
72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D1,4A,12,x66775 Page 1 of 17

IAC-21,D1,4A,12,x66775

Small sats lifecycle management through MBSE aided decision making tailored tool

Mr. Paolo Minacapillia*, Prof. Michèle Lavagnab

a Department of Aerospace Science & Technology, Politecnico di Milano, Via La Masa 34, Milan 20156, Italy,
paolo.minacapilli@mail.polimi.it
b Department of Aerospace Science & Technology, Politecnico di Milano, Via La Masa 34, Milan 20156, Italy,
michelle.lavagna@polimi.it
* Corresponding Author

Abstract
Traditional System Engineering approaches highlight some bottlenecks whenever dealing with information

exchange among stakeholders, typically producing many documents, difficult to trace and to keep harmonized. This is
particularly true for space applications, which entail very complex systems conceivement, design, implementation and
operation by a number of different players who grow with mission complexity. Model-Based Systems Engineering
(MBSE) is intended to facilitate these activities, providing a common source of truth to the system engineering
“ecosystem”, improving its efficiency and quality by applying a model that evolves along the entire product lifecycle.
The paper proposes a critical analysis of an MBSE approach applied to real small sat mission currently under the
European Space Agency (ESA) phase A study, demonstrating its potential and its gaps. All Systems Engineering
phases are explored, from the high-level mission objectives definition, through the articulated external and internal
functional analysis, down to concept of operations, ending up with the Assembly, Integration and Verification/Test
plan definition; every modelling step is harmonized with proper requirements generation and their role in driving the
logical and physical trade-off analyzes. The study is conducted according to the ARChitecture Analysis & Design
Integrated Approach (ARCADIA) and adopting the Capella tool, being very effective in mastering different
engineering levels with coherence and with an iterative information refinement. Despite the clear advantage of having
a unique model in which a change is inherently shared with all stakeholders, saving up time in communication, MBSE
still lacks intelligent support that could strongly help in addressing the best optimal architecture in line with the system
functionalities, speeding up the alternatives selection process. This would be particularly useful during the preliminary
design phases, in which the almost infinite design choices are skimmed by the only systems engineers’ knowledge,
who may miss some solutions. A newly approach conceived to solve this issue is here presented in the form of a
decision-making tool prototype, that correlates a set of functionalities with a set of available technologies, proposing
one or more architectures that are coherent with what the engineers expect from the system behaviour; a first grid of
requirements is also part of the tool output, in support of the previously described MBSE approach.

Keywords: Model-Based Systems Engineering, MBSE, Systems Engineering, Decision-Making, Small Satellites

1. Introduction

Over the last decades the space sector is experiencing
a fast growth thanks to the advancements in
miniaturization of electronics, that allow the
development of smaller platforms if compared to
traditional ones. This fits into the New Space Economy
context, in which small platforms such as CubeSats are
acquiring a significant importance due to their reduced
mass, volume and consequently cost, the latter being one
of the largest barriers to satellites development. Such
revolutionary design philosophy is making small
satellites a success story.

Reduced costs and miniaturization do not imply a
reduced complexity; therefore, it is important to not
underestimate the engineering effort required in the
design of small spacecrafts, particularly challenging due
to their limited resources which must cope at the same
time with the inherent complexity of a space system.

From the systems engineering methodology point of
view, small satellites still rely on document-based
approaches inherited from the traditional space industry,
which are limited in terms of waste of time in writing and
in consulting documentation about a system among the
engineering teams and the stakeholders in an iterative
process. Some other issues are non-optimal information
management and accessibility, difficult requirements
traceability, slow processing of design changes.
All the listed difficulties, merged with the current wave
of digitalization which asks for an improved
representation of systems development to optimize the
overall product life cycle, provide an interesting research
thread. Moreover, without an alignment between
emergent technologies and design techniques, the risk is
to postpone the further advancement of small satellites.
In this framework, the steadily increasing use of Model-
Based Systems Engineering (MBSE) in the space

mailto:paolo.minacapilli@mail.polimi.it
mailto:michelle.lavagna@polimi.it

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D1,4A,12,x66775 Page 2 of 17

community well matches the need of having a more clear
and consistent way of doing systems engineering,
improving the overall efficiency within organizations to
better ride the wave of the incoming space exploration
challenges, which ask for shorter design cycles and above
all the need of an excellent understanding of customers’
aspirations and goals [1]. In MBSE a central system
model is used to develop, manage and control relevant
systems engineering information. The very first
advantage of MBSE is that the information is both visual
and textual since it is contained in a model, defined as “an
abstraction of a system, aimed at understanding,
communicating, explaining, or designing aspects of
interest of that system” [2]. The information becomes
unambiguous, accessible and intuitive, with a direct
improved design team communication throughout the
whole lifecycle and a consequent improved product
quality. The price to be paid is related to the infrastructure
building and training of the personnel about the modeling
language, the method and the adopted tool. These are the
main cultural roadblocks that still prevent from a
widespread awareness of how MBSE can enhance the
system engineering practices.

1.1 Review of MBSE applied to space missions

Several developments in the last decades have
significantly pushed forward the adoption and
deployment of MBSE solutions in space programs [3] to
streamline their systems engineering process.

The benefits of MBSE is being demonstrated across
programs, such as the NASA Europa Clipper currently in
Phase C, which demonstrated higher level thinking
among engineers, improved access to information for
new team members, saved time, prevented errors and
minimized drudge work [4]. In ESA, an MBSE approach
to the e.Deorbit mission for its Phase A to Phase B1 [5]
resulted effective in maintaining the system complexity
providing a holistic and collaborative view of the project,
despite the activity showed a limited success in
performing reviews using models due to the lack of
knowledge of non-practitioners who were not
comfortable with the object-oriented diagrams [6].

The Euclid mission is the first ESA’s attempt to apply
a complete MBSE concept for a major project [7].
Among the lessons learned there is a net benefit in terms
of completeness of verification by full coverage check of
requirements and a successful exploitation of model for
mission reviews purposes, with a simpler identification
of all interfaces and a coherent view of functions and
allocation [6]. Concerning CubeSats, the Space Systems
Working Group (SSWG) developed the CubeSat
Reference Model [13], a set of more than fifteen papers
with the scope of proving the applicability of MBSE
practices for designing CubeSats; the first phase of the
project successfully applied MBSE to the Radio Aurora
Explorer (RAX) CubeSat [8].

Other MBSE applications in support of nanosatellites
have been developed by the Delft University of
Technology for the DelFFi mission, in which
requirements development and traceability proved to be
very effective [9], and by the Aerospace Corporation of
El Segundo for the AeroCube-10 mission, where the
whole system life cycle has been explored using MBSE
improving early detection of design errors and recovery,
interfaces description and communication [10].

1.2 Paper objectives and organization

Downstream the presented literature research it is
possible to state that almost all projects benefit from
model-based approaches. However, there is still a sort of
repulsion by engineers toward the object-oriented nature
of diagrams, proved to be difficult to understand by non-
software background engineers, who require appropriate
training with highly qualified personnel with a
consequent steep learning curve. A newly emerging
MBSE solution is the ARCADIA (ARChitecture
Analysis & Design Integrated Approach) methodology &
language, a Domain Specific Modeling Language
(DSML) which results more intuitive also thanks to the
open-source dedicated tool, called Capella, which
perfectly integrates it.

As it is recognized the need of collecting more
demonstrative applications of MBSE to small satellites
design, given their fast growing in the space sector, this
paper provides a complete modeling of a complex
CubeSat, namely the ESA e.Inspector mission, using
ARCADIA and Capella to investigate which are the
benefits in implementing MBSE for the whole life cycle
of a space system and to address key engineering issues
related to the approach. The study passes through all the
design phases, from high-level mission objectives
definition and requirements modeling to functional
analysis, physical architecture and interface engineering,
concept of operations and modes definition, ending up
with a newly approach for embedding the Assembly,
Integration and Verification/Test plan into the model.

MBSE represents a support to systems engineering
practices which still must be practiced by engineers.
When a space mission is conceived, many variables must
be controlled and an elevated number of feasible
architectures has to be reduced to no more than two
consistent solutions. It is not so straightforward to skim
the almost infinite design choices and decisions just
relying on systems engineers knowledge, since such
human brain-based method can miss innovative and still
feasible solutions. Therefore, this paper also presents a
newly approach conceived to extend the space engineers
capabilities by developing a tailored decision-making
tool that correlates a set of functionalities with a set of
available technologies, proposing one or more
architectures that are coherent with what it is expected
from the system behaviour. If used as support for an

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D1,4A,12,x66775 Page 3 of 17

MBSE methodology, such as ARCADIA, the tool can
overcome one of MBSE limits, that is the lack of
intelligent capabilities which can guide the modeller in
the initial design phases, enhancing the overall solution.

The paper is divided into the following sections:
firstly, a review of MBSE ingredients and a description
of the adopted methodology is presented in Section 2;
Section 3 reports a step-by-step application of the MBSE
approach to a small satellite; Section 4 presents the
theory behind the decision-making tool prototype and the
simulations results. Lastly, the results are discussed in
Section 5 followed by some conclusive thoughts in
Section 6.

2. Methodology
2.1 MBSE ingredients

MBSE is not just a matter of doing diagrams to
represent results, but it represents a support to systems
engineering activities through modeling. Therefore, it
requires a clear methodology, made of a process (logical
sequences of tasks performed to achieve a particular
objective defining “what” is to be done), a method
(defining the “how” of each task) and a tool (an
instrument that, when applied to a particular method,
facilitates the accomplishment of the tasks, and contains
the system model) [11]. The main purpose of an MBSE
approach is then to be able to integrate all these aspects
in the project environment, using a common terminology
to clearly communicate what the model wants to capture.
Therefore, a modeling language must also be introduced,
with its own syntax and semantics.

2.2 ARCADIA and Capella

ARCADIA consists of iterative processes developed
within four levels [1]. The first two aim at consolidating
the users needs understanding: the Operational Analysis
(OA) and the System Analysis (SA). Two other levels
formalize the architectural design: Logical Architecture
(LA) and Physical Architecture (PA). A brief description
of them is here reported, while the model elements and
the diagrams used will be presented within the case-study
in Section 3 and their definitions can be found in [12]:

- Operational Analysis: defines the needs and
objectives of future users of the system, far
beyond requirements and independently of the
system to be realized.

- System Analysis: also called Functional & Non-
Functional Need analysis, this level introduces
the concept of system and defines how it can
satisfy the former operational needs. This
process helps to determine the functionalities
that are needed by the system, without looking
for solutions, being compliant with non-
functional properties asked for.

- Logical Architecture: the functional analysis is
here articulated to understand how the system

will have to work to achieve the required
performance. First architectural solutions and
engineering decisions are here introduced,
which are unlikely to be challenged later in the
development process. Several decompositions
of the system into logical components are
performed and each function is allocated to one
component. The output of this level is a logical
solution, that is the best compromise
architecture functionally described, that
responds to the needs defined in the OA and SA.

- Physical Architecture: real components that
will constitute the system are formalized in the
PA, each one carrying its own sub-components
and functions. Physical interfaces are also
defined.

Such levels are perfectly implemented in the Capella
tool which relies on a consistent colour scheme: all
function-related elements are green, and all component-
related elements are blue (except Node Physical
Components which are yellow). For this work, the
version 5.0 of Capella has been adopted.

3. MBSE application to a small satellite design
3.1 Case study: the e.Inspector mission

e.Inspector is a European Space Agency (ESA)
mission which Phase A has been led by Politecnico di
Milano for the systems engineering part, mission analysis
and relative dynamics. Two main partners contribute:
Leonardo for the payloads and Leaf Space for the ground
segment and downlink/uplink support.

The high-level mission goal is to carry out a close-up
visual inspection of a European space debris, with the
scope of improving the understanding of its status at the
time of flight, validating GNC sensors to be used for a
next capture of the debris and to reduce risks of future
Active Debris Removal (ADR) missions. The mission is
divided into four phases: the Launch and Early Orbit
Phase (LEOP), the Transfer Phase to finalize the arrival
to the target orbit, the Inspect Phase in which the relative
dynamics with respect to the target is done to acquire
scientific data and match the mission objectives, the
Dispose Phase to move the platform in total safety away
from the target and passivate it.

3.2 Requirements management

The most widespread requirement-based engineering
approach adopts textual requirements, which are traced
within system functions. It is often difficult to conduct
such traceability study using a document-centric
approach, since jumping from a document to another
increases the possibility of generating misinterpretation
events, particularly true as the number of requirements
increase due to the system complexity. The work done in
the paper by Bonnet et al. [13] proposes the concept of
model requirements, which are basically model elements

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D1,4A,12,x66775 Page 4 of 17

encountered in all MBSE approaches defining system
aspects. The here presented work also includes the more
classic textual requirements, which can be linked to the
mentioned model requirements to ease their traceability,
completing each other. This section presents how
requirements are modeled using the Capella
Requirements Viewpoint add-on.

Requirements are grouped into folders according to
the subsystem they belong and are defined by a unique
identification code, reporting the category, the subsystem
acronym and a four-digit number, and a text which
explicitly states its content. Several properties further
characterize it as a model element as reported in Fig. 1,
compliant with the European Cooperation for Space
Standardization (ECSS) [14, 15]:

- Enumeration Data Types: Importance
(Mandatory/Nice to have), Progress Status
(Rework Necessary, To Be Reviewed, etc.),
Verification Method (Test, Analysis, Review of
Design, Inspection).

- Requirement Types: Functional, Mission, etc.
Lastly, two Relation Types are defined: the satisfies

one is an incoming link used to assert that a model
element covers an aspect of the requirement, the refines
one is an outgoing link used to establish internal
relationships between requirements, decomposing
parents into children such that trees can be generated.

Fig. 1. Characterization of Requirements

Capella does not provide a dedicated requirements

diagram to build trees; however, since they can be
reported in any diagram thanks to the Capella transverse
modeling, for this work some initially empty Operational
Architecture Blank (OAB) diagrams have been exploited
to overcome this lack. Trees are very intuitive to trace
backwards low-level requirements, ensuring their
consistency and completeness. An example is reported in
Fig. 2; each branch is further developed into lower-level
requirements reported in other diagrams.

The presented definition and organization of
requirements is a first important plus provided by the
MBSE approach since they are not simple sentences as in
a document-based organization but represent concrete
model elements.

Fig. 2. Example of Requirements Tree

3.3 Users needs understanding
3.3.1 Operational Analysis

It is good practice to model the Operational Analysis
to define high-level objectives and to identify the
stakeholders and their responsibilities. The first diagram
devoted to these tasks is called Operational Capabilities
Blank (OCB), reported in Fig. 3, which simply highlights
the involved multidisciplinary set of Entities/Actors and
the related high-level services, called Capabilities, at this
stage independent on the system that is going to be
realized. They are graphically represented respectively
by gray rectangles and bronze medallions.

Fig. 3. Operational Capabilities Blank (OCB) diagram

Each Operational Capability is further described by

several Operational Activities allocated to
Entities/Actors, reported in the Operational Architecture
Blank (OAB) diagram in Fig. 4. A blue-coloured line
called Operational Process is used to highlight a
particular logical series of Activities which contribute
toward an objective. Some high-level requirements are
traced in the diagrams by the model elements to which
they are related. Despite it is still a very high-level
representation, the OAB is useful to provide a global
vision of what the main system interacting Entities must
realize for the project, regardless of any technical
solution. It is the main output of the Operational Analysis
and the final deliverable for the next modeling phase: the
System Analysis.

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D1,4A,12,x66775 Page 5 of 17

Fig. 4. Operational Architecture Blank (OAB) diagram

3.3.2 System Analysis

The concept of system is here introduced, and
systems engineers can start asking whether the Activities
reported in the Operational Analysis, now called System
Functions, will be realized by the system, or left to the
stakeholders. It is reminded that this level should not
provide a deep description of the system but should frame
its essential functioning. To accomplish this task, the
Mission Capabilities Blank (MCB) diagram is firstly
exploited, with the scope of accompanying the modeler
toward system functions definition. As Fig. 5 shows, four
Missions are introduced, each one providing an essential
high-level service to be furnished by the system and
described by several System Capabilities by means of the
Capability Exploitation relation. Both Missions and
Capabilities are linked to System Actors. These relations
are called respectively Mission Involvements and
Capability Involvements; for graphical reasons, the
formers are indicated by light blue lines.

A little coloured icon appears in the bottom-right of
almost all system Capabilities. This is a recurrent icon in
Capella, indicating that the model element is further
described in one or more other diagrams; in this case
Capabilities are detailed with functions in dedicated
System Data Flow Blank (SDFB) diagrams. An example
is reported in Fig. 6 for the Provide Power Supply
Capability. Some links, called Functional Exchanges,
logically connect them; a green port indicates an outflow
while the red one an inflow. The father functionality
Provide Power Supply is also reported, carrying the same
name of the Capability it describes.

Due to the not so high total number of functions, it is
still possible to visualize all of them in a single diagram,
called System Architecture Blank (SAB), reported in Fig.
7. This diagram shows the allocation of leaf functions to
the system, in dark blue, and to the Actors that interact
with it, in light blue. The SAB diagram also introduces
the concept of Component Exchange, to which
Functional Exchanges between two blocks are allocated.

Lastly, the concept of Functional Chains is here
presented. Their aim is to provide the description of a
certain behaviour, making use of the available functions,

useful to check the expected system behaviour in
different contexts. In example, the blue line connects
functions that describe the Data Collection and
Download operation while the red one refers to the
System Initialization one.

The complete set of system functions (leaves and
parents) is reported in the System Function Breakdown
of Fig. 8, which represents a functional tree.

Fig. 5. Mission Capabilities Blank (MCB) diagram

Fig. 6. System Data Flow Blank (SDFB) diagram:

Provide Power Supply

Fig. 7. System Architecture Blank (SAB) diagram:

overall e.Inspector mission

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D1,4A,12,x66775 Page 6 of 17

Fig. 8. Root System Functions diagram: Functional Tree

3.4 Solution architectural design
3.4.1 Logical Architecture

The System Analysis black box is here opened to set
up a new functional analysis, whose foundations are
inherited from the previous design level. This is a delicate
step forward in the design since big decisions driving the
project and influencing the future Physical Architecture
are taken, being careful to leave a certain degree of
freedom otherwise construction choices would be too
much constrained.

In the Logical Architecture the concept of subsystem
is introduced; all of them have been internally modeled
for this work and their interactions defined. The results
presented in the following comprehend just the Electric
Power Subsystem (EPS) to discuss the MBSE approach
and provide the rationale behind the modeling
methodology point of view.

Fig. 9 shows the Logical Architecture Blank (LAB)
diagram for the EPS, modeled as a cyan-coloured Logical
Component to distinguish it from its subcomponents.
Logical Functions are allocated to the latter. Recalling
that in the LA the contents are defined in terms of how
the system must perform the needs expressed in the SA,
the first step here consists in identifying conceptual
solutions and expressing them in terms of functions. As
example, starting from the system function Generate
Power (Fig. 6), the Solar Panels have been identified as
the best primary power generation. Once the functions
describing how the system will generate power are
defined, a dedicated component is created, here called
Power Generation. Such modeling approach adopted for
the Power Generation is extended to the remaining EPS
Logical Components. The various components
communicate by means of the Functional Exchanges
between functions, which are in turn allocated to proper
Component Exchanges. Extensive use of Control
Functions (Duplicate, Gather, Route, Select, Split)
allows to precisely define path conditions such as power
lines; their definitions can be consulted in [12]. As
example, the Route one is employed to specify the
selection of one among several power sources, that are
the batteries and the solar panels. This is a very intuitive
way of modeling since in one simple diagram a lot of
information can be extracted with little effort; the only
required competence is the language knowledge.

Fig. 9. Logical Architecture Blank (LAB) diagram:

Electric Power Subsystem

To conclude, two Functional Chains highlight the

way the EPS communicates with external blocks,
respectively EPS Initialization and Solar Arrays
Deployment in yellow and Battery Recharging from
Solar Arrays Power in blue. A malfunction in any of the
involved Exchanges means that the system is unable to
deliver the overall service. Once created, they can be
represented and modified in a dedicated Functional
Chain Description diagram, like the one in Fig. 10.

Fig. 10. Logical Functional Chain Description diagram:

EPS initialization and solar arrays deployment

3.4.2 Physical Architecture
In this fourth level the technological choices are

modeled and the focus moves toward Physical
Components definition. It is recommended to develop it
once the system alternatives have been narrowed down to
a limited number (possibly one) and a trade-off analysis
already conducted. To well understand the presented
diagrams, it is important to distinguish between two types
of components [12]:

- Behavior Physical Component (blue coloured):
tasked with Physical Functions and carrying out
part of the behavior of the system.

- Node (or Implementation) Physical Component
(yellow coloured): provides the material
resources needed for one or several Behavior
Components. It represents a real component that
will be integrated in the system.

In PA the concept of Physical Link has a central role
since it allows to model the real interfaces among

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D1,4A,12,x66775 Page 7 of 17

components. The default Capella colour for these links is
red, however a customized palette is adopted for this
work due to the different kind of interfaces present in a
small satellite: the classical red is used for Data Interfaces
(such as data exchanges between OBCs and sensors or
actuators, commands distribution, etc.), the orange
represents Electrical Interfaces (power lines) and the
black is adopted for Mechanical Interfaces (physical
interfaces, mechanical supports, etc.).

Focusing again on the EPS only, a Physical
Architecture Blank (PAB) diagram is firstly presented
(see Fig. 11) with the aim of introducing the internal
Physical Node Components and the internal Physical
Links; the cyan is used again to distinguish the EPS
component, treated as a “container” for the real physical
components. The solar panels are differentiated into
Wings and Body-mounted, two Array Conditioning Units
(ACU) and two Power Distribution Units (PDU) are
chosen as baseline for allowing redundancy of power
lines and limiting the stress on the component. These are
implementation choices, absent in the LA where just the
conceptual architecture aimed at the system functioning
description was required.

Each Node Component contains several Behavior
Component which carry the functions and each
Component Exchange contains one or more Functional
Exchanges, as in Fig. 12 where the Split function is used
to model the ON/OFF switching of power lines.

Fig. 11. Physical Architecture Blank (PAB) diagram:

EPS internal physical links

Fig. 12. Power Distribution Units modeling

The main EPS function is to distribute power to all

system components; therefore, it is worth to analyze the
way it interfaces with the rest of the CubeSat. Fig. 13
shows the power lines related to the Power Distribution
Unit 1. To differentiate the main power lines from the
backup ones, the Component Exchanges are called
differently, using the words main and secondary.

Fig. 13. Physical Architecture Blank (PAB) diagram:

EPS Power Distribution Unit 1

3.5 Modes modeling

A space system is conceived and designed having in
mind its operative life, punctuated by some phases which
define the whole mission. Particular attention must be
paid while defining which subsystem functionalities are
needed in each phase, therefore approaching a vast topic
in system engineering that is the Modes and States
definition. A Mode is commonly defined as the result of
a design decision, allowing to consciously switch the
system from one to another, while a State is the
consequence of something that happens to the system,
representing an unexpected or even undesired event.
Only the concept of Mode is considered for this work.
The transition from one Mode to another is usually an
explicit decision triggered by a functional event, such as
a change in the use of the system to respond to new needs
or situations. In Capella, Modes are characterized by
several functions. Whenever a function is present in one
Mode, the component containing it is active.

To present how the Modes are here modeled, two
diagrams are shown: one related to the Guidance
Navigation and Control (GNC) subsystem, particularly
meaningful for the complexity of such subsystem for the
e.Inspector mission, and one related to the overall system
Modes activated during the Launch and Early Orbit
Phase (LEOP). All functions and Functional Exchanges

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D1,4A,12,x66775 Page 8 of 17

used to define Modes and Transitions belong to the
Physical Architecture.

The GNC State Machine Diagram is reported in Fig.
14. Each grey rectangle represents a subsystem mode in
which several functions are allocated, as reported in Fig.
15 for the GNC Detumbling Mode. It is interesting to
provide the rationale behind some of the Transitions;
Navigation Modes are distinguished from Attitude ones.
GNC Absolute Navigation and GNC Absolute Attitude
are the baseline GNC Modes, active for the entire mission
duration until a Change Event happens. Concerning the
Navigation, the switch from Absolute to Relative takes
place once a well-defined distance from the target debris
is met; in turn, the distance also governs the Relative
Navigation Modes selection, since they involve different
GNC algorithms and techniques, therefore different
subsystem functions. Similar considerations are applied
to the Relative Attitude Mode activation, as the transition
in the diagram suggests.

Fig. 14. State Machine diagram: Guidance Navigation

and Control (GNC) subsystem Modes

Fig. 15. Expanded view of GNC Detumbling Mode

Simple modes have been adopted for subsystems

modes, described by several functions, and exempt of
sub-Modes. The concept of composite modes is here
introduced; they are Modes that contain one or more
regions, each one having a set of subsystem Modes,
called sub-Modes, as well as other functions. A region is
a top-level part of a State Machine intended as a container
for the other Modes. This approach is very useful in the
context of a small satellite design, since it allows to easily
define the system Modes starting from the subsystem
ones also drastically reducing the modeling time ensuring
consistency. This is shown in Fig. 16 where, as example,

the GNC - Detumbling Mode is exploited to define the
SYSTEM - Detumbling one in the LEOP State Machine.

Fig. 16. State Machine: System Modes during LEOP

3.6 Concept of Operations (ConOps)

In this section, all the work previously done related to
the system architecture and its Modes is exploited to
describe how the CubeSat will be operated, with the goal
of meeting the initial high-level objectives. It is important
to conduct this kind of analysis since an operational
perspective allows to think more deeply about system
needs, leading to a check out of the architecture.

In Capella, Scenario Diagrams are adopted to model
ConOps. In Fig. 17 a high-level view of the LEOP Phase
in terms of operations is shown. Vertical lines are called
Instance Roles, or Lifelines, and represent system
components or the system itself. Functions or Modes are
allocated over them in temporal sequence of activation
downward, as the Duration constraint suggests. Other
powerful concepts are the Combined Fragments,
represented by grey rectangles, used to apply some
logical conditions to the contained elements [12]. As
example the LOOP Operator indicates that the fragment
can be executed several times with a give frequency, the
OPT Operator executes the fragment only if the provided
Guard Condition is true. Great use of combined
fragments has been done for this work since they allow
to describe logic structures in a very compact and concise
manner due to their precise semantics.

Fig. 17. Physical Exchange Scenario (PES) diagram:

ConOps in LEOP Phase

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D1,4A,12,x66775 Page 9 of 17

3.7 Assembly, Integration and Verification/Test
(AIV/AIT) plan modeling

Verification and testing activities are defined since
the Phase A of a space mission and continue to be refined
during the entire product development. The classical
approach exploits traceability links between textual
requirements and tests procedures. Relying just on them
to derive test campaigns results in a lack of a detailed
vision of the needs, also reducing the possibility to
identify problems. This is due to the inability of textual
requirements to cover all system aspects. As presented in
the previous sections, an articulated model has been
created with the aim of defining any functional and
physical aspect of the system. Such model elements
provide precise basis for a test campaign definition;
however, to explicitly define test activities, new ad-hoc
ones are introduced. The power of the here proposed
approach resides in the guidance provided by the same
model elements used as source of knowledge in the
definition of the AIV/AIT plan. It is reminded that the
approach must be intended as a prototype proposal, since
it sometimes results in contrast with some of the
ARCADIA concepts. The reader is invited to focus on
the gained benefits as it is recalled that ARCADIA does
not propose a way for managing test activities within the
architectural model.

The approach is developed within the Physical
Architecture, therefore any model element here
encountered is part of it. This is a decision that directly
comes from the need of working with elements which
represent real physical components that will constitute
the system and that will be integrated and tested,
respectively exploiting Physical Links and Physical
Functions which describe them in the model.

The first step consists in defining a Physical
Architecture Blank (PAB) diagram for the subsystem,
here the EPS, such as the one in Fig. 18. The Actor in
charge of executing the tests, in this case Politecnico di
Milano (POLIMI), carries some Behavior Components,
each one called with the subsystem name, the type of
model used (i.e., Proto Flight Model (PFM)) and the
name of the Physical Component to be tested. These
Components have allocated several Physical Functions,
expressly created, which explicitly state the activities to
be performed on that Component. These high-level test
blocks provide a global view of the activities to be
performed on the subsystem and are connected by
Functional Exchanges which indicate their logical
sequencing. Some links depart from this diagram: the
first one is related to the Functional Tests of SA as the
icon in its bottom right suggests (the italics is
automatically used by Capella whenever a function hosts
sub-functions), the second one is a Functional Chain
Description diagram associated to the highlighted chain.

Focusing on the first link, right clicking on the
function, the tool opens the diagram of Fig. 19 which

shows the procedures needed to accomplish the upper
activity. Having one or more diagrams like that for each
activity allow systems engineers to have a complete view
of all the procedures to be performed, all embedded in the
same workspace. The Exchanges here indicate pure
logical sequencing; however, it is clearly possible to
report them in a Scenario Diagram to also catch the
temporal dimension. Moreover, each block has a
dedicated sheet in which the progress status can be set; in
a team environment it allows to drastically reduce the
effort spent in communicating, using these diagrams as
single source of truth.

Fig. 18. Physical Architecture Blank (PAB) diagram:

AIV/AIT - EPS Overall Plan

Fig. 19. Physical Data Flow Blank (PDFB) diagram:

AIV/AIT Procedures - Functional Tests of Solar Arrays

Going back to Fig. 18, the second link is analysed.
Right clicking on the blue stamp Functional Chain EPS
testing activities, it is possible to open the Physical
Functional Chain Diagram in Fig. 20. Two new elements
can be noted: the dark green blocks with the Functional
Chain icon on the top left and the yellow blocks with the
{c} icon. They are respectively Functional Chains
expressed in a compact form, here exploited to create a
bridge between the test activities and functional model
elements, and Constraint blocks. The proposed approach
is simple: some Functional Chains are already defined
within the model in the previous functional analysis;
since all test activities necessarily refer to the system

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D1,4A,12,x66775 Page 10 of 17

functional or interface analysis, whenever it is decided to
conduct a certain test systems engineers can exploit the
chains reported in dark green blocks which contain such
functional aspects of the system. Any Functional Chain
can be added to this diagram to cover any system aspect,
assuming it was properly modeled before. This is also
very useful since during test activities problems typically
arise and some changes have to be applied to the system;
in this case, engineers can go back to the architectural
model, refine the analysis, and finally exploit the new
Functional Chains for a further check. This is what the
green blocks show, a compact form of Functional Chains
used as reference; an expanded view of one of them is
reported in Fig. 21. The Constraint element is used to
explicitly “allocate” such Functional Chains to activities;
this is not a formal allocation, but more a graphical one
used for this preliminary version of the approach.

Fig. 20. Physical Functional Chain Description:

AIV/AIT - EPS testing activities

Fig. 21. AIV/AIT - Functional Chain Expanded View

The advantage of dealing with AIV/AIT activities

within the same environment in which the system was
modeled resides in the possibility to exploit all the
knowledge and information embedded in the model. So,
for example, in the context of system integration,
Physical Links can be consulted to check the correctness
of the integration plan serving also as base for its
definition. The presented approach is demonstrative and
experimental and requires a formalization in terms of
syntax and semantics, which can be defined in a
dedicated “AIV/AIT add-on” to be implemented in
Capella.

4. Automated Decision-Making tool for small
satellites architectures generation

4.1 Statement of the problem
The approach starts from the definition of one or more

high level functionalities describing some expected
system behaviours and characterized by a list of
attributes, called markers. The tool embeds several
decisions at various levels, each one containing some
alternatives; the latter are described by markers, while
decisions are intended as level identifiers. The tool
objective is to automatically select the alternatives based
on their ability to satisfy the functionalities throughout a
matching algorithm between the markers and rank them
solving some decision-making problems.

4.1.1 Inputs from the user

𝑚𝑚 desired functionalities represent the main user
input to the tool. Each functionality is represented by a
vector of 𝑛𝑛 markers, called Input Functionality Vector
(IFV). The Input Functionalities Matrix (IFM) in Eq.
1 is then created placing these vectors in its columns:

𝑰𝑰𝑰𝑰𝑰𝑰 = �
𝑓𝑓11 ⋯ 𝑓𝑓1𝑚𝑚
⋮ 𝑓𝑓𝑖𝑖𝑖𝑖 ⋮
𝑓𝑓𝑛𝑛1 ⋯ 𝑓𝑓𝑛𝑛𝑛𝑛

� (1)

Markers can have Boolean values (1 if the

functionality is characterized by that marker, 0 if not), or
can be assigned a number from 2 to 4 which indicates the
importance of that marker for the functionality. Higher
the value, more important the marker.

Another input is called Functionalities Temporal
Concurrency Matrix (FTCM). It is an [𝑚𝑚 × 𝑚𝑚] matrix
having value 1 if two functionalities are required at the
same time, 0 if not. It is used by the tool to exclude those
alternatives which satisfy a functionality but compromise
a contemporary one.

Functionalities represent decision criteria for the
selection of alternatives. The relative weights assigned to
them are computed using the Analytic Hierarchy Process
[16], so a pairwise matrix with functionalities relative
importance is required. An algorithm has been developed
for their automatic generation, allowing to save time
ensuring matrices consistency. The last inputs asked to
the user are then the following quantities (p.n., the user is
free to opt for a manually compiled matrix):

- 𝒗𝒗𝒊𝒊𝒊𝒊𝒊𝒊= Vector Importance: row vector [1 × 𝑚𝑚]
where the m functionalities are ordered from the
most important to the least one. Value 0 is
assigned if the i and the (i+1) functionalities are
equally important, 1 if the i-th is more important
than the (i+1). Value 0 shall be put in the last
cell.

- s = Sparsity Factor: scalar (0 <s <1) typically
equal to 1. Higher s, higher differences between

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D1,4A,12,x66775 Page 11 of 17

the criteria will be obtained once the pairwise
matrix is given to the AHP.

The algorithm firstly computes a so-called jump
value, defined as the minimum difference between two
values in the pairwise matrix. Without the jump value, if
the number of functionalities given as input is higher than
9, there would be relative importance numbers exceeding
the usual scale of the AHP, which goes from 1 to 9. Fig.
22 shows the algorithm for the matrix computation.

Fig. 22. Pairwise Matrix computation algorithm

4.1.2 Tool-embedded decision tree

Several decisions are installed in the tool. Decisions
can be hierarchically divided into different levels; an
example related to the space field is to consider as first
level decision the stabilization technique, while as second
level nested into the upper ones the sensors and actuators
selection. The current version of the tool supports two
levels of decisions. 𝑙𝑙 decisions belong to the first level;
each decision w contains 𝑝𝑝𝑤𝑤 alternatives and each
alternative 𝑘𝑘𝑤𝑤 is in turn described by a predetermined
vector of 𝑛𝑛 markers, which values are assigned following
the same rules of functionalities markers (Boolean and
non-Boolean). It is recalled that markers are the same for
functionalities and alternatives. The array in Eq. 2 shows
how a decision is stored: the number of columns 𝑝𝑝𝑤𝑤 (that
is the number of alternatives for that decision) is variable
for each decision w, while the number of rows is the same
as the elements are markers:

𝑫𝑫𝑫𝑫𝒘𝒘 = �
𝑎𝑎11𝑤𝑤 ⋯ 𝑎𝑎1𝑝𝑝𝑤𝑤
⋮ 𝑎𝑎𝑖𝑖𝑘𝑘𝑤𝑤 ⋮

𝑎𝑎𝑛𝑛1𝑤𝑤 ⋯ 𝑎𝑎𝑛𝑛𝑝𝑝𝑤𝑤
� (2)

The second level of decisions is nested into the first

one, meaning each 𝑘𝑘𝑤𝑤 first level alternative contains a set
of 𝑑𝑑𝑘𝑘𝑤𝑤 second level decisions, the latter having in turn
their own total number of alternatives. An array like the
one in Eq. 3 defines each second level decision ℎ𝑘𝑘𝑤𝑤:

𝑫𝑫𝑫𝑫𝒉𝒉𝒌𝒌𝒘𝒘 =

⎣
⎢
⎢
⎡
𝑏𝑏11ℎ𝑘𝑘𝑤𝑤

⋯ 𝑏𝑏1𝑞𝑞ℎ𝑘𝑘𝑤𝑤
⋮ 𝑏𝑏𝑖𝑖𝑔𝑔ℎ𝑘𝑘𝑤𝑤

⋮

𝑏𝑏𝑛𝑛1ℎ𝑘𝑘𝑤𝑤
⋯ 𝑏𝑏𝑛𝑛𝑞𝑞ℎ𝑘𝑘𝑤𝑤 ⎦

⎥
⎥
⎤
 (3)

To better clarify the adopted indexes, Table 1 reports

a legend of symbols while Fig. 23 illustrates the structure
of the decision tree: gray bubbles are decisions,
rectangles are alternatives (yellow is used for first level
alternatives, blue for second level ones).

Table 1. Indexes involved in the decision-making tool

 Index Total
Markers 𝑖𝑖 𝑛𝑛

Functionalities 𝑗𝑗 𝑚𝑚
First Level Decisions D1 𝑤𝑤 𝑙𝑙

First Level Alternatives A1 𝑘𝑘𝑤𝑤 𝑝𝑝𝑤𝑤
Second Level Decisions D2 ℎ𝑘𝑘𝑤𝑤 𝑑𝑑𝑘𝑘𝑤𝑤

Second Level Alternatives A2 𝑔𝑔ℎ𝑘𝑘𝑤𝑤 𝑞𝑞ℎ𝑘𝑘𝑤𝑤

Fig. 23. Decision Tree structure

4.2 The algorithm

The scope of the tool is to select the set of alternatives
which guarantees the maximum coverage of the markers
asked by the functionalities. Firstly, all the combinations
of alternatives belonging to the first level decisions are
evaluated, leading to the ranking of several first level
architectures. Selecting one of them, the second level
architectures are then computed and ranked.

4.2.1 Level 1 Architectures selection
Step 1: the Clustering technique

m functionalities with n markers must be mapped into
a set of alternatives, described by the same markers, to
extrapolate a quantity that tells how much each
alternative is suitable for each functionality. To do that,
𝑚𝑚 matrices (one for each functionality) like the one in
Eq. 4, called Alternatives-Functionalities Matrices
(AFM), are firstly compiled by the tool for each decision.
The elements of these matrices are defined according to
the rules in Eq. 5:

𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋

𝒘𝒘 = �
𝑥𝑥11𝑤𝑤 ⋯ 𝑥𝑥1𝑝𝑝𝑤𝑤
⋮ 𝑥𝑥𝑖𝑖𝑘𝑘𝑤𝑤 ⋮

𝑥𝑥𝑛𝑛1𝑤𝑤 ⋯ 𝑥𝑥𝑛𝑛𝑝𝑝𝑤𝑤
� (4)

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D1,4A,12,x66775 Page 12 of 17

𝑥𝑥𝑖𝑖𝑘𝑘𝑤𝑤 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

 0 if 𝑓𝑓𝑖𝑖𝑖𝑖 = 0 ∨ 𝑎𝑎𝑖𝑖𝑘𝑘𝑤𝑤 = 0
 1 if 𝑓𝑓𝑖𝑖𝑖𝑖 = 1 ∧ 𝑎𝑎𝑖𝑖𝑘𝑘𝑤𝑤 = 1

1 if 𝑓𝑓𝑖𝑖𝑖𝑖 − 𝑎𝑎𝑖𝑖𝑖𝑖𝑤𝑤 = 0

1 −
�𝑓𝑓𝑖𝑖𝑖𝑖 − 𝑎𝑎𝑖𝑖𝑘𝑘𝑤𝑤�

3
 if 𝑓𝑓𝑖𝑖𝑖𝑖 − 𝑎𝑎𝑖𝑖𝑖𝑖𝑤𝑤 > 0

�1 −
�𝑓𝑓𝑖𝑖𝑖𝑖 − 𝑎𝑎𝑖𝑖𝑘𝑘𝑤𝑤�

3
� ∙ 1.1 if 𝑓𝑓𝑖𝑖𝑖𝑖 − 𝑎𝑎𝑖𝑖𝑖𝑖𝑤𝑤 < 0

 (5)

In case of Boolean markers, if the functionality and

the alternative are both described by a non-zero marker
(equal to 1 in case of Boolean markers), the highest value
of 1 assigned in the AFM. In case of non-Boolean
markers, the AFM is compiled computing the difference
between the i-th functionality and the i-th alternative
markers. Higher this difference modulus, lower the value
in the AFM. A 10% increment is assigned when the
difference between the functionality and the alternative
is lower than 0, meaning that the alternative satisfies the
functionality more than needed. To sum up, each decision
w having 𝑝𝑝𝑤𝑤 alternatives will be characterized by a 3D
array containing m AFM matrices of dimension
[𝑛𝑛 × 𝑝𝑝𝑤𝑤], one for each functionality.

A second output is part of this step, a 3D array for
each decision with matrices equal to the AFM in the form
but compiled assigning value 1 if both the functionality
and the alternative markers are different from 0 and value
0 otherwise. They are called coverage matrices.

Step 2: Degree of satisfaction and markers coverage

The j AFM is here converted into a vector whose
elements represent the degree of satisfaction of the 𝑘𝑘𝑤𝑤
alternative with respect to the j functionality. To do that,
a simple average on the columns is done for each AFM
obtaining a vector for each functionality which
𝑝𝑝𝑤𝑤 elements are computed as in Eq. 6:

 𝑦𝑦𝑘𝑘𝑤𝑤𝑗𝑗 =

∑ 𝑥𝑥𝑖𝑖𝑘𝑘𝑤𝑤
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (6)

The computed vectors are reported as columns into a

matrix called Output Functionality Matrix (OFM), one
for each decision w, like the one in Eq. 7:

𝑶𝑶𝑶𝑶𝑶𝑶𝒘𝒘 = �
𝑦𝑦1𝑤𝑤1 ⋯ 𝑦𝑦1𝑤𝑤𝑚𝑚
⋮ 𝑦𝑦𝑘𝑘𝑤𝑤𝑗𝑗 ⋮

𝑦𝑦𝑝𝑝𝑤𝑤1 ⋯ 𝑦𝑦𝑝𝑝𝑤𝑤𝑚𝑚
� (7)

A similar procedure is adopted to compute the

CoverageAlternatives matrices, simply summing the
values in the coverage rows. It may happen that in the
OFM an alternative has a higher value with respect to a
another one because of the higher values coming from
Eq. 5 but at the same time covering a lower number of
markers, therefore having a lower value in the
CoverageAlternatives matrix.

If an alternative is totally wrong for a functionality
(value 0 in the OFM or in the CoverageAlternative), it
means that the behaviour of such functionality is
compromised. If another functionality must be done at
the same time of the former, a condition is activated to
assign value 0 also to the cell of both the OFM and the
CoverageAlternatives corresponding to the second
functionality. This way, that alternative is excluded from
the solution. Without such condition, that exploits the
Functionalities Temporal Concurrency Matrix
(FTCM), an alternative may be selected by a
functionality and at the same time compromising the
behaviour of a contemporary one.

Step 3: Performance Scores of the Alternatives

The automatically computed Pairwise Matrix is
furnished as input to a function which implements the
Analytic Hierarchy Process [16] to compute the
functionalities weights used as decision criteria for the
selection of alternatives. The OFM and the
CoverageAlternatives matrices are indeed decision
matrices for the 𝑤𝑤 decision, with alternatives as rows and
weighted functionalities as columns. Each decision
matrix is solved using a Multi-Criteria Decision Making
(MCDM) method [17, 18]. The output of this step are two
vectors for each decision, containing the Performance
Scores of the alternatives computed applying the selected
MCDM method respectively to the OFM and the
CoverageAlternatives, telling how much an alternative
is suitable for the whole set of functionalities.

Step 4: Architectures Ranking

An architecture is built taking one alternative for each
decision. The aim of this step is to evaluate all the
possible architectures and rank them. This is done
involving a combinatorial algorithm which gives as
output for each architecture two Performance Scores (PS)
computed as the product between the Performance
Scores of the alternatives composing the architecture
(one coming from the OFM and one from the
CoverageAlternatives). An overall parameter 𝐽𝐽 merges
them, so that each architecture q is quantified by one
single number. It is computed as in the Eq. 8, where
𝑤𝑤𝑂𝑂𝑂𝑂𝑂𝑂 and 𝑤𝑤𝑐𝑐𝑜𝑜𝑜𝑜 are weights which can be set by the user
(i.e., 0.5 each). Once 𝐽𝐽 is computed for each architecture,
the values are sorted decreasingly, preserving the indexes
of the alternatives which constitute the q-th architecture.

 𝐽𝐽(𝑞𝑞) = 𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑖𝑖𝑂𝑂𝑂𝑂𝑂𝑂(𝑞𝑞) ⋅ 𝑤𝑤𝑂𝑂𝑂𝑂𝑂𝑂 +
 +𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐(𝑞𝑞) ⋅ 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 (8)

Step 5: the Final Proposed Level 1 Architecture

At this point, each architecture is distinguished by an
identification number and a ranking value 𝐽𝐽. A skimming
is performed here to exclude those architectures which do
not satisfy all markers of all the functionalities. A new

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D1,4A,12,x66775 Page 13 of 17

matrix is then introduced for each architecture, called
CoveredMarkers, with dimensions equal to the IFM
[𝑛𝑛 × 𝑚𝑚]. It is filled assigning the value 1 to the (𝑖𝑖, 𝑗𝑗) cell
whenever at least one alternative of the architecture has
value different from 0 in coverage for the i-th marker and
the j-th functionality, meaning that such marker is
satisfied for that functionality, otherwise the value 0 is
assigned. If one architecture has at least one row in
CoveredMarkers with only null values, it means that the
i-th marker is not satisfied by any alternative. Therefore,
the architecture is excluded (p.n., this condition is not
applied if all functionalities have value 0 for a marker).

To also consider the zeroing of alternatives coming
from the condition about contemporary functionalities,
performed in the Step 2, if for each alternative of the
architecture under cycle the value in the OFM
corresponding to the j-th column (or functionality) is 0,
such architecture is excluded assigning value 0 to 𝐽𝐽. The
Final Proposed Architectures are those with a 𝐽𝐽 value
different from 0: higher the value, better the architecture
for the desired functionalities.

4.2.2 Level 2 Architectures Selection
Step 6: Satisfaction Degree of Level 2 Alternatives

Each first level alternative contains several second
level decisions, each one with its own set of second level
alternatives. The purpose of this second part of the
algorithm is to select second level alternatives which
ensure that all the first level alternatives of a Level 1
architecture are accomplished, and so functionalities. To
ease the readability, from here on the following
nomenclature is adopted:

- D1 = first level decision.
- A1 = first level alternative.
- D2 = second level decision.
- A2 = second level alternative.

Firstly, for each A2, the degree of markers coverage
asked by the A1s is computed. To do that, a similar
approach to the one applied for the first level clustering
is here presented, introducing the satisfaction matrices
[𝑛𝑛 × 𝑞𝑞ℎ], where 𝑞𝑞ℎ is the total number of A2 contained
in the ℎ-th D2 (recall indexes in Table 1). Each D2 will
be characterized by several satisfaction matrices equal to
the number of functionalities, therefore obtaining a 3D
array. The rules for compiling these matrices are equal to
those in Eq. 5 but considering the values of markers
contained in the D2 (Eq. 3) instead of the IFM. Each
decision ℎ and alternative 𝑔𝑔ℎ should have the subscript
𝑘𝑘𝑤𝑤 as they belong to a precise A1, however such
subscript is not reported in this section to ease the
readability. Eq. 9 shows a generic satisfaction matrix:

𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒋𝒋𝒉𝒉 = �
𝑠𝑠11ℎ ⋯ 𝑠𝑠1𝑞𝑞ℎ
⋮ 𝑠𝑠𝑖𝑖𝑔𝑔ℎ ⋮

𝑠𝑠𝑛𝑛1ℎ ⋯ 𝑠𝑠𝑛𝑛𝑞𝑞ℎ
� (9)

The sum on the markers and on the functionalities is
done for each A2 𝑔𝑔ℎ leading to a scalar called
SatisfactionTotal (Eq. 10) that tells the goodness of that
alternative in satisfying the A1 it belongs:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑔𝑔ℎ = � � 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖,𝑔𝑔ℎ, 𝑗𝑗)

𝑚𝑚

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
 (10)

Step 7: Feasible Level 2 Architectures Evaluation

The purpose is to find, for each A1 selected in the first
level architecture, the second level architecture which
guarantees the highest markers coverage. As each A1
contains several D2, a second level architecture is here
intended as a set of A2 selected by the A1. Therefore,
there will be a second level architecture for each A1. For
each A1, all combinations of A2 are evaluated. As
baseline, the code selects just one A2 for each D2 and
eventually add other A2 until all the markers are covered.

This step passes through the definition of a new
matrix called CoverageTot, computed for each D2 and
with size [𝑛𝑛 × 𝑞𝑞ℎ]. It is filled with values 1 whenever all
the A1 markers are covered. Their coverage is verified
looking at the sum of satisfaction values for the A2s
contributing to the second level architecture under cycle.
This way, since the first level architecture ensures the
satisfaction of functionalities markers, if all markers of
such first level architecture are satisfied by the
“assembly” of the second level architectures, it means
that the overall architecture for sure will be suitable for
the asked functionalities.

Step 8: Final Proposed Overall Architectures

As done for the first level, all the overall architectures
that passed the previous skimming algorithm are ranked.
This time a different parameter is used to evaluate how
much an architecture is suitable for the input
functionalities. It is called ValueArchi (Eq. 11) and it is
computed as the sum of the SatisfactionTotal values
associated to each A2 of the considered architecture:

 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑟𝑟 = � 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡)

𝑛𝑛𝐴𝐴2

𝑡𝑡=1
 (11)

𝑛𝑛𝐴𝐴2 is the number of A2s belonging to the r-th

architecture.

Step 9: Back to the MBSE Environment
The last step consists in exploiting a library of

modeled components, which represent all the A2s (leaves
of the decision tree), in an MBSE tool such as Capella.
Once the user selects the overall architecture, he/she can
directly move to Capella and work with the already
modeled components in terms of basic functions and
requirements, as in Fig. 23. It is clarified that the input
functionalities should be modeled within the System
Analysis (SA), while alternatives in the Physical

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D1,4A,12,x66775 Page 14 of 17

Architecture (PA). This way the user is forced to bridge
SA and PA passing through the Logical Architecture, in
which further considerations about how the system
should work will surely arise. Therefore, the tool can also
be used to evaluate if changes in the required behaviour
of the system influence the components selection and
how, suggesting the architecture which suits to the needs.

Fig. 23. Example of alternatives modeling in Capella

4.3 Validation and Simulation results

Several simulations have been conducted to assess the
goodness of the selected architectures and their ranking.
For the one here presented, the Guidance Navigation and
Control (GNC), the Propulsion, the Electric Power
Subsystem (EPS) and the Telemetry Tracking and
Command (TT&C) subsystems have been considered,
each one characterized by several decisions and
alternatives which can be consulted in the decision trees
in Appendix A; small satellites technologies have been
explored and markers have been assigned to them. Four
functionalities are used for this simulation:

- F1 = Perform continuous imaging of a debris.
- F2 = Execute relative manoeuvres.
- F3 = Transmit large data files to ground.
- F4 = Execute transfer to operative orbit.

F1 and F2 are contemporary, and more importance is
assigned to them with respect to F3 and F4, therefore
𝒗𝒗𝒊𝒊𝒊𝒊𝒊𝒊 = [0 1 0 0]. The Sparsity Factor is set to 1 and the
Weighted Sum Method (WSM) has been used to solve
the decision matrices.

The results related to the Level 1 architectures
selection are reported in Fig. 24. The horizontal axis
reports a four-digit number indicating the architecture:
the first digit is the alternative of the first decision, the
second digit is the alternative of the second decision and
so on up to the fourth first level decision. The diagram
reports the ranked 𝐽𝐽 values of each architecture,
computed as the average between the two Performance
Scores values. The diagram in Fig. 25 reports the same
ranking values sorted from the highest to the lowest.

The tool output after Step 5 is reported in Fig. 26 and
the updated sorting in Fig. 27. Eight Final Proposed
Architectures are downselected, while the remaining
ones have zero values because of their inability to satisfy

all the functionalities markers. The best L1 architecture
suggested by the tool is the one with indexes 1-1-2-1
composed by 3-axis stabilization, chemical propulsion,
solar panels + batteries and high gain antenna; the
selected Level 1 architecture is coherent with what
expected by functionalities.

Fig. 24. Level 1 Architectures Ranking Values

Fig. 25. Sorted Level 1 Architectures Ranking Values

Fig. 26. Selected Level 1 Architectures Ranking Values

Fig. 27. Sorted Selected Level 1 Architectures Ranking

Values

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D1,4A,12,x66775 Page 15 of 17

Choosing the Level 1 architecture with the highest
ranking, that is the 1-1-2-1, the output coming from the
second part of the algorithm is shown in Fig. 28. Four
diagrams are reported, one for each first level alternative.
Each red dot represents the ValueArchi of a second level
architecture related to the alternative it belongs. It is
recalled that whenever the number of L2 architectures
exceeds the total number of combinations, it means that
the tool is selecting more than one A2 for a D2.

Fig. 28. Level 2 Architectures Ranking

Selecting the best Level 2 architecture for each Level

1 alternative, the overall architecture in Table 2 is
obtained. Results are satisfactory, indeed as example the
reaction wheels are selected due to the consistent slewing
manoeuvres requirements expressed in the form of
marker by input functionalities; another actuator is of
course needed to desaturate it, however the tool still does
not implement a marker or a step that includes such kind
of finer considerations, which can be a step further for a
future enhancement of the algorithm.

Table 2. Overall Architecture

 L1 L2 D21

L2
D22
#1

L2
D22
#2

D11 1 = 3-AXIS 2 = RW 1=ST 2=SS
D12 1 = CHEM 1=MONO - -

D13 2=SP+BATT 2=BM+WF 1=Ni
-Cd -

D14 1 = HGA 1=PATCH - -
RW = Reaction Wheels, ST = Star Trackers, SS = Sun Sensors, CHEM =
Chemical Propulsion, MONO = Monopropellant, SP + BATT = Solar Panels +
Batteries, BM+WF = Body Mounted + Wings Fixed, Ni-Cd = Nickel-Cadmium,
HGA = High Gain Antenna, PATCH = Patch Antenna

The proposed overall architecture is coherent with the

requests and the tool provides reliable results, embracing
a casuistry rather than a specific mission. As the number
of input functionalities is increased, the tool can converge
to precise needs of a particular scenario, getting a
“tailored” output for it. A limit is related to the substantial
solutions changing with the tool-embedded tree markers,
therefore requiring a refinement to cover more system
aspects associating precise meanings to them. The best

way to exploit such preliminary version of the tool is to
associate it to some quantitative analysis and architecture
design. The MBSE environment should also be targeted
to exploit all the outputs, as it improves the system
thinking providing a natural terrain to experiment with
functional analysis having a set of selected components.

5. Results and Discussion

The research conducted for this work set out to
improve small satellites design lifecycle using an MBSE
solution to assess benefits and limits, associated to a
decision-making tool for preliminary architecture
automated selection. The precise syntax and semantics of
the ARCADIA language, merged with the Capella tool,
allow to express complex concepts and articulated
architectures of a small satellite in a concise and intuitive
way, coherently with all systems engineering practices,
also providing strong basis for the on-board software
development. The methodology accompanies systems
engineers in their definition from the very high-level
mission objectives up to the components definition,
guaranteeing consistency among levels and providing a
clear vision of the entire system to any involved team
member and/or stakeholder. An extension of MBSE has
also been discussed by introducing a decision-making
algorithm for the selection of one or more preliminary
architectures, intended to be used in the feasibility study
of small satellites missions when it is difficult to reduce
the number of design alternatives due to the highly
qualitative domain. The tool has been validated and
results are promising, highlighting its ability to skim the
architectures basing on the inputs provided.

The work related to the MBSE approach presents
some limitations that can also be interpreted as future
works. Firstly, the study excluded the parameterization
of the whole architecture model and a consequent
interface with an analytical and numerical tool to run
simulations. The nearest ARCADIA concept to such
parametrization is the adoption of Class diagrams to
model quantities exchanged between elements and to
have a data repository too. Interfacing Capella with other
engineering software could further enhance the overall
system design and team working, moving toward a
digital twin. In parallel, a formalization of the presented
AIV/AIT plan modeling in terms of syntax, semantics
and dedicated diagrams within the tool represents an
open point for a research study.

The prototype version of the decision-making tool
opens the road to many future developments. Firstly, the
embedded decision tree can be improved increasing its
details and revising the assigned markers using data
mining techniques that exploit a statistical set of data
built up from the literature information on past concluded
space missions, addressing a more precise markers
matrices filling. Also, new blocks can be introduced to
the current algorithm such as a cross-relation block to

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D1,4A,12,x66775 Page 16 of 17

evaluate how the selection of a particular component
influences the others, being careful to not stiffen the tool
introducing too much constraining conditions. Other
interesting developments concern the introduction of
sizing blocks which implement mission analysis and
basic computations of subsystems parameters to get as
output a preliminary quantitative sizing too. Such blocks
could be used to add some more decision-making
conditions expanding the components selection to an
available catalogue, leading to a more complete output.

6. Conclusions

Although MBSE still has many social hurdles to
overcome, the authors expect a gradual awareness from
the space community about the benefits a system design
lifecycle can gain from it, as demonstrated in this work.
Interfacing MBSE solutions with intelligent tools such as
the prototype one developed for this paper represents a
way to overcome the stringent requirements asked by the
new complex space systems and to face up the less
relaxed mission development times required by the
incoming New Space Economy.

Appendix A (Decision Trees)

Fig. 29. Decision Tree of GNC (ACT = Actuators, SENS

= Sensors)

Fig. 30. Decision Tree of Propulsion Subsystem (CHEM =

Chemical, ELEC = Electric, ALT = Alternatives)

Fig. 31. Decision Tree of EPS (SOL PAN = Solar Panels,

BATT = Batteries, ALT = Alternatives)

Fig. 32. Decision Tree of TT&C (HGA = High Gain Antenna,

LGA = Low Gain Antenna, ALT = Alternatives)

References

[1] Jean-Luc Voirin. Conception architecturale des

systèmes basée sur les modèles avec la méthode
Arcadia. Vol. 3. ISTE Group, 2018, pp. 33-34.

[2] Dov Dori. “Why significant UML change is
unlikely”. In: Communications of the ACM 45.11
(2002), pp. 82-85.

[3] Harald Eisenmann. “MBSE has a good start; requires
more work for sufficient support of systems
engineering activities through models”. In: Insight
18.2 (2015), pp. 14-18.

[4] Todd Bayer. “Is MBSE helping? Measuring value on
Europa Clipper”. In: 2018 IEEE Aerospace
Conference. IEEE. 2018, pp. 1-13.

[5] Wolahan A. Biesbroek. R. Innocenti L. Morales
Serrano S. and de Koning H-P. “Model Based
Systems Engineering Applied to ESA’s e.Deorbit
Mission”. In: 2017.

[6] Jose Lorenzo Alvarez et al. “Best Practices for Model
Based Systems Engineering in ESA Projects”. In:
2018 AIAA SPACE and Astronautics Forum and
Exposition. 2018, p. 5327.

[7] Jose Lorenzo Alvarez et al. “Model-based system
engineering approach for the Euclid mission to
manage scientific and technical complexity”. In:
Modeling, Systems Engineering, and Project
Management for Astronomy VII. Vol. 9911.
International Society for Optics and Photonics. 2016,
p. 99110C.

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.
Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D1,4A,12,x66775 Page 17 of 17

[8] Sara C Spangelo et al. “Model based systems
engineering (MBSE) applied to Radio Aurora
Explorer (RAX) CubeSat mission operational
scenarios”. In: 2013 IEEE Aerospace Conference.
IEEE. 2013, pp. 1-18.

[9] J Guo, EKA Gill, and S Figari. “Model Based
Systems Engineering to support the development of
nano satellites”. In: IAC. IAF. 2014, pp. 1-10.

[10] Aerospace Corporation. First Aerocubes defined
using MBSE now in orbit. url:
https://aerospace.org/story/first-aerocubes-defined-
using-mbse-noworbit, (accessed: 27.06.21).

[11] Jeff A Estefan et al. “Survey of model-based systems
engineering (MBSE) methodologies”. In: Incose
MBSE Focus Group 25.8 (2007), pp. 1-12.

[12] Pascal Roques. Systems Architecture Modeling with
the Arcadia Method: A Practical Guide to Capella.
Elsevier, 2017.

[13] Stephane Bonnet, Jean-Luc Voirin, and Juan Navas.
“Augmenting requirements with models to improve
the articulation between system engineering levels
and optimize V&V practices”. In: 29.1 (2019), pp.
1018-1033.

[14] European Cooperation for Space Standardization.
“ECSS-E-ST-10-06C Space engineering - Technical
requirements specification”. In: (2009).

[15] European Cooperation for Space Standardization.
“ECSS-E-ST-10-02C Rev. 1 Space engineering -
Verification”. In: (2018).

[16] TL Saaty. “The analytic hierarchy process” McGraw
Hill International. In: New York (1980).

[17] Javeed Kittur et al. “Comparison of different
MCDM techniques used to evaluate optimal
generation”. In: 2015 international conference on
applied and theoretical computing and
communication technology (iCATccT). IEEE. 2015,
pp. 172-177.

[18] Evangelos Triantaphyllou et al. “Multi-criteria
decision making: an operations research approach”.
In: Encyclopedia of electrical and electronics
engineering 15.1998 (1998), pp. 175-186.

https://aerospace.org/story/first-aerocubes-defined-using-mbse-noworbit
https://aerospace.org/story/first-aerocubes-defined-using-mbse-noworbit

