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Abstract 

Hybrid prognosis combining both the physical knowledge and data-driven techniques has 

shown great potential for damage prognosis in structural health monitoring (SHM). Current 

practices consider the physics-based process and data-driven measurement equations to 

describe the damage evolution and the mapping between the damage state and the SHM signal 

(or the feature extracted from SHM signal), respectively. However, the bias between the 

measurements predicted by data-driven equation and the actual SHM measurements, arising 

from uncertainties like damage geometries and sensor placement or noise, can lead to 

inaccurate prognosis results. To account for this problem, this paper adopts a methodology 

typically applied for sensor fault diagnosis, and develops a new hybrid state space model with 

a bias parameter included into the state vector and the measurement equation. Particle filter 

(PF) serves as the estimation technique to identify the state and parameters relating to the 

damage as well as the bias parameter, and RUL can be predicted by the PF estimates and 

physics-based process equation. The numerical study about the fatigue crack growth shows the 

new model together with PF can provide satisfactory estimation and prediction results in case 

of bias in the measurement model. 

 

Keywords: Structural Health monitoring, Fault Prognosis, Hybrid Model, Measurement 

Equation, Particle Filter. 
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1  INTRODUCTION 

Prognostic is the process of predicting the future state and the remaining useful life (RUL) 

of a component or system. In the last decades, a great variety of damage prognosis techniques 

have been developed in SHM depending on the availability of physics knowledge and data. 

From the perspective of how the prognosis models are formulated, they can be distinguished 

into physics-based [1-3], data-driven [4-8] and hybrid methods [9-13]. Physics-based methods 

utilize specific mechanistic knowledge and theories to formulate a pure physics-based model, 

which describes the structural degradation phenomena as well as the links between the damage 

states and the SHM measurements. On the other hand, data-driven methods, resorting to data-

driven modelling techniques such as neural networks [6] and Markov chains [8], attempt to use 

amounts of data to build the relationship between the internal degradation behaviour and the 

external observations. Hybrid methods, taken as a combination of the two above methods, 

usually consider the physics-based process and data-driven measurement equations to describe 

the damage evolution and the mapping between the damage state and measurement, 

respectively.  

The right method (or model) should probably be case specific, as each type of method has 

its pros and cons [14, 15]. However, given the uncertainties arising from the complex structural 

degradation behaviour, the environment effects and the sensor health conditions [16, 17], both 

the deterministic physic-based and data-driven models are unable to provide an accurate 

prognostic result. A well-acknowledged strategy for both the physics-based [1-3] and data-

driven methods [6, 8] to improve their prognostic performance is to set the parameters within 

the corresponding models as unknown components to be updated by a state estimation 

technique, such as particle filter (PF) given its good performance in nonlinear and non-Gaussian 

problem. On the other hand, this strategy is not fully exploited in hybrid methods, where the 

parameters in physics-based process equation are usually taken as unknown variables to be 

estimated by PF, while the parameters relating to the data-driven measurement equation are not 

[11, 18, 19]. 

The relationship between the damage state and the SHM measurement should probably vary 

in different specimens of same structure [9] due to the uncertainties mentioned above. As a 

consequence, the bias between the measurements predicted by data-driven measurement 

equation, often derived from training data, and the measurements from testing specimen is 

unavoidable. In this context, the measurement equation, that fails to be online updated or take 

the bias into account, will lead to inaccurate damage estimation [20] and prognosis [9] in case 

of large-level bias. Only a few studies relating to hybrid prognosis [9, 13] field attempt to solve 

this bias problem, where an additional measurement system is adopted to collect or calculate 

the true damage state and to update the measurement equation.  

The bias between the predicted measurements and the actual measurements can be regarded 

as a typical sensor fault, which can be detected, localized and identified by adding a parameter 

representing a bias in both the process and measurement equations for estimation [21-23]. It 

has been verified that this bias can have little effect on the estimation of other state components 
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when it can be accurately estimated by a state estimation technique [22, 23]. However, such 

idea, that has been validated for the sensor fault diagnosis problem [21-23] and the state 

estimation considering bias [22, 23], has not been used for hybrid damage prognosis. 

This paper develops a new particle filter-based hybrid prognosis framework that combines 

the methods from sensor fault diagnosis and current hybrid prognosis investigations. The 

process equation is formulated resorting to the physical law describing damage propagation and 

a bias parameter, while the measurement equation representing the relationship between the 

damage state and the measurements is built by a polynomial fitting function and the bias 

parameter. Then, PF is used to estimate the damage state, damage parameters and the bias 

parameter. Finally, the future states and, consequently, the RUL can be estimated on the basis 

of the process equation and the estimated damage state and parameters.  

The rest of this paper is organized as follows: Section 2 introduces the traditional and new 

models as well as the prognosis framework. The numerical validation is discussed in Section 3. 

Finally, Section 4 concludes this paper with some topics for future work. 

2  DAMAGE PROGNOSIS FRAMEWORK  

Particle filter-based damage prognosis framework generally has three main steps, namely, (i) 

formulating a state space model, (ii) estimating the unknown state components using PF and 

(iii) calculating the future state and RUL by the PF estimates and the physic-based process 

equation.  

2.1  Traditional and new models 

Current PF-based prognosis investigations in SHM usually have the hybrid state space model 

formulated as 

 {
𝒛𝑘 = [

𝜽𝑘
𝑥𝑘
] = [

𝜽𝑘−1 +𝝎𝜃(𝑘)

𝑓(𝑥𝑘−1, 𝜽𝑘 , 𝜔𝑘)
]

𝑦𝑘 = ℎ(𝑥𝑘) + 𝜈𝑘

 (1) 

where f (·) is the physics-based function describing the evolution of the damage state, and h (·) 

is a function mapping the relationship between the damage state and the measurement, the 

subscript k is the time step, z represents the state vector, y is the output that is given by the 

measurement system, such as strain [11] and guided wave [9, 10], 𝜽  includes evolution 

parameters and x is the state relating to the damage (hereafter focusing on crack damage), ω 

and 𝝎𝜃 are the process noises, ν is the measurement noise.  

The relationship between the damage extent and measurement will inevitably vary in 

different specimens of same structure [9], due to the uncertainties like damage geometries and 

sensor error, which means the bias between the measurement predicted by a data-driven 

measurement equation derived from some specimens and the actual measurements from another 

one is typically unavoidable. Inaccurate estimation [20] and prognosis [9] may occur in case of 

large-level bias. Inspired from the sensor fault diagnosis investigations [21-23] and hybrid 

prognosis studies [9, 10, 13], a novel hybrid state space model is thus developed with the bias 

parameter b included as  
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{
 

 
𝒛𝑘 = [

𝜽𝑘
𝑥𝑘
𝑏𝑘

] = [

𝜽𝑘−1 +𝝎𝜃(𝑘)

𝑓(𝑥𝑘−1, 𝜽𝑘, 𝜔𝑘)

𝑏𝑘−1 + 𝜔𝑏(𝑘)

]

𝑦𝑘 = ℎ(𝑥𝑘) + 𝑏𝑘 + 𝜈𝑘

 (2) 

where 𝜔𝑏  is the process noise for the parameter b. This model can provide satisfactory 

estimated damage state and parameters, because the bias between the output calculated from 

the function h (·) and the actual measurement y can be on-line estimated by the parameter b, as 

will be validated in Section 3.4. 

2.2  Particle filter and RUL prediction 

Particle filter serves as the state estimation technique in this study, due to its good 

performance in nonlinear and non-Gaussian problem.  

 

 Figure 1 Sampling importance resampling (SIR) particle filter [24] 

The sampling importance resampling (SIR) PF [25] with systematic resampling, as presented 

in Figure 1, is used in this study, and it consists of the three steps, i.e., 

(i) draw Np particles {𝒛𝑘
𝑖 : 𝑖 = 1,2, … ,𝑁𝑝}  from the prior probability density function 

(PDF) 𝑝(𝒛𝑘|𝒛𝑘−1), 

(ii) calculate the weight 𝑤𝑘
𝑖  by the likelihood function 𝑝(𝒚𝑘|𝒛𝑘

𝑖 ) as 

 𝑤𝑘
𝑖 ∝ 𝑝(𝒚𝑘|𝒛𝑘

𝑖 ) (3) 

and assign its normalized form 𝑤̃𝑘
𝑖  to each particle 𝒛𝑘

𝑖 , 

(iii) Resample for {𝒛𝑘
𝑖 : 𝑖 = 1,2, … ,𝑁} using particle weights. 

In addition, the kernel smoothing method [26] is adopted for the parameters 𝜽 due to its 

good performance in current investigations [3], 

 𝜽𝑘
𝑖 = √1 − ℎ2𝜽𝑘−1

𝑖 + (1 − √1 − ℎ2)𝜽̂𝑘−1 +𝝎𝜃(𝑘)
𝑖  (4) 
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where 𝜽̂𝑘−1 are the means of the samples.  

The prediction for future state and RUL is summarized in Table 1. At each time step k, the 

posterior PDFs of the state and parameters are adopted to calculate the future evolution of the 

particles. The RUL of each particle can be defined when its future state reaches a predefined 

threshold.  

 

Initialization: set {𝑥𝑘
𝑖,0: 𝑖 = 1,2, … , 𝑁𝑝} as {𝑥𝑘

𝑖 : 𝑖 = 1,2, … , 𝑁𝑝} 

For i = 1 : Np 

 j = 0 

 While 𝑥𝑘
𝑖,𝑗
< 𝑙𝑡ℎ 

 Calculate the future state 𝑥𝑘
𝑖,𝑗+1

 by 𝑥𝑘
𝑖,𝑗+1

= 𝑓(𝑥𝑘
𝑖,𝑗
, 𝜽𝑘

𝑖 ) 

 j = j +1 

 End 

 𝑅𝑈𝐿𝑘
𝑖 = ∆𝑁𝑗 

End 

  

Table 1 Calculation of future state and RUL at time step k 

3  APPLICATION 

3.1  Crack growth and measurement 

The crack growth data, as presented in Figure 2(a), are created by Paris’ law with parameters 

as in Table 2. 

 𝑥𝑘 = 𝑥𝑘−1 + 𝑒
𝜔𝑘𝐶(𝐹∆𝑆√𝜋𝑥𝑘−1)

𝑚
∆𝑁 (5) 

where x is the crack length, the subscript k means the k-th time step, ∆𝑁, ∆𝑆 and F represent 

the load cycle increment, the applied fatigue stress range and the crack shape function, 

respectively, C and m are two empirical values governing damage progression and 

𝜔~𝒩 (−
𝜎2

2
, 𝜎2) is the unbiased log-normal process noise with standard deviation σ. The 

crack length 35 mm is set as the threshold for damage prognosis.  

 

Initial crack length x0 Parameter C Parameter m Noise 𝜔 

15 mm 1.1994×10-14 mm/cycle(MPa√mm)−𝑚 3.79 

𝒩(−
0.62

2
, 0.62) Crack shape function F Applied fatigue stress ∆𝑆 Load cycles ∆𝑁 

1 60 MPa 500 

 

Table 2 Details for crack growth 

 

Given the difficulty in directly measuring the crack length, current SHM applications usually 

have advanced measurement system, e.g., guided wave [9, 10], strain gauge [11], adopted for 

online monitoring to estimate the crack length. In this study, the measurements at different crack 
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lengths (Figure 2(b)) are created via two steps:  

(i) calculate the measurements without the bias and noise by a polynomial fitting function 

h (·), representing the relationship between the crack lengths and the SHM measurements  

 ℎ(𝑥𝑘) = (−0.00001𝑥𝑘
4 + 0.0025𝑥𝑘

3 + 0.05𝑥𝑘
2 + 0.3𝑥𝑘 − 0.4) 40⁄  (6) 

(ii) add the varying bias, as given in Eq. (7), and 33dB signal-to-noise ratio white 

Gaussian noise to the above measurements. 

 𝑏𝑘 = −0.12𝑠𝑖𝑛 (
𝑘

100
) + 0.0001𝑘 (7) 

 

  
(a) Crack growth (b) Measurements in testing case and function h (·) 

Figure 2 Testing data. 

           Note: the x-axis for the bias in Figure 2(b) is changed as crack length.  

3.2 Formulation of traditional and new models 

Given the two parameters C and m will also vary in different specimens, they are taken as 

unknown variables and added to the state vector to form the traditional augmented state space 

model as  

 

{
 
 

 
 
𝒛𝑘 = [

𝐶𝑘
𝑚𝑘

𝑥𝑘

] =

[
 
 
 √1 − ℎ

2𝐶𝑘−1 + (1 − √1 − ℎ2)𝐶̂𝑘−1 + 𝜔1(𝑘)

√1 − ℎ2𝑚𝑘−1 + (1 − √1 − ℎ2)𝑚̂𝑘−1 + 𝜔2(𝑘)

𝑥𝑘−1 + 𝑒
𝜔𝑘𝐶𝑘(𝐹∆𝑆√𝜋𝑥𝑘−1)

𝑚𝑘
∆𝑁 ]

 
 
 

𝑦𝑘 = ℎ(𝑥𝑘) + 𝜈𝑘

 (8) 

where 𝜔~𝒩 (−
𝜎2

2
, 𝜎2) is log-normal process noise with the standard deviation σ [3], while 

𝜔1 and 𝜔2 are zero-mean Gaussian process noises. 

The new hybrid model with a bias parameter included is given as 

 

{
  
 

  
 

𝒛𝑘 = [

𝐶𝑘
𝑚𝑘

𝑥𝑘
𝑏𝑘

] =

[
 
 
 
 √1 − ℎ

2𝐶𝑘−1 + (1 − √1 − ℎ2)𝐶̂𝑘−1 + 𝜔1(𝑘)

√1 − ℎ2𝑚𝑘−1 + (1 − √1 − ℎ2)𝑚̂𝑘−1 + 𝜔2(𝑘)

𝑥𝑘−1 + 𝑒
𝜔𝑘𝐶𝑘(𝐹∆𝑆√𝜋𝑥𝑘−1)

𝑚𝑘
∆𝑁

𝑏𝑘−1 + 𝜔𝑏(𝑘) ]
 
 
 
 

𝑦𝑘 = ℎ(𝑥𝑘) + 𝑏𝑘 + 𝜈𝑘

 (9) 
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where b is the parameter representing the bias, and 𝜔𝑏 is its process noise. 

 

3.3 Particle filter parameters 

All the PF parameters used in this study are reported in Table 3. The strategies about the 

distributions of initial intervals for C and m and the process noise ω are determined from [3, 11, 

12].  

 

Number of particles Np STD in likelihood function h in Kernel smoothing 

2000 0.04 0.1 

Initial distributions for C, m Initial range for x, mm Initial value for b 

[
𝐶0
𝑚0
] ~𝒩 ([

1.14𝑒 − 14
3.86

] , [ 1 × 10
−30 −8 × 10−17

−8 × 10−17 0.01
]) x0 ∈ (14.5, 15.5) b0 = 0 

Distributions of process noises {ω, ω1, ω2, ω3, ω4} for x, C, m, b 

x, ω C, ω1 m, ω2 b, ω3 

𝒩(−
0.042

2
, 0.042) 𝒩(0, (1 × 10−17)2) 𝒩(0, 0.0032) 𝒩(0, 0.0082) 

 

Table 3 PF parameters. 

3.4 Results from estimation and RUL prediction 

Figures 3 (a) and (b) present the estimation results using traditional model. The estimated 

crack length remains close to the true values until reaching about 17 mm, when the bias grows 

large enough to hamper damage estimation, as visible in Figure 2. The narrow confidence 

boundaries after about 6×104 load cycles show the existence of a poor particle diversity. In 

addition, the samples of the parameters C and m also fail to accumulate around the true values. 

The observation that the bias between the output of the measurement equation and the actual 

measurement will lead to inaccurate estimation is confirmed in [9, 20]. Figures 3 (c), (d) and 

(e) present the estimation results using the new model with included bias parameter. The 

estimated crack length, C and m are noticeably more accurate than those in Figures 3 (a) and 

(b), as the bias is correctly identified by the PF and is taken into consideration for the estimation 

for the other state components. Moreover, given the presence of measurement noise and the 

difficulty in estimating the time-varying parameter, the bias parameters from the 3×104 to 7×104 

load cycles are not accurately estimated, which leads to less accurate estimation for crack length 

at these load cycles. 
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(a) Crack length, traditional model (b) Parameters C and m, traditional model 

   

(c) Crack length, new model (d) C and m, new model (e) Bias parameter b 

Figure 3 Estimation using traditional and new models 

Figures 4 (a)(b) and (c)(d) present the prediction for future states at some selected load cycles 

using the traditional and new models, respectively. The grey dotted lines are the crack length 

trajectories predicted by the particles at the selected load cycles, and the grey histogram at the 

end of life (identified as a critical crack length) is the RUL posterior PDF. Figures 5 (a) and (b) 

present the RUL predictions using the traditional and new models, respectively, along with their 

95% confidence boundary. The predicted states and RULs from the new model always keep 

close to the true values, while those from the traditional model don’t. It can be concluded that 

the new model can provide more accurate estimation and prognosis results within a PF 

framework than the traditional model, for which the bias existing between the measurement 

equation and the actual observation prevents a correct estimation. 

 

  

(a) N/3 load cycles, traditional model (b) 2N/3 load cycles, traditional model 
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(c) N/3 load cycles, new model (d) 2N/3 load cycles, new model 

Figure 4 Prediction at two selected load cycles from traditional and new models. 

  

(a) Traditional model (b) New model 

Figure 5 RUL Prediction from traditional and new models. 

4  CONCLUSIONS 

The bias between the measurements predicted by any data-driven measurement equation and 

the actual SHM measurements is unavoidable in hybrid prognostic investigations, which might 

lead to inaccurate prognostic results. Combining the ideas from sensor fault diagnosis and 

hybrid prognosis, this paper proposes a new hybrid state space model that always includes an 

adaptive bias parameter in both the state vector and measurement equation. The numerical study 

proves the new model can provide accurate estimation and prognosis for crack length when the 

bias can be accurately estimated. Our future work intends to validate this framework by 

experimental study.  
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