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Effect of social influence on a two party election:
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Abstract—In digital social networks, the filtering
algorithms employed by the platform management to
sieve the contents shared among the users can alter
the social influence intensity. In this paper, a Markov
multi-agent model of opinion dynamics is used to an-
alyze possible opinion manipulation under apparently
neutral interventions on the influence intensity. We
consider a two-party election whose voters, modeled as
heterogeneous agents, are connected in a social network
with arbitrary topology. The equations describing the
variance of the vote share, both in transient and steady
state, are derived. The key is the solution of the second-
order marginalization problem under the form of a
numerically tractable characterization of pairwise joint
probabilities of the voters’ opinions. In particular, these
probabilities are computed by means of a Lyapunov-
like matrix differential equation driven by first-order
moments. This result is used to answer some impor-
tant questions, like the possible nonmonotonic effect of
the influence intensity on the vote volatility and the
interplay of topology and individuals’ stubborness to
determine the electoral balance between two parties.

Index Terms—Opinion dynamics, Social networks,
Multi-agent systems, Markov process.

I. Introduction

Mathematical models of opinion dynamics have been
studied in sociology for more than 50 years, see e.g the
pioneering works of [1], [2] and [3]. In the last decade,
the advent of digital social networks induced a resurgence
of interest in this topic. Among the various aspects in-
vestigated, the recent case of Cambridge Analytica [4]
is a paradigmatic example of a possible strategy that
employs social media and opinion influence in order to
affect election results. There is therefore a clear interest for
the development of models that describe how the digital
platform management may affect opinion formation and
evolution in an electoral competition.

The classical opinion dynamics models assume a de-
terministic real-valued description of the opinions of in-
dividuals, interconnected through networks with different
topologies. The basic mechanism is simple: each individual
opinion is modified by the opinions of her/his neighbors,
according to suitable updating rules. For more details,
we refer the reader to the surveys [5], [6], [7] and the
book [8]. This category of deterministic models has two
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major shortcomings. Although well suited to treat binary
opinions, that can be reduced to a single real-valued
variable, it is more difficult to apply these models to multi-
dimensional opinion spaces. Moreover, the assumption of
a deterministic evolution may be an overly simple descrip-
tion of real-world social phenomena, subject to a variety
of random internal and external perturbations.

In the field of stochastic models of opinion dynamics,
the Markovian multi-agent paradigm offers a good com-
promise between flexibility and analytical tractability. It
assumes that individual opinions are random variables,
taking values in a finite set, evolving in accordance with a
(state-dependent) Markov chain process. Each agent has
its own probabilities of changing opinion and these prob-
abilities are affected by the neighbors’ current opinions.
The overall social network is thus represented as a net-
work of interacting Markov chains. A seminal contribution
was the introduction of the so-called ‘influence model’
[9]. More recently, the Markovian multi-agent framework
has been used to investigate the effects of the intensity
of social interaction between the users of digital social
networks [10], [11]. In particular, the filters devised by
the platform managers sieve the contents shared among
the users, thus affecting the intensity of interaction on a
certain topic. This intensity can be modeled by means of
scalar parameters that modulate the ‘opinion contagion’
between neighbors. Although a social network made by a
graph of Markovian agents is itself a Markov chain, it soon
becomes analytically intractable for a growing number of
agents. A significant achievement of [10], [11] was to show
that, under mild assumptions, the joint distributions can
be marginalized, making it possible to study the time
evolution and the steady-state value of the probabilities
of the agents’ opinions.

This kind of analysis becomes increasingly difficult when
moving from special network topologies and homogeneous
agents to general topologies and heterogeneous agents.
While results have been made available for the time evolu-
tion of single agent’s probabilities, much less attention was
paid to the time evolution of the joint probabilities of the
opinions of pairs of agents. Far from being an abstract
issue, the study of the joint probabilities has a direct
impact on a very relevant question, such as the effect
of the social influence intensity on electoral outcomes.
Indeed, the evolution of the marginal probabilities allows
one to evaluate the mean value of the vote share, but this
information is insufficient to predict the election results
without some assessment of the dispersion of the vote
share around its mean. Note that, also in the different
context of epidemic processes in complex networks, the
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issue of computing the joint probabilities for pairs of
Markov agents is known to play a crucial role in order to
go beyond basic mean-field approximations, as pointed out
in [12]. Differently from what happens in epidemic models,
we will show that the pairwise joint probability can be
exactly computed.

The aim of the present paper is to address net-
works, with arbitrary topology, populated by heteroge-
neous agents voting in a two-party election. Besides the
analytic expression for the time evolution of the expected
vote share, we provide also the equations describing the
variance, both in transient and steady state. The key is
the solution of the second-order marginalization problem
under the form of a numerically tractable characterization
of pairwise joint probabilities. In particular, these proba-
bilities are computed by means of a Lyapunov-like matrix
differential equation driven by first-order moments. This
result is used to answer some important questions, like
the possible nonmonotonic effect of the influence intensity
on the vote volatility and the interplay of topology and
individuals’ stubborness to determine the electoral balance
between two parties.

The paper is organized as follows. After introducing
the notation in Section II, the Markovian multi-agent
model is briefly reviewed in Section III and the existing
results on the propagation of individual probabilities are
presented in Section IV. Section V is the core of the
paper, as it illustrates how to compute both the transient
evolution and the steady-state value of the pairwise joint
probabilities. The computation requires the solution of
constrained Lyapunov equations, that cannot be easily
solved in closed-form. Numerical solutions for such equa-
tions, based on different methods, are then presented in
Section VI. The expressions for the mean and variance of
the vote share are derived in Section VII. Section VIII
treats the special case of the so-called Peer Assembly,
with identical agents connected through a complete graph.
Section IX investigates on the monotonicity of the vote
share mean and variance. In particular, sufficient condi-
tions for the lack of monotonicity are derived. Moreover,
some considerations are made on the initial sensitivity of
mean and variance with respect to the influence intensity
parameter. The paper ends with some concluding remarks
in Section X.

II. Notation

The vector 1N is the N -dimensional column vector
with all entries equal to 1. The i-th column of the N -
th order identity matrix IN is indicated with ei(N). A
square matrix A = [aij ] is said to be Metzler if its off-
diagonal entries are nonnegative, namely aij ≥ 0 for every
i 6= j. Let σ(A) denote the spectrum of a Metzler matrix
A. It is known , see e.g. [13], that max{Re(λ) : λ ∈ σ(A)}
is always an eigenvalue of A, called the Perron-Frobenius
eigenvalue and denoted by λF , and that the correspond-
ing eigenspace, when A is irreducible, is generated by a
positive eigenvector, vF , with 1′nvF = 1, called Frobenius
eigenvector. For a square matrix A, the spectral radius,

i.e. the largest absolute value of its eigenvalues, is de-
noted by ρ(A). The symbol ⊗ stands for the Kronecker
product. Given a set of N scalars v[r], indexed by a
positive integer r ∈ {1, 2, . . . , N}, the symbol col{v[r]}
denotes a vector obtained by stacking the scalars v[r] in
a single column vector. Given a set of N square matrices
V [r], indexed by a positive integer r ∈ {1, 2, . . . , N}, the
symbol diag{V [r]} denotes a block-diagonal matrix with
the submatrices V [r], r = 1, 2, ...N on its diagonal. When
v is a vector, V = diag(v) is a diagonal matrix with v on
its diagonal. When V is a square matrix, v = diag(V )
is the column vector containing the diagonal entries of
V . Hence, the symbol D = diag(diag(V )) indicates that
D is a diagonal matrix with the same diagonal of V .
Given a set of N scalars v[r], indexed by a positive integer
r ∈ {1, 2, . . . , N}, we will use by short diag{v[r]} to denote
the diagonal matrix with the elements v[r] on the diagonal,
i.e. diag{v[r]} = diag(col{v[r]}).

The set of probability vectors, i.e. vectors with nonneg-
ative entries that sum up to 1 is indicated as P. Given
a discrete set N , the symbol |N | denotes its cardinality.
The symbol E[v] denotes the expectation of the random
variable v. Given a random event A, IA represents the
indicator function of the event, namely IA = 1 if A occurs,
IA = 0 otherwise. Pr{A} will be used to denote the
probability of the event A and Pr{A|B} is the conditional
probability of A given the event B

III. The model

The model was first introduced in [10] and further
developed in [11], based on a network of interacting Marko-
vian agents. The mutual interaction of agents is described
through a weighted undirected graph G = (N , E ,W ),
with a finite set of nodes N = {1, 2, . . . , N} representing
the agents, the set of edges E ⊆ N × N associated to
reciprocal influences, and the matrix W = [wrs] ∈ RN×N
representing the interpersonal trustiness. For simplicity,
we assume uniform trustiness, i.e.

wrs =

{
|N [r]|−1 , (r, s) ∈ E
0 , otherwise

(1)

where N [r] = {s ∈ N : (r, s) ∈ E} denotes the set of
neighbors of agent r.

The Laplacian matrix associated with the graph G is
L = IN −W . Note that L1N = 0. In the sequel, we will
assume that the graph G is connected.

Each individual’s opinion on a given issue at a given time
may assume a value in the finite set M = {1, 2, . . . ,M}.
Herein, we will mainly consider the special case of binary
opinions, i.e. M = 2.

The opinion of agent r at time t ∈ R is denoted by
σ[r](t) ∈ M, and its evolution in time is governed by a
finite-state continuous-time Markov chain with transition
rate matrix

Q̃[r](t) = Q[r] +A[r](t) . (2)

The matrix Q[r] ∈ RM×M is the transition rate matrix
of agent r when isolated. The off-diagonal entries q

[r]
ij ≥
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0, i 6= j represent the transition rates between opinions,
i.e.

Pr{σ[r](t+ dt) = j|σ[r](t) = i} = q
[r]
ij dt+ o(dt), i 6= j .

(3)

The diagonal entries are defined as q
[r]
ii = −

∑M
j=1,j 6=i q

[r]
ij ,

so that Q[r] is a Metzler matrix satisfying Q[r]1M = 0.
To ensure ergodicity of the Markov process, it is assumed
that Q[r] is irreducible. For instance, this happens if q

[r]
ij >

0, i 6= j.
When M = 2 it is convenient to use the so-called (α, β)-

parametrization introduced in [11]. Precisely, define

α[r] = q
[r]
12 + q

[r]
21 , β[r] =

q
[r]
21

q
[r]
12 + q

[r]
21

so that

Q[r] = α[r]

[
−(1− β[r]) 1− β[r]

β[r] −β[r]

]
.

The stationary probability distribution associated with
Q[r] is π̄[r] = [ β[r] 1− β[r] ]′. Hence, β[r] ∈ (0, 1) can

be interpreted as a bias parameter. As β[r] approaches 1,
the agent opinion becomes more biased towards opinion
σ[r] = 1, and viceversa when β[r] approaches 0. The second
parameter α[r] > 0 can be seen as a time-scale parameter
measuring volatility (high values of α[r] imply frequent
opinion changes).

For a fixed t, the second term A[r](t) ∈ RM×M in (2) is
a random matrix and takes into account the influence of
the neighbors at time t. For i 6= j,

a
[r]
ij (t) = λη[r]

∑
s∈N [r]

wrsIσ[s](t)=j (4)

Iσ[s](t)=j =

{
1, σ[s](t) = j
0, otherwise

(5)

and the elements a
[r]
ii (t) are such that A[r](t)1M = 0.

According to this interaction model, the instantaneous
transition rates to opinion j increase proportionally to the
weighted number of neighbors that share opinion j.

The nonnegative parameter λ reflects the interaction
intensity among agents on the considered issue, possibly
manipulated by the social platform through content filter-
ing algorithms. The nonnegative parameter η[r] represents
the individual influenceability of agent r. The extreme
value η[r] = 0 is associated with an agent which is not
influenced by the others. Increasing values of η[r] indicate
that agent r is more and more heavily influenced by
the opinion of its neighbors. The influence mechanism is
illustrated with an example in Figure 1.

IV. Propagation of individual probabilities

Let zr(t) denote the probability that agent r has opin-
ion 1 at time t. It was shown in [11] that the vector
z(t) = [z1(t) z2(t) . . . zN (t)]′ describing the probabilities
of all agents obeys the following differential equation:

ż(t) = − (F + λHL) z(t) + g (6)

(a)

(b)

Figure 1. The influence mechanism of the Markovian multi-agent
model. Panel (a): If agent r is in state 1 and three neighbors out of

four are in state 2, its transition rate towards state 2 is q
[r]
12 + 3

4
λη[r].

Panel (b): If agent r is in state 2 and one neighbor out of four is in

state 1, its transition rate towards state 1 is q
[r]
21 + 1

4
λη[r].

where F = diag{α[r]}, g = col{α[r]β[r]} and H =
diag{η[r]} is the influenceability matrix. Note that F̂ (λ) =
− (F + λHL) is a Metzler matrix.

In view of ergodicity, the solution z(t) converges asymp-
totically to an equilibrium z̄, which is a function of λ and
will therefore referred to as z̄(λ). Of course, it results that

z̄(λ) = (F + λHL)
−1
g . (7)

Moreover, it can be shown that:

z̄(λ) =
(
IN + λF−1HL

)−1
z̄(0) (8)

where z̄(0) = col{β[r]} is the vector of isolated probabili-
ties.

It was also shown in [11] that, when λ tends to ∞, all
agents in the network reach a probabilistic consensus, i.e.

lim
λ→∞

z̄(λ) = γ1N . (9)

The common probability γ can be obtained from the
equation

[
γ 1− γ

]
Q̂ = 0, where Q̂ is the transition

rate matrix of a weighted average agent. More precisely
Q̂ =

∑N
r=1 ϕrQ

[r] with ϕr being the entries of the unit-sum
left eigenvector ϕ of matrix HL, i.e. ϕ′HL = 0, ϕ′1N = 1.
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It turns out, see [11, Section VI], that

γ =

∑N
r=1 ϕrα

[r]β[r]∑N
r=1 ϕrα

[r]
. (10)

The agents synchronize and tend to act as a single agent,
whose opinion is a Bernoulli random variable with param-
eter γ.

V. Propagation of joint probabilities

The next theorem, whose proof can be found in the
Appendix, provides a way to compute the time evolution
of the joint probability that two distinct agents (r, s)
have opinions (j, i). Notably, this result is valid in general
when the number M ≥ 2 of opinions is arbitrary, i.e
M = {1, 2, . . .M}.

Theorem 1. The joint probability πrsji (t) =
E[Irj (t)Isi (t)], t ≥ 0, r 6= s satisfies the following
differential equation:

π̇rsji (t) =
∑
k∈M

q
[r]
kjπ

rs
ki (t) +

∑
k∈M

q
[s]
ki π

rs
jk(t)

+ λ

(
− (η[r] + η[s])πrsji (t) (11)

+
η[r]

|N r|
∑
l∈N r

πlsji(t) +
η[s]

|N s|
∑
l∈N s

πrlji(t)

)
.

Note that the number of variables in (11) is M2N(N −
1)/2, since the number of unordered agent pairs is N(N −
1)/2 and the number of opinion pairs is M2. Hence,
the computation soon becomes intractable as N and M
increase.

However, in the case of binary opinions (M = 2) the
computation of the correlation between agents can be
made much simpler. Assume M = 2 and define vr(t) =
Ir1 (t). Let V (t) = E[v(t)v(t)′] denote the correlation
matrix of vector v(t) = col{vr(t)}. The diagonal entry
Vrr(t) represents E[vr(t)], i.e. the probability that agent r
has opinion 1 at time t. Hence Vrr(t) = zr(t), where zr(t)
was defined in Section IV. On the contrary, the off-diagonal
entries Vrs(t) represent E[vr(t)vs(t)], i.e. the probability
that the agents r and s share opinion 1 at time t.

Notice that the matrix V (t) fully characterizes the
second-order properties of the process, because all the joint
probabilities πrsij (t) can be obtained from V (t) as follows:

πrs11(t) = Vrs(t) (12a)

πrs12(t) = Vrr(t)− Vrs(t) (12b)

πrs21(t) = Vss(t)− Vrs(t) (12c)

πrs22(t) = 1− Vrr(t)− Vss(t) + Vrs(t) . (12d)

The time evolution of the correlation matrix V (t) is
described in the following theorem.

Theorem 2. The entries of the symmetric matrix
V (t), t ≥ 0, satisfy the following differential equations:

V̇rs(t) = (q
[r]
11 − q

[r]
21 )Vrs(t) + (q

[s]
11 − q

[s]
21 )Vrs(t)

+ q
[r]
21Vss(t) + q

[s]
21Vrr(t)

+ λ

(
− (η[r] + η[s])Vrs(t) +

η[r]

|N r|
∑
l∈N r

Vls(t)

+
η[s]

|N s|
∑
l∈N s

Vrl(t)

)
, r 6= s (13)

V̇rr(t) = (q
[r]
11 − q

[r]
21 )Vrr(t) + q

[r]
21

+ λη[r]

(
− Vrr(t) +

1

|N r|
∑
l∈N r

Vll(t)

)
. (14)

Proof. The proof of equation (13) is immediate by recall-
ing Theorem 1 and using (12). Equation (14) corresponds
to the time evolution of the probability zr(t) = Vrr(t) and
is consistent with (6).

According to (13) there are N(N − 1)/2 correlation
functions for all pairs of agents, while (14) contains N
probabilities of being in opinion 1 for each single agent.

The notation can be made more compact using (6) and
the definitions of matrices F , H, L and vector g introduced
in Section IV. More precisely, letting z(t) be the solution of
(6) and F̂ (λ) = −(F+λHL), the correlation function V (t)
is the solution of the following linear differential Lyapunov-
like equation:

V̇ (t) = F̂ (λ)V (t) + V (t)F̂ (λ)′ + gz(t)′ + z(t)g′ +D(V (t))
(15)

where the diagonal matrix D(V (t)) is introduced so as to
enforce that diag(V (t)) = z(t),∀t. More precisely,

D(V ) = diag(F̂ (λ)diag(V ) + g)

−diag
(

diag(F̂ (λ)V + V F̂ (λ)

+g(diag(V ))′ + diag(V )g′)
)
.

The off-diagonal terms of the Lyapunov equation obtained
from (15) when D(V (t)) = 0 are consistent with (13).
The presence of D(V (t)) accounts for the different time
evolution of the diagonal entries, that obeys (14).

The steady-state correlation matrix V̄ (λ) is the solution
of the algebraic Lyapunov-like equation:

0 = F̂ (λ)V̄ (λ)+ V̄ (λ)F̂ (λ)′+gz̄(λ)′+ z̄(λ)g′+ D̄(λ) (16)

where D̄(λ) = D(V̄ (λ)).
More details on the computational tools available to

solve these constrained Lyapunov equations will be pro-
vided in Section VII.

It is interesting to consider the steady-state correlation
matrix V̄ (∞) corresponding to the limit case when λ →
∞. In such a case, all random processes vr(t) converge to
the same Bernoulli random variable with parameter γ, so
that E[vr(t)] = E[vr(t)vs(t)] = γ,∀r, s, and

lim
λ→∞

V̄ (λ) = γ1N1′N (17)
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where γ is the common probability defined in Section IV.
A formal proof of this result is provided in the Appendix.
Note that all entries of the steady-state correlation matrix
coincide with the entries of the steady-state probability
z̄(∞). In other words, irrespective of the topology and the
agents’ parameters (bias, volatility and influenceability),
the correlation of the agents’ opinions is so high that the
probability of any pair of agents r and s having different
opinions tends to zero. In the social network literature, this
kind of probabilistic synchronization is known as herding
behaviour.

VI. Computational issues

The computation of the correlation matrix V (t), both
in the transient and at steady-state, is not direct as the
solutions of the Lyapunov equations (15) and (16) are
constrained on the diagonal. In this Section, we provide
numerical methods to evaluate them efficiently.

A. Transient behaviour of the correlation matrix

A simple way to approximate the time-behaviour of V (t)
is to rely on Euler discretization of (15) combined with
diagonal reset. The numerical procedure is as follows.

First compute z(t) from (6), for t ∈ [0, T ]. Then,
given a sufficiently small integration step h, the solution
V (t), t ∈ [0, T ], of (15) can be approximated by means of
the following recursion:

V ∗(t+ h) = V (t) + h(F̂ (λ)V (t) + V (t)F̂ (λ)′

+gz(t)′ + z(t)g′) (18)

V (t+ h) = V ∗(t+ h)− diag(diag(V ∗(t+ h)))

+diag(z(t+ h)) . (19)

B. Steady-state correlation matrix

In this subsection, three different methods to calculate
V̄ (λ) from eq. (16) are illustrated.

1) Asymptotic: The steady-state correlation V̄ (λ) is ob-
tained by calculating the transient behaviour of V (t), t ∈
[0, T ], with T sufficiently large.

2) Closed-form: Consider the algebraic Lyapunov equa-
tion (16), where the unknowns are the off-diagonal en-
tries of V̄ (λ) and the diagonal entries of D̄(λ), while
the diagonal of V̄ (λ) is constrained to be equal to z̄(λ).
Since D̄(λ) is diagonal, it can be written as D̄(λ) =∑N
i=1 di(λ)ei(N)ei(N)′, where the scalars di(λ) are the

diagonal entries of D̄(λ). By superposition, the solution
V̄ (λ) of (16) can be expressed as

V̄ (λ) = P (λ) +
N∑
i=1

di(λ)X [i](λ) (20)

where P (λ) is the solution of:

0 = F̂ (λ)P (λ) + P (λ)F̂ (λ)′ + gz̄(λ)′ + z̄(λ)g′

and X [i](λ), i ∈ N , is the solution of:

0 = F̂ (λ)X [i](λ) +X [i](λ)F̂ (λ)′ + ei(N)ei(N)′ .

Notice that, in view of (7), P (λ) = z̄(λ)z̄(λ)′. Now, define
Y (λ) ∈ RN×N as

Y (λ) = [diag(X [1](λ)) diag(X [2](λ)) · · · diag(X [N ](λ))] .
(21)

By considering (20) and letting p(λ) = diag(P (λ)), the
constraint on the diagonal entries of V̄ (λ) entails that:

diag(V̄ (λ)) = p(λ) +
N∑
i=1

di(λ)diag(X [i](λ))

= p(λ) + Y (λ)diag(D̄(λ)) = z̄(λ) .

Therefore, d(λ) = diag(D̄(λ)) is given by d(λ) =
Y (λ)−1(z̄(λ) − p(λ)). Observe that this vector can be
obtained from z̄(λ) and Y (λ). Then the steady-state
correlation matrix V̄ (λ) is computed in closed-form as
the unique solution of the Lyapunov equation (16) with
D̄(λ) = diag(d(λ)).

This method requires the solution of N Lyapunov equa-
tions with unknowns of size N ×N , in order to compute
the matrices X [i](λ), the inversion of matrix Y (λ) of size
N×N to obtain D̄(λ) and finally the solution of one more
Lyapunov equation with unknown V̄ (λ) of size N ×N .

3) Iterative: The following algorithm provides an iter-
ative method to find V̄ (λ) and D̄(λ) satisfying (16) with
the constraint diag(V̄ (λ)) = z̄(λ). In the sequel, we use
the notation F̃ (λ) = diag(diag(F̂ (λ))).

1. Select a sufficiently small step length h > 0 and a
precision parameter ε > 0.

2. Start from an initial guess D0 of the unknown diago-
nal matrix D̄(λ). Set the iteration counter to k = 0.

3. Compute the solution V k of the Lyapunov equation:

0 = F̂ (λ)V k + V kF̂ (λ)′ + gz̄(λ)′ + z̄(λ)g′ +Dk .

4. Update Dk according to the iteration:

Dk+1 = Dk+2hF̃ (λ)
(
diag(diag(V k))− diag(z̄(λ))

)
.

5. If ‖Dk+1−Dk‖ < ε quit, otherwise set k = k+ 1 and
go to step 3.

The matrices V k and Dk returned by the algorithm in
the last step are estimates of V̄ (λ) and D̄(λ), respectively.

The convergence of the algorithm is guaranteed if and
only if

h < h∗ = ρ−1(−F̃ (λ)Y (λ)) (22)

where, since the matrix −F̃ (λ)Y (λ) is positive, the spec-
tral radius ρ coincides with its Perron-Frobenius eigen-
value. As a matter of fact, by letting dk = diag(Dk), it
can be shown that the iteration in Step 4 is equivalent to:

dk+1 =
(
IN + 2hF̃ (λ)Y (λ)

)
dk − 2hF̃ (λ) (z̄(λ)− p)) .

Such a vector iteration converges to an equilibrium if and
only if the matrix IN+2hF̃ (λ)Y (λ) is Schur stable. In view
of positivity of −hF̃ (λ)Y (λ), this condition is equivalent
to Schur stability of −hF̃ (λ)Y (λ), and the condition (22)
directly follows.
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It is interesting to notice that, when λ→∞, the bound
h∗ on the iteration step length tends to zero, so preventing
convergence.

C. Computing time comparison

The three different methods to calculate V̄ (λ) are now
compared in terms of required computing time. Precisely,
the algorithms have been implemented in Matlab and run
on networks of different size N with different values of
the interaction intensity parameter λ. All networks are
described by a complete graph and the agents’ parameters
α[r], β[r], η[r], are randomly extracted in each experiment
from a uniform distribution in the interval [0, 1].

For the asymptotic method 1, the integration step h
is appropriately adapted as a nonincreasing function of
λ (h = min(0.1, 0.1/λ)) and the algorithm is terminated
when the norm of V (t + h) − V (t) is below the accuracy
threshold ε = 0.001. In the iterative method 3, the step
length and the precision parameter have been set to h =
0.1 and ε = 0.01, respectively.

The results of the experiments are reported in Figure
2. It is apparent that the performance of both methods
2 and 3 are relatively insensitive to the value of λ, while
the required cpu-time increases rapidly with the size of the
network. Both these methods are based on the solution of
a sequence of Lyapunov equations with a matrix unknown
of size N ×N . It is then expected that the computational
burden is proportionial to N3. The cpu-time of method 2
is generally longer than method 3 since the construction of
the Y (λ) matrix in the closed-form method always calls for
the solution of N Lyapunov equations, whereas method 3
solves a single Lyapunov equation at each iteration, and
the required number of iterations to achieve convergence
is typically smaller than the number of agents N .

On the contrary, method 1, which is based on a time-
discretization is obviously affected by the value of λ.
Larger values of the interaction intensity speed up the
time-dynamics and require smaller integration steps. Note
that the transient behaviour of V (t) is essentially governed
by the eigenvalues of matrix F̂ (λ) = −(F + λHL), which,
for very small values of λ, slightly depart from those of
matrix F , that represents the isolated agents dynamics.
This explains why for moderate λ (see top panels of Figure
2) the performance curve is quite irregular, reflecting the
randomness of the volatility parameters α[r].

VII. Vote share mean and variance

We are now in a position to exploit the results on
joint probabilities in order to characterize the distribution
of the vote share. Precisely, define n1(t) as the random
process of the number of agents sharing opinion 1 at time
t, and the vote share s1(t) = n1(t)/N = 1′Nv(t)/N as
the corresponding fraction. Since E[v(t)] = z(t), the mean
vote share at time t is given by

µs1(t) = E[s1(t)] =
1

N
1′Nz(t) . (23)
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Figure 2. Computing times required to calculate V̄ (λ) with different
values of N and λ and different methods.

The second-order moment of the vote share is

E[s21(t)] =
1

N2
E[1′Nv(t)v(t)′1N ]

=
1

N2
1′NV (t)1N =

1

N2

∑
r

∑
s

Vrs(t) .(24)

The variance of the vote share is

σ2
s1(t) = V ar[s1(t)] = E[s21(t)]− µ2

s1

=
1

N2

∑
r

∑
s

(Vrs(t)− Vrr(t)Vss(t)) . (25)

Since the process s1(t) is asymptotically stationary and
ergodic, its steady-state mean and variance only depend
on the interaction intensity λ and can be evaluated as:

µ̄s1(λ) =
1

N
1′N z̄(λ) (26)

σ̄2
s1(λ) =

1

N2

∑
r

∑
s

(V̄rs(λ)− V̄rr(λ)V̄ss(λ)) . (27)

Note that, in view of (9), (17), when λ→∞, it results that
limλ→∞ µ̄s1(λ) = γ, limλ→∞ σ̄2

s1(λ) = γ(1− γ), where the
parameter γ is defined in (10). In other words, the entire
network asymptotically behaves like a single Markovian
agent and s1(t) is a Bernoulli process with parameter γ.

VIII. Peer Assembly

A special case of the model presented in Section III is
the so-called Peer Assembly (PA) model, already discussed
in [10]. In a PA model, the social network is composed
by identical individuals, with binary opinions, sharing the
same isolated transition-rate matrix Q and connected by a
complete graph. Due to the inherent indistinguishability of
the agents, the network opinion dynamics can be analyzed
by means of a classical birth-death Markov process. Hence,
closed-form results for the vote share mean and variance
can be worked out. In this Section, we aim to compare the
theoretical results reported in [10] with those based on the
methods developed in the present paper.
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The main results derived in [10] about the PA model
with unbiased influence (i.e. λ is opinion-independent, as
assumed in the present paper) are as follows:
(i) The time-evolution (and the steady-state value) of the
marginal probability distribution of each single agent does
coincide with the time-evolution (and the steady-state
value) of the probability distribution of the isolated agent.
In turn, the mean vote share s(t) is not affected by the
interaction between agents (see Proposition 3 of [10]).
(ii) The bivariate distribution of any couple of agents is
obtained from the solution of an affine differential equation
(see Theorem 3 of [10]).
(iii) The steady-state variance of the vote share is an
increasing function of the interaction intensity parameter
λ (see Theorem 4 of [10]).

The results (ii) and (iii) can be revisited and comple-
mented in the light of the theory developed in the previous
Sections. In a PA model, with unitary influenceability, it
results that

Q[r] = Q = α

[
−(1− β) 1− β

β −β

]
, η[r] = η = 1, ∀r .

Since all agents in a PA network are not distinguishable,
they all share the same probability zr(t) of a generic agent
r. Moreover, all pairs of agents are not distinguishabe as
well. So, the correlation Vrs(t), r 6= s, of a generic pair is
identical for all pairs. Finally recall that Vrr(t) = zr(t).
Then, for any pair of agents (r, s), (13) becomes:

V̇rs(t) = −2αVrs(t) + 2αβzr(t)− 2λVrs(t)

+
λ

N − 1
(2(N − 2)Vrs(t) + 2zr(t)) (28)

= −Vrs(t)
(

2α+
2λ

N − 1

)
+ 2zr(t)

(
αβ +

λ

N − 1

)
.

By recalling that the joint probabilities are given by
equations (12), it is then easy to show that (28) is in
perfect agreement with the formula for the time evolution
of joint probabilities provided in Theorem 3 of [10].

We are now in a position to derive a simple formula
for the time evolution of the vote share variance in a PA
model. This result is new and is based on (6), (28), and
the observation that, in a PA model,

σ2
s1(t) =

1

N2
E

( N∑
r=1

Iσ[r](t)=1

)2
− µ2

s1(t)

=
1

N
zr(t) +

N − 1

N
Vrs(t)− z2r (t) .

Theorem 3. In a PA network of size N , the time evolution
of σ2

s1(t) can be computed as the output of the following
dynamical system:[
V̇rs(t)
żr(t)

]
=

[
−2
(
α+ λ

N−1

)
2
(
αβ + λ

N−1

)
0 −α

] [
Vrs(t)
zr(t)

]
+

[
0
αβ

]
(29)

σ2
s1(t) =

N − 1

N
Vrs(t) + zr(t)

(
1

N
− zr(t)

)
. (30)

The equilibrium state of system (29), (30) is:

zr = β , Vrs =
β (λ+ αβ(N − 1))

λ+ α(N − 1)

so that the steady-state variance, after tedious but simple
manipulation, can be expressed as:

σ̄2
s1 =

1

N
β(1− β)

(
1 +

λ(N − 1)

λ+ α(N − 1)

)
(31)

which is consistent with the formula derived in Theorem
4 of [10] by means of a different rationale. It is remarkable
that such a variance is an increasing function of the
interaction intensity λ and it varies from the variance
β(1−β)/N of the non-interacting case (λ = 0) to the value
β(1−β) associated to the variance of a single isolated agent
(when λ → ∞). The latter case corresponds to a herding
phenomenon, with all agents moving unanimously from
opinion 1 to opinion 2 and viceversa.

IX. Monotonicity of mean and variance

It is obviously of great interest to be able to predict
how changes of the social influence are going to affect
the probability distribution of the vote share. Indeed,
knowledge of such a distribution makes it possible to com-
pute the probability of winning the elections. In previous
sections the effects of the social influence parameter λ
on both mean and variance have been investigated and
quantitatively characterized. While interventions on λ that
influence the mean have a simple and direct effect on
the election outcome, it is worth observing that there is
also scope for manipulation of the variance. For instance,
the majority party (according to intentions of vote) takes
advantage from a variance reduction that increases the
probability of an outcome close to the mean value. On the
contrary, the minority party could benefit from a variance
increase that implies a larger volatility of the votes. Hence
the interest for investigating the sensitivity of mean and
variance with respect to λ.

A. Monotonicity of the mean

Concerning the monotonicity of the mean vote share
µ̄s1(λ) with respect to λ, in our previous work [11] it
was shown that a nonmonotonic behavior may occur even
in simple situations. In order to better understand this
phenomenon, it is convenient to study the derivative with
respect to λ of the function µ̄s1(λ) given in (26). In par-
ticular, the following Proposition provides a closed-form
expression, based on model data only, for the derivative
at λ = 0, thus quantifying the initial sensitivity to the
social influence parameter λ.

Proposition 1. Let

β̃[r] =
η[r]

α[r]

N∑
k=1

Lrkβ
[k] . (32)

It holds that

dµ̄s1(λ)

dλ
|λ=0 = − 1

N

N∑
r=1

β̃[r] . (33)

Authorized licensed use limited to: Politecnico di Milano. Downloaded on January 28,2022 at 10:26:46 UTC from IEEE Xplore.  Restrictions apply. 



2325-5870 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2021.3085815, IEEE
Transactions on Control of Network Systems

8

The above result easily follows by observing that z̄r(0) =
β[r], dzrdλ |λ=0 = −β̃[r]. Here we provide a sufficient condi-
tion for the lack of monotonicity of the mean, based on
the initial value µ̄s1(0), the asymptotic value µ̄s1(∞) = γ,
see (10), and the initial derivative.

Theorem 4. If

N∑
r=1

(γ − β[r])
N∑
r=1

β̃[r] > 0

then µ̄s1(λ) is not monotonic.

Proof. The condition is equivalent to

(µ̄s1(∞)− µ̄s1(0))
dµ̄s1(λ)

dλ
|λ=0 < 0

i.e. the variation of the differentiable function µ̄s1(λ) over
[0,∞) and its initial derivative have opposite sign. This is
sufficient to prove that µ̄s1(λ) is not monotonic.

A simple 4-agent example satisfying the condition of
Theorem 4 was presented in Example 1 of [11].

B. Monotonicity of the variance

The next issue is to investigate on the possible mono-
tonicity property of the variance. As recalled in the previ-
ous section, a closed-form expression (31) for the variance
is available for the special case of the Peer Assembly,
showing that the variance is a monotonically increasing
function of λ and, for λ→∞, tends to the variance of the
herd’s vote. Since the herding behaviour is not restricted
to the Peer Assembly, but is a general feature for λ→∞,
one would be tempted to conjecture that monotonicity of
the variance may hold in general. For instance, consider
the following two examples.

Example 1. The social network is composed by N = 100
individuals, with α[r] = 1,∀r, β[r] randomly extracted from
a uniform distribution with support [0.4, 1] and η[r] ran-
domly extracted from a uniform distribution with support
[0, 1]. The interaction graph is a Watts-Strogatz small world
network, see [14], with parameters k = 10 and p = 0.2.
The theoretical steady-state values of the mean µ̄s1 and
the variance σ̄2

s1 as functions of the influence intensity
λ being varied from 0 to 500 are shown in Figure 3.
From the plots, it is observed that the mutual increased
interaction reduces the bias towards opinion 1, starting
from µ̄s1(0) = 0.6993. The initial decrease of the mean
is in accordance with the formula (33) of Proposition 1,
that, in this case, predicts a negative initial derivative.
Afterwards, the mean is monotonic decreasing towards
the asymptotic value µ̄s1(∞) = γ = 0.6644. As for the
variance, the increase in the cross-correlation generates
a higher variance in the vote share, with a monotonic
pattern going from the initial value σ̄2

s1(0) = 0.00182 to
the asymptotic value σ̄2

s1(∞) = γ(1− γ) = 0.2230.
Repeated experiments with the same network model, but

with different samples of the random parameters, always
lead to a monotonically increasing curve for the variance,

while the behaviour of the mean highly depended on the
asymptotic value γ being smaller or larger than the initial
value.
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Figure 3. Mean and variance of the vote share as functions of λ in
Example 1.

Example 2. Consider a star network composed by N = 30
agents, all sharing the same value of α[r] = 1,∀r. The
hub node r = 1 is highly biased towards opinion 1 with
β[1] = 0.99 and strongly stubborn with η[1] = 1e− 6, while
the peripheral nodes are neutral, β[r] = 0.5, r = 2, 3, . . . , N ,
and more influenceable η[r] = 1. The effect of varying λ on
the steady-state mean and variance is displayed in Figure
4. While the mean is steadily increasing with λ, due to the
growing driving effect of the hub node on the peripheral
nodes, the variance exhibits an oscillating pattern. The
curve starts from σ̄2

s1(0) = 8.1e−3 and tends asymptotically
to σ̄2

s1(∞) = γ(1 − γ) = 9.9e − 3. For small values of
λ, the oscillation can be explained as the effect of the
interplay between two contrasting forces. On one side,
when the correlation between agents is negligible and the
influence of the hub node on the rest of the network is small,
the variance tends to decrease as the mean vote share is
deviating from the initial value, close to 0.5 (note that, for
a population of independent identical Bernoulli agents, the
variance would be maximized in correspondence of a mean
value equal to 0.5). On the other hand, the increase of the
correlation for larger values of the social influence produces
a significant growth of the variance.

Having shown that the variance may be not monotonic
with respect to λ, we can further inquire the issue by
studying its derivative at λ = 0, i.e. the initial sensitivity
of the variance with respect to λ.

Proposition 2. Let β̃[r] be defined as in (32). Moreover,
let

ṽ[r] = η[r]
N∑

k=1,k 6=r

Lrk
β[k](1− β[k])

α[r] + α[k]
. (34)
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Figure 4. Mean and variance of the vote share as functions of λ in
Example 2.

It holds that

dσ̄2
s1

dλ
|λ=0 = − 1

N2

N∑
r=1

β̃[r](1− 2β[r] + 2ṽ[r]) . (35)

Proof. A simple yet cumbersome computation (detailed in
the Appendix) shows that

dV̄rs
dλ
|λ=0 = −(β̃[r]β[s] + β̃[s]β[r]), r 6= s (36a)

dV̄rr
dλ
|λ=0 = −β̃[r] . (36b)

Then, by exploiting (27) the conclusion follows.

We now provide a sufficient condition for the lack of
monotonicity of the variance. To this purpose, recall that
σ̄2
s1(0) = 1

N2

∑
r β

[r](1− β[r]) and σ̄2(∞) = γ(1− γ).

Theorem 5. If

(γ(1−γ)− 1

N2

N∑
r=1

β[r](1−β[r]))

N∑
r=1

β̃[r](1−2β[r]+2ṽ[r]) > 0

then σ̄2
s1(λ) is not monotonic.

Proof. The condition is equivalent to

(σ̄2
s1(∞)− σ̄2

s1(0))
dσ̄2

s1(λ)

dλ
|λ=0 < 0

so implying that σ̄2
s1(λ) is not monotonic, by repeating the

same argument as in the proof of Theorem 4.

Example 3. In this example, we consider a population of
500 individuals, out of which 40% supporting Party 1 and
60% supporting Party 2, connected in a network artificially
generated with the algorithm of [15]. The artificial network
is representative of a real-world social network, that is
typically assortative, i.e., highly connected nodes tend to
connect to other highly connected nodes, and has broad
degree distributions. The graph of the network is shown
in Figure 5

Supporters of Party 1 have parameters α = 1, β = 0.9,
η = 0.1 (strong bias in favour of opinion 1 and low

Figure 5. Graph of the social network considered in Example 3.

.

influenceability). Supporters of Party 2 have parameters
α = 1, β = 0.1, η = 1 (strong bias in favour of opinion 2
and high influenceability).

Three experiments were performed. In the first one, the
agents were randomly assigned to the network nodes. In
the second (respectively third) experiment, the agents of
Party 1 (respectively 2) were placed in the key nodes of the
network, i.e. the nodes with higher degree.

Figure 6, left and center panel, shows the dependence on
λ of the mean and variance of the vote share of Party 1.
Note the monotonically increasing behaviour of the mean
in all experiments. This means that an increase of λ always
plays in favour of the less influenceable Party 1. In exper-
iments 1 and 2 (blue and green line, respectively), Party
1 reaches the majority for moderate values of λ, while in
experiment 3 the occupation of the key nodes by supporters
of Party 2, makes the climb much harder. The pattern
of the variance in the center panel is increasing as well,
though less predictable. Finally, the third panel describes
the effect of λ on the probability that Party 1 wins the
election, obtained by assuming a Gaussian distribution of
the vote share. The different curves in the three experiments
behave as intuitively expected.

In experiment 3 with λ = 1, we also derived a sample
estimate of the vote share distribution by taking samples
from a single long Monte Carlo realization of the vote
share, discarding the initial transient. Such a distribution is
shown in Figure 7 compared with the Gaussian distribution
based on theoretical mean and variance. A good agreement
is evident. The probability of win computed by means of
the sample realization is 0.0566 against the value 0.0549
predicted by the Gaussian distribution for λ = 1 (see Figure
6, red curve). Figure 8 displays the boxplots of the sample
vote share for different values of λ in experiment 3. The
results are in good accordance with the theoretical values of
Figure 6. In particular, the theoretical mean, drawn in red,
provides a good approximation of the sample median value.

X. Concluding remarks

In our previous paper [10], the Markovian agent model
was used to investigate the effect of a biased management
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Figure 6. Mean and variance of the vote share, and probability of
win as functions of λ in Example 3.Blue: random assignments; Green:
key nodes assigned to Party 1; Red: key nodes assigned to Party 2.
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Figure 7. Sample probability distribution of the vote share s1(t)
with λ = 1 in Example 3, with key nodes assigned to Party 2 (azure
histogram). The orange curve represents the Gaussian distribution
based on theoretical mean and variance. The dashed red line indicates
the threshold for Party 1 to win the election.

of the social influence intensity, that obviously favours
one opinion against the other. In the unbiased case,
the platform management modifies the influence intensity
irrespective of the content of the shared messages, so
that an apparently neutral action is applied. Nevertheless,
as already observed in [11], neutrality is only apparent
because, in the presence of uneven stubborness, changes of
the influence intensity can alone unbalance the expected
opinion prevalence in the social network.

In this paper we have gone further, providing a more
complete characterization of the effect of modulating the
interaction strength between users. In particular, attention
was focused on possible manipulation of the vote share in
a two-party election. The main results are the derivation
of pairwise correlations, that are instrumental to the ex-
act calculation of the vote share variance. Based on the
knowledge of mean and variance a first estimation of the
win probability for each party can be attempted.

A side conclusion is that, apart from extremal scenar-
ios (no interaction or herding behavior), it is difficult
to establish general monotonicity results of mean and
variance. This means that intentional manipulation of
the interaction intensity by the platform management
in order to favour one party might somehow backfire,
possibly leading to unintended outcomes. It is conjectured
that monotonicity of the variance holds in the case of
homogeneous networks with arbitrary topology, but this

Figure 8. Boxplots of sample vote share for different values of λ in
Example 3, with key nodes assigned to Party 2. The red solid line
represents the theoretical mean of the vote share.

is still to be proven.
A couple of topics deserve further investigation. The

present analysis assumes the knowledge of the agents’
parameters. A first development regards the derivation of
average properties of a given social network based only
on the knowledge of the probability distributions of these
parameters. A second issue is the extension of the analysis
so as to include the autocovariance and spectral properties
of the vote share process.
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Appendix

A. Proof of Theorem 1

Proof. Let Σ(t) be the state of the network at time t. Then,
considering an infinitesimal interval dt, it results that:

E[Irj (t+ dt)Isi (t)dt)|Σ(t)]

= Irj (t)Isi (t)
(
1− dtΦrj(t)

)
(1− dtΦsi (t))

+(1− Irj (t))Isi (t)dtΓrj(t) (1− dtΦsi (t))
+Irj (t)(1− Isi (t))dtΓsi (t)

(
1− dtΦrj(t)

)
+ o(dt)

where o(dt) denotes an infinitesimal term ultimately

smaller than dt, i.e. limdt→0
o(dt)
dt = 0, and

Ψr
k(t) =

λη[r]

|N r|
∑
l∈N r

Ilk(t)

Φrj(t) =
∑
k 6=j

(
q
[r]
jk + Ψr

k(t)
)

Γrj(t) =
∑
k 6=j

q
[r]
kjI

r
k(t) + Ψr

j(t) .

By reordering the terms and defining

Θr
j(t) =

∑
k

Ψr
k(t) +

∑
k 6=j

q
[r]
jk
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we obtain that:

E[Irj (t+ dt)Isi (t)]dt)|Σ(t)] = Irj (t)Isi (t)

−dtIrj (t)Isi (t)
(

Θr
j(t) + Θs

i (t)

+
∑
k 6=j

q
[r]
kjI

r
k(t) +

∑
k 6=i

q
[s]
ki I

s
k(t)

)
+dt

(
Isi (t)Γrj(t) + Irj (t)Γsi (t)

)
+ o(dt) . (37)

By observing that
∑
i Iki (t) = 1, ∀k, Irj (t)Iri (t) = 0, ∀r, i 6=

j, the following identities hold:

E[Irj (t)Isi (t)
∑
k

Ψr
k(t)] = λη[r]E[Irj (t)Isi (t)] (38a)

E[Irj (t)Isi (t)
∑
k

Ψs
k(t)] = λη[s]E[Irj (t)Isi (t)] (38b)

Irj (t)
∑
k 6=j

q
[r]
kjI

r
k(t) = Isi (t)

∑
k 6=i

q
[s]
ki I

s
k(t) = 0 (38c)

E[Irj (t)Ψs
i (t)] =

λη[s]

|N s|
∑
l∈N s

E[Irj (t)Ili(t)] (38d)

E[Isi (t)Ψr
j(t)] =

λη[r]

|N r|
∑
l∈N r

E[Isi (t)Ilj(t)] . (38e)

By taking the expectation with respect to the conditioning
event Σ(t) on both sides of (37) and using the definitions
of Θr

j(t) and Γrj(t), one obtains:

E[Irj (t+ dt)Isi (t)] = E[Irj (t)Isi (t)]

−dtE[Irj (t)Isi (t)Θr
j(t)]− dtE[Irj (t)Isi (t)Θs

i (t)]

−dt
∑
k 6=j

q
[r]
kjE[Irj (t)Isi (t)Irk(t)]

−dt
∑
k 6=i

q
[s]
kiE[Irj (t)Isi (t)Isk(t)]

+dtE[Isi (t)Γrj(t)] + dtE[Irj (t)Γsi (t)] + o(dt)

= E[Irj (t)Isi (t)]

−dtE[Irj (t)Isi (t)
∑
k

Ψr
k(t)]− dt

∑
k 6=j

q
[r]
jkE[Irj (t)Isi (t)]

−dtE[Irj (t)Isi (t)
∑
k

Ψs
k(t)]− dt

∑
k 6=i

q
[s]
ikE[Irj (t)Isi (t)]

−dt
∑
k 6=j

q
[r]
kjE[Irj (t)Isi (t)Irk(t)]

−dt
∑
k 6=i

q
[s]
kiE[Irj (t)Isi (t)Isk(t)]

+dt
∑
k 6=j

q
[r]
kjE[Isi (t)Irk(t)] + dtE[Isi (t)Ψr

j(t)]

+dt
∑
k 6=i

q
[s]
kiE[Irj (t)Isk(t)] + dtE[Irj (t)Ψs

i (t)] + o(dt) .

Note that, in view of (38c), the two terms in the third and
fourth last lines are null. Then, dividing by dt and letting

dt→ 0, we get:

d

dt
E[Irj (t)Isi (t)] = −E[Irj (t)Isi (t)

∑
k

Ψr
k(t)]

−
∑
k 6=j

q
[r]
jkE[Irj (t)Isi (t)]− E[Irj (t)Isi (t)

∑
k

Ψs
k(t)]

−dt
∑
k 6=i

q
[s]
ikE[Irj (t)Isi (t)]

+
∑
k 6=j

q
[r]
kjE[Isi (t)Irk(t)] + E[Isi (t)Ψr

j(t)]

+
∑
k 6=i

q
[s]
kiE[Irj (t)Isk(t)] + E[Irj (t)Ψs

i (t)] .

Now, using the identities (38a), (38b), (38d) and (38e), we
obtain:

d

dt
E[Irj (t)Isi (t)] = −E[Irj (t)Isi (t)](

∑
k 6=j

q
[r]
jk +

∑
k 6=i

q
[s]
ik )

+
∑
k 6=j

q
[r]
kjE[Isi (t)Irk(t)] +

∑
k 6=i

q
[s]
kiE[Irj (t)Isk(t)]

−λ(η[r] + η[s])E[Irj (t)Isi (t)]

+
λη[r]

|N r|
∑
l∈N r

E[Isi (t)Ilj(t)] +
λη[s]

|N s|
∑
l∈N s

E[Irj (t)Ili(t)] .

Finally, recalling that
∑
k 6=j q

[r]
jk = −q[r]jj , this equation

becomes:

d

dt
E[Irj (t)Isi (t)] =

∑
k

q
[r]
kjE[Isi (t)Irk(t)]

+
∑
k

q
[s]
kiE[Irj (t)Isk(t)]

+λ
(
− (η[r] + η[s])E[Irj (t)Isi (t)]

+
λη[r]

|N r|
∑
l∈N r

E[Isi (t)Ilj(t)] +
λη[s]

|N s|
∑
l∈N s

E[Irj (t)Ili(t)]
)

which coincides with (11) by replacing the notation
E[Irj (t)Isi (t)] with πrsji .

B. Proof of equation (17)

Proof. Consider the algebraic Lyapunov equation (16),
with F (λ) = −(diag{α[r]}+ λHL). Notice that, using the
notation of Section VI,

V̄ (λ) = z̄(λ)z̄(λ)′ +
N∑
i=1

di(λ)X [i](λ)

with

F̂ (λ)X̄ [i](λ) + X̄ [i](λ)F̂ (λ)′ + ei(N)ei(N)′ = 0 .

Since L1 = 0, we have that

lim
λ→∞

X̄ [i](λ) = 1N1′Nξi .

Taking ϕ such that ϕ′HL = 0, ϕ′1N = 1, it can be seen
that

ξi =
ϕ2
i

2
∑N
i=1 ϕiαi

.
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Hence,

lim
λ→∞

V̄ (λ) = 1N1′N (γ2 + lim
λ→∞

∑
i

ξi lim
λ→∞

di(λ)) .

Finally, since V̄rr(λ) = z̄r(λ),∀r and limλ→∞ z̄r(λ) =
γ), ∀r, we conclude that

lim
λ→∞

V̄ (λ) = γ1N1′N .

C. Proof of equations (36a), (36b)

Proof. Consider the matrix V̄ (λ) solution of the Lyapunov
equation (15), expressed in the form (20). For λ = 0, we
have that

z̄i(0) = βi , X [i](0) =
1

2αi
ei(N)ei(N)′

Y (0) =
1

2
(diag{α[r]})−1

d(0) = 2diag{α[r]}diag{β[r]}(IN − diag{β[r]})
V̄rs(0) = β[r]β[s], r 6= s , V̄rr(0) = β[r] .

Letting β̃[r] be defined as in (32), the derivatives at λ = 0
of the involved variables are computed as follows:

dz̄i
dλ
|λ=0 = −β̃i ,

dz̄2i
dλ
|λ=0 = −2β[i]β̃[i]

dX
[i]
kk

dλ
|λ=0 = 0, i 6= k ,

dX
[k]
kk

dλ
|λ=0 = − η[k]

2(α[k])2

dY

dλ
|λ=0 = −1

2
diag{η[r]}(diag{α[r]})−2

d

dλ
d|λ=0 = −2diag{η[r]}diag{β[r]}(IN − diag{β[r]})

−2diag{α[r]}diag{β̃[r]}(IN − 2diag{β[r]})
dV̄rs
dλ
|λ=0 = −(β̃[r]β[s] + β̃[s]β[r]), r 6= s

dV̄rr
dλ
|λ=0 = −β̃[r] .

References

[1] R. Abelson, “Mathematical models of the distribution of at-
titudes under controversy,” in Contributions to Mathematical
Psychology (N. Frederiksen and H. Gulliksen, eds.), pp. 142–
160, New York: Holt, Rinehart and Winston, Inc., 1964.

[2] M. Taylor, “Towards a mathematical theory of influence and
attitude change,” Human Relations, vol. 21, pp. 121–139, 1968.

[3] M. H. DeGroot, “Reaching a consensus,” J. Am. Statist. Assoc.,
vol. 69, no. 345, pp. 118–121, 1974.

[4] J. Isaak and M. J. Hanna, “User data privacy: Facebook, cam-
bridge analytica, and privacy protection,” Computer, vol. 51,
no. 8, pp. 56–59, 2018.

[5] A. V. Proskurnikov and R. Tempo, “A tutorial on modeling and
analysis of dynamic social networks. Part I,”Annual Reviews in
Control, vol. 43, pp. 65–79, 2017.

[6] A. V. Proskurnikov and R. Tempo, “A tutorial on modeling and
analysis of dynamic social networks. Part II,” Annual Reviews
in Control, vol. 45, pp. 166–190, 2018.

[7] H. Noorazar, “Recent advances in opinion propagation dy-
namics: a 2020 survey,” The European Physical Journal Plus,
vol. 135, no. 6, pp. 1–20, 2020.

[8] M. Ye, Opinion dynamics and the evolution of social power in
social networks. Springer, 2019.

[9] C. Asavathiratham, S. Roy, B. Lesieutre, and G. Verghese, “The
influence model,” IEEE Control Systems Magazine, vol. 21,
no. 6, pp. 52–64, 2001.

[10] P. Bolzern, P. Colaneri, and G. De Nicolao, “Opinion influence
and evolution in social networks: A Markovian agents model,”
Automatica, vol. 100, pp. 219–230, 2019.

[11] P. Bolzern, P. Colaneri, and G. De Nicolao, “Opinion dynamics
in social networks: The effect of centralized interaction tuning
on emerging behaviours,” IEEE Trans. on Computational Social
Systems, vol. 7, no. 2, pp. 362–372, 2020.

[12] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and
A. Vespignani, “Epidemic processes in complex networks,” Re-
views of modern physics, vol. 87, no. 3, p. 925, 2015.

[13] L. Farina and S. Rinaldi, Positive linear systems: theory and
applications, vol. 50. John Wiley & Sons, 2011.

[14] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-
world networks,” Nature, vol. 393, no. 6684, p. 440, 1998.

[15] R. Toivonen, J.-P. Onnela, J. Saramäki, J. Hyvönen, and
K. Kaski, “A model for social networks,” Physica A: Statistical
Mechanics and its Applications, vol. 371, no. 2, pp. 851–860,
2006.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on January 28,2022 at 10:26:46 UTC from IEEE Xplore.  Restrictions apply. 


