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Abstract
We present a stability analysis of the Discontinuous Galerkin method on polygonal and poly-
hedral meshes (PolyDG) for the Stokes problem. In particular, we analyze the discrete inf-sup
condition for different choices of the polynomial approximation order of the velocity and
pressure approximation spaces. To this aim, we employ a generalized inf-sup condition with
a pressure stabilization term. We also prove a priori hp-version error estimates in suitable
norms. We numerically check the behaviour of the inf-sup constant and the order of con-
vergence with respect to the mesh configuration, the mesh-size, and the polynomial degree.
Finally, as a relevant application of our analysis, we consider the PolyDG approximation for
a 2D fluid–structure interaction problem and we numerically explore the stability properties
of the method.
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1 Introduction

It is well known that a crucial aspect involving the stability of the numerical scheme associated
with the Stokes problem is the inf-sup condition that establishes a constraint in the choice
of the velocity and pressure discrete spaces; see, e.g, [13,19]. This aspect, in the context
of polygonal methods, is still under investigation and only few results are present in the
literature; see, e.g., [2,20,29,31,33,65,68].

The Discontinuous Galerkin (DG) method handles meshes with elements of general shape
and has proved to be suited for the approximation of fluid and structure models, possibly
involving moving domains, see, e.g. [35,59]. The discrete inf-sup condition for DG methods
has been analyzed in the following works. In [29], the Local DG method for the Stokes
problem is formulated in a conservative way, by introducing the stress as unknown. Here,
meshes with hanging nodes and elements of different shape are considered, provided that
they are affinely-equivalent to an element of a fixed set of reference elements. Moreover, an
inf-sup condition and optimal order estimates are proven, when the pair of polynomials of
degree k and k − 1 is chosen for the velocity and pressure spaces. However, the formulation
requires a stability term for both the velocity and the pressure. In [54], the inf-sup condition is
proven for a pressure stabilized formulation on hexahedral meshes allowing hanging nodes,
when the pair Qk −Qk is chosen. In [31,32], the authors show the inf-sup condition for equal-
order approximation Pk for both the velocity and pressure in the case of a pressure stabilized
formulation on meshes consisting of elements of various shape, provided that each element is
affinely-equivalent to one in a fixed set of reference elements, and admitting hanging nodes.
In [53], the authors propose a mixed DG formulation without pressure stabilization for the
Stokes problem and show a priori error estimates. The inf-sup condition is proven for the pair
of spaces Qk − Qk−1 on tensor product meshes, possibly with hanging nodes. In [63], the
inf-sup condition is proven for the pairs of spaces Qk − Qk−1 and Qk − Qk−2 without any
pressure stabilization on quadrilateral and hexahedral meshes with hanging nodes; see also
[52,57,64]. Numerical tests showing the dependence of the inf-sup constants are performed
for the pairs of spaces Qk − Qk′ , with k′ = k, k − 1, k − 2. In [45], the inf-sup condition is
proven on triangular and tetrahedral meshes without any pressure stabilization term for the
pair of spaces Pk − Pk−1 employing the Brezzi-Douglas-Marini spaces. In [41], the pair of
spaces Pk − Pk−1 with the Crouzeix–Raviart elements is used to prove the inf-sup condition
on triangular meshes.

In this work, we consider the Discontinuous Galerkin method on polygonal and polyhedral
grids (PolyDG) that extends the standard DG method to polytopic meshes; see, e.g., [4–
7,11,26,28,66]. In this framework, we study the discrete stability and well-posedness for the
Stokes problem, by presenting an analysis that covers at once the two- and three- dimensional
cases. Under suitable assumptions, we prove that the inf-sup constant is independent of the
mesh size. Notwithstanding, it is not robust with respect to the polynomial degree and this
restriction propagates to the convergence analysis, with a deterioration of the convergence in
terms of the polynomial degree. However, we provide numerical evidence that the discrete inf-
sup constant has a much milder dependence on the polynomial degree in practice. Moreover,
the mesh assumptions seem to be too restrictive and, in fact, the method results to be inf-
sup stable also for pathological configurations. In the two-dimensional case, we numerically
assess the robustness of the inf-sup constant with respect to the mesh size and the polynomial
degree for different types of mesh elements, including elements with degenerating edges,
and we numerically estimate the order of convergence to the mesh size and the polynomial
degree.
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Besides, with the aim of further exploring the relevance of our stability analysis, we
consider a fluid–structure interaction (FSI) problem where both the Stokes and the elasto-
dynamics equations are solved based on employing the PolyDG method. In fact, it is well
known that the study of FSI problems is of paramount importance in many engineering
and biomedical applications; see, e.g., [17,40,47,51,61,67], where a fluid, for instance mod-
eled via the Stokes equations, interacts with a structure, modeled via the elastodynamics
equations. Indeed, to correctly model such problems, ad-hoc techniques are mandatory to
deal with the movement of the structures. A classical strategy to overcome this issue is the
employment of the Arbitrary Lagrangian Eulerian (ALE) approach. It consists in deforming
the fluid grid according to the structure displacement, yet maintaining a “honouring” mesh
at the fluid–structure interface and generating an arbitrary deformation of the elements in
the interior of the fluid mesh; see, e.g., [34,46,60]. Another way that preserves the alignment
of the fluid and structure grids at the interface is to use approaches based on remeshing
and mesh-adaptation techniques; see, e.g., [16,62]. A different category of approaches are
based on employing unfitted meshes that allow to keep the fluid grid fixed in time, while
the structure mesh is free to move; see, e.g., [1,3,14,15,22,30,38,39,42,43,49,50,69]. Often,
this requires the handling of polygonal and polyhedral elements appearing in the fluid mesh,
e.g., due to the intersection between the fluid and structure elements, and in the solid mesh,
e.g., due to the presence of hanging nodes; see, e.g., [8,12]. For this kind of approaches, it
is mandatory that the underlining discretization methods can robustly and efficiently support
meshes made of arbitrarily shaped elements. In this respect, a deep understanding of the
stability properties of the numerical scheme with respect to possibly pathological meshes is
of crucial importance.

The paper is organized as follows. Section 2 introduces the transient Stokes problem
and its PolyDG approximation. In Sect. 3, we prove the well-posedness of the PolyDG
approximation of the (stationary) Stokes problem, with a particular emphasis to the discrete
inf-sup condition. In particular, in Sect. 4 we estimate the discrete inf-sup constant and
numerically evaluate it for different choices of the discrete velocity and pressure spaces and
for different grids. Section 5 is devoted to the proof of a priori error estimates of the Stokes
problem. In Sect. 6, we introduce a fluid–structure interaction problem and we present its
fully-discrete PolyDG approximation. In Sect. 7 we show some numerical results for the
Stokes and FSI problems. Finally, in Sect. 8, we draw some conclusions.

In the sequel, the notation � and � means that the inequalities are valid up to multiplica-
tive constants that are independent of the discretization parameters, i.e., the mesh size and
the polynomial approximation degree but might depend on the physical parameters of the
underlying problem as well as on the shape-regularity constants of the underlying mesh; cf.
Sect. 3.1 below.

2 The Transient Stokes Problem

Having in mind the PolyDG discretization of FSI problems as a reference application, in
this section we consider the transient Stokes problem which reads as follows: given a final
time T > 0, f a (regular) forcing term, and μ and ρ the viscosity and density of the fluid,
find the velocity u = u(t) and the pressure p = p(t) such that, for all t ∈ (0, T ],

ρ∂tu − μΔu + ∇ p = f in Ω, (1a)

∇ · u = 0 in Ω, (1b)
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u = 0 on ∂Ω. (1c)

Problem (1) is supplemented with sufficiently regular initial conditions u(x, 0) = u0(x) inΩ .
To guarantee the well-posedness of the problem, we prescribe that p ∈ L2

0(Ω), where L2
0(Ω)

is the space of L2(Ω) functions with zero average over Ω .
We introduce the functional spaces

V = {v ∈ [H1(Ω)]d , d = 2, 3, such that v|∂Ω = 0}
and Q = L2

0(Ω) and endow them with the norms

‖v‖V := ‖μ 1
2 ∇v‖L2(Ω) and ‖q‖Q := ‖q‖L2(Ω).

The weak formulation of problem (1) reads as follows: find (u, p) ∈ V × Q, such that, for
all t ∈ (0, T ],

(ρ∂tu, v)Ω + a(u, v) + b(p, v) − b(q, u) = ( f , v)Ω ∀(v, q) ∈ V × Q, (2)

where

a : V × V → R, a(u, v) =
∫

Ω

μ∇u : ∇v, b : Q × V → R, b(p, v) = −
∫

Ω

p∇ · v,

and (·, ·)Ω denotes the L2-inner product over the domain Ω . It is well-known that the bilinear
form b(·, ·) satisfies a continuous inf-sup condition; see, e.g., [13]. More precisely, there exists
a universal positive constant depending only on Ω such that, to all q ∈ L2

0(Ω), we associate
a function vq ∈ V satisfying ∇ · vq = q and

β‖vq‖V ≤ ‖q‖L2(Ω). (3)

2.1 PolyDG Semi-Discrete Approximation of the Transient Stokes Problem

First, we introduce the necessary notation and key analytical results required for the definition
and analysis of PolyDG semi-discrete approximation of the transient Stokes problem.

We introduce a mesh Th composed of polytopic elements K of arbitrary shape. We indicate
with hK the diameter of the element K . We define an interface to be either the intersection of
the (d −1)-dimensional facets of two neighboring elements or the intersection of the (d −1)-
dimensional facets of an element with the boundary of Ω . When d = 2, interfaces coincide
with edges and consist of line segments; in presence of hanging nodes, a single line segment
can contain more than one interface. When d = 3, we assume that each interface consists of a
general planar polygon that we assume that can be further decomposed into a set of co-planar
triangles, denoted as faces. With this notation, we collect all the (d −1)-dimensional faces in
the set Fh , i.e., any face F ∈ Fh is always defined as a set of (d − 1)-dimensional simplices
(line segments or triangles); cf. [27,28]. We also decompose the faces Fh into Fh = F i

h ∪Fb
h ,

where F i
h denotes the set of interior faces and Fb

h denotes the set of boundary faces. To avoid
technicalities, in the following we assume that ρ and μ are piecewise constant over the mesh.

For given integers �, m ≥ 1, we introduce the DG finite element spaces

V�
h = {v ∈ [L2(Ω)]d : v|K ∈ [P�(K )]d ∀K ∈ Th},

Qm
h = {q ∈ L2

0(Ω) : q|K ∈ Pm(K ) ∀K ∈ Th},
where Pk(K ), k ≥ 1, denotes the space of polynomials defined over the element K ∈ Th

of total degree at most k. In practice, the shape functions and the degrees of freedom are
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directly generated on the physical element K ∈ Th with the “bounding box” technique; see,
e.g., [28].

On any interior face F ∈ F i
h and for sufficiently regular scalar, vector-valued and sym-

metric tensor-valued functions q , v and T , respectively, we define the average and jump
operators as

{v} = 1

2

(
v+ + v−) , �q� = q+n+ + q−n−,

{T } = 1

2

(
T+ + T−) , �v� = v+ � n+ + v− � n−,

where q±, v± and T± denote the traces of q , v and T on F taken within the interior of K ±
and where v � n = (vnT + nvT )/2. The jump �v� is a symmetric tensor-valued function.
On a boundary face F ∈ Fb

h , we set analogously

{v} = v, �q� = qn,

{T } = T , �v� = v � n.

We also introduce the L2-inner products over a domain Z ⊂ Rd , d = 1, 2, 3, and a face
F ∈ Fh with the shorthand notation (·, ·)Z and (·, ·)F , respectively.

Given s > 1/2, associated with any mesh Th , we introduce the broken Sobolev space
Hs(Th) = {

v ∈ L2(Ω) | v|K ∈ Hs(K ) for all K ∈ Th
}
. The standard Dirichlet trace oper-

ator is well defined on the skeleton of the mesh for functions in Hs(Tn). We define the
stabilization functions σv ∈ L∞(Fh) and σp ∈ L∞(Fh) as follows.

Definition 1 We define the functions σv : Fh → R and σp : F i
h → R as

σv|F =

⎧⎪⎪⎨
⎪⎪⎩

γv max
K +,K −

{
�2μ

hK

}
F ∈ F i

h,

γv

�2μ

hK
F ∈ Fb

h ,

σp|F = γp min
K +,K −

{
hK

m

}
F ∈ F i

h,

where γv and γp are two universal positive constants, and � and m denote the polynomial
approximation degrees for the velocity and the pressure, respectively.

Next, we introduce three bilinear forms that are instrumental for the construction of the DG
method. More precisely, we define

ah(u, v) =
∫

Ω

μ∇hu : ∇hv −
∑

F∈Fh

∫
F

μ{∇hu} : �v� (4a)

−
∑

F∈Fh

∫
F

μ�u� : {∇hv} +
∑

F∈Fh

∫
F

σv�u� : �v�, (4b)

bh(p, v) = −
∫

Ω

p∇h · v +
∑

F∈Fh

∫
F
{p I} : �v�, (4c)

sh (p, q) =
∑

F∈F i
h

∫
F

σp�p� · �q�, (4d)

where ∇h is the piecewise broken gradient operator. The bilinear form sh (p, q) represents the
pressure stabilization term and σp plays the role of penalty parameter. Given f ∈ [L2(Ω)]d ,
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the semi-discrete PolyDG approximation of (2) reads as follows: for any t ∈ (0, T ], find
(uh, ph) ∈ V�

h × Qm
h such that

(ρ∂tuh, vh)Ω + ah (uh, vh) + bh (ph, vh) − bh (qh, uh) + sh (ph, qh) = ( f , vh)Ω
(5)

for all (vh, qh) ∈ V�
h × Qm

h .

3 Well-Posedness of the Stationary Stokes Problem

In this section, we prove the well-posedness of problem (5) in the stationary case making use
of the Banach–Nečas–Babuška theorem. To this aim, we first introduce

Bh((u, p), (v, q)) = ah(u, v) + bh(p, v) − bh(q, u) + sh(p, q),

F((v, q)) = ( f , v)Ω, (6)

and re-write the stationary discrete Stokes problem as follows: find (uh, ph) ∈ V�
h × Qm

h
such that

Bh((uh, ph), (vh, qh)) = F((vh, qh)) ∀(vh, qh) ∈ V�
h × Qm

h . (7)

On the product space V�
h × Qm

h , we define the norm

‖(vh, qh)‖2
E = ‖vh‖2

V�
h
+ ‖qh‖2

Qm
h

∀(vh, qh) ∈ V�
h × Qm

h , (8)

where

‖vh‖2
V�

h
=
∑

K∈Tk

‖μ1/2∇hvh‖2
L2(K ) + ‖σ 1/2

v �vh�‖2
L2(Fh) ∀vh ∈ V�

h,

‖qh‖2
Qm

h
= ‖qh‖2

L2(Ω)
+ |qh |2J , |qh |2J = sh(qh, qh) ∀qh ∈ Qm

h .

(9)

Before presenting the theoretical analysis, we introduce some mesh assumptions and technical
results that will be needed in the forthcoming analysis.

3.1 Mesh Assumptions and Preliminary Results

Following [5,24,28], we introduce the notion of a family of polytopic-regular meshes Th . To
this end, we write τKF to denote a d-dimensional simplex contained in K ∈ Th , which shares
a specific face F ⊂ ∂K , F ∈ Fh .

Definition 2 A family of polytopic meshes {Th}h is said to be polytopic-regular if, for any
h and K ∈ Th , there exists a set of non-overlapping (not necessarily shape-regular) d-
dimensional simplices {τKF }F⊂∂K contained in K , such that, for all faces F ⊂ ∂K , hK �
|τK F |
|F | .

This definition is very general as it does not require any restriction on either the number of
faces per element or their relative measure. In particular, it allows the size of a face F ⊂ ∂K
to be arbitrarily small compared to the diameter of the element hK it belongs to, provided that
the height of the corresponding simplex τKF is comparable to hK ; cf. [27] for more details.

In order to state suitable approximation results, cf. Lemmata 2 and 3 below and [28],
we introduce a shape-regular covering T #

h = {TK } of Th defined as a set of shape-regular
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d-dimensional simplices TK , such that, for each K ∈ Th , there exists a TK ∈ T #
h such that

K � TK .
We introduce the following assumption on the mesh Th ; cf. [27,28].

Assumption 3.1 Given {Th}h , h > 0, we assume that the following properties are uniformly
satisfied:

A.1 Th is uniformly polytopic-regular in the sense of Definition 2;
A.2 we assume that there exists a shape-regular covering T #

h of Th such that, for each pair
K ∈ Th , K ∈ T #

h with K ⊂ K, the following properties are fulfilled: i) hK � hK and ii)
maxK∈Th card{K ′ ∈ Th : K ′ ∩ K �= ∅,K ∈ T #

h , K ⊂ K} � 1;
A.3 for any pair of elements K , K ′ ∈ Th sharing a face F ∈ Fh , we have: hK � hK ′ and

hK ′ � hK .

The local bounded variation hypothesis A.3 has been introduced to avoid technicalities.
Removing this hypothesis would render some forthcoming results more complicated and
with a loss of local bounds; see the proofs of Proposition 1 and Corollary 1.

The following trace-inverse inequality is valid; see, e.g., [27, Lemma 11].

Lemma 1 (Polynomial trace inverse inequality) Let Assumption A.1 be valid. For each K ∈
Th, the following trace-inverse inequality is valid:

‖v‖2
L2(∂K )

� �2

hK
‖v‖2

L2(K )
∀v ∈ P� (K ) , � ≥ 1.

Let E : Hs(Ω) → Hs(Rd), s ≥ 0, be the Stein extension operator for Sobolev spaces
on Lipschitz domains introduced in [56, Chapter 3]. The operator E satisfies the following
property: given a domain Ω with Lipschitz boundary, for all q ∈ Hs(Ω),

E(q)|Ω = q, ‖Eq‖Hs (Rd ) � ‖q‖Hs (Ω). (10)

For vector-valued functions, the Stein extension operator is defined component-wise. We
recall the following approximation result; see, e.g., [24,27,28] for a detailed proof, which
generalizes the standard arguments for standard geometries [9,10].

Lemma 2 (Best polynomial approximation in Sobolev norms) Let Assumption A.2 be valid.
Given the Stein extension operator E in (10), let v ∈ L2 (Ω) be such that (Ev) |K ∈ Hr (K),
for some r ≥ 0. Then, there exists a sequence of polynomial approximations Π�

K v ∈ P�(K )

of v, K ∈ Th and � ∈ N of v satisfying

‖v − Π�
K v‖Hq (K ) �

hmin {�+1,r}−q
K

�r−q
‖Ev‖Hr (K), 0 ≤ q ≤ r ,

where K ∈ T #
h is the d-simplex of T #

h such that K ⊂ K.

Based on employing the above result, we define the global polynomial approximation operator
Π�v as (Π�v)|K = Π�

K (v|K ) ∀K ∈ Th . For vector-valued functions, the operators Π�
K

and Π� are defined component-wise and are still denoted by Π�
K and Π�, respectively. We

have the following approximation bound in the energy norm (9).

Lemma 3 (Best polynomial approximation in the DG norm) Let Assumption 3.1 be valid.
Let v ∈ [L2 (Ω)]d be such that, for some r ≥ 1, (Ev) |K ∈ [Hr (K)]d for all K ∈ T #

h , r ≥ 1.
Then, we have

‖v − Π�v‖2
V�

h
�
∑

K∈Th

h2(min {�+1,r}−1)
K

�2(r−1)−1
‖Ev‖2

Hr (K).
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Finally, we recall the following continuity and coercivity bounds for the bilinear form
ah(·, ·). The proof is based upon employing the trace-inverse estimate in Lemma 1 and
standard arguments for DG methods; see, e.g., [27].

Lemma 4 (Coercivity and continuity of ah(·, ·)) Let Assumption 3.1 be valid. Then, we have

ah(vh, vh) � ‖vh‖2
V�

h
|ah(uh, vh)| � ‖uh‖V�

h
‖vh‖V�

h
∀uh, vh ∈ V�

h .

The coercivity bound is achieved provided that the penalty parameter γv in Definition 1 is
chosen sufficiently large.

3.2 Generalized inf-sup Condition

In this section, we prove a generalized inf-sup condition for the discrete bilinear form bh(·, ·)
defined in (4c). First, we need some preliminary results.

Lemma 5 (Boundedness of Π� in the energy norm (9)) Let Assumption 3.1 be valid. Then,
we have

‖Π�v‖V�
h

� �1/2‖v‖H1(Ω) ∀v ∈ V .

The proof follows using Lemma 3, AssumptionA.2, and the continuity of the Stein operator E
in (10). Further, we introduce the L2 projection operator

Π�
0 : [L2(Ω)]d −→ V�

h,
(
wh, v − Π�

0v
)

L2(Ω)
= 0 ∀wh ∈ V�

h .

We state a stability result for the projector Π�
0 , which is based on a further assumption and a

technical result; see Assumption 3.2 and Lemma 6 below, respectively.

Assumption 3.2 The decomposition {Th}h is shape-regular. Moreover, for all h > 0, each
element K of Th is p-coverable, i.e., there exist mK ∈ N overlapping shape-regular simplices
Ki , i = 1, . . . , mK , such that

dist(K , ∂Ki ) < Cas
diam(Ki )

p2 and |Ki | ≥ cas |K |,

where cas and Cas are positive constants independent of Th and K .

The following inverse estimate on shape-regular polygons can be found, e.g., in [27,
Lemma 14]. It generalizes a similar result for standard geometries; see, e.g., [55, The-
orem 4.76] and is based on Assumption 3.2. Such an assumption can be weakened; see
Remark 2 below.

Lemma 6 (H1 − L2 polynomial inverse estimate) Let Assumption 3.2 be valid. For each
K ∈ Th, the following polynomial inverse inequality is valid:

‖∇v‖2
L2(K )

� �4

h2
K

‖v‖2
L2(K )

∀v ∈ P� (K ) , � ≥ 1.

Based on employing the above result, we prove the following bound.

Lemma 7 (Stability properties of orthogonal projections) Let Assumptions 3.1 and 3.2 be
valid. Then, we have

‖Π�
0 (v − Π�v)‖V�

h
� �‖v‖V ∀v ∈ V .
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From the definition of norm (9), the proof follows using the inverse estimate in Lemma 6,
the stability of the projector Π�

0 , the polynomial approximation results in Lemma 2, and the
continuity of the Stein operator E in (10).

Remark 1 Assumption 3.2 is required in the proof of the polynomial inverse estimate of
Lemma 6. On the other hand, the suboptimality in terms of the polynomial degree in the
stability properties detailed in Lemma 7 is now due to both the inverse estimates of Lemmata 1
and 6. This propagates further in the proof of the discrete inf-sup condition, see Proposition 1
below, and consequently to the abstract convergence analysis detailed in Sect. 5 below.

Remark 2 Following the recent approach of [25], it is possible to prove the inverse estimates
in Lemmata 1 and 6 using assumptions milder than Assumptions 3.1 and 3.2. Notably,
the theory therein presented covers very general geometries, including C1-curved faces and
possibly the presence of arbitrary number of faces.

Next, we show that a generalized inf-sup condition is valid, provided that the polynomial
degrees � and m of the discrete velocity and pressure spaces satisfy m −� ≤ 1. This condition
guarantees in fact that ∇Qm

h ⊆ V�
h .

Proposition 1 (Generalized inf-sup condition for bh(·, ·)) Let Assumptions 3.1 and 3.2 be
valid and assume that the polynomial degrees � and m of the discrete velocity and pressure
spaces satisfy m − � ≤ 1. Then,

sup
0 �=vh∈V�

h

bh(qh, vh)

‖vh‖V�
h

+ |qh |J ≥ βh‖qh‖L2(Ω) ∀qh ∈ Qm
h ,

where the discrete inf-sup constant behaves as

βh = O

(
β

max
{
�1/2(1 + �1/2), m1/2 + 1

}
)

. (11)

Proof We provide the main steps of the proof. Upon employing element-wise integration by
parts, the bilinear form bh(·, ·) can be rewritten as

bh(qh, vh) =
∫

Ω

∇hqh · vh −
∑

F∈F i
h

∫
F
�qh� · {vh} ∀qh ∈ Qm

h , vh ∈ V�
h .

Recall the continuous inf-sup condition (3): there exists β > 0 such that, to each qh ∈ Qm
h ⊂

L2
0(Ω), we associate vqh ∈ V with

∇ · vqh = qh, β‖vqh ‖V ≤ ‖qh‖L2(Ω). (12)

Then, applying element-wise integration by parts, using that �vqh � = 0 for any F ∈ Fh , and
observing that ∇hqh ∈ V�

h if � ≥ m − 1, we obtain

‖qh‖2
L2(Ω)

=
∫

Ω

qh∇ · vqh = −
∫

Ω

∇hqh · vqh +
∑

F∈Fh

∫
F
�qh� : {vqh }

= −bh

(
qh,Π�vqh

)
︸ ︷︷ ︸

A

+
∫

Ω

∇hqh · (Π�vqh − vqh )︸ ︷︷ ︸
B

+
∑

F∈Fh

∫
F
�qh� · {vqh − Π�vqh }

︸ ︷︷ ︸
C

.
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We bound the three terms on the right-hand side separately. As for the term A , thanks to
Lemma 5 and (12), we get

A ≤
∣∣bh

(
qh,Π�vqh

)∣∣
‖Π�vqh ‖V�

h

‖Π�vqh ‖V�
h

� �1/2

β
‖qh‖L2(Ω) sup

vh∈V�
h\{0}

bh (qh, vh)

‖vh‖V�
h

.

As for the term C , using the Cauchy–Schwarz inequality, the definition of σp in Definition 1,
Assumption A.3, the continuous trace inequality and Lemma 2 with r = 1, and m − � ≤ 1,
we obtain

C � |qh |J
⎛
⎝∑

K∈Th

m

hK
‖vqh − Π�vqh ‖2

L2(∂K )

⎞
⎠

1/2

� 1

β
|qh |J ‖qh‖L2(Ω),

where we have also used the continuity of the Stein extension operator E in (10), Assump-
tion A.3, and the continuous inf-sup condition (12). As for the term B , using the definition
of L2 projector, the fact that ∇hqh ∈ V�

h , an integration by parts, and, proceeding as before,
we write

B = bh(qh,Π�
0 (Π�vqh − vqh )) +

∑
F∈F i

h

∫
F
�qh� · {Π�

0 (Π�vqh − vqh ))}

� �

β

⎛
⎝ sup

vh∈V�
h\{0}

bh (qh, vh)

‖vh‖V�
h

⎞
⎠ ‖qh‖L2(Ω) + m1/2

β
|qh |J ‖qh‖L2(Ω).

Collecting the previous estimates, we arrive at

‖qh‖L2(Ω) � 1

β
max

{
�1/2(1 + �1/2), m1/2 + 1

}
⎛
⎝ sup

vh∈V�
h\{0}

bh (qh, vh)

‖vh‖V�
h

+ |qh |J
⎞
⎠ .

The assertion follows with βh as in (11). ��
Remark 3 The constant of the generalized inf-sup condition stated in Proposition 1 is uniform
with respect to the mesh size but depends on the polynomial approximation degrees � and
m; see (11). This implies that βh ↘ 0 as �, m ↗ +∞. In Sect. 4, we shall present some
computations to assess numerically the sharpness of the inf-sup constantβh , for different mesh
configurations and polynomial orders. We will find out that Assumption 3.2 does not seem
necessary in the proof of Proposition 1; see Remark 2. The analysis with milder assumptions
is under investigation.

3.3 Well-Posedness of the Discrete Stokes Problem via the Banach–Necas–Babuška
Theorem

In this section, we show that (7) is well-posed. To this aim, we first notice that

Bh((uh, ph); (uh, ph)) = ah(uh, uh) + bh(ph, uh) − bh(ph, uh) + sh(ph, ph)

� ‖uh‖2
V�

h
+ |ph |2J ∀ (uh, ph) ∈ V�

h × Qm
h ,

(13)

provided that Assumption 3.1 is valid and the stabilization constantγv in Definition 1 is chosen
sufficiently large. The following result implies the well-posedness of the discrete problem (7),
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based on employing the Banach–Nečas–Babuška theorem; see [36, Theorem 2.6] and [37,
Theorem 25.9], cf. also e.g, [32, Theorem 1.1 and Sect. 6.1.2.3].

Lemma 8 Under the hypotheses of Proposition 1 and assuming that the stabilization con-
stant γv appearing in Definition 1 is chosen sufficiently large, there hold:

1. there exists α > 0 such that

inf
(uh ,ph)∈V�

h×Qm
h

sup
(vh ,qh)∈V�

h×Qm
h

Bh((uh, ph); (vh, qh))

‖(uh, ph)‖E‖(vh, qh)‖E
≥ α; [BNB(i)]

2. for any (uh, ph) ∈ V�
h × Qm

h such that

Bh((uh, ph), (vh, qh)) = 0 for all (vh, qh) ∈ V�
h × Qm

h , [BNB(ii)]

then (uh, ph) = (0, 0).

Proof We first show [BNB(i)]. Given (uh, ph) ∈ V�
h × Qm

h , we have

Bh((uh, ph); (uh, ph)) ≤ M‖(uh, ph)‖E, (14)

where ‖·‖E is defined as in (8) and

M = sup
(vh ,qh)∈V�

h×Qm
h

(vh ,qh)�=(0,0)

Bh((uh, ph); (vh, qh))

‖(vh, qh)‖E
.

Using (13) and (14), we get

‖uh‖2
V�

h
+ |ph |2J � Bh((uh, ph); (uh, ph)) ≤ M‖(uh, ph)‖E. (15)

Thanks to Proposition 1 and the fact that

bh(ph, vh) = Bh((uh, ph), (vh, 0)) − ah(uh, vh) ∀vh ∈ V�
h,

we have

βh‖ph‖L2(Ω) ≤ sup
0 �=vh∈V�

h

bh(ph, vh)

‖vh‖V�
h

+ |ph |J

= sup
0 �=vh∈V�

h

Bh((uh, ph), (vh, 0)) − ah(uh, vh)

‖vh‖V�
h

+ |ph |J

≤ sup
0 �=vh∈V�

h

|Bh((uh, ph), (vh, 0))|
‖(vh, 0)‖E

+ sup
0 �=vh∈V�

h

|ah(uh, vh)|
‖vh‖V�

h

+ |ph |J

� sup
0 �=vh∈V�

h

|Bh((uh, ph), (vh, 0))|
‖(vh, 0)‖E

+ ‖uh‖V�
h
+ |ph |J

≤ M + ‖uh‖V�
h
+ |ph |J .

Using (15), we deduce

β2
h‖ph‖2

L2(Ω)
� M2 + ‖uh‖2

V�
h
+ |ph |2J ≤ M2 + M‖(uh, ph)‖E.
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Using the definition of ‖(·, ·)‖E, (15), the above bound, and a Young’s inequality with a
positive parameter γ , we have

β2
h‖(uh, ph)‖2

E = β2
h (‖uh‖2

V�
h
+ ‖ph‖2

L2(Ω)
+ |ph |2J )

� β2
hM‖(uh, ph)‖E + β2

h‖ph‖2
L2(Ω)

� β2
h M‖(uh, ph)‖E + M2 + M‖(uh, ph)‖E

= (1 + β2
h )M‖(uh, ph)‖E + M2 ≤ γ ‖(uh, ph)‖2

E +
(

1 + (1 + β2
h )2

γ

)
M2.

Thus, we write

(β2
h − γ )‖(uh, ph)‖2

E �
(

1 + (1 + β2
h )2

γ

)
M2.

Choosing γ to be equal to β2
h/2, we arrive at

‖(uh, ph)‖2
E �

(
1

β2
h

+ (1 + β2
h )2

β4
h

)
M2 � 1

β4
h

M2,

i.e., ‖(uh, ph)‖E � αM with α = O(β−2
h ). The assertion follows from the definition of M.

Next, we observe that, provided that the stabilization constant γv appearing in Definition 1
is chosen sufficiently large and since we are in finite-dimensional setting with trial and test
spaces having the same dimension, [BNB(ii)] is a consequence of [BNB(i)], and the proof
is complete. ��
Summarizing, we eventually state the main result of the section, namely the well-posedness
of problem (7).

Theorem 1 Under the hypotheses of Proposition 1 and assuming that the stabilization con-
stant γv appearing in Definition 1 is chosen sufficiently large, [BNB(i)] and [BNB(ii)] of
Lemma 8 are valid. The constant α in ([BNB(i)]) satisfies α = O(β−2

h ), where βh is defined
as in Proposition 1. Therefore, thanks to Banach–Nečas–Babuška theorem, the discrete prob-
lem (7) is well-posed.

Remark 4 The constant α in ([BNB(i)]) deteriorates as the polynomial degree grows. This is
due to the use of the polynomial inverse estimates, which yields a discrete inPf-sup constant
depending on the polynomial degree.

4 Numerical Evaluation of the Generalized inf-sup Constant

Denote the shape functions of V �
h and Qm

h by
{
ϕi

}Nu
i=1 and

{
ψ j
}Np

j=1, and the corresponding

number of degrees of freedom by Nu and Np , respectively. We write uh = ∑Nu
j=1 u jϕi and

ph = ∑Np
j=1 p jψi . The algebraic form of the stationary Stokes problem corresponding to the

problem in (5) reads [
Ah BT

h
Bh −Sh

] [
U
P

]
=
[
Fh
0

]
,

where U ∈ RNu and P ∈ RN p are the vectors collecting the expansion coefficients {u j } j

and {p j } j , respectively, whereas Ah , Bh , Sh , and fh denote the matrix representations of
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the discrete bilinear forms in (4b)–(4d) and right-hand side in (5). We recall that the discrete
inf-sup condition given in Proposition 1 is given by

sup
0 �=vh∈V�

h

bh(qh, vh)

‖vh‖V�
h

+ η |qh |J ≥ βh‖qh‖L2(Ω) ∀qh ∈ Qm
h .

Here, we have added a parameter η = {0, 1} to address numerically the case where no pres-
sure stabilization is added in the discrete formulation. Introduce the generalized eigenvalue
problem

Ghx = λThx, (16)

with Gh = Bh A−1
h BT

h + ηSh , Th = Mh , where Mh is the mass matrix. We distinguish two
cases:

– If η = 1 (pressure stabilization), the discrete inf-sup constant satisfies

βh〈Mhq, q〉1/2 ≤ 〈Bh A−1
h BT

h q, q〉1/2 + 〈Shq, q〉1/2 ∀q ∈ RNp , q �= 1.

By noting that a + b ≤
(√

a + √
b
)2 ≤ 2a + 2b, we have

β2
h 〈Mhq, q〉 ≤ 2〈Bh A−1

h BT
h q, q〉 + 2〈Shq, q〉

= 2
〈(

Bh A−1
h BT

h + Sh

)
q, q

〉

∀q ∈ RNp , q �= 1

and hence

β2
h = min

q∈RN p

q �=1

2
〈(

Bh A−1
h BT

h + Sh

)
q, q

〉

〈Mhq, q〉 = min
q∈RN p

q �=1

2〈Ghq, q〉
〈Thq, q〉 .

The discrete inf-sup condition we used above is only valid in Qm
h , which means for

pressures qh with zero mean value. This allows us to exclude q = 1 in the minimum
above. Moreover, introduce

F(q) := 〈Ghq, q〉
〈Thq, q〉 .

By linearity, we have F(k1) = F(1). This allows us also to exclude q = k1 in the
minimum above as well.

– If η = 0 (no pressure stabilization), the discrete inf-sup constant satisfies

βh = min
q∈RN p

q �=1

max
v∈RNu
v �=0

|〈q, Bhv〉|
〈Ahv, v〉1/2〈Mhq, q〉1/2

= min
q∈RN p

q �=1

1

〈Mhq, q〉1/2 max
w∈RNu

w=A1/2
h v �=0

∣∣∣〈q, Bh A−1/2
h w〉

∣∣∣
〈w,w〉1/2

= min
q∈RN p

q �=1

1

〈Mhq, q〉1/2 max
w∈RNu
w �=0

∣∣∣〈A−1/2
h BT

h q,w〉
∣∣∣

〈w,w〉1/2 .
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Fig. 1 From top to bottom: triangular meshes with Nel = 16, 68, 124 (from left to right); regular polygonal
meshes with Nel = 5, 20, 60 (from left to right); distorted polygonal meshes with Nel = 5, 20, 60 (from left
to right); agglomerated polygonal meshes with Nel = 8, 32, 512 (from left to right)

By noting that the maximum is realized for w = A−1/2
h BT

h q, we have

β2
h = min

q∈RN p

q �=1

〈A−1/2
h BT

h q, A−1/2
h BT

h q〉
〈Mhq, q〉 = min

q∈RN p

q �=1

〈Bh A−1
h BT

h q, q〉
〈Mhq, q〉

= min
q∈RN p

q �=1

〈Ghq, q〉
〈Thq, q〉 .

By solving the discrete eigenvalue problem in Eq. (16), we have that βh ≈ minλi >0
√

λi .

To estimate numerically βh , we consider the Stokes problem on the unit square domain
Ω = (0, 1)2. We computed βh on several sequences of meshes, namely triangular, regular,
distorted, and agglomerated polygonal meshes; see Fig. 1 for an illustrative example of the
considered grids. The regular polygonal meshes have been generated via PolyMesher [58],
while the distorted polygonal ones are generated starting from a regular grid and randomly
adding grid nodes on the edges to obtain elements with a large number of possibly degen-
erating edges. The resulting elements may be non-convex. The sequence of agglomerated
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polygonal meshes are generated by agglomerating elements starting from an initial Voronoi
tessellation; see the last row of Fig. 1. To solve the generalized eigenvalue problem (16), we
employ the eigs command of Matlab.

We first investigate the behaviour of βh for fixed polynomial approximation orders for
the velocity and the pressure and varying the mesh size. In Figs. 2 and 3, we report the
computed values of βh as a function of the mesh size h for different mesh configurations and
different choices of the discrete velocity and pressure spaces Pm+k − Pm , k = 0, 1, 2, 3, 4.
In the stabilized cases η = 1, the constant βh is uniformly bounded from 0 independently of
the mesh size. This is in agreement with the result shown in Proposition 1. Furthermore, as
predicted in Proposition 1, βh depends on m for all the considered mesh configurations, at
least when m = �. From the numerical computations obtained in the no pressure stabilization
cases η = 0 with k = 1, 2, 3, 4, we draw the following conclusions: (i) βh is independent of h
for all the considered mesh configurations except for agglomerated meshes, where we can
detect a mild dependence; (ii) the dependence of βh on the velocity and pressure polynomial
approximation degrees is stronger than in the stabilized case.

Next, we investigate the behaviour of βh by varying the polynomial approximation orders
for the velocity and the pressure spaces, and fixing the computational mesh. In Fig. 4, we
report the computed value of βh as a function of the polynomial approximation degree m
for different choices of the velocity and pressure spaces Pm+k − Pm , k = 0, 1, 2, 3, 4. We
set the parameter η = 1 for k = 0, 1, 2, and η = 0 for k = 1, 2, 3, 4. When η = 1, we
obtain the following results. For k = 0, i.e., � = m, the dependence of βh is in agreement
with Proposition 1: the constant βh deteriorates as m grows. Nevertheless, the estimate in
Proposition 1 is slightly suboptimal by a factor of m−1/2, as our numerical computations
suggest that βh = O(m−1/2) for all the considered mesh configurations. For k = 1, 2, on
triangular and regular polygonal meshes, βh looks independent of m, while it mildly depends
on m on irregular and agglomerated polygonal meshes. From the numerical computations
obtained in the no pressure stabilization cases η = 0, we draw the following conclusions: (i)
on regular polygonal meshes, βh is independent of m for all the considered velocity-pressure
pairs Pm+k − Pm , k = 1, 2, 3, 4; (ii) on irregular and agglomerated polygonal meshes, the
behaviour of βh is less clear and we detect a mild dependence on m. By comparing the cases
Pm+k − Pm , k = 1, 2 with and without pressure stabilization, at least for the agglomerated
polygonal meshes, the dependence of βh on m is milder for the case η = 1.

Moreover, we study the behaviour of βh in the case of degenerate edges, i.e., when the
number of the edges of a polygon with fixed size increases and the size of the edges tends
to zero. In particular, we consider an initial triangular mesh with a uniform mesh size; see
Fig. 5(left). Starting from this grid, we generate a sequence of meshes by halving recursively
the edges of the element at the center of the mesh, leading to a polygon with an increasing
number of edges; see Fig. 5(middle and right). We indicate the number of the edges of the
polygon with #edges. In Fig. 6, we report the values of βh as a function of #edges for different
choices of the discrete velocity and pressure spacesPm+k −Pm , k = 0, 1, 2, with (η = 1) and
without (η = 0) pressure stabilization. The computed numerical inf-sup constant βh seems
to be independent of the size of the edges for any choice of k and the pressure stabilization
term. This indicates that Assumption 3.2 in Proposition 1 may be relaxed; see Remark 3.

Finally, we consider a sequence of grids that mimics fluid meshes typically appearing
in fluid–structure interaction applications; see Sect. 7 below. These grids are generated as
follows: first, consider a uniform regular triangular mesh of a square domain; next, carve
the domain out and get a hole inside it. For example, this hole may represent a structure
domain immersed in a fluid one. In the proximity of the hole, the resulting mesh presents
polygonal elements that may be non-convex, of arbitrary size and of anisotropic shape. We
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(a)

(b)

(c)

(d)

Fig. 2 Values of βh as function of the mesh size h for different choices of the polynomial degree for the discrete
velocity and pressure spaces Pm+k −Pm , computed solving the generalized eigenvalue problem (16). From
left to right: Pm − Pm , Pm+1 − Pm , Pm+2 − Pm . The parameter η = 1 for k = 0, 1, 2 (blue lines), and
η = 0 for k = 1, 2 (red lines) (Color figure online)

consider a slender rectangular hole placed in the center of the square domain that rotates
around its center of mass, see Fig. 7, and we study the behaviour of the discrete inf-sup
constant βh by varying the angle of rotation θ of the hole. In Fig. 8, we plot the value of
the discrete inf-sup constant as a function of the angle θ , by spanning the range [0◦, 180◦]
with step 1◦, for different choices of the discrete velocity and pressure spaces Pm+k − Pm ,
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(a)

(b)

(c)

(d)

Fig. 3 Values of βh as function of the mesh size h for different choices of the polynomial degree for the discrete
velocity and pressure spaces Pm+k −Pm , computed solving the generalized eigenvalue problem (16). From
left to right: Pm+3 −Pm , Pm+4 −Pm . The parameter η = 1 (blue lines) and η = 0 (red lines) (Color figure
online)
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(a) (b)

(c) (d)

Fig. 4 Values ofβh as function of the polynomial degree for different choices of the velocity and pressure spaces
Pm+k − Pm , k = 0, 1, 2, 3, 4 computed solving the generalized eigenvalue problem (16). The parameter
η = 1 if k = 0, 1, 2 (blue lines), and η = 0 if k = 1, 2, 3, 4 (red lines) (Color figure online)

Fig. 5 Meshes obtained with a recursive splitting of the edges of the element at the center. From left to right:
initial triangular meshes with #edges = 3; mesh at the first iteration with #edges = 6; mesh at the fourth
iteration with #edges = 48

k = 0, 1, 2, m = 1, 2, with and without the pressure stabilization term. The presence of
small or anisotropic elements only slightly deteriorates the constant βh for the nonstabilized
case (η = 0), while they seem irrelevant for the stabilized case (η = 1).

5 A Priori Error Estimates for the Stationary Stokes Problem

We introduce the spaces

X = V�
h +

(
[H2(Ω)]d ∩ [H1

0 (Ω)]d
)

, M = Qm
h + (

H1(Ω) ∩ L2
0(Ω)

)
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Fig. 6 Values of βh as function of the number of edges #edges for different choices of the polynomial degree
for the discrete velocity and pressure spaces Pm+k − Pm , computed solving the generalized eigenvalue
problem (16). From left to right: Pm −Pm , Pm+1 −Pm , Pm+2 −Pm . The parameter η = 1 for k = 0, 1, 2
(blue lines), and η = 0 for k = 1, 2 (red lines) (Color figure online)

Fig. 7 Polygonal meshes obtained by rotating the hole placed in the center of the initial triangular mesh. Small
or anisotropic elements appear. From left to right: polygonal mesh obtained for θ = 0◦; polygonal mesh
obtained for θ = 95◦; polygonal mesh obtained for θ = 136◦

Fig. 8 Values of βh as function of the angle of rotation θ for different choices of the polynomial degree for the
discrete velocity and pressure spacesPm+k −Pm , computed solving the generalized eigenvalue problem (16).
From left to right: Pm − Pm , Pm+1 − Pm , Pm+2 − Pm . The parameter η = 1 (blue lines) and η = 0 (red
lines) (Color figure online)

for the velocity and pressure, respectively. For all (u, p), (v, q) ∈ X × M, we consider the
extension of the discrete bilinear form Bh introduced in equation (6) to X × M. We endow
X × M with the energy norm

|||(v, q)|||2X×M = ‖(v, q)‖2
E +

∑
F∈Fh

‖σ−1/2
v {p I}‖2

L2(F) +
∑

F∈Fh

‖σ−1/2
v {∇hu}‖2

L2(F). (17)

We now state the main result of the section. The proof follows the steps of [32, Theorem
6.21] and classical arguments of DG methods, and is omitted for the sake of brevity.

Theorem 2 (Abstract error estimate) Let (u, p) ∈ X ×M be the solution to the steady Stokes
problem, i.e., (2) with ρ = 0. Let Assumptions 3.1 and 3.2 be valid and (uh, ph) ∈ V�

h × Qm
h ,

123



   23 Page 20 of 31 Journal of Scientific Computing            (2022) 90:23 

m − � ≤ 1, be the solution of (7). The following error estimate is valid:

‖(u − uh, p − ph)‖X×M ≤
(

1 + C

βh

)
inf

(vh ,qh)∈V�
h×Qm

h

|||(u − vh, p − qh)|||X×M

where C is the continuity constant of the bilinear form Bh(·, ·) in the norm (17) and α =
O(β2

h ) is the inf-sup constant of Theorem 1.

Finally, by employing the approximation results reported in Sect. 3 with Theorem 2, we
show the hp-version a priori error estimates.

Corollary 1 (Convergence rate in the energy norm) Let Th be a polytopic mesh and T #
h be

the corresponding covering satisfying Definition 2, the hypotheses of Theorem 2 be valid,
and m − � ≤ 1. If, for any K ∈ Th, (u, p)|K ∈ Hru (K ) × Hr p (K ) with ru ≥ 2 and rp ≥ 1,
such that for any K ∈ T #

h , K ⊂ K, (Eu, E p)|K ∈ Hru (K) × Hr p (K), then

‖(u − uh, p − ph)‖2
X×M � 1

βh

∑
K∈Th

(
h2(su−1)

K

�2(ru−3/2)
‖Eu‖2

Hru (K) + h
2sp
K

m2r p
‖E p‖2

Hr p (K)
.

)

where su = min{� + 1, ru}, sp = min{m + 1, rp} and βh as in (11).

Proof By considering Theorem 2, we set

I = inf
(vh ,qh)∈V�

h×Qm
h

|||(u − vh, p − qh)|||X×M.

We have

I2 ≤
∑

K∈Th

‖μ1/2∇(u − Π�u)‖2
L2(K ) +

∑
F∈Fh

‖σ 1/2
v �u − Π�u�‖2

L2(F)

︸ ︷︷ ︸
A

+
∑

K∈Th

‖p − Πm p‖2
L2(K ) +

∑
F∈Fh

‖σ 1/2
p �p − Πm p�‖2

L2(F)

︸ ︷︷ ︸
B

+
∑

F∈Fh

‖σ−1/2
v {(p − Πm p)I}‖2

L2(F)

︸ ︷︷ ︸
C

+
∑

F∈Fh

‖σ−1/2
v {∇h(u − Π�u)}‖2

L2(F)

︸ ︷︷ ︸
D

,

where Π� and Πm denote the polynomial approximant introduced in Lemma 2. By using
the continuous trace-inverse inequality, Lemmas 2 and that m − � ≤ 1, we can prove the
following bounds:

A + D �
∑

K∈Th

h2(su−1)
K

�2(ru−3/2)
‖Eu‖2

Hru (K), B + C �
∑

K∈Th

h
2sp
K

m2r p
‖E p‖2

Hr p (K)
,

where su = min{� + 1, ru} and sp = min{m + 1, rp}, and the assertion follows. ��
Remark 5 The estimate of Corollary 1 is suboptimal with respect to the polynomial order also
due to the presence of the constant βh , where βh is the discrete generalized inf-sup constant
introduced in Proposition 1.
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Remark 6 By assuming h � hK for any K ∈ Th , uniform regularity of the solution ru = r ,
rp = r − 1, and m ≈ �, the estimate in Corollary 1 becomes

‖(u − uh, p − ph)‖X×M � 1

βh

hs−1

mr−3/2

(
‖Eu‖Hr (∪K∈Th

K) + ‖E p‖Hr−1(∪K∈Th
K)

)
.

where s = min{m + 1, r} and βh as in (11).

6 An Application: PolyDG for FSI Problems

In this section, we introduce a continuous FSI problem and its PolyDG discretization, with
the aim of further exploring the stability properties of the PolyDG discretization of the Stokes
problem and their impact on the approximation of related differential problems; see Sect. 7
below.

Let Ω ⊂ Rd and Ωs ⊂ Rd , d = 2, 3, be two polygonal/polyhedral domains. In Ω , we
consider an incompressible Newtonian fluid with density ρ and dynamic viscosity μ, where
u and p are the fluid velocity and pressure, while in Ωs we consider a linear elastic material
with density ρs , Young’s modulus E , and Poisson’s ratio ν, where d is the solid displacement.

In what follows, we denote by Σ the fluid–structure interface and by n its normal vector
pointing outwards of Ωs . We indicate with ∂Ω and ∂Ωs the outer boundary of the fluid and
solid domain, respectively. The domains may change in time.

The fluid–structure interaction problem reads as follows: for any t ∈ (0, T ], with T > 0,
find the fluid velocity u = u(t), the fluid pressure p = p(t), and the solid displacement
d = d(t), such that

ρ∂tu − ∇ · T f (u, p) = f in Ω(t),

∇ · u = 0 in Ω(t),

u = 0 on ∂Ω,

u = ∂t d on Σ(t),

T f (u, p)n = T s(d)n on Σ(t),

ρs∂t t d̂ − ∇ · T̂ s(d) = f s in Ω̂s,

d̂ = 0 on ∂Ω̂s,

where T f (u, p) = 2μD(u)− p I is the fluid Cauchy stress tensor and T̂ s(d) = 2μs D(̂d)+
λs∇ · d̂ I is the solid first Piola-Kirchhoff stress tensor, with D(w) = 1/2

(∇w + ∇T w
)

and
λs = Eν

(1+ν)(1−2ν)
, μs = E

2(1+ν)
are the Lamé parameters.

The structure problem is written in the reference configuration Ω̂s = Ωs(t = 0), and all
the quantities related to the reference configuration are indicated with the ·̂ notation.

Given the time discretization parameter Δt > 0, we indicate with tn = nΔt , n ≥ 0,
the n-th time step and indicate the approximation of the unknown u at time tn by un . We
introduce the fluid and solid meshes T n

f ,h and T n
s,h of the fluid and solid domains Ω(tn)

and Ωs(tn), respectively. We denote the (d − 1)-dimensional faces at time tn of the fluid and
solid meshes by Fn

f ,h and Fn
s,h , respectively, except the set of faces composing the fluid–

structure interface Σ at time tn , which are denoted by Fn
Σ,h . Finally, V �,n

h and Qm,n
h are the
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fluid velocity and pressure spaces evaluated at time tn , defined as

V �,n
h = {v ∈ [L2(Ω(tn))]d : v|K ∈ [P�(K )]d ∀K ∈ T n

f ,h},
Qm,n

h = {q ∈ L2
0(Ω(tn)) : q|K ∈ Pm(K ) ∀K ∈ T n

f ,h}.
The solid displacement space W�

h evaluated in the reference configuration is defined as

W�
h = {w ∈ [L2(Ω̂s)]d : w|K ∈ [P�(K )]d ∀K ∈ T̂s,h}.

We have assumed that the spatial polynomial order � is the same for both the fluid velocity
and the solid displacement.

Given r ∈ N+, we apply a Backward Difference Formula (BDF) scheme [44] of order r
both for the fluid and the solid subproblems. We indicate the coefficients appearing in the
approximation of the first and second order time derivatives with ξi and ζi , i = 0, . . . , r ,
respectively.

Define

An
f ,h

(
un

h, pn
h ; vh, qh

) = ρ

(
ξ0

Δt
un

h, vh

)

Ωn

+ an
f ,h

(
un

h, vh
)+ bn

h

(
pn

h , vh
)− bn

h

(
qh, un

h

)

+ sn
h

(
pn

h , qh
) ; (18)

An
s,h

(
d̂

n
h, ŵh

)
= ρs

(
ζ0

Δt2 d̂
n
h, ŵh

)

Ω̂s

+ as,h

(
d̂

n
h, ŵh

)
; (19)

An
Σ,h(un

h, pn
h , dn

h; vh, qh,wh) = − (
T f (un

h, pn
h )n, vh − wh

)
Fn

Σ,h

−
(
un

h − ξ0

Δt
dn

h, T f (vh,−qh)n

)

Fn
Σ,h

+
(

σΣ(un
h − ξ0

Δt
dn

h), vh − wh

)

Fn
Σ,h

; (20)

Fn
h (vh,wh) = ρ

(
r∑

i=1

ξi

Δt
un−i

h , vh

)

Ωn

+ ρs

(
r∑

i=1

ζi

Δt2 d̂
n−i
h , ŵh

)

Ω̂s

+
(

r∑
i=1

ξi

Δt
dn−i

h , T f (vh,−qh)n

)

Fn
Σ,h

−
(

σΣ

r∑
i=1

ξi

Δt
dn−i

h , vh − wh

)

Fn
Σ,h

+ ( f , vh)Ωn + (
f̂ s , ŵh

)
Ω̂s

.

(21)

The fully-discrete PolyDG approximation reads as follows: given σv ∈ L∞(Fn
f ,h), σp ∈

L∞(Fn
f ,h), σ̂s ∈ L∞(F̂s,h), σΣ ∈ L∞(Fn

Σ,h), f ∈ [L2(Ωn
f )]2 and f̂ s ∈ [L2(Ω̂s)]2, for

n > 0, find (un
h, pn

h , d̂
n
h) ∈ V �,n

h × Qm,n
h × W�

h , such that

An
f ,h

(
un

h, pn
h ; vh, qh

)+ An
s,h

(
d̂

n
h, ŵh

)
+ An

Σ,h(un
h, pn

h , dn
h; vh, qh,wh) = Fn

h (vh,wh),

for all (vh, qh, ŵh) ∈ V �,n
h × Qm,n

h × W�
h .

In (18), the pressure stabilization term sn
h : L2

0×L2
0 → R is that given in Sect. 2.1 evaluated

onFn,i
f ,h . In (19), we have introduced the bilinear forms an

f ,h : [H1(T n
f ,h)]d ×[H1(T n

f ,h)]d →
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R, bn
h : L2

0 × [H1(T n
f ,h)]d → R and as,h : [H1(T̂s,h)]d × [H1(T̂s,h)]d → R, which are

defined as

an
f ,h(un

h, vh) =
∫ n

Ω

2μDh(un
h) : ∇hvh −

∑
F∈Fn

f ,h

∫
F

2μ{Dh(un
h)} : �vh�

−
∑

F∈Fn
f ,h

∫
F

2μ�un
h� : {Dh(vh)} +

∑
F∈Fn

f ,h

∫
F

σv�uh� : �vh�,

bn
h(pn

h , vn
h) = −

∫ n

Ω

pn
h∇h · vn

h +
∑

F∈Fn
f ,h

∫
F
{pn

h I} : �vn
h�,

as,h (̂d
n
h, ŵh) =

∫
Ω̂s

2μs Dh (̂d
n
h) : ∇hŵh +

∫
Ω̂s

λs∇h · d̂n
h ∇h · ŵh

−
∑

F∈F̂s,h

∫
F

2μs{Dh (̂d
n
h)} : �ŵh� −

∑
F∈F̂s,h

∫
F

λs{∇h · d̂n
h I} : �ŵh�

−
∑

F∈F̂s,h

∫
F

2μs �̂d
n
h� : {Dh(ŵh)} −

∑
F∈F̂s,h

∫
F

λs �̂d
n
h� : {∇h · ŵh I}

+
∑

F∈F̂s,h

∫
F

σ̂s �̂d
n
h� : �ŵh�,

where Dh(w) = 1/2(∇hw + ∇T
h w).

The functions σv and σp are given in Definition 1 on Fn
f ,h , while σ̂s : Fn

s,h → R and
σΣ : Fn

Σ,h → R are defined as

σ̂s |F =

⎧⎪⎪⎨
⎪⎪⎩

γs max
K +,K −

{
�2Cs,K

hK

}
F ∈ Fn,i

s,h ,

γs
�2Cs,K

hK
F ∈ Fn,b

s,h ,

σΣ |F = γΣ max
K +,K −

{
�2

hK
μ

}
F ∈ Fn

Σ,h,

with γs, γΣ positive constants, Cs,K = ‖Cs |K‖l2 and Cs,K the linear elasticity fourth order
tensor.

Remark 7 The procedure to generate the fluid and solid meshes T n
f ,h and T n

s,h is as follows:
we first generate a background mesh Th that covers both the fluid and solid domains and
is fitted to the external boundary. Then, we generate the reference solid mesh T̂s,h on the
reference domain Ω̂s , so that it is fitted to the boundary ∂Ω̂s . These two meshes Th and T̂s,h

are computed once and for all. Next, at the beginning of each time step, the current solid mesh
T n

s,h is computed by applying a transformation to T̂s,h dictated by the numerical displacement

d̂
n−1
h computed at the previous time. Finally, the current fluid mesh T n

f ,h is obtained by cutting
off T n

s,h from the background mesh Th . The resulting current fluid and solid meshes are fitted
at their interface.

The integrals on the solid domain are computed in the reference configuration, i.e., on T̂s,h .
The triangulation T n

s,h and its corresponding set of faces Fn
s,h are only used to cut the mesh

Th to obtain the current fluid mesh T n
f ,h and to map back the solid shape functions from the

current configuration to the reference one. The integrals at the fluid–structure interface are
evaluated in the current configuration, by noting that d̂h = dn

h ◦ Ln
h , where Ln

h : Ω̂s → Ωn
s

is the discrete Lagrangian map defined as Ln
h = IΩ̂s

+ d̂n
h .
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The fluid domain Ωn and the interface Σn in (18), (20), and (21) are unknown. Thus,
they are approximated with extrapolations of order r of the domains at the previous time
steps, i.e., Ωn ≈ Ω̃n = Ω̃n

(
Ωn−1, . . . , Ωn−r

)
, where Ωm = (Ω ∪ Ωs) \ (Lm

h (Ω̂s)), for
m = n −1, . . . , n −r . In particular, the extrapolation of order r of the domain Ωn is obtained
by using the backward finite difference formula of order r + 1:

Ωn ≈ Ω̃n =
r∑

k=1

(
r

k

)
(−1)k−1Ωn−k .

Due to the motion of the solid domain, un−i
h might be undefined in parts of Ωn , i.e., in

those cells K ∈ T n
h that partially/fully lie outside of Ωn−i . In this case, i) if K ∈ T n

h
partially lies outside of Ωn−i , then the numerical velocity is extended based on employing
an interpolation of order �; ii) if K ∈ T n

h fully lies outside of Ωn−i , then an extrapolation of
order � is employed based on the value of the velocity in the neighboring fluid element; see
[8,70,71] and also [3,23,48].

Remark 8 For the numerical stability of the FSI problem, theoretical results show that the
interface terms on Fn

Σ,h of equations (20) and (21) have to be carefully defined, so that the
right balance between the different contributions holds; see the pioneering [21] and more
recent works [8].

7 Numerical Results

In this section, we present some numerical experiments for the steady Stokes problem and the
time-dependent FSI problem. In Sect. 7.1, we assess the order of accuracy of the method for
the steady Stokes problem as the spatial discretization parameter tends to zero and the spatial
polynomial degree increases. In Sect. 7.2, we consider a FSI problem and we numerically
compare the pressure field for different choices of the velocity and pressure spaces, with
and without the pressure stabilization term. Finally, in Sect. 7.3, we show that the proposed
PolyDG method is able to reproduce the expected dynamics of a time-dependent FSI problem.
For all the proposed examples, we employ a modal expansion for the shape functions of the
discrete spaces and the resulting linear systems are solved by means of a direct method.

7.1 The Steady Stokes Problem: Convergence Results

Here, we numerically estimate the order of convergence of the steady Stokes problem with
respect to the spatial parameter h when it tends to zero and the polynomial degree increases.
We consider a square unit domain Ω = (0, 1)2 and the exact solution

uex =
[− cos(2πx) sin(2π y)

sin(2πx) cos(2π y)

]
, pex = 1 − e−x(x−1)(x−0.5)2−y(y−1)(y−0.5)2

.

The forcing term f and the Dirichlet boundary conditions are computed accordingly. We
picked uex so that ∇ · uex = 0. We set μ = 1, γv = 10, γp = 10 and m = � = 4. In
Fig. 9(left), we plot the error in the L2 and DG-norms of the velocity, in the L2-norm of the
pressure and in the pressure semi-norm |·|J versus h 1√

Nel
. The expected order of convergence

are found. The error E p
J seems to be superconvergent, while the error E p

L2 presents some slight
oscillations. In Fig. 9(right), we show the errors with respect to the polynomial degree m,
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Fig. 9 Numerical estimates of the order of convergence with respect to the mesh size h (left) and the polynomial
degree m (right)

with an underlying uniform and regular polygonal mesh, generated via PolyMesher [58],
consisting of Nel = 160 elements. We observe exponential convergence in terms of the
polynomial degree.

Remark 9 Within the theoretical setting of the paper, we cannot prove the exponential con-
vergence of the p-version of the method. Notwithstanding, it is the expected behaviour in
the standard Galerkin setting with simplicial and tensor product element meshes for ana-
lytic solutions; see, e.g., [55] and the references therein. The reason of this resides in the
continuity property of the Stein extension operator (10), which is valid modulo a hidden con-
stant depending on the involved Sobolev regularity s. In particular, when trying to recover
exponential convergence, a term growing more than exponentially with respect to s appears.
A possible way to overcome this issue would be to resort to a different approach, where
we assume that the solution is analytic over a slightly larger domain than Ω . In particu-
lar, we should substitute the approximation result in Lemma 2 with some approximation
properties by means of tensor product Legendre polynomials on tensor product element and
Koornwinder polynomials on simplicial elements; see, e.g., [55] and [18] for more details,
respectively. We avoid further details on this point, for it might render the understanding of
the paper more cumbersome. The suboptimality in terms of the polynomial degree due to the
nonrobustness of the inf-sup condition, see Remark 5, is eaten up by the expected exponential
convergence for analytic solutions.

7.2 The FSI Problem: Numerical Comparison of the Pressure Fields

In this first numerical test we compare the pressure field for different choices of the spatial
polynomial degree of the discrete velocity and pressure spaces for a FSI problem. The fluid
domain Ω represents a viscous fluid with density ρ = 1 g/cm2 and viscosity μ = 0.03 g/s,
while the structure domain Ωs is a linear elastic barrier that horizontally divides the fluid
domain in two compartments; see Fig. 10. For the structure we set the density ρs = 1.2 g/cm2,
the Young’s modulus E = 2 · 104 dyne/cm, and the Poisson’s ratio ν = 0.49.

At the upper and lower boundaries of the fluid domain, we impose zero velocity, i.e.,
u = 0, and the barrier is fixed on the left and right sides, i.e., d = 0. To the system, initially
at rest, is prescribed an inlet velocity uin(t) = (uin,x (t), 0) cm/s to the upper compartment
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Fig. 10 Setting of the boundary
conditions on the fluid (white)
and structure (grey) domains. The
moving fluid–structure interface
is depicted by dashed lines

from the left boundary, where

uin,x (t) =
{

10t t ≤ 0.1,

0 otherwise,

while we prescribe a homogeneous Neumann condition to the other three ends of the two
compartments. The fluid–structure interface Σ , namely the upper and lower boundaries of
the barrier, is free to move; see Fig. 10.

In the discrete setting, we set Δt = 10−3 s, T = 0.25 s, γv = γp = 10. The fluid and
structure meshes initially consist of uniform and regular triangles consisting of 1100 elements
(h = 0.025 cm) and 400 elements (h = 0.01 cm), respectively. Due to their intersection,
polygonal elements appear. We employ the Backward Difference Formula (BDF) scheme of
order 3 for the temporal discretization.

We pick the pairs of velocity and pressure spaces P� − Pm , with � = 3 and m = 1, 2, 3,
both with and without the pressure stabilization term (4d). The spatial polynomial order of
discrete displacement field is set equal to � = 3.

In Fig. 11, we plot the pressure field at time t = 0.1 s for all the considered configurations.
As expected, for a fixed pair of spaces P3 − Pm , m = 1, 2, 3, the stabilized pair yields a
stable and more regular pressure field compared to the not stabilized one. The not stabilized
P3 − P3 pair, Fig. 11b, leads to an oscillating pressure field near the inlet boundary and all
along the fluid–structure interface, where elements of general shape appear. This instabilities
become less evident as the pressure polynomial order decreases; see Fig. 11d and f. On the
other hand, the so-called “stabilized” P3 − P3 pair, Fig. 11a, shows some oscillations only
at the corners of the inlet boundary, where we expect a lower regularity in the solution, a
pressure peak and strong pressure gradients, leading to an unstable pressure field. For the
stabilized P3 −P2 and P3 −P1 cases, see Fig. 11c and e, the pressure field does not present
any noticeable oscillation. Moreover, there is no significant difference in the fluid velocity
and structure displacement fields. For large times t , the 3-rd order BDF scheme may introduce
some oscillations in the pressure field in the proximity of the fluid–structure interface due to
the little dissipation of the scheme itself.

7.3 The FSI Problem: An Elastic Membrane in a Pipe

Here, we consider a second fluid–structure interaction problem aiming at showing that the
proposed PolyDG discretization method is able to reproduce the expected dynamics of the
system with a stable pressure field. More precisely, we consider a pipe filled by a viscous
fluid with an immersed linear elastic membrane that blocks the flow. The pipe is represented
by a fluid domain Ω of size 0.4 cm × 0.2 cm, while the solid domain Ωs represents the
elastic membrane of size 0.01 cm × 0.2 cm centred in the pipe; see Fig. 12. At initial time,
the system is at rest. The membrane is clamped at the pipe, i.e., d = 0 on the upper and
lower sides of Ωs . At the top and bottom boundaries of the fluid domain, u = 0, while on
the left and right sides we prescribe a jump in the stress, namely, σ f n = (−10, 0) dyne/cm
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Fig. 11 Pressure field at time t = 0.1 s for different choices of the pressure space Pm , m = 1, 2, 3, with
pressure stabilization (left) and without stabilization (right). The velocity space is fixed to P3 (Color figure
online)

Fig. 12 “Pipe” test case. Fluid
(red) and structure (black)
meshes (Color figure online)

and σ f n = 0, respectively. This induces oscillations in the structure, which are subsequently
dumped by the viscous fluid until a steady state is reached. At the steady state, we expect a
uniform pressure inside each chamber of the pipe. The fluid and structure have the following
material properties: ρ = ρs = 1 g/cm2, μ = 0.1 g/s, E = 104 dyne/cm and ν = 0.45.

For the numerical simulation, we consider a fluid mesh consisting of 1400 elements
(h = 0.0125 cm) and a solid mesh consisting of 400 elements (h = 0.004 cm); see Fig. 12.
Although the meshes are initially made of regular triangles, their intersection generates
elements of general shape, see Fig. 13. We consider the following discrete parameters: Δt =
0.002 s, γv = γp = 10, and � = 3, m = 2 with pressure stabilization. For the time
discretization, we employ the 3-rd order BDF scheme.

In Fig. 14(left), we show the configuration at the steady state, t = 1 s. As expected, each
of the two chambers of the pipe reach a uniform value of the pressure. In Fig. 14(right), we
plot the x-displacement of the structure at its center of mass.
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Fig. 13 “Pipe” test case. Detail of
the fluid mesh near the
fluid–structure interface showing
some polygonal elements. In
blue, we highlight the possible
small and anisotropic elements
that may appear (Color figure
online)

Fig. 14 “Pipe” test case. Left: pressure field and position of the structure at the steady state (t = 1 s). Right:
evolution in time of the x-displacement of the structure at the center of mass (Color figure online)

8 Conclusions

In this work, we showed the well-posedness of the discrete Stokes problem obtained via
a Discontinuous Galerkin approximation on polygonal and polyhedral grids. In particular,
we proved a generalized inf-sup condition that is valid for m − � ≤ 1, with � and m the
spatial polynomial degrees for the velocity and pressure spaces, respectively. Under suitable
mesh assumptions, we proved that the discrete inf-sup constant is uniform with respect to the
mesh size and presents a mild dependence with respect to the polynomial degree. Moreover,
from the numerical tests, the discrete inf-sup constant seems to be uniform in much more
general configurations than those covered by the theoretical analysis, indicating for example
that the method is robust with respect to degenerating edges. We also proved a priori error
estimate in the energy norm for the Stokes problem that is suboptimal with respect to the
polynomial degree, since it inherits the suboptimality of the discrete inf-sup constant. Finally,
we presented numerical examples by considering a time-dependent fluid–structure interaction
problem in the case of finite displacement regime showing that the proposed PolyDG method
is able to produce stable solutions.
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