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Abstract An authentic food is one that is what it claims to be. Nowadays, more
and more attention is devoted to the food market: stakeholders, throughout the
value chain, need to receive exact information about the specific product they are
commercing with. To ascertain varietal genuineness and distinguish potentially
doctored food, in this paper we propose to employ a robust mixture estimation
method. Particularly, in a wine authenticity framework with unobserved heterogene-
ity, we jointly perform genuine wine classification and contamination detection. Our
methodology models the data as arising from a mixture of Gaussian factors and
depicts the observations with the lowest contributions to the overall likelihood as
illegal samples. The advantage of using robust estimation on a real wine dataset
is shown, in comparison with many other classification approaches. Moreover, the
simulation results confirm the effectiveness of our approach in dealing with an
adulterated dataset.

Keywords Mixtures of factor analyzers · Food authenticity · Model-based
clustering · Wine adulteration · Robust estimation · Impartial trimming

1 Introduction and Motivation

The wine segment is identified as a luxury market category, with savvy as well as
non-expert customers willing to spend a premium price for a product of a specific
vintage and cultivar. Therefore, in the context of global markets, analytical methods
for wine identification are needed in order to protect wine quality and prevent its
illegal adulteration.
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In the present work we employ an approach based on robust estimation of
mixtures of Gaussian Analyzers, for discriminating corrupted red wines samples
from their authentic variety. In a modeling context, we assume a probability distri-
bution function for the chemical and physical characteristics measured on the wines,
considering a density in the form of a mixture, whenever the dataset presents more
than a wine variety. As a consequence, the probability that a wine sample comes
from one specific grape can be estimated from the model, performing classification
through the Bayes rule. Robust estimation of the parameters in the model is adopted
to recognize the corrupted data. Particularly, we expect that adulterated observations
would be implausible under the robustly estimated model: the illegal subsample
is revealed by selecting observations with the lowest contributions to the overall
likelihood using impartial trimming, without imposing any assumption on their
underlying density.

The rest of the paper is organized as follows: in Sect. 2 the notation is introduced
and the main concepts about Gaussian Mixtures of Factor Analyzers (MFA),
trimmed MFA likelihood, and the Alternating Expectation-Conditional Maximiza-
tion (AECM) algorithm are summarized. Section 3 presents the wine dataset [7]
and classification results obtained performing a robust estimation of Gaussian
mixtures of factor analyzers. Section 4 reports a simulation study carried out
employing parameters estimated from the model in Sect. 3, in a specific framework
of contaminated dataset.

The original contribution of the present paper is given in the benchmark study on
unsupervised methods, the adaptation of the robust Bayesian Information Criterion
(BIC) introduced in [3] to MFA, and a first application of robust MFA in a somehow
realistic adulteration scenario.

An application on real data and some simulation results confirm the effectiveness
of our approach in dealing with an adulterated dataset when compared to analogous
methods, such as partition around medoids and non-robust mixtures of Gaussian
and mixtures of patterned Gaussian factors.

2 Mixtures of Gaussian Factors Analyzers

In this section we briefly recall the definition and some features of the mixture of
Gaussian Factor Analyzers (MFA) and its parameter estimation procedure. MFA
is a powerful tool for modeling unobserved heterogeneity in a population, as it
concurrently performs clustering and local dimensionality reduction, within each
cluster. Let X1, . . . ,Xn be a random sample of size n on a p-dimensional random
vector. An MFA assumes that each observation Xi is given by

Xi = μg + ΛgUig + eig (1)
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with probability πg for g = 1, . . . , G. The total number of components in the
mixture is denoted by G, μg are p × 1 mean vectors, Λg are the p × d matrices

of factor loadings, Uig
iid∼ N (0, Id) are the factors, eig

iid∼ N (0,Ψ g) are the
errors, and Ψ g are p × p diagonal matrices. Note that d < p, that is the p

observable features are supposed to be jointly explained by a smaller number of
d unobservable factors. Further, Uig and eig are independent, for i = 1, . . . , n
and g = 1, . . . G. Unconditionally, therefore, Xi has a density in the form of a
G-components multivariate normal mixture:

fXi
(xi; θ) =

G∑

g=1

πgφp(xi;μg,Σg) (2)

where φp(·;μg,Σg) denotes the p-multivariate normal density, whose covariance
matrix Σg has the following decomposition Σg = ΛgΛ

′
g + Ψ g.

When estimating MFA through the usual Maximum Likelihood approach, two
issues arise. Firstly, departure from normality in the data may cause biased or
misleading inference. Some initial attempts in the literature to overcome this
issue propose to consider mixtures of t-factor analyzers [15], but the breakdown
properties of the estimators are not improved [10]. The second concern is related
to the unboundedness of the log-likelihood function [4], which leads to esti-
mation issues, like the appearance of non-interesting spurious maximizers and
degenerate solutions. To cope with this second issue, Common/Isotropic noise
matrices/patterned covariances [1] and a mild constrained estimation [9] have
been considered. The methodology considered here employs model estimation,
complemented with trimming and constrained estimation, to provide robustness,
to exclude singularities, and to reduce spurious solutions, along the lines of [8].
Therefore, with this approach, we overcome both previously mentioned issues.

A mixture of Gaussian factor components is fitted to a given dataset
x1, x2, . . . , xn in Rp by maximizing a trimmed mixture log-likelihood [18],

Ltrim =
n∑

i=1

ζ(xi ) log

⎡

⎣
G∑

g=1

φp(xi;μg,Λg,Ψ g)πg

⎤

⎦ (3)

where ζ(·) is a 0–1 trimming indicator function that tells us whether observation
xi is trimmed off or not. If ζ(xi )=0 xi is trimmed off, otherwise ζ(xi )=1. A
fixed fraction α of observations, the trimming level, is unassigned by setting∑n

i=1 ζ(xi ) = �n(1−α)�, where the less plausible observations under the currently
estimated model are tentatively trimmed out at each step of the iterations that lead to
the final estimate. In the specific application to wine authenticity analysis described
in Sect. 3, they are supposed to be originated by wine adulteration.

Then, a constrained maximization of (3) is adopted, by imposing ψg,ll ≤
c ψh,mm for 1 ≤ l �= m ≤ p and 1 ≤ g �= h ≤ G, where {ψg,ll}l=1,...,p are
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the diagonal element of the noise matrices Ψ g , and 1 ≤ c < +∞, to avoid the
|Σg| → 0 case. This constraint can be seen as an adaptation to MFA of those
introduced in [11]. The Maximum Likelihood estimator of Ψ g under the given
constraints leads to a well-defined maximization problem.

The Alternating Expectation-Conditional Maximization—an extension of the
Expectation-Maximization algorithm—is considered, in view of the factor structure
of the model. The M-step is replaced by some computationally simpler conditional
maximization (CM) steps, along with different specifications of missing data. The
idea is to partition the vector of parameters θ = (θ ′

1, θ
′
2)

′, in such a way that Ltrim

is easy to be maximized for θ1 given θ2 and vice versa. Therefore, two cycles are
performed at each algorithm iteration:

1st cycle : we set θ1 = {πg,μg, g = 1, . . . ,G}; here, the missing data are the
unobserved group labels Z = (z′

1, . . . , z
′
n). After applying a step of Trimming, by

assigning to the observations with lowest likelihood a null value of the “posterior
probabilities”, we get one E-step, and one CM-step for obtaining parameters in θ1.

2ndcycle : we set θ2 = {Λg,Ψ g, g = 1, . . . ,G}, here the missing data are
the group labels Z and the unobserved latent factors U11, . . . ,UnG. We perform a
Trimming step, then a E-step, and a constrained CM-step, i.e., a conditional exact
constrained maximization of Λg,Ψ g .

A detailed description of the algorithm is given in [8].

3 Wine Recognition Data

The wine recognition dataset, firstly analysed in [7], reports results of a chemical
and physical analysis for three different wine types, grown in the same region in
Italy. Originally, 28 attributes were recorded for 178 wine samples derived from
three different cultivars: Barolo, Grignolino, and Barbera. A reduced version of the
original dataset with only thirteen variables is publicly available in the University
of California, Irvine Machine Learning data repository, commonly used in testing
the performance of newly introduced supervised and unsupervised classifiers.
Particularly, in the unsupervised classification literature the wine recognition data
has been considered to assess cluster analysis in information-theoretic terms via
minimisation of the partition entropy [19], to prove the modelling capabilities of a
generalized Dirichlet mixture [2], to evaluate the efficacy of employing distances
based on non-Euclidean norms [5] and of Random Forest dissimilarity [20]. More
recently, also parsimonious Gaussian mixture models have been applied to the
Italian wines dataset [16].

Here our purpose is twofold: we want to explore the classification performance
of a robust estimation based on mixtures of Gaussian Factors Analyzers, and we aim
at obtaining realistic parameters for the subsequent simulation study. The dataset,
available in the pgmmR package [17], contains 27 of the 28 original variables, since
the sulphur measurements were not available. Initially, to perform model selection
and detect the most suitable values of factors d and groups G, an adaptation to the
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Table 1 RobustBIC [3] for
different choices of the
number of factors d and the
number of groups G for the
robust MFA model on wine
data, trimming level α = 0.05
and c = 20. The smallest
value is obtained with d = 4
and G = 2

G

d 1 2 3

1 9082.58 8282.92 8223.46

2 8560.62 8107.62 8112.90

3 8352.26 8042.02 8199.38

4 8160.77 7969.64 8315.23

5 8102.77 8044.03 8456.00

6 8097.06 8165.67 8735.63

Table 2 Classification table
for the robust MFA with
number of factors d = 4,
number of groups G = 3,
trimming level α = 0.05 and
c = 20 on the wine data

1 2 3

Barolo 59 0 0

Grignolino 0 71 0

Barbera 0 0 48

Trimmed observations are
classified a posteriori according
to the Bayes rule

MFA framework of the robust Bayesian Information Criterion, firstly introduced
in [3], has been considered. That is, BIC = −2Ltrim(x; θ̂ ) + vc log n∗ where
vc = (G − 1 + Gp + G(pd − d(d − 1)/2) + (Gp − 1)(1 − 1/c) + 1) denotes the
number of free parameters in the model (depending on the value of the constraint
c) and n∗ = �n(1 − α)� the number of non-trimmed observations. Robust BIC
for different choices of the number of factors d and the number of groups G are
reported in Table 1, considering a trimming level α = 0.05 and c = 20. The value
of the robust BIC is minimized for d = 4 and G = 2, suggesting a mixture with just
two components. Careful investigation on this result highlighted that robust MFA
methodology tended to cluster together Barolo and Grignolino samples as arising
from the same mixture component, while clearly separating Barbera observations. It
is worth recalling [7] that the wines in this study were collected over the time period
of 1970–1979, and the Barbera wines are predominantly from a later period than the
Barolo or Grignolino wines. Therefore, considering the nature of the phenomena
under study and the risks related to rigidly selecting the number of components in a
mixture model only on the basis of the results provided by an information criteria,
such as BIC [13], we decided to employ a robust MFA with d = 4, G = 3, and α =
0.05, leading to the classification matrix reported in Table 2. Employing a robust
MFA rather than a Gaussian mixture leads to a 60% reduction in the number of
parameters to be estimated (470 against 1217). Notice, in addition, that after robust
estimation, also the trimmed observations can be a posteriori classified according to
the Bayes rule, i.e., assigning each of them to the component g having greater value
of Dg(x, θ) = φp(x;μg,ΛgΛ

′
g + Ψ g)πg .

Results in Table 2 show that the robust MFA algorithm led to a perfect
clusterization of the samples according to their true wine type.

For completeness, the robust MFA algorithm was also applied to the more
common thirteen variable subset of the wine data and comparison with the existing
literature is reported in Table 3. The clustering performance with respect to the true
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Table 3 Comparison of performance metrics for different methodologies on the thirteen variable
subset of the wine data

Performance metric
Methodology Class recovery accuracy Adjusted Rand index

Partition entropy [19] 0.977 –

Mixture of generalized Dirichlet [2] 0.978 –

Neural gas [5] 0.954 –

Random Forest predictors [20] – 0.93

Parsimonious Gaussian mixture [16] 0.927 0.79

Robust MFA [8] 0.994 0.98

Reported metrics come from the original articles

wine labels reports an Adjusted Rand Index equal to 0.98 with just one Grignolino
sample wrongly assigned to the cluster identifying Barolo wines. Again then, the
robust MFA methodology outperforms the results currently present in the literature
for unsupervised learning on this specific dataset.

4 Simulation Study

The purpose of this simulation study is to show the effectiveness of estimating a
robust MFA on a set of observations drawn from two luxury wines, Barolo and
Grignolino, and identifying units presenting an adulteration. Considering the param-
eters estimated obtained in Sect. 3, the artificial dataset is generated simulating
100 observations each, from Barolo and Grignolino components. Afterwards, the
“contamination” is created decreasing by 15% the values of Fixed Acidity, Tartaric
Acid, Malic Acid, Uronic Acids, Potassium, and Magnesium for 5 Barolo and for
5 Grignolino observations. This procedure resembles the illegal practice of adding
water to wine [12]. The problem of distinguishing adulterated observations from the
real mixture components is addressed, together with the algorithm performance in
correctly classifying the authentic units.

We estimate a robust MFA with G = 2, p = 27, d = 4 and trimming level α =
0.05. We compare our results with other popular methods: Partition around medoids,
Gaussian mixtures estimated via Mclust, and Mixtures of patterned Gaussian factors
estimated by pgmm. To perform each of the B = 1000 simulations, algorithms have
been initialized following the indications of their respective authors: say 10 random
starts at each run of AECM , default setting for the “build phase” of pam as in
[14], applying model-based hierarchical clustering as per default setting in [6] for
Mclust and 10 random starts at each run as suggested in [16] for pgmm.
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Table 4 Average misclassification errors and ARI (percent average values on 1000 runs)

AECM pam Mclust pgmm

Misclassification error 0.0309 0.2935 0.2073 0.2314

Adjusted Rand Index 0.9362 0.5466 0.7184 0.6959

AECM pam Mclust

9.
5

10
.0

10
.5

11
.0

AECM pgmm Mclust

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18
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20

Fig. 1 Boxplots of the simulated distributions of μ̂1[1], estimator for μ1[1] = 10.45 (left panel);
Σ̂1[1, 1], estimator for Σ1[1, 1] = 0.1214 (right panel)

Table 4 reports the average misclassification error and Adjusted Rand Index: the
AECM algorithm reports a superb classification rate, with smaller variability of the
simulated distributions for the estimated quantities, as shown in Fig. 1.

For a fair comparison of the performance of the algorithms, we consider 3
clusters for pam,Mclust, and pgmm; whereas we consider only 2 clusters for AECM,
because in this approach the adulterated group should ideally be captured by the
trimmed units. A value of c = 20 allows to discard singularities and to reduce
spurious solutions [8]. The effects of the trimming procedure are shown in Fig. 2,
where the different colours and shapes represent the obtained classification. Table 5
reports the average bias and MSE for the mixture parameters (computed element-
wise for every component). While an R package is under construction, R scripts
containing the employed routines are available from the authors upon request.

The present simulations show initial promising results in adopting robust MFA as
a tool for identifying wine adulteration. Future research regards a novel approach for
semi-supervised robust clustering, allowing for impartial trimming on both labelled
and unlabelled data partitions. The aim is to jointly address methodological issues
in robust statistics and clustering, as well as providing consistent statistical tools
required in the increasingly demanding food authenticity domain.
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Fig. 2 Clustering of the simulated data with fitted trimmed and constrained MFA. Trimmed
observations are denoted by “×”

Table 5 Bias and MSE (in parentheses) of the parameter estimators μ̂g and Σ̂g

AECM Mclust pam AECM Mclust pgmm

μ1 −0.0019 −0.0194 0.0069 Σ1 0.0001 −0.001 0.0257

(0.0029) (0.0421) (0.1022) (0.0004) (0.0022) (0.0079)

μ2 −0.0011 0.1522 −0.0025 Σ2 −0.0156 −0.0164 0.0113

(0.0042) (0.2376) (0.1380) (0.0043) (0.0043) (0.0077)
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