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Abstract

Two crucial factors for accurate numerical simulations of cardiac electromechanics, which are also essential to reproduce
he synchronous activity of the heart, are: (i) accounting for the interaction between the heart and the circulatory system that
etermines pressures and volumes loads in the heart chambers; (ii) reconstructing the muscular fiber architecture that drives the
lectrophysiology signal and the myocardium contraction. In this work, we present a 3D biventricular electromechanical model
oupled with a 0D closed-loop model of the whole cardiovascular system that addresses the two former crucial factors. With
his aim, we introduce a boundary condition for the mechanical problem that accounts for the neglected part of the domain
ocated on top of the biventricular basal plane and that is consistent with the principles of momentum and energy conservation.

e also discuss in detail the coupling conditions behind the 3D and the 0D models. We perform electromechanical simulations
n physiological conditions using the 3D–0D model and we show that our results match the experimental data of relevant

echanical biomarkers available in the literature. Furthermore, we investigate different arrangements in cross-fibers active
ontraction. We prove that an active tension along the sheet direction counteracts the myofiber contraction, while the one along
he sheet-normal direction enhances the cardiac work. Finally, several myofiber architectures are analyzed. We show that a
ifferent fiber field in the septal area and in the transmural wall affects the pumping functionality of the left ventricle.
2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

eywords: Cardiac electromechanics; Cardiac fiber architecture; Multiphysics modeling; Finite Elements; 3D–0D coupling

1. Introduction

Over the years, computational models of cardiac electromechanics (EM) [1–7] have been developed with
ncreasingly biophysical detail, by taking into account the interacting physical phenomena characteristic of the
eart EM — electrophysiology, active contraction, mechanics [8–12]. However, most of the existing EM models
efer to the left ventricle (LV) only [13–19] and neglect the important effects of the right ventricular deformation on
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the heart pumping function [20]. Only recently, biventricular EM models [21–28] have been purposely developed.
Two crucial factors for an accurate numerical simulation of the cardiac EM, which are also essential to reproduce
the synchronous activity of the heart, are: (i) accounting for the interaction between the heart and the circulatory
system and (ii) reconstructing the muscular fiber architecture.

The coupling between the circulatory system hemodynamics and the cardiac mechanics determines pressures
nd volumes in the heart chambers [14,28–32]. Typically, 3D EM models are coupled with Windkessel-type
reload/afterload models for the circulatory system [33–38]. In these models, the different phases of the pressure–
olume loop (PV-loop) are managed by solving different sets of differential equations, one for each phase [14,
9–41]. Still, more meaningful and physiologically sound interface conditions can be obtained by coupling the
D EM model with a 0D closed-loop fluid dynamics model of the complete circulatory system for the whole
ardiac cycle [15,42–45]. A further advantage of the latter approach is that closed-loop circulation models do not
equire to be adapted through the different phases of the cardiac cycle [5,28,30,46]. However, solving efficiently the
oupling between the EM model and the closed-loop model for the whole cardiovascular system is a challenging
ask [28]. To the best of our knowledge, this coupled problem has been so far addressed only in a few works,
amely [15,25,28,29].

The myocardial fibers play a key role in the electric signal propagation and in the myocardial contraction [47–51].
ue to the difficulty of reconstructing cardiac fibers from medical imaging, a widely used strategy for generating
yofiber orientations in EM models relies on the so called Laplace–Dirichlet-Rule-Based-Methods (LDRBMs) [52–

5], recently analyzed under a communal mathematical setting [47]. While it is well recognized that myofibers
rientation is crucial for the construction of a realistic EM model, their architecture has been explored only in a
ew works and it is not fully understood [20,31,50,56,57]. Another crucial issue for the reconstruction of a suitable
ardiac fiber architecture consists in considering the myofibers dispersion around a predominant direction [31,58–
0]. Based on experimental measures [61], cross-fibers active tension has been introduced in [62–64] to model the
ontraction caused by dispersed myofibers. However, to the best of our knowledge, this aspect was addressed in
M models only in [17,65].

With the aim of facing the computational challenges formerly described, our contributions in this paper move
long two strands: (i) on the one hand, we present a biophysically detailed 3D biventricular EM model coupled
ith a 0D closed-loop lumped parameters model for the hemodynamics of the whole circulatory system; (ii) on

he other hand, we investigate the effect of different myofiber architectures, by considering three type of LDRBMs,
n the biventricular EM. Specifically, we provide the mathematical formulation and the numerical framework of
he coupled 3D–0D model carefully inspecting the coupling conditions of these heterogeneous models. We propose
n effective boundary condition for the mechanical problem that accounts for the neglected part of the domain
ocated above the biventricular basal plane and that fulfills the principles of momentum and energy conservation.

e report the results of several electromechanical simulations in physiological conditions using the proposed 3D–0D
odel. Our results match the experimental data of relevant mechanical biomarkers available in the literature [66–72].
urthermore, we study at which extent different configurations in cross-fibers active contraction, that surrogate the
yofibers dispersion, affect the electromechanical simulations.
This paper is organized as follows. In Section 2 we briefly recall the fiber generation methods used to model

he cardiac muscle fiber architecture in biventricular geometries. Moreover, we fully present the mathematical
ormulation for the closed-loop 3D–0D EM model. Then, in Section 3 we present the numerical approximation
f the 3D–0D model along with the coupling strategy. In Section 4, we show the numerical results obtained with
he proposed model. Finally, in Section 6 we draw our conclusions.

. Mathematical models

In this section we provide a brief overview of the fiber generation methods used to reconstruct the cardiac muscle
rchitecture in biventricular geometries (Section 2.1) and we fully present the 3D cardiac EM model for the human
eart function together with a 0D model of the whole cardiovascular system (Section 2.2). Finally, we show the
trategy to reconstruct the unloaded (i.e. stress-free) configuration (Section 2.3).

We denote by Ω0 the computational domain in the reference configuration, see Fig. 1(a), representing the region
occupied by the left and right ventricles, whose boundary ∂Ω0 is partitioned into the epicardium Γ

epi
0 , the left

Γ endo,LV
0 and right Γ endo,RV

0 endocardial surfaces and the biventricular base Γ base
0 (namely an artificial basal plane

Γ
epi

∪ Γ
endo,lv

∪ Γ
endo,rv

∪ Γ
base

.
located well below the cardiac valves), so that we have ∂Ω0 = 0 0 0 0

2
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Fig. 1. Top left (a): representation of a realistic biventricular computational domain Ω0 whose border is partitioned in Γ
epi
0 , Γ base

0 , Γ endo,LV
0

and Γ endo,RV
0 . Top Right (b): solutions of the Laplace problem (1) defining φ the transmural, ψ the apico-basal and ξ the inter-ventricular

distances that are used to prescribe the myofiber orientations using LDRBM of type D-RBM. Bottom left (c): fiber field f0 obtained using
D-RBM. Bottom right (d): φfast solution of the Laplace problem (1) used to build the fast endocardial layer φfast ≤ ϵ [73].

2.1. Fibers generation

To prescribe the cardiac muscle fiber architecture in the biventricular computational domain Ω0, we use a particu-
lar class of Rule-Based-Methods (RBMs), known as Laplace–Dirichlet-Rule-Based-Methods (LDRBMs) [52,53,74].
Specifically, we consider three LDRBMs, respectively proposed by Rossi et al. (R-RBM) [19,55], Bayer et al. (B-
RBM) [52] and Doste et al. (D-RBM) [54], that were recently reviewed in a communal mathematical description
and extended to embed specific fiber directions for the right ventricle (RV) in [47].

LDRBMs define the transmural φ (from epicardium to endocardium), the apico-basal ψ (from apex to basal
plane) and the inter-ventricular ξ (from the left to right endocardia) distances as the solutions of suitable Laplace
boundary-value problems of the type⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∆χ = 0 in Ω0,

χ = χa on Γ a
0 ,

χ = χb on Γ b
0 ,

∇χ · N = 0 on Γ n
0 ,

(1)

where χ = φ,ψ, ξ denotes a generic unknown, χa, χb ∈ R are suitable boundary data set on generic partitions of
the boundary Γ a

0 , Γ
b
0 , Γ

n
0 , with Γ

a
0 ∪Γ

b
0 ∪Γ

n
0 = ∂Ω0 and N is defined as the outer normal vector, see Figs. 1(b). For

each point of the biventricular domain, the transmural and apico-basal distances are used to build an orthonormal
3
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local coordinate axial system [̂eℓ, ên, êt] owing to êt =
∇φ

∥∇φ∥
, ên =

∇ψ−(∇ψ ·̂et )̂et
∥∇ψ−(∇ψ ·̂et )̂et∥

and êℓ = ên × êt, defined as the
nit transmural, longitudinal and normal directions, respectively. Finally, the reference frame [̂eℓ, ên, êt] is properly
otated with the purpose of defining the myofiber orientations:

[̂eℓ, ên, êt]
αi,βi
−−→ [f0,n0, s0], i = LV,RV,

here f0 is the fiber direction, n0 is the sheet-normal direction, s0 is the sheet direction, i = LV,RV refers to LV or
V, and αi and βi are suitable helical and sheetlet angles following linear relationships θi(di) = θepi,i(1−di)+θendo,idi,

with θ = α, β and i = LV,RV) in which di ∈ [0, 1] is the transmural normalized distance and θendo,i, θepi,i are
uitable prescribed rotation angles on the endocardium and epicardium, see Fig. 1(c). To prescribe different myofiber
rientations for LV and RV, we employ the inter-ventricular distance ξ in which positive values of ξ identify the
V, whereas negative values refer to the RV [47]. Moreover, we define the normalized inter-ventricular distance

ˆ ∈ [0, 1] by rescaling ξ .
An example of LDRBM boundary-value solutions for the fiber generation procedure (of D-RBM type) is sketched

n Fig. 1(b). For further details about LDRBMs we refer to [47].

.2. 3D-0D closed-loop electromechanical model

We provide a detailed description of the multiphysics and multiscale 3D biventricular EM model coupled with a
D closed-loop (lumped parameters) hemodynamic model of the whole cardiovascular system, including the heart
lood flow. Our model features several extensions and novel additions with respect to the work [15,46], that is
imited to the left ventricle. Our 3D–0D model is composed of four core models supplemented by a suitable
oupling condition between the 3D and the 0D model. The core models are related to the different interplaying
hysical processes (at the molecular, cellular, tissue and organ levels) involved in the heart pumping function:
ardiac electrophysiology (E ) [17,75–77], cardiomyocytes active contraction (A ) [19,78–82], tissue mechanics
M ) [83–86] and blood circulation (C ) [15,25,28,29,42,43,87]. The coupling condition is established by the volume
onservation constraints (V ) [15].

The model unknowns are:

u :Ω0 × [0, T ] → R, w :Ω0 × [0, T ] → Rnw ,

s :Ω0 × [0, T ] → Rns , d :Ω0 × [0, T ] → R3, c : [0, T ] → Rnc ,

pLV : [0, T ] → R, pRV : [0, T ] → R,

here u is the transmembrane potential, w is the vector containing the ionic variables, which encodes the
ntracellular calcium concentration wCa = [Ca2+]i. Moreover, s represents the vector of the state variables in the
ctive force generation model, d is the mechanical displacement of the myocardium, c is the state vector of the
irculation model (including pressures, volumes and fluxes of the different compartments composing the vascular
etwork), pLV and pRV are the left and right ventricular pressures, respectively.

Given the computational domain Ω0 and the time interval t ∈ (0, T ], our complete 3D–0D model
eads:

(E )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Jχm

[
Cm

∂u
∂t

+ Iion(u,w)
]

− ∇ · (JF−1 D F−T
∇u) = JχmIapp(t) in Ω0 × (0, T ], (2.1)

∂w

∂t
− H(u,w) = 0 in Ω0 × (0, T ], (2.2)(

JF−1 D F−T
∇u

)
· N = 0 on ∂Ω0 × (0, T ], (2.3)

(A ) ∂s
∂t = K (s, wCa, SL) in Ω0 × (0, T ], (2.4)
4
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρs
∂2d
∂t2 − ∇ · P(d, Ta(s, x)) = 0 in Ω0 × (0, T ], (2.5)

P(d, Ta(s, x))N = Kepid + Cepi ∂d
∂t

on Γ
epi
0 × (0, T ], (2.6)

P(d, Ta(s, x))N = −pLV(t) JF−T N on Γ endo,LV
0 × (0, T ], (2.7)

P(d, Ta(s, x))N = −pRV(t) JF−T N on Γ endo,RV
0 × (0, T ], (2.8)

P(d, Ta(s, x))N = |JF−T N|
[

pLV(t)vbase
LV (x, t) + pRV(t)vbase

RV (x, t)
]

on Γ base
0 × (0, T ], (2.9)

(C )
dc(t)

dt
= D(t, c(t), pLV(t), pRV(t)) for t ∈ (0, T ], (2.10)

(V )

{
V 3D

LV (d(t)) = VLV(c(t)) for t ∈ (0, T ], (2.11)

V 3D
RV (d(t)) = VRV(c(t)) for t ∈ (0, T ]. (2.12)

The definition of the vectors vbase
LV and vbase

RV appearing in the boundary conditions of the mechanical model (M )
and the variables V 3D

i and Vi (with i = LV,RV) of the volume conservation constraints (V ) will be provided later
in Sections 2.2.3 and 2.2.4, respectively. Finally, the model is closed by the initial conditions in Ω0 × {0}:

u = u0, w = w0, s = s0, d = d0,
∂d
∂t

= ḋ0, c = c0.

.2.1. Electrophysiology (E )
We model the electric activity in the cardiac tissue by means of problem (E ), that is the monodomain

quation (2.1) endowed with a suitable ionic model (2.2) for the human ventricular action potential [17,75,77]. In
he electrophysiology core model (E ), the unknowns are the transmembrane potential u and the ionic variables w.
he vector w = {wk}

nw
k=1 encodes the gating variables (representing the fraction of open channels per unit area

cross the cell membrane) and the concentration of specific ionic species. Among them, one variable represents the
ntracellular calcium concentration [Ca2+]i (indicated with wCa in Eq. (2.4)), which plays a key role in the active
orce generation mechanism. The constant χm represents the surface area-to-volume ratio of cardiomyocytes, Cm

epresents the trans-membrane capacitance per unit area. The applied current Iapp mimics the effect of the Purkinje
etwork [88–90] modeled in this work by means of a surrogate fast endocardial conduction layer [73] represented
y φfast = φfast(φ) ≤ ϵ built as a function of the transmural distance defined in Section 2.1, see also Fig. 1(d). The
eaction terms Iion and H (specified by the ionic model at hand) couple together the action potential propagation and
he cellular dynamics. Specifically, we use the ventricular ten Tusscher–Panfilov ionic model (TTP06, nw = 18),
hich is able to accurately describe ions dynamics across the cell membrane [91]. Furthermore, problem (E ) is

quipped with homogeneous Neumann boundary conditions (2.3).
The action potential propagation is driven by the diffusion term ∇ · (JF−1 DF−T

∇u) where we introduced the
eformation gradient tensor F = I + ∇d with J = det(F) > 0. The diffusion tensor reads:

D = σℓ(φfast)
Ff0 ⊗ Ff0

∥Ff0∥
2 + σt(φfast)

Fs0 ⊗ Fs0

∥Fs0∥
2 + σn(φfast)

Fn0 ⊗ Fn0

∥Fn0∥
2 ,

here σℓ(φfast), σt(φfast), σn(φfast) are the longitudinal, transversal and normal conductivities, respectively, defined as

σk(φfast) =

{
σk,fast if φfast ≤ ϵ, k = ℓ, t, n,
σk,myo if φfast > ϵ, k = ℓ, t, n,

here σk,fast and σk,myo (with k = ℓ, t, n) are the prescribed conductivities inside and outside the fast endocardial
ayer, respectively.
5
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2.2.2. Activation (A )
Mechanical activation of cardiac tissue is modeled by means of Eq. (2.4), a system of ODEs standing for an

rtificial Neural Network (ANN) based model that surrogates the so called RDQ18 high-fidelity model proposed
n [82]. The RDQ18 model [92] is based on a biophysically detailed description of the microscopic active force
eneration mechanisms taking place at the scale of sarcomeres [81,93]. The RDQ18-ANN model has the great
dvantage of strikingly reducing the computational burden associated to the numerical solution of the RDQ18 model,
et reproducing its results with a very good accuracy [82].

In the activation core model (A ) the unknown is the two-variable state vector s. The input variables in the
model are: the scalar field wCa, denoting the intracellular calcium ions concentration [Ca2+]i over the domain Ω0,

rovided by the TTP06 ionic model; the scalar field SL , representing the elongation of the sarcomeres belonging
o each region of the domain Ω0, defined as SL = SL0

√
I4 f (d), where SL0 denotes the sarcomere length at rest

and I4 f = Ff0 · Ff0 is a measure of the tissue stretch along the fibers direction. This creates a feedback between
he mechanical model (M ) and the force generation model (A ) [15].

The RDQ18-ANN output is the permissivity P ∈ [0, 1] which is obtained as a function of s: P = G(s) where G
is a linear function defined in [82]. Since P is the fraction of the contractile units in the force-generation state, the
active tension is given by Ta = T max

a P , where T max
a denotes the tension generated when all the contractile units are

enerating force (i.e. for P = 1). Finally, to account for a different active tension between LV and RV we define a
patial heterogeneous active tension

Ta(s, x) = T max
a G(s)

[
ξ̂ (x) + Clrv(1 − ξ̂ (x))

]
,

here ξ̂ ∈ [0, 1] is the normalized inter-ventricular distance, defined in Section 2.1, and Clrv ∈ (0, 1] represents the
eft–right ventricle contractility ratio.

.2.3. Mechanics (M )
The mechanical response of the cardiac tissue is described by problem (M ) under the hyperelasticity assumption

and by adopting an active stress approach [84,85]. The unknown is the displacement d, whereas ρs is the density.
The first Piola–Kirchhoff stress tensor P = P(d, Ta) is additively decomposed according to

P(d, Ta) =
∂W(F)
∂F

+ Ta(s, x)
[

nf
Ff0 ⊗ f0√

I4 f
+ ns

Fs0 ⊗ s0
√
I4s

+ nn
Fn0 ⊗ n0

√
I4n

]
, (3)

here the first term represents the passive mechanics with W : Lin+
→ R being the strain energy density function,

hereas the second one stands for the orthotropic active stress, with Ta(s, x) the active tension provided by the
ctivation model (A ). Moreover, I4s = Fs0 · Fs0 and I4n = Fn0 · Fn0 are the tissue stretches along the sheet and
heet-normal directions, respectively, and nf, ns and nn the prescribed proportion of active tension along the fiber,
heet and sheet-normals directions, respectively. Notice that the orthotropic active stress tensor (3) surrogates the
ontraction caused by dispersed myofibers [31,58,62,63].

To model the passive behavior of the cardiac tissue, we employ the orthotropic Guccione constitutive law [83],
ccording to which the strain energy function is defined as

W =
κ

2
(J − 1) log(J ) +

a
2

(
eQ

− 1
)
,

where the first term is the volumetric energy with the bulk modulus κ , which penalizes large variation of volume
to enforce a weakly incompressible behavior [94,95], and the exponent Q reads

Q = bff E2
ff + bss E2

ss + bnn E2
nn + bfs

(
E2

fs + E2
sf

)
+ bfn

(
E2

fn + E2
nf

)
+ bsn

(
E2

sn + E2
ns

)
,

where a is the stiffness scaling parameter, Eij = Ei0 · j0, for i, j ∈ {f, s, n} and i0, j0 ∈ {f0, s0,n0}, are the entries of
E =

1
2 (C − I), i.e the Green–Lagrange strain tensor, being C = FT F the right Cauchy–Green deformation tensor.

To model the mechanical constraint provided by the pericardium [96–98], we impose at the epicardial boundary
epi
0 a generalized Robin boundary condition (2.6) by defining the tensors Kepi

= K epi
∥

(N ⊗ N − I) − K epi
⊥

(N ⊗ N)
and Cepi

= Cepi
∥

(N ⊗ N − I) − Cepi
⊥

(N ⊗ N), where K epi
⊥

, K epi
∥

, Cepi
⊥

, Cepi
∥

∈ R+ are the stiffness and viscosity
parameters of the epicardial tissue in the normal and tangential directions, respectively. Normal stress boundary
conditions (2.7)–(2.8) were imposed at the endocardia Γ endo,LV and Γ endo,RV of both ventricles where p (t) and
0 0 LV

6
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pRV(t) represent the pressure exerted by the blood in the left and right ventricular chambers, respectively. To take
into account the effect of the neglected part, over the basal plane, on the biventricular domain, we set on Γ base

0 the
energy-consistent boundary condition (2.9) in weighted-stress-distribution form, where

vbase
LV (x, t) = ξ̂ (x)

∫
Γ endo,LV

0
JF−T NdΓ0∫

Γbase
0

ξ̂ (x) |JF−T N|dΓ0
, vbase

RV (x, t) = (1 − ξ̂ (x))

∫
Γ endo,RV

0
JF−T NdΓ0∫

Γbase
0

(1 − ξ̂ (x)) |JF−T N|dΓ0
. (4)

he energy-consistent boundary condition considered in this work is the extension to the biventricular case of the
nergy-consistent boundary condition originally proposed in [82] for LV. The complete derivation can be found in
ppendix B. The name of this boundary condition is motivated by the resulting formulation of the 3D–0D coupled

ardiovascular model, which is compliant with the principle of energy conservation, as demonstrated in [82]. In
ontrast, unless accurate imaging measures of basal displacement were available, the conservation of energy would
ot be guaranteed if, e.g., Neumann or Dirichlet boundary conditions are prescribed at the ventricular base [82].

.2.4. Blood circulation (C ) and coupling conditions (V )
We model the blood circulation through the entire cardiovascular system (i.e. Eq. (2.10)) by means of a closed-

oop model, inspired by [25,42] and recently proposed in [15]. In the 0D closed-loop model, systemic and pulmonary
irculations are modeled with RLC circuits, heart chambers are described by time-varying elastance elements and
on-ideal diodes stand for the heart valves [15].

The circulation core model (C ) is represented by a system of ODEs expressed by Eq. (2.10), where D is a proper
unction (defined in [15]) and c(t) includes pressures, volumes and fluxes of the different compartments composing
he vascular network:

c(t) =(VLA(t), VLV(t), VRA(t), VRV(t), pSYS
AR (t), pSYS

VEN(t), pPUL
AR (t), pPUL

VEN(t),

QSYS
AR (t), QSYS

VEN(t), QPUL
AR (t), QPUL

VEN(t))
T
.

ere VLA, VRA, VLV and VRV refer to the volumes of left atrium, right atrium, LV and RV, respectively; pSYS
AR ,

QSYS
AR , pSYS

VEN, QSYS
VEN, pPUL

AR , QPUL
AR , pPUL

VEN and QPUL
VEN express pressures and flow rates of the systemic and pulmonary

irculation (arterial and venous). For the complete mathematical description of the 0D circulation lumped model
e refer to [15].
To couple the 0D circulation model (C ) with the 3D biventricular model, given by (E )–(A )–(M ), we follow

he strategy proposed in [15]: we replace the time-varying elastance elements representing LV and RV in the
irculation model with its corresponding 3D electromechanical description, obtaining the coupled 3D–0D model
epicted in Fig. 2. With this aim, we introduce the volume-consistency coupling conditions (V ) where

V 3D
i (d(t)) =

∫
Γ endo,i

0

J (t) ((h ⊗ h) (x + d(t) − bi)) · F−T (t)N dΓ0 i = LV,RV

herein h is a vector orthogonal to LV/RV centerline (i.e. lying on the biventricular base) and bi lays inside
V/RV [15].

In virtue of the volumetric condition (V ), pLV(t) and pRV(t) act as Lagrange multipliers in the 3D–0D coupled
odel (2). Indeed, their values are determined by means of the coupling between blood circulation (C ) and tissue
echanics (M ).

.3. Reference configuration and initial tissue displacement

Cardiac geometries are acquired from in vivo medical images through imaging techniques. These geometries are
n principle not stress free, due to the blood pressure acting on the endocardia. Therefore, we need to estimate the
nloaded (i.e. stress-free) configuration (also named reference configuration) to which the 3D–0D model (2) refers.
o recover the reference configuration Ω0, starting from a geometry Ω̃ acquired from medical images (typically
uring the diastolic phase), we extend to the biventricular case the procedure proposed for LV in [15].

We assume that the configuration Ω̃ is acquired during the diastole, when the biventricular geometry is loaded˜
ith pLV = p̃LV, pRV = p̃RV and a residual active tension Ta = Ta > 0 is present. To recover the reference

7
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Fig. 2. 3D–0D coupling between the biventricular 3D EM model and the 0D circulation model. The state variables corresponding to pressures
and fluxes are depicted in orange and blue, respectively. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

configuration Ω0 we solve the following inverse problem: find the domain Ω0 such that, if we inflate Ω0 by d,
solution of the differential problem1⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∇ · P(d, Ta) = 0 in Ω0,

P(d, Ta)N + Kepid = 0 on Γ
epi
0 ,

P(d, Ta)N = −pLV JF−T N on Γ endo,LV
0 ,

P(d, Ta)N = −pRV JF−T N on Γ endo,RV
0 ,

P(d, Ta)N = |JF−T N|
[

pLVvbase
LV (x) + pRVvbase

RV (x)
]

on Γ base
0 ,

(5)

obtained for pLV = p̃LV, pRV = p̃RV and Ta = T̃a, we get the domain Ω̃ .
After recovering Ω0, we inflate the biventricular reference configuration Ω0 by solving again problem (5), where

we set the pressures pLV = pED
LV and pRV = pED

RV with the superscript ED stands for the end-diastolic phase. The
values pED

LV and pED
RV are chosen to bring the biventricular domain to defined end diastolic volumes for the left V ED

LV
and right V ED

RV ventricles. In this way we obtain the end-diastolic configuration for the biventricular geometry. Hence,
the solution d of the problem (5) is set as initial condition d0 for d in (M ). The above procedure is represented in
step 4 of Fig. 4.

1 The problem (5) is derived from (M ) setting aside the time dependent terms.
8
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3. Numerical approximation

In this section we illustrate the numerical discretization of the different core models composing the 3D–0D
roblem (2) along with the strategy that we adopt to reach a limit-cycle.

.1. Space and time discretizations

For the numerical approximation of the 3D–0D coupled model (2) we follow the approach proposed in [46],
hich is extended here to the biventricular case. The core models (E ) − (A ) − (M ) − (C ) are solved sequentially

in a segregated manner by using different resolutions in space and time, to properly handle the different space and
time scales of the core models contributing to both cardiac EM and blood circulation [5,55,99]. For this reason we
call this numerical approach Segregated-Intergrid-Staggered (SIS).

For the space discretization, we use the Finite Element Method (FEM) with continuous Finite Elements (FEs) of
order 1 (Q1) and hexahedral meshes [100]. We consider two nested meshes Th1 and Th2 of the computational domain
Ω0 (h1 and h2, with h1 < h2, represent the mesh sizes), where Th1 is built by uniformly refining Th2 [101,102],
see Fig. 3(a). We adopt the finer mesh Th1 for (E ), where it is essential to accurately capture the dynamics of
traveling waves, while the coarser one (Th2 ) is used for both (A ) and (M ) [2,46,76]. We employ an efficient
ntergrid transfer operator between the nested grids Th1 and Th2 , which allows to evaluate the feedback between (E )
nd (M ) − (A ) [46]. In [46], the displacement field d is interpolated on Th1 and ∇d is assembled on the fine mesh

directly. Here, we follow the more effective strategy proposed in [16], where ∇d is recovered on Th2 thanks to an
L2 projection [101]. Then, ∇d is interpolated on Th1 .

For the time discretization, we use Finite Difference schemes [103]. The cardiac electrophysiology model is
solved by means of the Backward Differentiation Formula of order 2 (BDF2). We adopt an implicit–explicit (IMEX)
scheme, denoted by (EIMEX), where the diffusion term is treated implicitly, whereas the ionic and reaction terms
xplicitly [46,104]. For both mechanical activation and passive mechanics we employ the BDF1 scheme, where
AE) is advanced in time with an explicit method, whereas a fully implicit scheme is used for (MI) − (VI) [46].

Finally, we employ an explicit 4th order Runge–Kutta method (RK4) for (CE) [46].
We use two different time steps, ∆t for (AE)− (MI)− (VI)− (CE) and τ = ∆t/Nsub for (EIMEX), with Nsub ∈ N,

ee Fig. 3(c). We first update the variables of (EIMEX), then those of (AE) and finally, after updating the unknowns
f (MI) − (VI), we update the ones of (CE), see Fig. 3(b).

The whole algorithm for the SIS numerical scheme is reported in Fig. 3.

.2. 3D–0D coupled problem resolution

We couple the 3D mechanical model (M ) with the 0D closed-loop hemodynamic model (C ) by means of the
olume conservation constraints (V ), where the pressures of LV and RV act as Lagrange multipliers [46]. In Fig. 3(b)
steps 3–4) we obtain a saddle point problem (MI) − (VI).

We introduce the discrete times tn
= n∆t , n ≥ 0 and we denote by an

h ≃ ah(tn) the fully discretized FEM
pproximation of the generic (scalar, vectorial or tensorial) variable a(t) (i.e. the vector collecting the degrees
f freedom, DOFs, defined over the computational mesh Th2 at time tn). Then, at each time step tn+1, the fully
iscretized version of (MI) − (VI) reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ρs

1
(∆t)2 M +

1
∆t

F + G
)

dn+1
h + S(dn+1

h , T n+1
a,h )

= ρs
2

(∆t)2 Mdn
h − ρs

1
(∆t)2 Mdn−1

h +
1
∆t

Fdn
h

+pn+1
LV PLV(dn

h,dn+1
h ) + pn+1

RV PRV(dn
h,dn+1

h )
V 3D

LV (dn+1
h ) = VLV(cn)

V 3D
RV (dn+1

h ) = VRV(cn)

(6)

where we introduced

Mij =

∫
φj · φi dΩ0, Si =

∫
P(dn+1

h , T n+1
a,h ) : ∇φi dΩ0,
Ω0 Ω0

9
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Fig. 3. Segregated-intergrid-staggered numerical scheme: (a) nested meshes Th1 and Th2 (with h1 < h2); (b) schematic representation of the
numerical scheme; (c) graphical representation of the time advancement scheme.

Fij =

∫
Γ

epi
0

[
Cepi

∥
(Nh ⊗ Nh − Ih) − Cepi

⊥
(Nh ⊗ Nh)

]
φj · φi dΓ0,

Gij =

∫
Γ

epi
0

[
K epi

∥
(Nh ⊗ Nh − Ih) − K epi

⊥
(Nh ⊗ Nh)

]
φj · φi dΓ0,

Pk,i =

∫
Γbase

0

|J n+1
h (Fn+1

h )−T Nh|vbase,n
k,h · φi dΓ0

−

∫
Γ endo,k

0

J n+1
h (Fn+1

h )−T Nh · φi dΓ0, k=LV, RV.

ere Fn+1
h = Ih+∇dn+1

h with J n+1
h = det(Fn+1

h ), {φi}
Nd
i=1 represents the set of basis functions for the finite dimensional

pace [X s
h ]3 with X s

h = {v ∈ C0(Ω̄0) : v|K ∈ Qs(K ), s ≥ 1, ∀K ∈ Th2}, where Qs(K ) stands for the set of
olynomials with degree smaller than or equal to s over a mesh element K and Nd = dim([X s

h ]3) is the numbers
f DOFs for the displacement.

Moving all the terms to the right hand side, Eq. (6) can be compactly written as:⎧⎪⎨⎪⎩
rd(dn+1

h , pn+1
LV , pn+1

RV ) = 0
rpLV (dn+1

h ) = 0
rpRV (dn+1

h ) = 0
(7)
or suitable functions rpLV , rpRV and rd.

10
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Fig. 4. Graphical display of the whole pipeline for the initialization of a numerical simulation employing the 3D–0D EM model.

We solve the non-linear saddle-point problem (7) by means of the Newton algorithm using, at the algebraic
level, the Schur complement reduction [105]. More details about the solution of the problem (7) can be found in
Appendix C.

3.3. Finding initial conditions for the multiphysics problem

The numerical results of the 3D–0D EM model typically feature a temporal transient, which lasts for several
heartbeats and converges to a periodic solution, known as limit cycle. The outputs of clinical interest should be
computed from the numerical solution that is associated with the limit cycle. To reduce the computational overhead
of reaching a periodic solution, we follow the strategy proposed in [106], aimed at accelerating the convergence
towards the limit cycle. This strategy – named 3D–0D-3D V-cycle – comprises three stages (see point 5 of Fig. 4).
In a first step, three heartbeats are simulated with the 3D–0D model. Then, based on the PV-loops obtained from the
previous 3D–0D model, a 0D emulator of each ventricle is built with the aim of surrogating the pressure–volume
relationships, and substituted to the 3D model. These emulators, coupled with the 0D model of blood circulation
for the remaining compartments, allow to simulate the transient phase towards a periodic solution in less than one
minute of computational time on a standard laptop. Finally, the state obtained with this fully 0D model is used
to initialize the 3D–0D model, and three additional heartbeats are simulated. Overall, the computational cost of
reaching the limit cycle amounts to that of simulating six heartbeats, regardless of the number of cycles required
to converge to a periodic solution. As a matter of fact, the computational time required by the 0D surrogate model
is negligible compared to that of the full-order 3D–0D model. More details on this pipeline are available in [106].

To find an initial guess for the remaining variables, we initialize the ionic model by running a 1000-cycle long

single-cell simulation. Similarly, we initialize the force generation model by means of a single-cell simulation with

11
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Table 1
Number of nodes and DOFs for the two nested meshes Th1 and Th2 employed for (E ) and (A )-(M )
by using FEs of order 1 (Q1).

Mesh Physics Number of nodes DOFs

Th1 (E ) 4’290’929 4’290’929
Th2 (A ) 78’491 78’491
Th2 (M ) 78’491 235’473

a constant calcium input (corresponding to the final calcium concentration of the single-cell ionic simulation) and
a reference sarcomere length SL = 2.2 µm.

The whole pipeline for the initialization of a numerical simulation employing the 3D–0D biventricular EM model
is sketched in Fig. 4.

4. Numerical results

In this section, we present several biventricular electromechanical simulations that employ the 3D–0D model
discussed in Sections 2 and 3.

We organize this section as follows. After a brief description regarding the setting of the numerical simulations
(Section 4.1), we compare the results of a physiological electromechanical simulation with a comprehensive set of
experimental data available in the literature (Section 4.2). Then, in Section 4.3 we investigate how different cross-
fibers active contraction arrangements affect the electromechanical simulations, by setting different combinations
of nf, ns and nn, i.e. of the prescribed proportion of active tension along the myofibers. Finally, in Section 4.4 we
evaluate the impact of different myofiber architectures, obtained by three types of LDRBMs, on the biventricular
pumping function.

4.1. Setting of numerical simulations

All the simulations are performed on a realistic biventricular geometry processed from the Zygote 3D heart [107],
a CAD-model representing an average healthy human heart reconstructed from high-resolution computer tomogra-
phy scan. To build the computational mesh associated with the biventricular Zygote model, we use the Vascular
Modeling Toolkit software [108] (http://www.vmtk.org) by exploiting the semi-automatic meshing tool recently
proposed in [109]. In particular, the mesh generation process starts with a tetrahedral volumetric mesh, which is
then converted to an hexahedral one, obtained by subdividing each tetrahedron into four hexahedra with the tet-hex
algorithm [109]; see Fig. 3(a).

We employ two nested meshes where for the activation and the mechanical problems we adopt a mesh size
h1 = 3 mm, while for the electrophysiology problem we employ a mesh size h2 that is four time smaller [46]. As
for the time steps, we use τ = 50 µs for the electrophysiology problem and ∆t = 500 µs for the mechanical,
activation and circulation problems [46,47]. Table 1 denotes the number of nodes of the electrical (Th1 ) and the
mechanical (Th2 ) meshes, along with the number of DOFs.

The parameters used for the 3D–0D model are listed in Tables 8 and 9 (see Appendix A). The settings related to
LDRBMs, adopted for prescribing the fiber architectures, will be specified for each case reported in Sections 4.2 –
4.4. Table 2 reports the setting used for the non-linear and linear solvers (with preconditioners used to solve the
linear systems), respectively.

To approach the limit cycle, we initialize all the numerical simulations, for the coupled 3D–0D model, following
the procedure illustrated in Section 3.3 (see also [106]). Then, we perform three further heartbeats using the fully
framework of the 3D–0D model presented in Sections 2 and 3. We neglected the first two, so that all the reported
results refer to the last heartbeat.

In all the simulations we adopted the same pacing protocol in which five ventricular endocardial areas are
activated with spherical impulses: in the anterior para-septal wall, in the left surface of inter-ventricular septum
and in the bottom of postero-basal area, for LV; in the septum and in the free endocardial wall, for RV [47,110],
see also Fig. 5(c). This, combined with the fast endocardial conduction layer (see Section 2.2.1), surrogates the

action of the Purkinje network [73,88].
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Table 2
Tolerances of the linear and non-linear solvers for the different core models.

Physics Linear solver Non-linear solver

Type Precond. Abs. tol. Type Rel. tol. Abs. tol.

Fibers GMRES AMG 10−10 - - -
Monodomain CG AMG 10−10 - - -
Activation GMRES AMG 10−10 - - -
Mechanics GMRES AMG 10−10 Newton 10−10 10−8

Reference config. GMRES AMG 10−8 Newton 10−8 10−6

Table 3
CPU times required to perform an electromechanical simulation of a
single heartbeat.

Physics Time (s) Percentage (%)

(E ) 28116 92.630
(A ) 50 0.165
(M ) 2186 7.202
(C ) 1 0.003

The numerical methods presented in Section 3 have been implemented within lifex (https://lifex.gitlab.io
lifex), a new in-house high-performance C++ FE library, for cardiac applications, based on the deal.II FE
ore [111] (https://www.dealii.org). All the numerical simulations were executed using either the iHeart cluster
Lenovo SR950 192-Core Intel Xeon Platinum 8160, 2100 MHz and 1.7 TB RAM) at MOX, Dipartimento di

atematica, Politecnico di Milano or the GALILEO supercomputer at Cineca (8 nodes endowed with 36 Intel Xeon
5-2697 v4 2.30 GHz). In Table 3 we show the computational times for assembling, preconditioning and solving

he different core models. The total CPU time required to perform an electromechanical simulation of one heartbeat
ith 288 cores on the GALILEO supercomputer is about 8 h. The most computationally demanding part of the solver,
hich accounts for about 93% of the total CPU time, is associated to the (E ) core model. This is motivated by the
etailed space–time resolution used to approximate the monodomain model.

.2. Baseline simulation

We present a human electromechanical simulation in physiological conditions related to the Zygote biventricular
eometry. For the fibers generation we adopted D-RBM [47,54]. The input angle values (see Section 2.1) were
hosen according to observations based on histological studies in the human heart [112,113]:

αepi,LV = −60◦, αendo,LV = +60◦, αepi,RV = −25◦, αendo,RV = +90◦
;

βepi,LV = +20◦, βendo,LV = −20◦, βepi,RV = +20◦, βendo,RV = 0◦.
(8)

oreover, to surrogate the effect of dispersed myofibers, we set in (3) nf = 0.7, ns = 0 and nn = 0.3 for the
roportion of active tension along the fiber, sheet and normal directions, respectively [31,59].

Fig. 5 illustrates the time evolution of calcium ions concentration (a), the mechanical deformation (b, e), the
ctivation times (c), the PV-loop curves for both ventricles and the time evolution of pressures and volumes of the
our chambers (d). Specifically, in Fig. 5(a) we display the time evolution of the TTP06 ionic model calcium transient
howing the physiological wave propagation up to the complete depolarization of both ventricles (t = 0.12 s). In
ig. 5(b) we report different snapshots of the biventricular geometry warped by the displacement vector. As expected,
t the beginning of the contraction the volumes of both ventricles remain nearly constant while the pressure increases
t = 0.0 − 0.10 s); during the ejection phase, the ventricular contraction is clearly visible, with the basal plane
hat moves towards the bottom while the apex remains almost fixed. Moreover, a significant thickening of the

yocardium wall takes place (t = 0.35 s). Then, the ventricles start to relax. This leads to a slow recovery of the
nitial volumes (t = 0.45 − 0.60 s). Finally, in Fig. 5(c) we display the simulated activation map in which both the

otal activation time (120 ms) and the activation pattern are in accordance with the literature [47,110].
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Fig. 5. Baseline EM simulation; (a) calcium transient at four time instants in the cardiac cycle; (b) mechanical displacement magnitude
with respect to the reference configuration) at five time instants of the heartbeat where 0.35 s is the end of systole. (c) activation map;
d, left) PV-loop LV (orange) and RV (blue); (d, right) pressures (top) and volumes (bottom) transient during the cardiac cycle for the
our chambers; (e) mid ventricular slices at the end of systole, showing LFS on the left and WT on the right, colored by the in-plane

isplacement magnitude (i.e
√

d2
x + d2

z for LFS and
√

d2
x + d2

y for WT). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

In Table 4 we compare some relevant mechanical biomarkers obtained by our numerical simulation with those
provided by the data reported in the literature [66–72]. Notice that all the values in Table 4, related to the ventricular
volumes, are expressed with absolute values, in mL, estimated for an adult subject, as reported in the quoted
14
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Table 4
Comparison between the simulation results, employing the 3D–0D EM model, and the literature
values of mechanical biomarkers in physiological conditions (references are reported in the Table,
see also [17,32]).

Mechanical
biomarkers

Literature
values

Simulation
results

Description

EDVLV (mL) 142 ± 21 [66] 137 Left end diastolic volume
EDVRV (mL) 144 ± 23 [68] 138 Right end diastolic volume
ESVLV (mL) 47 ± 10 [66] 48 Left end systolic volume
ESVRV (mL) 50 ± 14 [68] 49 Right end systolic volume
EFLV (%) 67 ± 5 [66] 66 Left ventricular ejection fraction
EFRV (%) 67 ± 8 [67] 65 Right ventricular ejection fraction
PLV (mmHg) 119 ± 13 [69] 117 Left systolic pressure peak
PRV (mmHg) 35 ± 11 [70] 35 Right systolic pressure peak
LFS (%) 13-21 [71] 21 Longitudinal fractional shortening
WT (%) 18-100 [72] 41 Fractional wall thickening

references. However, we are aware that in the clinical practice the ventricular volumes are always indicated as
“indexed ventricular volumes”, by dividing the ventricular volume for the Body Surface Area of the related patient.
The chosen mechanical biomarkers were: (i) left and right end diastolic/systolic volumes (EDVLV, EDVRV, ESVLV,
ESVRV), representing the maximal and minimal left and right ventricular volumes achieved during the heartbeat,
computed as the maximal (EDVLV, EDVRV) and minimal (ESVLV, ESVRV) volumes in the PV-loop curves, see
Fig. 5(d); (ii) left and right ventricular ejection fractions (EFLV, EFRV), which represent the amount of blood that
is pumped by LV and RV during a cardiac cycle, computed as

EFi(%) =
EDVi − ESVi

EDVi
100 i = LV,RV;

iii) left and right systolic pressure peaks (PLV, PRV), the maximal pressures reached in LV and RV, computed as the
aximal pressures in the PV-loop curves, see Fig. 5(d); (iv) the systolic longitudinal fractional shortening (LFS),

tanding for the fractional displacement between the endocardial apex and the base [17], evaluated as

LFS(%) =
L0 − L

L0
100,

here L0 and L are the apico-basal distance measured at the beginning (t = 0.0 s) and at the end of systole (t =

.35 s), see Fig. 5(e); (v) the systolic wall thickening (WT), representing the fractional cardiac wall thickening [17],
easured as

WT(%) =
T − T0

T
100,

here T0 and T are the cardiac wall thickening at the beginning (t = 0.0 s) and at the end of systole (t = 0.35 s),
ee Fig. 5(e).

All the above mechanical biomarkers, obtained by our numerical simulation, fall within the physiological range
references in Table 4).

.3. Cross-fibers active contraction

To surrogate the dispersion effect in the cardiac fibers, we analyze several cross-fibers active contraction
rrangements, by setting in Eq. (3) different combinations of nf, ns and nn, i.e. the prescribed proportion of active
ension along the myofibers. Five different sets were chosen: (i) nf = 0.7, ns = 0.3, nn = 0; (ii) nf = 1, ns = 0.3,
n = 0; (iii) nf = 1, ns = 0, nn = 0; (iv) nf = 0.7, ns = 0, nn = 0.3; (v) nf = 1, ns = 0, nn = 0.3. Apart
rom the prescribed proportion of active tension, the settings are the same as the baseline simulation2 presented in
ection 4.2.

2 Notice that case iv is the baseline simulation.
15
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(

Fig. 6. Cross-fibers active contraction EM simulations; (a) PV-loops from several cross-fibers active contraction arrangements built by setting
in Eq. (3) different combinations of nf, ns and nn; (b) mechanical displacements (top) and mid ventricular slices at the end of systole

t = 0.35 s), showing LFS (middle) and WT (bottom), colored by the in-plane displacement magnitude (i.e
√

d2
x + d2

z for LFS and
√

d2
x + d2

y

for WT), for redistributed cross-fibers active contraction configurations: a pure fiber f , a fiber-normal f − n and a fiber-sheet f − s
contraction; (c) circumferential stress Sff (top-right) at the peak pressure time instant (t = 0.1 s) and the time trace of the average, minimum
and maximum axial stresses Sff (top-left), Sss (bottom-left) and Snn (bottom-right) for f , f − n and f − s configurations.

Fig. 6(a) shows the PV-loops from the five cases. An active tension along the sheet direction (ns > 0, cases
i and ii) produces a PV-loop with a reduced area compared to case iii with no cross-fibers active contraction.
Conversely, an active tension along the normal direction (nn > 0, cases iv and v) yields a PV-loop with an increased
area. Table 5 displays, for all the cases, the ejection fraction (EFi) and the stroke volume (SVi = EDVi − ESVi) of
the left (i = LV) and right (i = RV) ventricles. The maximal cardiac work is achieved for case v while the minimal

for case i. The above analysis shows that the active tension along the sheet direction (ns > 0) counteracts the
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c
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Table 5
Ejection fraction (EFi) of the left (i = LV) and right (i = RV) ventricles for the different cross-fibers
active contraction cases i–v. The stroke volume (SVi) of the two ventricles is also shown.

Cross-fiber configuration EFLV EFRV SVLV SVRV

(i) nf = 0.7, ns = 0.3, nn = 0 45 % 44 % 70.69 mL 71.04 mL
(ii) nf = 1, ns = 0.3, nn = 0 54 % 53 % 79.40 mL 79.50 mL
(iii) nf = 1, ns = 0, nn = 0 65 % 64 % 89.14 mL 89.08 mL
(iv) nf = 0.7, ns = 0, nn = 0.3 66 % 65 % 89.27 mL 89.23 mL
(v) nf = 1, ns = 0, nn = 0.3 69 % 67 % 91.14 mL 91.09 mL

Table 6
LFS and WT for the three configurations of redistributed myofibers
active contraction ( f , f − n and f − s).

Cross-fiber
configuration

LFS WT

(iii) f 17 % 30 %
(iv) f − n 21 % 41 %
(i) f − s 7 % 8 %

myofiber contraction, while the one along the normal direction (nn > 0) enhances the cardiac work, in accordance
to [31,58].

In order to better appreciate the differences among the cross-fibers active contraction arrangements, we further
compared cases i and iv with case iii. In these particular cases, the proportion of active tension sums up to 1
(nf + ns + nn = 1), meaning that the myofibers contraction is redistributed along the three directions: case iii
(nf = 1, ns = 0, nn = 0) is a pure fiber contraction, in the following denoted by f configuration; case i (nf = 0.7,
ns = 0, nn = 0.3) is a contraction in the fiber and normal directions, hereafter indicated by f − n configuration;
ase iv (nf = 0.7, ns = 0.3, nn = 0) is a contraction along the fiber and sheet directions, named f − s configuration.

Fig. 6(b) illustrates the mechanical displacements at the end of systole (t = 0.35 s) for the three considered
onfigurations ( f , f −n and f −s). Both the apico-basal shortening and the wall thickening is dramatically reduced
or f − s configuration. Almost the same mechanical contraction is achieved for f and f − n configurations with

a slightly more pronounced longitudinal shortening and wall thickening for f − n configuration. The LFS and WT
are reported in Table 6.

We also evaluate the components of the mechanical stress by means of the following indicators [46]:

Sff = (Pf0) ·
Ff0

|Ff0|
, Sss = (Ps0) ·

Fs0

|Fs0|
, Snn = (Pn0) ·

Fn0

|Fn0|
,

where f0, s0 and n0 are the myofiber directions, P is the first Piola–Kirchhoff stress tensor and F is the deformation
gradient tensor. The metric Saa (with a = f, s, n) measures the axial stresses along the circumferential (a = f), radial
a = s) and longitudinal (a = n) directions.

Fig. 6(c) displays, for the three configurations f , f − n and f − s, the circumferential stress (Sff) at the peak
pressure time instant (t = 0.1 s) and the time trace of the average, minimum and maximum axial stresses Sff, Sss
and Snn. The circumferential stress at the peak pressure instant is much higher, especially on LV side, for f − s
configuration with respect to the other two. Conversely, f − n configuration produces the lowest circumferential
stress. Almost the same considerations hold for the time trace of the three axial stresses during the complete cardiac
cycle, see Fig. 6(c).

4.4. Impact of myofiber architecture on the electromechanical function

We investigate the effect of different myofibers architecture on the biventricular EM model, by considering three
types of LDRBMs: D-RBM, B-RBM and R-RBM (see Section 2.1). Apart from the employed LDRBM, used to
prescribe the myofibers architecture, all the other settings, including the fiber input angles (8), are the same as the
baseline simulation3 presented in Section 4.2.

3 Notice that the case with D-RBM is the baseline simulation.
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Table 7
Comparison of relevant mechanical biomarkers among the electrome-
chanical simulations by employing different LDRBMs (D-RBM,B-
RBM and R-RBM) to prescribe the myofiber architecture.

Mechanical biomarkers D-RBM B-RBM R-RBM

EDVLV (mL) 137 145 138
EDVRV (mL) 138 136 139
ESVLV (mL) 48 58 50
ESVRV (mL) 49 49 50
EFLV (%) 66 60 64
EFRV (%) 65 64 64
PLV (mmHg) 117 114 117
PRV (mmHg) 35 34 33
LFS (%) 21 25 20
WT (%) 41 36 38

Fiber orientations obtained for the three LDRBMs (D-RBM, B-RBM and R-RBM) in the Zygote biventricular
odel are shown in Fig. 7(a). For a detailed comparison among the three LDRBMs we refer the reader to [47], where

ure electrophysiological simulations were considered. Here, we are instead interested in the effect on mechanical
uantities obtained by means of EM model. We recall that B-RBM produces a smooth change in the fiber field in
he transition across the two ventricles, while R-RBM and D-RBM a strong discontinuity [47]. Moreover, R-RBM
nd D-RBM feature a linear transition passing from the endocardium to the epicardium, while B-RBM employs a
idirectional spherical interpolation bislerp (see [47,52,54,55]).

In Fig. 7(b) the PV-loop curves (for both ventricles) are displayed, while in Table 7 some relevant mechanical
biomarkers are compared among the simulation results. The left ventricular PV-loop area of B-RBM is shifted
towards larger volumes with respect to the ones of D-RBM and R-RBM that show almost a compatible PV-loop
for LV, see Fig. 7(b, top). Moreover, the left systolic pressure peak decreases for B-RBM with respect to D-RBM
and R-RBM, see Figs. 7(b, top) and Table 7. As a consequence, the left ventricular ejection fraction obtained with
B-RBM (60%) is smaller than those obtained with D-RBM and R-RBM (66% and 65%, respectively), see Table 7.
On the contrary, small differences are observed for the right ventricular PV-loops with only a slightly larger ejection
fraction for D-RBM, see Fig. 7(b, bottom) and Table 7.

Fig. 7(d) shows the circumferential stress (Sff) at the peak pressure instant (t = 0.1 s) and the time trace of
the average, minimum and maximum axial stresses Sff, Sss and Snn. The patterns of Sff are very similar for the
three methods, see Fig. 7(d, top-right). Instead, the time traces of the axial stresses present several discrepancies.
Specifically, Sff reveals lower values obtained by B-RBM with respect to D-RBM and R-RBM, see Fig. 7(d, top-
left). This is associated to a lower cardiac work produced by B-RBM (EFLV = 60%) compared to D-RBM and
R-RBM (EFLV = 66%, 64%, respectively). On the contrary, the longitudinal stress Snn presents an opposite trend,
see Fig. 7(d, bottom-right). This is ascribed to a larger apico-basal shortening for B-RBM (LFS = 25%) with
espect to D-RBM and R-RBM (LFS = 21%, 20%, respectively). Meanwhile, larger values of the radial stress Sss

re observed for D-RBM with respect to B-RBM and R-RBM, see Fig. 7(d,bottom-right), associated to a larger
all thickening of D-RBM (WT = 41%) against the ones of R-RBM and B-RBM (WT = 38%, 36%, respectively).

. Discussion

We presented a 3D biventricular EM model coupled with a 0D closed-loop model of the whole circulatory
ystem. This mathematical and numerical model represents an extension of the one proposed in [15,46] for the LV.
ifferently from previous works in the literature focusing on Windkessel-type preload/afterload models [33–38],
ere we considered a closed-loop 0D model of the whole cardiovascular system. With respect to other biventricular
M models [28,32], we derived proper boundary conditions with uniform and weighted stress distributions, that
ccount for the neglected part of the domain above the biventricular base and satisfy the principles of momentum
nd energy conservation. Furthermore, our numerical strategy does not require adaptations through the different
hases of the heartbeat. Consequently, the 3D–0D biventricular model can be effectively used to address rhythm

isorders, such as ventricular tachycardia [114].
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t
a
t

Fig. 7. Results of the EM simulations employing different LDRBMs (R-RBM, B-RBM and D-RBM); (a) fiber orientations obtained for the
three LDRBMs; (b) PV-loop curves, for LV (top) and RV (bottom), obtained with D-RBM (orange), B-RBM (blue) and R-RBM (green);
(c) mechanical displacements (top) and mid ventricular slices at the end of systole (t = 0.35 s), showing LFS (middle) and WT (bottom),

colored by the in-plane displacement magnitude (i.e
√

d2
x + d2

z for LFS and
√

d2
x + d2

y for WT); (d) circumferential stress Sff (top-right) at
he peak pressure instant (t = 0.1 s) and the time trace of the average, minimum and maximum axial stresses Sff (top-left), Sss (bottom-left)
nd Snn (bottom-right) for the three LDRBMs. (For interpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)
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The numerical results obtained on a realistic biventricular geometry, after a suitable parameter calibration,
uantitatively match the experimental data of relevant mechanical biomarkers available in the literature, such as
he end systolic and diastolic volumes, the ejection fraction and the systolic pressure peak [66–72]. In particular,
hanks to the novel weighted stress distributions basal boundary condition, we were able to obtain physiological
ongitudinal fractional shortening. Conversely, the majority of ventricular EM models have limitations in reproducing
he longitudinal systolic shortening, as excluding the atria from the geometry requires to fix the basal plane or restrict
ts radial motion [24,27,32,78,115]. This is in contrast with physiological contraction where the atrioventricular plane
isplacement moves significantly downwards in the apico-basal direction [98,116].

We also investigated the impact of fiber dispersion by partially redistributing active tension on cross-fiber
irections. We noticed that an active tension along the sheetlet direction yields to an unphysiological cardiac work,
ith ejection fraction, longitudinal shortening and wall thickening below the physiological ranges (see Tables 4–6).
n the contrary, active tension on the sheet-normal direction contributes to a more effective cardiac contraction
ith a much lower axial stress with respect to a non-dispersed fiber configuration. These results are in accordance
ith [31,58].
Finally, we performed for the first time a sensitivity analysis by looking at EM outputs in the limit cycle when

onsidering D-RBM, B-RBM and R-RBM to generate the cardiac fibers [47]. We showed that there is a strong
nteraction between LV and RV [20]. A different fiber architecture in the transmural wall (from epicardium to
ndocardium) and a dissimilar septal fiber interconnection between the two ventricles affect the ventricular cardiac
ump work, in particular the LV one. This highlights the importance of considering the two chambers together during
entricular EM simulations. Indeed, the continuous interrelationships between right and left ventricular functions are
ell known not only in physiological conditions, but particularly in pathological situations, for which any pressure

nd/or volume overload of a ventricle is instantaneously reflected in impairment of the function of the contralateral
entricle.

A limitation of the proposed model is that the force generation model (RDQ18, [92]) does not take into account
he feedback of the fibers contraction velocity (force–velocity relationship). This causes the sharp pressure peak
isplayed in Fig. 5(d), which would be smoothed by using a model that takes into account the force–velocity
elationship, such as the RDQ20 model, as shown in [81]. Another limitation consisted in the use of a surrogate
odel of the Purkinje system (by means of the fast endocardial conduction layer [73]) instead of an explicitly
odelization of such network (as done in [88–90]). Although this approximation is reasonable in physiological

ondition, the Purkinje network should be explicitly modeled in order to achieve a more realistic activation sequence
n the ventricles, in particular when attempting to reproduce pathological conditions, like for instance the Left
undle Branch Block [88]. A further improvement will be given by validating the results against measures coming

rom medical imaging, such as myocardial displacement by cine-MRI or ejection fraction/stroke volume from
cho-cardiography.

. Conclusions

In this work, we proposed a 3D–0D closed-loop model of biventricular cardiac EM. We provided a rigorous
athematical and numerical formulation of the 3D–0D model by fully detailing our approach to couple the 3D and

he 0D models. We carried out several numerical simulations aimed at reproducing physiological quantities like the
nd systolic and diastolic volumes, the ejection fractions, the systolic pressure peaks, the longitudinal fractional
hortening and the fractional wall thickening. We studied different configurations in cross-fibers active contraction
ighlighting that the proportion of active tension along the sheet direction should be avoided in the framework of
n orthotropic active stress. Finally, we evaluated the impact of different myofibers architecture on the biventricular
M, showing the importance of considering a biventricular model with respect to a stand-alone LV model.
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Appendix A. Model parameters

We provide the list of parameters adopted for the simulations in Section 4. In particular, Table 8 contains the
arameters of the 3D EM model (referred to E , A , M ) and Table 9 those of the 0D closed-loop hemodynamic

model (C ). Moreover, for the TTP06 ionic model, we use the parameters (for epicardium cells) reported in [91],
while for the RDQ18 model, we employ those in [82].

Appendix B. Energy-consistent boundary condition in biventricular geometries

The energy-consistent boundary condition (2.9) accounts for the effect of the neglected part of the domain located
above the biventricular base Γ base

0 (which is an artificial boundary), consistently with the principles of momentum
and energy conservation. It represents a generalization of the boundary condition proposed in [82] for biventricular
geometries. In what follows, we denote by Ωfluid,LV

t (respectively Ωfluid,RV
t ) the volume occupied at time t , within

LV (respectively, RV), by the fluid located below the base. Moreover, we employ the tilde symbol (∼) to refer to
volumes and surfaces located above the ventricular base. Specifically, we denote by Ω̃fluid,LV

t and Ω̃fluid,RV
t the fluid

volumes in LV and RV, located above the base. Similarly, we denote by Γ̃
epi
t , Γ̃ endo,LV

t and Γ̃ endo,RV
t the epicardial, and

endocardial (left and right) surfaces located above the ventricular base. Finally, we denote by Γ̃ base
t the ventricular

base surface itself, but endowed with outer normal vector directed towards the apex, differently than for Γ base
t .

Following the derivation of [82] and by defining the Cauchy stress tensor as T = J−1PFT , with a quasi-static
approximation the balance of momentum entails

0 =

∫
Ω̃t

∇ · T dx =

∫
∂Ω̃t

Tn dΓt =

∫
Γ̃

epi
t

Tn dΓt +

∫
Γ̃ endo,LV

t

Tn dΓt +

∫
Γ̃ endo,RV

t

Tn dΓt +

∫
Γ̃base

t

Tn dΓt . (9)

he normal stress on the endocardium is given by Tn = −pLVn (on Γ̃ endo,LV
t ) and Tn = −pRVn (on Γ̃ endo,RV

t ),
hile we assume negligible the load on the epicardium (i.e. Tn = 0 on Γ̃

epi
t ). Thanks to the divergence (Gauss)

heorem, it is possible to write the endocardial terms of the summation of Eq. (9) as integrals over Γ endo,LV
t and

endo,RV
t . Indeed, we have the identity:

0 =

∫
Ωfluid,LV

t ∪Ω̃fluid,LV
t

∇ pLV dx =

∫
Γ endo,LV

t

pLVn dΓt +

∫
Γ̃ endo,LV

t

pLVn dΓt ,

nd similarly for the RV we have
∫
Γ̃ endo,RV

t
pLVn dΓt = −

∫
Γ endo,RV

t
pRVn dΓt . Hence, we end up with the following

dentity∫
Γbase

t

Tn dΓt = −

∫
Γ̃base

t

Tn dΓt = −

∫
Γ̃ endo,LV

t

pLVn dΓt −

∫
Γ̃ endo,RV

t

pRVn dΓt

=

∫
Γ endo,LV

t

pLVn dΓt +

∫
Γ endo,RV

t

pRVn dΓt ,

hich entails, by considering the pull-back, to the reference configuration∫
base

Tn dΓt =

∫
endo,LV

pLV JF−T n dΓ0 +

∫
endo,RV

pRV JF−T n dΓ0. (10)

Γt Γ0 Γ0
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Table 8
Input parameters of the 3D EM model.

Variable Value Unit Description

Electrophysiology
Thb 0.8 s Heartbeat duration
χm 1 µF/cm2 Surface-to-volume ratio
Cm 1400 cm−1 Transmembrane capacitance
ϵ 0.01 – Threshold of the fast conduction layer
(σℓ,fast, σt,fast, σn,fast) (4.28, 1.96, 0.64) mS/cm Fast layer conductivities
(σℓ,myo, σt,myo, σn,myo) (1.07, 0.49, 0.16) mS/cm Myocardial conductivities
Iapp 50 · 103 µA/cm3 Applied current value
tapp 3.0 ms Applied current duration
t0
LV,app (0.0,0.0,0.0) ms Applied current LV initial times

t0
RV,app (5.0,5.0) ms Applied current RV initial times
δapp 2.5 · 10−3 m Applied current radius

Mechanics
ρs 103 kg m−3 Tissue density
K epi

∥
2 · 104 Pa m−1 Normal stiffness of epicardium

K epi
⊥

2 · 105 Pa m−1 Tangential stiffness of epicardial tissue
Cepi

⊥
2 · 104 Pa s m−1 Normal viscosity of epicardial tissue

Cepi
∥

2 · 103 Pa s m−1 Tangential viscosity of epicardial tissue
a 0.88 · 103 Pa Material stiffness
k 50 · 103 Pa Bulk modulus
bff 8 – Fiber strain scaling
bss 6 – Radial strain scaling
bnn 3 – Cross-fiber in-plain strain scaling
bfs 12 – Shear strain in fiber-sheet plane scaling
bfn 3 – Shear strain in fiber-normal plane scaling
bsn 3 – Shear strain in sheet-normal plane scaling

Reference configuration
p̃LV 600 Pa Residual left ventricular pressure
p̃RV 400 Pa Residual right ventricular pressure
T̃a 350 · 103 Pa Residual active tension
Clrv 1 – Residual contractility ratio

Activation
SL0 2 µm Reference sarcomere length
T max

a 840 · 103 Pa Maximum tension
Clrv 0.60 – Contractility ratio

Eq. (10) provides the overall stress acting on the ventricular base. However, we need some additional assumptions to
define the point-wise distribution of stress, among the infinitely many satisfying Eq. (10). In the original derivation
of the energy-consistent boundary condition [82], at this stage, a uniform stress distribution assumption is made.
However, while this assumption is reasonable in a single-ventricle geometry, it is unrealistic when the ventricular
base surrounds both ventricles. Indeed, the pressures acting in LV are typically much larger than those in RV. For
this reason, we propose to distribute stress over the gamma surface not uniformly, but rather according to a weight
function φ :Γ base

0 → [0, 1], that indicates the fraction of stress attributable to the pressure acting on LV, relative RV,
at each base point. Hence, we assume that, on Γ base

0 , we have:

Tn = φ

∫
Γ endo,LV

0
pLV JF−T n dΓ0∫

Γbase
t

φ dΓ
+ (1 − φ)

∫
Γ endo,RV

0
pRV JF−T n dΓ0∫

Γbase
t

(1 − φ) dΓ
, (11)

hich reads, in the reference configuration:

Pn = |JF−T n|

[
φ

∫
Γ endo,LV

0
pLV JF−T n dΓ0∫

base |JF−T n|φ dΓ
+ (1 − φ)

∫
Γ endo,RV

0
pRV JF−T n dΓ0∫

base |JF−T n| (1 − φ) dΓ

]
. (12)
Γ0
0 Γ0

0
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Table 9
Input parameters of the 0D closed-loop hemodynamic model.

Variable Value Unit Description

Circulation

RSYS
AR 0.416 mmHg s mL−1 Resistance of systemic arterial system

RSYS
VEN 0.260 mmHg s mL−1 Resistance of systemic venous system

RPUL
AR 0.048 mmHg s mL−1 Resistance of pulmonary arterial system

RPUL
VEN 0.036 mmHg s mL−1 Resistance of pulmonary venous system

CSYS
AR 1.62 mL mmHg−1 Capacitance of systemic arterial system

CSYS
VEN 60.00 mL mmHg−1 Capacitance of systemic venous system

CPUL
AR 5.00 mL mmHg−1 Capacitance pulmonary arterial system

CPUL
VEN 16.00 mL mmHg−1 Capacitance of pulmonary venous system

LSYS
AR 5 · 10−3 mmHg s2 mL−1 Impedance of systemic arterial system

LSYS
VEN 5 · 10−4 mmHg s2 mL−1 Impedance of systemic venous system

LPUL
AR 5 · 10−4 mmHg s2 mL−1 Impedance pulmonary arterial system

LPUL
VEN 5 · 10−4 mmHg s2 mL−1 Impedance of pulmonary venous system

EA
LA 0.09 mmHg mL−1 Left atrium elastance amplitude

EA
RA 0.06 mmHg mL−1 Right atrium elastance amplitude

EB
LA 0.07 mmHg mL−1 Left atrium elastance baseline

EB
RA 0.07 mmHg mL−1 Right atrium elastance baseline

T ac
LA 0.17 – Duration of left atrium contraction (w.r.t. Thb)

T ac
RA 0.17 – Duration of right atrium contraction (w.r.t. Thb)

tac
LA 0.80 – Initial time of left atrium contraction (w.r.t. Thb)

tac
RA 0.80 – Initial time of right atrium contraction (w.r.t. Thb)

T ar
LA 0.17 – Duration of left atrium relaxation (w.r.t. Thb)

T ar
RA 0.17 – Duration of right atrium relaxation (w.r.t. Thb)

V0,LA 4.0 mL Left atrium resting volume

V0,RA 4.0 mL Right atrium resting volume

Rmin 75 · 10−4 mmHg s mL−1 Valves minimal resistance

Rmax 75 · 103 mmHg s mL−1 Valves maximum resistance

In what follows we consider three different choices for the weight function φ, corresponding to as many boundary

condition formulations.

• Uniform stress distribution. By setting φ ≡
1
2 , we recover the case of stress uniformly distributed on the

whole Γ base
0 boundary:

Pn =
|JF−T n|∫

Γbase
0

|JF−T n|dΓ0

[∫
Γ endo,LV

0

pLV JF−T n dΓ0 +

∫
Γ endo,RV

0

pRV JF−T n dΓ0

]
(13)

• Uniform stress distribution over each base. Let us suppose to split the base into two subsets Γ base,LV
0 and

Γ base,RV
0 , respectively denoting the portion of ventricular base surrounding LV and RV. Then, we define φ as

base,LV base,LV base,RV
the indicator function of the set Γ0 (that is φ = 1 on Γ0 , while φ = 0 on Γ0 ). In this case, we
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get: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Pn =

|JF−T n|∫
Γbase,LV

0
|JF−T n|dΓ0

∫
Γ endo,LV

0

pLV JF−T n dΓ0 on Γ base,LV
0

Pn =
|JF−T n|∫

Γbase,RV
0

|JF−T n|dΓ0

∫
Γ endo,RV

0

pRV JF−T n dΓ0 on Γ base,RV
0

(14)

• Weighted stress distribution. Finally, we consider the case in which we set φ = ξ̂ (as defined in Section 2.1).
The function ξ̂ is defined such that we have ξ̂ ≃ 1 on Γ base,LV

0 , ξ̂ ≃ 0 on Γ base,RV
0 and we have a smooth

transition on the septum. With this choice, the energy-consistent boundary condition of Eq. (12) reads

Pn = |JF−T N|
[

pLV(t)vbase
LV (x, t) + pRV(t)vbase

RV (x, t)
]
, (15)

having defined the vectors vbase
LV and vbase

RV as in Eq. (4).

Based upon our experience, the uniform stress distribution approach does not typically provide meaningful results.
Indeed, since the stress is redistributed on the whole base without accounting for the closeness to the two chambers,
a net angular momentum results on the elastic body, making it rotate during systole. Conversely, both the uniform
stress distribution approach over each base and the weighted stress distribution approach overcome this issue, thanks
to a more realistic distribution of the stress. While the two strategies globally provide very similar results, the latter
allows for a smoother solution close to the interface between the left and right bases. For this reason, in this paper
we focus on the weighted stress distribution approach.

Appendix C. 3D-0D saddle-point problem resolution

We solve the non-linear saddle-point problem (7) by means of the following Newton algorithm (where the
subscript n + 1 is understood):

• We set d(0)
h = dn

h , p(0)
LV = pn

LV and p(0)
RV = pn

RV
• For j = 1, 2, . . . , until convergence, we solve the linear system⎛⎜⎜⎝

J ( j−1)
d,d J ( j−1)

d,pLV
J ( j−1)

d,pRV

J ( j−1)
pLV,d 0 0

J ( j−1)
pRV,d 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝∆d( j)

h

∆p( j)
LV

∆p( j)
RV

⎞⎟⎟⎠ =

⎛⎜⎜⎝r( j−1)
d

r ( j−1)
pLV

r ( j−1)
pRV

⎞⎟⎟⎠ , (16)

where
J ( j−1)

d,d =
∂
∂d rd(d( j−1)

h , p( j−1)
LV , p( j−1)

RV ),
J ( j−1)

d,pLV
=

∂
∂pLV

rd(d( j−1)
h , p( j−1)

LV , p( j−1)
RV ), J ( j−1)

d,pRV
=

∂
∂pRV

rd(d( j−1)
h , p( j−1)

LV , p( j−1)
RV ),

J ( j−1)
pLV,d =

∂
∂drpLV (d( j−1)

h ), J ( j−1)
pRV,d =

∂
∂drpRV (d( j−1)

h ).
In our implementation, the Jacobian matrix is computed by means of automatic differentiation.

• We update
d( j)

h = d( j−1)
h − ∆d( j)

h , p( j)
LV = p( j−1)

LV − ∆p( j)
LV and p( j)

RV = p( j−1)
RV − ∆p( j)

RV.
• When the convergence criterion (based on the increment) is satisfied, we set

dn+1
h = d( j)

h , pn+1
LV = p( j)

LV and pn+1
RV = p( j)

RV.

We solve the saddle-point problem (16) via Schur complement reduction [105]. Specifically, system (7) can be
written as⎧⎪⎪⎪⎨⎪⎪⎪⎩

Jd,d∆dh + Jd,pLV∆pLV + Jd,pRV∆pRV = rd

JpLV,d∆dh = rpLV
(17)
JpRV,d∆dh = rpRV
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w

w

where for simplicity we omit the superscript ( j). Deriving ∆dh from the first equation of (17) we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
∆dh = v − wL∆pLV − wR∆pRV

αLL∆pLV + αLR∆pRV = bL

αRL∆pLV + αRR∆pRV = bR

(18)

here

αLL = JpLV,dwL, αLR = JpLV,dwR, αRL = JpRV,dwL, αRR = JpRV,dwR,

bL = JpLV,dv − rpLV , bR = JpRV,dv − rpRV ,

ith

wL = J−1
d,d Jd,pLV wR = J−1

d,d Jd,pRV , v = J−1
d,drd. (19)

Solving Eq. (18) we obtain

∆dh = v − wL∆pLV − wR∆pRV,

∆pLV =
bLαRR + bRαLR

αLLαRR − αRLαLR
, ∆pRV =

bRαLL + bLαRL

αLLαRR − αRLαLR
. (20)

Notice that we have to solve three linear systems (19) in order to obtain the solution (20).
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