivers of

dissolved solute particles. While (spatially) heterogeneous ad-

vection leads to solute spreading, diffusion contributes to di-

lution, ultimately leading to spatial homogenization of solute

concentrations7,8.

In porous media, solute mixing processes acting at the pore

scale are often depicted by coupling the effects of advection

and diffusion within a lumped dispersion coefficient whose

formulation can be obtained through upscaling of pore-scale

information to the Darcy (or continuum) scale. This approach

is documented to suffer from neglecting the nonlinear nature

of mixing processes and leads to an inaccurate evaluation of

local concentrations6,9. With reference to the characteriza-

tion of transport processes at sediment-water interfaces, ex-

perimental tests have been performed to improve our under-

standing of mass transport and of the way turbulence effects

within a porous medium affect solute arrival times at loca-

tions of interest10–15. In this context, a commonly used ap-

proach relies on characterizing transport by means of an ef-

fective diffusion coefficient. Recent results show that the ef-

fective diffusion coefficient exhibits an exponential reduction

with depth below the exchange interface10, this pattern having
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strong effects on solute transport and mixing even in seem-

ingly homogeneous porous domains. To overcome the limi-

tations of available approaches, our study targets the quantifi-

cation of the effect of porous medium heterogeneity on global

mixing metrics. While the impact on mixing of spatially het-

erogeneous flow properties has been widely investigated in

the literature9, diffusion coefficients are often considered as

constant in space16,17. For example, the majority of the mod-

els employed in practical settings to quantify solute exchange

across the hyporheic zone neglects spatial heterogeneity of

diffusion coefficients and typically relies on a simplified de-

scription of transport and mixing in the pore space18–26. Re-

sults from computational studies27 suggest that neglecting the

spatial variation of diffusion parameters leads to an underesti-

mation of solute concentrations across a porous system. Here,

we focus on two main processes: (i) diffusive solute trans-

port caused by macroscopic concentration gradients and (ii)
mixing induced by molecular diffusion enhanced by turbulent

oscillations of the velocity field at the pore scale.

We model these processes through a random walk technique

that relies on two main elements: (i) the Skew Brownian Mo-

tion (SBM) model28 and (ii) the Parameterized scalar profile

(PSP) mixing model29. The SBM model28 is used to assess

the behavior of solute particles across media characterized by

a spatially variable (and piece-wise constant) diffusion coeffi-

cient. The choice of this approach is motivated by the possible

occurrence of sharp (spatial) variations in the system diffusiv-

ity that may arise due to physical heterogeneity of the porous

system or to the decrease in the strength of turbulence effects

which is documented to take place in the porous domain close

to a sediment-water interface. To address mixing, we employ

a modified version of the PSP mixing model29 that enables

the evaluation of the temporal evolution of chemical concen-

tration and mixing of solute mass within the fluid domain. The

implemented approach allows approximating the dynamics of

the full probability density function (PDF) of solute concen-

tration in the domain, and thereby compute global indicators

of mixing, such as the scalar dissipation rate30. The approach

is here applied to two settings: (a) a bimaterial medium, con-

sisting of two sediment layers, subject to a diffusive gradi-

ent; and (b) a system inspired by the experimental setup con-

sidered in Chandler et al.10. In the context of the latter sce-

nario, we explore the sensitivity of the model outputs to un-

certainty associated with input parameters employed to model

the space-time evolution of solute concentrations and metrics

employed to characterize mixing. Our analysis is keyed to the

identification of the main parameters driving mixing-driven

reactive processes.

The work is structured as follows. Section II is devoted to il-

lustrate the methodology at the core of the modeling approach:

the SBM model28 is introduced in Section II A while the PSP

mixing model29 is presented in Section II B. The key results of

the study are shown in Section III for case (a) (Section III A)

and case (b) (Section III B). Conclusions are then presented

in Section IV.

II. METHODOLOGY

Our study targets diffusive transport and mixing of chemi-

cals in the presence of sharp spatial variations of the system

effective diffusivity of the kind that can take place close to

a sediment-water interface. We rely on coupling two exist-

ing models based on a Lagrangian perspective, i.e., (i) the

Skew Brownian Motion (SBM) model28, which is typically

employed to assess diffusive transport in the presence of a spa-

tially heterogeneous diffusion coefficient, and (ii) the param-

eterized scalar profile (PSP) mixing model29. Some details

on these approaches are provided in Section II A and Section

II B, Section II C describing our strategy to couple them.

A. Skew Brownian Motion (SBM) model

Assessment of scenarios driven by diffusive gradient condi-

tions is challenging. The Skew Browian Motion (SBM) model

was introduced in the ’70 by Itô31 and Walsh32 as a general-

ization of the Brownian motion33. The approach introduced in

Lejay and Pichot28,34 is then used to treat diffusive problems

in media with spatially discontinuous values of the diffusion

coefficient. We start by considering a simple case where a

one-dimensional domain is composed by two regions, each

characterized by a constant diffusion coefficient, i.e., we set

D = D+ for X > XI and D = D− for X < XI , where XI de-

fines the location of the interface between the two regions and

X ∈ (−∞,+∞). The displacement of a given solute particle is

depicted through the SBM only in the proximity of the discon-

tinuity/interface (XI), its dynamics being otherwise modeled

as a classical Brownian motion. The extent dlayer of the region

around the discontinuity (termed as interface layer) where the

particle is affected by the variation of the diffusion coefficient

is estimated by Eq. (1) for each portion of the domain with

constant diffusion coefficient (i.e., D±)

dlayer = cα

√

2D±δ tt (1)

where cα is an arbitrary constant and δ tt is a fixed time step.

As an example, considering a Gaussian distribution and as-

suming cα =4 (corresponding to α = 1-6× 10−5 = 99.994%)

the probability that a particle located outside the interface

layer (i.e., at x < XI − cα

√
2D−δ tt or x > XI + cα

√
2D+δ tt

(see Figure 1)) may reach the discontinuity at XI is equal to

0.006%. Therefore, the domain is subdivided into the three

diverse zones34(see Figure 1) detailed in the following.

1. Constant diffusion zone (Xb + cα

√
2D−δ tt < x < XI −

cα

√
2D−δ tt ). A particle in this region is far enough

from XI and is not influenced by the discontinuity. The

particle motion is treated as a conventional diffusion

scenario through

x(t +δ tt) = x(t)+ξ
√

2D[x(t)]δ tt (2)

where x(t) is the particle position at time t and ξ is a

random number sampled from a standard normal distri-

bution;
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2. Interface layer (XI − cα

√
2D−δ tt < x <

XI + cα

√
2D+δ tt ). It is the area across the inter-

face XI where the random walker is affected by the

diffusive discontinuity and is displaced according to

the SBM model;

3. Boundary layer (Xb < x < Xb + cα

√
2D−δ tt ). The be-

havior of a particle close to the domain boundary (lo-

cated at Xb) is related to the imposed boundary condi-

tions, reflecting boundaries being assumed in our study.

FIG. 1. Partition of the domain in three zones: Constant diffusion

zone, interface layer, boundary layer

We focus here on the particles close to the interface XI and

consider particle motion driven by the SBM according to the

following two steps which are implemented in sequence34,

i.e., we (i) first assess if the interface location is reached and

then (ii) compute the particle position at time t +δ tt based on

the results obtained at step (i). We consider the Exact Hit-

ting Time algorithm34 to assess whether the particle crosses

the interface and evaluate the time τ (termed first hitting time)

required for the particle to move from its current position X(t)
to XI . The algorithm is grounded on the concept of the Brown-

ian bridge and is here employed as it provides a more accurate

estimate of the first hitting time when compared to a linear

approximation34.

When the interface is not crossed within the considered time

interval δ tt , the particle position at time t + δ tt is directly

calculated34. Otherwise, if the interface is crossed, the par-

ticle is set to start moving from XI after a pre-defined time τ
and step (ii) is then initiated. In other words, at time t + τ the

particle/walker is still at the interface location. Once the par-

ticle has reached XI , two possible scenarios may take place,

i.e., either the interface is crossed or the particle is reflected.

The probability of a walker to cross or to be reflected once it

reaches the interface is given by34

θ =

√
D+−

√
D−

√
D++

√
D− (3)

which essentially expresses the fraction of the mass flux

that must be reflected at the discontinuity.

A random value is then drawn from a uniform distribution

defined on the unit support and is compared against 1+θ
2

to

assess if the particle is allowed to cross the boundary. We

recall that the algorithm can be readily extended to settings

associated with the presence of multiple discontinuities, as

the motion of each particle only depends on its immediate

surroundings28.

B. PSP mixing model

The parameterized scalar profile (PSP)29,35 is grounded on

the idealization of a scalar field evolving across a turbulent

flow domain as an ensemble of one-dimensional parameter-

ized scalar profiles (PSP). For instance, the scalar can rep-

resent a temperature or, as in our study, the concentration

of a chemical compound. Modeling mixing through scalar

profiles is a classical approach underpinning the concept of

continuum-scale mixing in a variety of models36–38. In the

presence of a stationary homogeneous turbulence, the scalar

value φ i associated with each particle pi evolves to the lo-

cal scalar mean 〈φ〉 with a constant rate over time29. Mix-

ing induces temporal evolution of the scalar attributed to each

walker. The temporal variation of φ i associated with particle

pi is quantified by35

dφ i

dt
=− 1

τ̄φ
(φ i −〈φ〉) (4)

The mixing time scale τ̄φ can be quantified as39

τ̄φ =
2

C
′
φ 〈w〉

(5)

where, 〈w〉 is a mean turbulence frequency and Cφ
′
is a con-

stant model parameter that correlates such frequency to scalar

mixing40.

The shape of the PDF of the considered scalar is preserved in

spatially homogeneous turbulence settings because all parti-

cles of the ensemble tend to relax to the mean value 〈φ〉 with

the same rate (Eq. (4)). In the PSP mixing model, the one-

dimensional profile associated with each particle is approxi-

mated with a sinusoidal shape and is parametrized in terms of

four quantities, i.e., φ+, φ−, λ , and τ̄φ , representing the largest

and lowest bound of the range of values which can possibly

be undertaken by the scalar (here termed as scalar boundary

values), the profile length scale, and the mixing time scale,

respectively. The sinusoidal profile is expressed as

φ i(x, t) = e
(− t

τ̄φ
) (φ+

i +φ−i)

2
sin(

π

λ i
x)+φc

i (6)

where, φc
i = φ+

i+φ−i

2
is the profile center.

Here, we consider the scalar field to correspond to solute

concentration across the domain. Its dynamics are then quan-

tified as

dφ i

dt
= D

∂ 2φ i

∂x
2

(7)

where x is the (one-dimensional) spatial profile coordinate,

D is the diffusion coefficient, and φ i scalar attributed to the

particle pi.
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Combining Eqs. (4) and (7) yields

λ = π
√

Dτφ = π

√

2D

C
′
φ w

(8)

We then rely on Eq. (8) and modify the original PSP model

to assess the temporal evolution of the particle concentration

as

φ i(t +δ tm) = (e
− π2D

λi
2 δ tm −1)(φ i(t)−φ i

c(t))+φ (i)(t) (9)

where δ tm is a time step employed to discretize the mixing

process.

We note that our parameterization of the PSP model slightly

differs from Meyer’s original approach29,35 in that the profile

length scale λ is here considered as an input model parameter,

as opposed to C
′
φ

29,35. Our choice is consistent with the obser-

vation that we are considering mixing caused by the combined

effect of diffusion and hydrodynamic dispersion in a porous

medium, while Meyer29,35 tackles a homogeneous turbulent

flow scenario. Therefore, a diverse value of λ can be linked to

each of the considered particles, due to the occurrence of pos-

sible spatial inhomogeneities in the turbulence characteristics

across the pore space. Closure of model (9) requires spec-

ifying the value φc, which is typically taken as the average

between φ+ and φ−29,35. The PDF of concentration at a given

time within each cell of the domain is defined by the distribu-

tion of the values of φ i (including φ+ and φ−) associated with

each particle pi within the cell29,35. For a given particle pi a

pair of particles (termed as boundary particles and denoted as

i− and i+) is randomly selected in the same cell so as to satisfy

(φ i −φ i
−)(φ

i −φ i
+)≤ 0 (10)

which states that the scalar value φ i of particle pi on a given

profile should always be comprised between the boundary par-

ticle values.

Either of the boundary particle values can be updated when:

1. one of the two boundary particles leaves the current

cell;

2. particle pi leaves the current cell; or

3. the variable time t± associated with either boundary

particle is null or negative; note that t± decreases over

time according to

t±(t +δ tm) = t±(t)−δ tm (11)

where t±(t +δ tm) and t±(t) =
λ 2
±

Ct

C
′
φ

2Dk

are the values as-

sociated with t± for φ+, φ− at time t + δ tm and t, re-

spectively; Dk is the diffusion coefficient of layer k; and

λ± is the length scale of profile in Eq. (6) for particles

associated with φ+, φ−.

In case the replacement of particle pi is required, the cor-

responding scalar boundary values (φ i
+ or φ i

−) is replaced by

the particle residing within the same grid cell as particle pi

and whose associated scalar value is closest to the one that is

replaced.

C. Coupling the SBM and PSP mixing models

We consider transport and mixing in a layered domain,

structured across NL layers, each characterized by a given dif-

fusion coefficient. The approach proposed in the present work

rests on coupling the SBM and the PSP mixing models. We

recall that particles in the SBM model represent a mass of so-

lute while representing an ensemble of concentration values

in the PSP model. Coupling of the two approaches requires

a mass-concentration conversion to ensure mass conservation.

Particles are initially displaced according to the SBM model,

each particle pi being associated with a given solute mass.

Each particle is then related to a concentration value prior to

applying the mixing model according to

φi =
mi

Vi(k)
(12)

where Vi =
VL(k)
nL(k)

is evaluated as the ratio between the fluid

volume within layer k (i.e., VL(k)) where particle pi resides

at time t and the number of particles within the layer, nL(k)
(with 1 ≤ k ≤ NL).

The mass of each particle is preserved during diffusive

transport, i.e., mi(t + δ tm) = mi(t). Otherwise, the layer k

where a given particle can be found may change in time. Eq.

(12) can then be recast as

φi(t +δ tm) = φi(t)
VL[k(t)]

VL[k(t +δ tm)]

nL[k(t +δ tm)]

nL[k(t)]
(13)

The scalar values attributed to each of the walkers are

rescaled in the event these are higher than the largest concen-

tration observed in the system at the initial time. Rescaling is

performed according to the principle that solute concentration

cannot be higher than the initial conditions in the settings we

analyze (i.e., in the absence of solute influx from the bound-

aries). Mixing is then simulated in accordance with the PSP

mixing model, yielding a temporal variability of the concen-

tration associated with each walker. Note that mixing is here

considered to take place exclusively between walkers located

within the same layer. The scalar values related to the particles

are then converted into mass by

mi = φi

VL(k)

nL(k)
(14)

and are employed in the subsequent step involving applica-

tion of the SBM model.
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D. Quantities of interest

Our simulations are geared to analyzing three key output

quantities: (a) the average solute concentration (C̄), (b) the

probability density function (PDF) of concentration values,

and (c) the spatial integral of the concentration squared, which

is employed as the primary indicator of mixing across the

entire domain. We consider transport in closed physical do-

mains with time invariant properties. The average concentra-

tion is then constant in time and can be computed by a volume-

weighted average of concentrations in each layer Ck as

C̄ =
∑

NL

k=1 CkVL(k)

∑
NL

k=1 VL(k)
(15)

The mean solute concentration of each layer k is evaluated

as the average value of the scalars φi associated with the parti-

cles residing within the layer at a given time. Consistent with

the procedure used for the evaluation of C̄, the concentration

PDF (within the domain at a given time) can be approximated

as

f̄ (φi) =
∑

NL

k=1 f (φi,k)VL(k)

∑
NL

k=1 VL(k)
(16)

where f (φi,k) is the PDF associated with the values of φi for

particles that are in a given layer k. The integral of the squared

concentration C̄2 is approximated as

C̄2 =
NL

∑
k=1

C2
kVL(k) (17)

where C2
k is defined as

C2
k =

∑
nL
i=1 φ 2

i

nL

(18)

In addition to the three metrics described above, mixing dy-

namics in the whole system are also quantified in terms of the

scalar dissipation rate, evaluated as9

χ(t) =−1

2

dC̄2

δ t
(19)

III. RESULTS AND DISCUSSION

The following section is devoted to the illustration of the

major results of the study. Two systems with a different degree

of complexity are assessed:

• Case 1: a system structured across two layers, each

characterized by a given diffusion coefficient (hereafter

termed as bimaterial medium);

• Case 2: a system mimicking an erosimeter, consisting

by a porous medium underlying a water column41,42.

The porous medium is characterized by an exponential

reduction of the diffusion coefficient with depth under

the sediment-water interface and is here considered as

formed by 6 layers, each characterized by a constant

diffusion coefficient.

A global sensitivity analysis is performed for Case 2 to eval-

uate the relative importance of model parameters on diffusive

transport and mixing. Note that concentration values are nor-

malized by the maximum initial concentration and are given

in [%].

A. Case 1: Bimaterial medium

We consider a bimaterial medium of finite extent and char-

acterized by a discontinuity in the diffusion coefficient at the

interface between two materials. Focusing on this exemplary

setting enables us to (a) benchmark the SBM model34 for so-

lute transport under a discontinuous diffusion coefficient and

(b) assessing the impact of the coupling between PSP and

SBM on layer-averaged concentration and mixing in a sim-

ple case. We rely on dimensionless quantities and pattern the

system according to the benchmark test presented by Lejay

and Pichot34. The latter comprises two layers, i.e., the Upper

layer (associated with vertical coordinates 0 < y < 3) and the

Lower layer (−3 < y < 0), the discontinuity (interface) being

located at yI = 0 (see Figure 2).

FIG. 2. Domain Case 1

The diffusion coefficients (termed Dup and Dl for the Up-

per and Lower layer, respectively) are piece-wise constant. As
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an initial condition, particles with a scalar value φ = 1 are lo-

cated in the Lower layer at y0l
=−0.09.

We start by validating our implementation of the SBM

model28,34 for the evaluation of the one-dimensional diffusive

transport scenario in the computational domain depicted in

Figure 2. For this aim, the PSP model is not active and mixing

is therefore neglected. The parameters used in the benchmark

test are listed in Table I.

TABLE I. Parameters associated with the benchmark test used for

validation of the SBM model: D (Diffusion coefficient), Np (Number

of particles), yI (Interface position), δ tt (Time step), and nt (Number

of time steps)

Upper layer Lower layer

D Dup = 2 Dl = 5

Np 100000 100000

Simulation parameters

ρ = Dl

Dup
2.5

yI 0

δ tt 0.01

nt 30

The PDF of particle positions q(t,y0,y) at each time step

(and hence particle concentration at a given location yi(t)) is

evaluated for both particles with the initial location at y0l
and

y0up through the analytical expression34

q(t,y0,y) =
1

√

2D(y)
pθ (t,

y0
√

2D(y0)
,

y
√

2D(y)
) (20)

where D(y0) is the diffusion coefficient associated with the

portion of the domain corresponding to the initial position of

the particles, D(y) being its counterpart in the region where a

given particle is found at time t.

The density transition function (pθ ) of the Skew Brownian

motion is expressed as33,34

pθ (t,y0,y) = g(t,y− y0)+ sgn(y)θg(t, |y|+ |y0|) (21)

where,

sgn =

{

> 0 if y− yI > 0,

< 0 if y− yI < 0,

and the function g(t,y− y0) is defined as

g(t,y− y0) =
1√
2πt

e−
(y0−y)2

2t (22)

Numerical results are in close agreement with the analytical

solution, thus imbuing us with confidence about the success-

ful validation of our implemented SBM numerical code (see

Figure 3(a)-(b)). The slight discrepancy observed between

the analytical and the numerical results at t = 0.30 is related

to the observation that, while we assume that the particles are

reflected at y =±3, the analytical solution in Eq. (20) is asso-

ciated with an infinite domain. As an additional example, Fig-

ure 3(c) depicts the root mean squared error (RMSE) between

the analytical and the numerical density transition function at

a selected time (i.e., t = 0.10) versus the number of particles

employed in the numerical simulation. The expected Monte

Carlo convergence rate is observed, with RMSE ∝ N−0.5
p .

FIG. 3. (a− b) Comparison between the numerical (thick colored

curves) and the analytical (black dashed curves) density transition

function q(t,y0,y) evaluated at selected time steps (0.01 ≤ t ≤ 0.3)

and for two diverse initial locations: y0l =−0.09 (a) and y0up = 0.25

(b). Values of (c) RMSE between the analytical and numerical val-

ues of q(t,y,y0) versus the number of particles used in the simulation

at t = 0.10.

We then consider the same test case, where mixing is as-
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7

sumed to take place solely between particles within the same

layer. We analyze the impact of the variability (or uncertainty)

of model parameters on selected outputs. We recall that each

particle is marked by a different value of λi, which is ran-

domly sampled from a uniform distribution defined within the

support [λmin,λmax] (Section II B). We consider the following

four uncertain model parameters

• ρ = Dl
Dup

, corresponding to the ratio between the diffu-

sion coefficient of the Lower layer Dl and the Upper

layer Dup.

• Ct

C
′
φ

, i.e., the PSP model parameter29, as defined in Sec-

tion II B;

• λmin,λmax, respectively corresponding to the lower and

upper bound of the range of values which can be under-

taken by λi.

Values of each of these parameters is sampled from a uni-

form distribution with a standard deviation equal to 20% of

the corresponding mean. The mean values are taken from Le-

jay and Pichot34 for ρ or in Meyer29 for Ct

C
′
φ

. In our example,

Eq. (23) is employed upon setting w̄ and C
′
φ at the values used

in Meyer29 and D as the average of the values of the diffusion

coefficients listed in Table I. We also perform a model evalua-

tion upon setting the parameters to the above mentioned mean

values of their corresponding ranges (see Table III). These re-

sults can be used as a reference to identify trends associated

with model results and to allow a direct comparison of the

solution obtained through SBM with and without coupling it

with the PSP mixing model.

λ̄ = π

√

2D

C
′
φ w̄

(23)

Lower and upper extremes of the supports of the considered

uncertain model parameters are listed in Table II.

TABLE II. Extremes of the sampling range of the model parameters

min max

ρ 1.634 3.366
Ct

C
′
φ

0.0980 0.2019

λmin 0.0980 0.2019

λmax 0.2026 0.4173

λ λmin λmax

Layer-averaged solute concentrations resulting exclusively

from transport (SBM) are compared against their counterparts

obtained from the combined effect of mixing and transport

(SBM + PSP).

Values of (spatially) averaged concentrations increase in

time for the Upper layer and decreases for the Lower layer.

TABLE III. Values of the model parameters considered for the com-

parison between results stemming from SBM and SBM+PSP, as de-

picted in Figure 4

ρ 2.5

Dl 5

Dup 2
Ct

C
′
φ

0.15

λmin 0.15

λmax 0.31

We recall that a major requirement of any mixing model43 is

that the mean concentration of the total system, as quantified

by Eq. (15), does not vary in time. As an example of our re-

sults, Figure 4 depicts the temporal variation of the mean con-

centration in the Lower layer associated with (a) the reference

solutions obtained through SBM with and without coupling it

with the PSP mixing model (continuous and dashed curves,

respectively) and (b) the collection of realizations obtained

upon sampling the model parameter space. The correspond-

ing values of mean concentration resulting from the analytical

formulation (21) are also depicted. These results show a larger

reduction of the solute concentration under the combined ef-

fect of the diffusive transport and mixing (SBM + PSP) with

respect to the scenario characterized solely by transport pro-

cesses (SBM), which is essentially overlapped with the ana-

lytical results. The shaded area in Figure 4(a) corresponds

to the envelope of average solute concentration histories ob-

tained for each parameter realization over a total number of

300 realizations. This result shows that the variability of the

parameters is transferred onto the concentration values ob-

served in the layer. At sufficiently long times, considering

mixing leads to a decrease of concentration, as seen by the

shaded area which lies generally below the dashed curve.

The temporal evolution of the volume-weighted (as esti-

mated through Eq. (16)) concentration PDF across the whole

domain is illustrated in Figure 5 for the reference realization

characterized by the model parameter values listed in Table

III.

The PDF of the concentration at time t = 0 is a double delta

function, as it corresponds to the initial configuration consist-

ing of particles with scalar values equal to 0 and 1 at the Upper

and Lower layer, respectively. As a consequence of mixing,

the PDF evolves to a final configuration displaying a bimodal

character, with peaks at C ≈ 40% and C ≈ 60% (these values

corresponding to the layer averaged concentrations at the Up-

per and Lower layer, respectively) and whose average is equal

to the mean concentration across the whole system. Due to the

spatial heterogeneity in the diffusion coefficient, the distribu-

tion displays a mild skewness at intermediate times.

Mixing in the whole domain is assessed through the analysis

of C2 and χ . A time filter is applied to compute the scalar dis-

sipation rate through numerical approximation of Eq. (19) to

reduce the noise and improve the quality of visualization of re-

sults. Figure 6 (a) shows that C̄2 tends to decrease over time,
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FIG. 4. Comparison of the average solute concentration at the Lower

layer resulting from SBM (red dashed curve) and the combination

of SBM and PSP (red solid curve), obtained by setting model pa-

rameters as in Table III. Results based on the analytical solution

corresponding to Eq. (20) are also included (black dotted curves).

Shaded areas correspond to the envelope of concentration histories

associated with 300 realizations of model parameters sampled across

the intervals listed in Table II.

FIG. 5. Case 1: Volume-weighted (see Eq. (16)) probability density

function of the solute concentration f̄ (φi) obtained with parameters

listed in Table III.

showing the steepest gradient values until time level t = 0.15

and then tending towards an asymptotic value, corresponding

to a situation where particles are uniformly mixed across the

system. The decrease of the scalar dissipation rate displayed

in Figure 6 (b) suggests that the mixing rate is highest at the

early stages (t < 0.05) and decreases with a constant gradient

until t = 0.15.

FIG. 6. Case 1: Temporal variation of C̄2 (a) and (b) median (red

line), 25th percentile (black line), and 75th (blue line) percentile of

the scalar dissipation rate. The grey shaded regions encompass the

collection of realizations of C2 and χ values.

B. Case 2: Erosimeter

The second scenario we analyze consideres the simulation

of transport and mixing within a system mimicking the ex-

perimental setup (erosimeter) adopted in Chandler et al.10 and

corresponding to a porous medium underlying a water col-

umn. A sketch of the system is depicted in Figure 7.

The porous domain is constituted by grains with uniform

diameter dg = 0.005m and a porosity Φ = 0.39. In the ex-

perimental setup considered by Chandler et al.10, turbulence

is generated at the top of the sediment-water interface by a

propeller producing a bed shear velocity u = 0.01 m
s

at the ex-

change interface. Our aim is to simulate vertical solute ex-

change taking place in the system as driven by diffusion and

mixing. Experimental10 and numerical42 results document an

exponential reduction of the diffusion coefficient with increas-

ing depth below the sediment-water interface. For the pur-

pose of our study, the porous domain is then segmented into

6 layers (see Figure 7). As initial configuration, particles are

distributed proportionally to the fluid volume present in each

layer, mass and concentration values being set in a way that a
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FIG. 7. Sketch of the domain for Case 2 mimicking an erosimeter

spatially uniform unit concentration is attained in the porous

medium, while solute concentration is zero in the overlying

water column. We illustrate two separate sets of results. First,

we quantify the impact of the spatial variability of the diffu-

sion coefficient on mixing within the porous medium. We then

perform a sensitivity analysis to assess the relative importance

of model parameters on the observed behaviors.

1. Mixing under spatially discontinuous diffusivity

We first investigate how the considered spatial heterogene-

ity of the diffusion coefficient affects solute mixing. Two sce-

narios are examined

1. Scenario 1: Variable diffusion coefficient: The dif-

fusion coefficient Dk is considered as a constant within

each layer k while being characterized by a vertical vari-

ability through the following equation

Dk(y) = AeByk (24)

where A and B are model parameters, and yk is the dis-

tance between the center of layer k and the sediment-

water interface.

2. Scenario 2: Constant D: The diffusion coefficient Dk

is constant across the entire porous domain, its value

being estimated as a weighted average of the diffusion

coefficient values associated with Scenario (1) accord-

ing to

D̄ =
∑

NLp

k=1 DkVk

∑
NLp

k=1 Vk

(25)

Input values considered for model parameters are listed in

Table IV. The profile length scale is estimated upon relying

on available experimental data10. For Scenario (1), the SBM

stage is repeated 10 times with a time step δ tt =
1

10
of the cor-

responding time step (δ tm) associated with mixing to avoid

the occurrence of large displacements within a given time step

due to the effect of diffusion at locations close to the sediment-

water interface. In this context, we recall that, as suggested in

Lejay and Pichot34, an appropriate choice of δ tt is pivotal to

ensure an accurate depiction of particle’s behavior, especially

close to a discontinuity (i.e., the interface between layers).

Both δ tt and δ tm are assumed equal to 1s for Scenario (2),
which yielded acceptable accuracy in preliminary tests.

TABLE IV. Values used for the key model variables for the com-

parison between numerical results associated with Scenario (1) and

Scenario (2): Number of particles (Np), initial time (t0), number of

time steps (nt ), time step of SBM (δ tt ), time step associated with

mixing (δ tm), porosity (Φ), diffusion coefficient of the water column

(Dw), diffusion coefficient within the porous medium Scenario (2)

(D̄), and model parameters A, B, Ct

C
′
φ

, λmin, λmax

Water column Porous medium

Np 2346 1000

Simulation parameters

t0[s] 0

nt 5×104

δ tt [s] 0.1
δ tm[s] 1

Φ[−] 0.39

Dw[
m2

s ] 3.21×10−7

D̄[m2

s ] 3.98×10−7

A[m2

s ] 4.64×10−6

B[ 1
m ] 54.15

Ct

C
′
φ

[−] 0.15

λmin[m] 0.005

λmax[m] 0.03

Figure 8 depicts the comparison between the two scenarios

in terms of C̄2 and scalar dissipation rate, evaluated through

Eq. (17) and Eq. (19), respectively. A quicker reduction of

C̄2 is observed in Figure 8 (a) at early stages (t < 2× 104s)

when a discontinuous diffusion coefficient is assumed (Sce-

nario 1). At first, the temporal decrease of C̄2 takes place

at similar rates in both scenarios, with a slightly larger rate

for the variable diffusion setting. This result suggests that

mixing between the water column and the shallow layers of

the porous space occurs faster in Scenario (1) as compared
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10

against Scenario (2) due to a higher difference between the

diffusion coefficient in the water column and Layer 1. Oth-

erwise, the opposite behavior is observed at later times (i.e.,

t > 5×103s), the temporal reduction rate of C̄2 being larger in

Scenario (2) than in Scenario (1). When mixing between the

regions across the exchange interface attains equilibrium (i.e.,

mixing starts to affect the lowest layers), C̄2 in Scenario (2)
reduces more slowly than in Scenario (1). These results are

then reflected by the time evolution of scalar dissipation rate

in Figure 8(b). The predicted evolution of χ is compared to

the trend χ ∝ t−3/2 associated with a one-dimensional diffu-

sive regime44 characterized by a constant diffusion coefficient.

We observe that χ in Scenario (1) denotes a trend which is

closer to the reference t−3/2, while displaying a faster decay

for Scenario (2), which is likely linked to enhanced mixing in

the porous medium.

On the bases of the results illustrated above, we can conclude

that the spatial variability of the effective diffusion coefficient

tends to markedly affect mixing dynamics. This may in turn

have strong consequences on the model-based quantification

of mixing-driven reactive processes.

FIG. 8. Temporal variation of C̄2 (a) and of the scalar dissipation

rate χ (b) for Scenario (1) and Scenario (2). The dashed line in (b)

corresponds to χ ∝ t−3/2

2. Sensitivity analysis

A sensitivity analysis is performed to estimate the impact of

model parameters on solute concentration and mixing (quan-

tified through C2 and χ , respectively) in the presence of a

spatially variable diffusion coefficients (i.e., Scenario 1). Pa-

rameters we consider in the sensitivity analysis are: (i) the

diffusion coefficient of the water column, Dw; (ii) parameters

A and B driving the exponential decay of the diffusion coef-

ficient within the porous medium according to Eq. (24); and

(iii) three parameters of the PSP mixing model, i.e., Ct

C
′
φ

, λmin

and λmax. These parameters are considered as independent

and identically distributed random variables, each character-

ized by a uniform distribution within selected intervals, cho-

sen considering a coefficient of variation of 0.2. The mean

values of the parameters A and B are determined upon relying

on the results of Baioni et al.42, while average values of λmin

and λmax are set on the basis of existing experimental data10.

The mean value of Ct

C
′
φ

is set to the value employed in Meyer29.

The parameters used in the simulation are listed in Table V.

TABLE V. Lower and upper bounds of the sampling intervals of

model parameter values for the simulation of Scenario (1).

Water column Porous medium

Np 2346 1000

Simulation parameters

t0[s] 0

Φ 0.39

min max

Dw

[

m2

s

]

2.101×10−7 4.327×10−7

A
[

m2

s

]

3.035×10−6 6.252×10−6

B
[

1
m

]

35.39 72.91
Ct

C
′
φ

[−] 0.0980 0.2019

λmin[m] 0.0032 0.0067

λmax[m] 0.0196 0.040

λ [m] λmin λmax

Time step values for the diffusive transport δ tt and mix-

ing δ tm coincide with those used in Scenario (1). We first

consider the temporal dynamics of C3, i.e., the layer-averaged

concentration of Layer 3 located in a central position of the

considered porous domain (see Figure 9).

The average concentration reduces over time from the ini-

tial value of C = 100% displaying the highest decay rates at

early stages. Concentration at Layer 3 is computed for vari-

ous combinations of model parameters. The median over all

realizations obtained by sampling the parameter space is eval-

uated for (i) diffusive transport (i.e., SBM), and (ii) the com-

bination of transport and mixing (i.e., SBM+PSP) (see Figure
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FIG. 9. Temporal evolution of the solute concentration in Layer 3 C3

considering only transport (SBM) and the combination of transport

and mixing (SBM+PSP) (a): median value (SBM: red dashed curve;

SBM +PSP: red solid curve); 25th percentile SBM +PSP (black

curve), 75th percentile SBM +PSP (blue curve). The red shaded area

represents the envelope of concentration values obtained for each re-

alization under the combined effect of diffusive transport and mixing.

Panel (b) represents the AMAE sensitivity index defined in Eq. (26)

for solute concentration at t = 103 s, t = 9.1×103 s and t = 2×104

s. The red dotted curve is the average value of C3 upon conditioning

on given values of the parameter B at time t = 9.1×103 s

9(a)). A faster reduction of solute concentration is observed

in the presence of mixing (see red curve in Figure 9(a)) as

compared to its counterpart obtained only through the SBM

model (red dashed line in Figure 9(a)), the steepest decrease

being documented at early stages (t < 104s). The behavior

depicted in Figure 9 is consistent with the results obtained for

the PDF of concentrations at Layer 3 depicted in Figure 10(a).
The PDF evolves from a delta function corresponding to the

(deterministic) initial state to the final configuration exhibiting

a peak value at C ≈ 30%. Values associated with C = 100%

and t > 0 s are related to the presence of unmixed particles

(i.e., particles with a unit scalar value) entering Layer 3 from

the underlying portion of the porous domain (Layer 4, 5, and

6).

The rate of temporal reduction of concentration strongly de-

pends on the particular combination of model parameter val-

ues, as suggested by the extent of the red shaded area in Figure

9 (a), which encompasses the results obtained for C3(t) across

the whole collection of realizations considered. We then eval-

uate the AMAE global sensitivity index to quantify the rela-

FIG. 10. Temporal evolution of the PDF of solute concentration for

Layer 3 (a) and volume weighted value across the whole domain

evaluated (b) upon setting model parameters to their mean value

across their corresponding support.

tive influence of model parameters on the mean concentration

at each layer. This metric was first introduced in Dell’Oca et

al.45 with the aim of quantifying the effect of the uncertainty

associated with a given model parameter xi on the expected

value of a model output variable of interest, y, and is defined

as

AMAExi
=

{

1
|y0|E[|y0 −E[y|xi]|], if y0 6= 0

E[|y0 −E[y|xi]|], if y0 = 0
(26)

where E[] denotes expected value, E[y|xi] denotes condi-

tioning on xi, and y0 is the unconditional average of y, as a

result of the uncertainty associated with the complete set of

model parameters.

Figure 9 (b) suggests that B is the parameter with the high-

est effect on the mean concentration value. Considering a

given observation time, Figure 9 (b) clearly shows that the

(conditional) average value of C3 tends to increase with B.

This is consistent with the observation that higher values of

B lead to lower diffusion coefficients within the porous do-

main and an ensuing slower decrease of solute concentration
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due to a reduced exchange between the water column and the

shallowest layers. Moreover, we notice that the largest values

of AMAE are observed at t = 9.1× 103s, lower values being

attained as the mean concentration at Layer 3 approaches a

constant value across parameter realizations. This temporal

evolution of the mean value is also reflected in the variability

observed in the local concentration values. Figure 10 (b) also

depicts the PDF of solute concentration across the whole do-

main evaluated upon setting model parameters to their mean

value within their corresponding support. The PDF of solute

concentration at Layer 3 evolves from a delta function corre-

sponding to the initial configuration to a essentially Gaussian

distribution with a mean at C ≈ 30%. At intermediate stages,

the PDF of concentration observed for the whole domain dis-

plays a markedly different behaviour. At time t = 0 the PDF

exhibits the shape of a double delta function corresponding

to the initial configuration of C = 100% within the porous

medium and C = 0% within the water column. The peaks at

C = 100% and C = 0% tend to decrease over time due to the

combined effect of transport and mixing. One can note that

the sample probability of observing values of C = 100% is

not zero even at the final stage of the process, suggesting that

there are still unmixed particles in the domain at the lowest

layers (Layer 5-6) at this late times. The peak of the distribu-

tions varies in time and attains a value of approximately 20%

at time t = 5× 104s. At this stage, the PDF is characterized

by two peaks, corresponding to C = 20% and C = 100%, re-

spectively. The quantities C̄2 and χ are analyzed for various

combinations of model parameter values sampled across their

space of variability. Figure 11(a) shows a quicker decrease of

C̄2 at early stages (t < 6×103s; i.e., when mixing acts across

the water column and the shallowest layers) and a lower speed

of reduction at the latest times (i.e., when mixing starts taking

place also at the deepest locations). The scalar dissipation rate

depicted in Figure 11(b) is obtained from C̄2 according to Eq.

(19) and applying a time filter to avoid excessive noise in the

results. We observe that the median values of χ tend to de-

cay ∝ t−3/2 at long times. We also note that the decrease rate

of χ appears to be realization-dependent, values of the scalar

dissipation rate observed at the end of the simulation varying

across more than one order of magnitude.

Figure 12 depicts the values of the AMAE indices obtained

for the scalar dissipation rate, thus quantifying the influence

of each model parameter on the average mixing state. The

highest value of the index is related to parameter B at time

t = 6 × 103s, an inverse proportionality between B and the

conditional expected value of χ being observed. We can note

that all model parameters have essentially the same degree of

importance (with similar values of the corresponding AMAE

indices) on the average mixing behavior at long times.

IV. CONCLUSIONS

Our study explores the impact of the spatial variability of

effective diffusion parameters on solute mixing. We leverage

on two Lagrangian approaches to characterize transport and

mixing of solute mass, i.e., the Skew Brownian Motion (SBM)

FIG. 11. Temporal variation of the median (red curve), 25th (black

curve), and 75th (blue curve) percentile of C̄2 (a) and of the scalar

dissipation rate χ (b). The grey shaded regions correspond to the

envelope of all realization of C̄2 and χ values.

and the Parameterized Scalar Profile (PSP) models. These are

applied to scenarios mimicking solute exchange in a hyporeic

zone, i.e., close to a sediment-water interface, in the presence

of turbulent flow. Our results lead to the following major con-

clusions.

• The implemented modeling workflow allows evaluat-

ing concentration and nonlinear indicators of mixing

as well as the full probability distribution of concen-

tration values. The resulting model is assessed through

exemplary test cases, including the analysis of a sce-

nario mimicking the experimental setup introduced by

Chandler et al.10.

• When considering mass transport and mixing close to

a sediment-water interface in the presence of turbulent

flow, we observe that assuming an exponential decay of

the diffusion coefficient with the depth below the inter-

face between surface water and the porous domain has

a marked influence on mixing dynamics, as opposed to

a setting associated with a constant effective diffusivity
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FIG. 12. AMAE index of the scalar dissipation rate χ for the whole

domain at t = 5× 102s, t = 6× 103 s and t = 16× 103 s. The red

dotted curve in the inset represents the average value of χ conditional

to parameter B at time t = 6×103 s, blue squares denoting the values

of χ as a function of B for each realization sampled across the space

of the remaining model parameters.

across the sediment volume.

• Since, to the best of our knowledge, this is the first time

the PSP model is applied to porous media, we analyze

the system response under parametric uncertainty. This

enables us to diagnose the model response under a va-

riety of conditions associated with multiple randomly

selected combinations of model parameter values. The

considered parametric uncertainty is propagated onto

the scalar dissipation rate and its temporal history. Val-

ues of scalar dissipation rate may vary up to one order

of magnitude within the collection of model realizations

when considering a fixed observation time. This result

suggests that the proposed model may be able to simu-

late of broad range of mixing rates when applied with

differing parameters combinations, this being a desir-

able feature in terms of model flexibility. On average,

the scalar dissipation rate stemming from the combined

action of transport and mixing processes displays a de-

creasing trend ∝ t−
3
2 at long times. These results may

constitute the basis for interpreting experimental inves-

tigations providing direct observation of solute mixing

in a porous medium subject to turbulent flow.

Future work comprises (i) an assessment of the illustrated

modeling workflow against experimental data, including, e.g.,

(a) estimation of model parameter and the associated uncer-

tainty as constrained against available data and (b) propaga-

tion of residual (i.e., after calibration) model parameter un-

certainty onto modeling results to finally (c) identify require-

ments for data acquisition campaigns and constrain uncer-

tainty associated with our ability to describe mixing phenom-

ena in the hyporheic region, and (ii) the extension of the anal-

ysis to reactive solute transport.
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