Teaching Formal Methods to Software Engineers
through Collaborative Learning (Short Paper)

Livia, Lestingi[OOOO—OOOI—8724—1541]
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
Milan, 20133, Italy. livia.lestingi@polimi.it

Abstract. It is common knowledge among researchers in the field that
teaching formal methods can prove a challenging task. This paper reports
on the approach adopted for a Master’s Degree course at Politecnico di
Milano, Italy, as an attempt to reverse this trend by introducing collabo-
rative learning activities. Students put concepts learned during theoret-
ical lectures into practice through a hands-on group assignment. Each
group develops the formal model of a Cyber-Physical System through
the Uppaal tool, starting from a set of requirements provided by the
instructor. After delivering the assignment, we invite students to fill an
evaluation survey whose results suggest a very high satisfaction level
towards the hybrid theoretical-practical approach of the course.

Keywords: Formal Methods Teaching - Collaborative Learning - Soft-
ware Engineering Education - Postgraduate Education

1 Introduction

Formal methods is not what students in Computer Science are most passionate
about. Over the years, several experts in the field have tried to identify the root of
the problem, and the effort required to grasp the mathematical notation is the
most commonly mentioned issue. Especially for Software Engineering education,
there seems to be an ever-growing gap between the practical approach of software
development and the theoretical approach of formal methods research [16]. The
negative perception of mathematics is so extensive that “mathematical anziety”
is now a customary expression. This perspective is contradictive considering that
Engineering students deal with mathematics daily and that other branches of
Computer Science, such as Machine Learning, are not inferior to Formal Methods
in terms of mathematical complexity but widely more popular.

Over the years, several different teaching strategies have been proposed as
possible solutions to this issue. Mandrioli [15] suggests adopting an incremental
approach and increasing the level of user-friendliness (for example, by favoring
state-based notations over formulae) without forsaking the rigor of mathemati-
cal modeling. Liu et al. [14] suggest gradually introducing students to the most
complex concepts, increasing the number of exercise sessions, and helping stu-
dents understand the power and effectiveness of formal techniques through short

2 L. Lestingi

and simple examples from daily life (also previously suggested by Gibson and
Mery [7]). Others propose to increase tool support during teaching activities. The
following tools are notable examples: the KeY-Hoare tool [9] for teaching Hoare
logic; a toolset developed by Korecko et al. [11] for teaching formal aspects of
software development based on Petri nets and B-Method; a tool by Spichkova et
al. [18] for model-based testing that also accounts for possible human mistakes.
This paper reports on the approach adopted for the Formal Methods for Con-
current and Real-Time Systems!' course for Computer Science Master’s Degree
students at Politecnico di Milano. The teaching approach features the innova-
tive element of Collaborative Learning [12], which allows students to work
together in small groups towards a practical goal exploiting the concepts learned
during the theoretical lectures. At the end of the course, we have invited stu-
dents to fill an evaluation questionnaire to assess their satisfaction level. The
collected results paint a very positive picture: the vast majority of students who
participated in the survey reported increased confidence in course topics and
a genuine interest in the activities undertaken while working on the project.
The paper is structured as follows: Section 2 presents the context of the
course, i.e., the Computer Science program and the Software Engineering cur-
riculum; Section 3 introduces the innovation of Collaborative Learning; Section
4 illustrates the educational goals, requirements and theme of the group assign-
ment; Section 5 presents the results of the evaluation survey; Section 6 concludes.

2 Course Context and Structure

The Computer Science and Engineering M.Sc. program at Politecnico di Milano
allows students to build their curriculum flexibly. Courses are grouped into ten
tracks that students can choose from to elect their specialization. Tracks cover
a wide range of Computer Science branches and are updated yearly to keep
up with the latest technological trends. Formal Methods for Concurrent and
Real-Time Systems is part of the Software Engineering for Complexr Systems
track. The track’s goal is to train future engineers to tackle issues related to the
development and deployment of complex software systems.

The course is structured to teach students how to exploit formal methods
throughout the software development process. The relevance of this prac-
tice has already been acknowledged over the years [10] and is now gaining more
popularity as the demand for dependable software increases. A recent survey by
Gleirscher and Marmsoler [8] highlights a non-negligible usage of Formal Meth-
ods in some areas, such as transportation and critical infrastructures. Promoting
education on these techniques might help break the vicious cycle formed over the
years [19]. Specifically, FM cannot spread in industry if employees (i.e., former
students) do not possess sufficient knowledge on the topic, while students are
not motivated to study it if (among the other reasons) expertise on FM is not
required to work in industry. As a matter of fact, although more than 400 stu-

! Full information about the course can be found at: https://bit.ly/3gL.XOdR.

https://bit.ly/3gLXOdR

Teaching FM to Software Engineers through Collaborative Learning

dents enrol in the CS M.Sc. program every year, only about 40 of them chooses
the FM course for their curriculum (specifically, 39 for A.Y. 2020/2021).

The selection of topics for the course (fully reported by Askarpour and
Bersani [3]) and the adopted teaching approach are a tentative compromise
between the two conflicting tendencies in FM teaching: deep focus on the-
oretical background and mathematical formalism versus the learning by
doing approach. Concerns that Computer Science education is exceedingly dis-
tancing itself from abstract theoretical concepts started to emerge twenty years
ago [20]. Over the years, this dichotomy has sparked a debate on whether this ul-
timately results in less-prepared computer scientists [15] or boosts their chances
to solve real-life problems successfully [4]. In the following, we present the strat-
egy adopted to tackle this challenging issue.

3 Introducing Collaborative Learning

The initial assumption is that avoiding the theoretical side of FM topics is not
a viable option. Indeed, only teaching students how to use verification tools
without proper knowledge of the underlying formalisms defeats the purpose of
an academic formal methods course. On the other hand, the lack of confidence
caused by the often elaborate mathematical notation requires attention and ex-
plaining theory through small examples only partially solves the problem [14].

The adopted strategy features two alternative ways for students to pass the
course. They can either do an oral examination on course topics, which counts
for 100% of the final grade or: 1) select and present a FM tool? in front of the
classroom, counting for 60% of the final grade; 2) work on the group assign-
ment, counting for 40% of the final grade. Both presentation and project have to
be carried out in groups of 2 — 4 people. Students have about two months to work
on the project before the final deadline. As of this year, 75% of the classroom
has chosen the second alternative (tool presentation and group assignment).

The innovative measure is the introduction of Collaborative Learning
(CL). CL is “an educational approach to teaching and learning that involves
groups of learners working together to solve a problem, complete a task, or create
a product.” [12] Students work on the same task which is entirely carried out
using only one tool making it impossible to delegate fully independent sub-
tasks to single group members; thus, students have to rely on one another to
achieve the goal promoting interdependence. Students cannot complete the
task autonomously, but they have to interact and challenge each other’s ideas.
The course targets students aged (on average) 23-24 who have completed at
least three years of academic education; thus, they naturally display a good
level of individual accountability. Group discussion and collaborative thinking
help students develop skills such as conflict management and leadership. Finally,
groups are encouraged to monitor their progress with respect to the delivery
deadline and periodically contact the instructor to receive feedback.

2 Eligible tools include: JBMC, CBMC, Prism, TLA+, COSMOS, SPIN, NuSMV.

4 L. Lestingi

At the time of project assignment, Italy was not in full lockdown due to the
COVID-19 pandemic. Although we do not possess accurate data due to privacy
concerns, it is safe to estimate—based on how many people physically attended
lectures®~that the vast majority of them were not residing permanently in Milan
during project development. Nevertheless, the project outcome is entirely in
software form and the university provides all students with the tools necessary
to communicate remotely. Therefore, the collaborative learning strategy has not
been affected by COVID-19 limitations at its core.

4 Group Assignment: Goals and Structure

This section reports on the group assignment’s educational goals and how it is
structured to meet these requirements. Afterward, we report the specific theme
and model requirements for this year.

4.1 Educational Goals

The group assignment fits in with the Software Engineering profile of the stu-
dents attending this course since its educational goals are:

G1: developing the modeling skill, i.e., how to translate informal requirements
(expressed in natural language) into the formalism of choice;

G2: amplifying critical thinking, in terms of analytical experimental data eval-
uation to gain insights into the system performance;

G3: improving the capability of expressing oneself clearly and convincingly in
written form and using accurate scientific language.

The centrality of managing models for Computer Science (goal G1) is widely
acknowledged [5]. Besides requirement abstraction, students must perceive that
a model can never perfectly match reality. Therefore, they must quickly learn
how to balance complexity. System’s behavior should be verified or simulated
but purely reporting the results without analyzing them defeats the purpose of
an engineering degree [6]. Students should proactively experiment with different
system configurations and assess how this impacts the performance (goal G2).
Finally, a study has revealed how non-technical skills, such as self-expression
(goal G3), are highly requested by job applications, but they are also one of the
most common gaps in a fresh engineering graduate’s skillset [17].

Each deliverable required by the assignment fulfills one of the set-out goals:

D1: the developed formal model meeting the initial set of requirements;

D2: verification results and multiple (> 2) model configurations;

D3: a written report describing model, experimental results, design choices,
and the reasoning that led the team to choose one alternative over the others.

In the following, the specific project theme is presented with technical aspects
such as the selected formalism and verification tool.

3 An internal survey shows that physical attendance rate at its peak was only 25%,
whereas 75% of the students attended remotely.

Teaching FM to Software Engineers through Collaborative Learning

4.2 Project Content: Model-Checking for Warehouse Robotics

This year’s (A.Y. 2020/2021) project theme is warehouse robotics manage-
ment. Automated warehouses significantly spread over the last few years thanks
to the introduction of mobile robots. These wheeled platforms can take charge
of several tasks, most importantly picking and delivering operations. Items are
stored in racks (i.e., pods) that robots can lift and transport to a delivery point.
Human operators are usually in charge of manual edge tasks in this setting, such
as picking the specific item from the pod. Students are required to develop a for-
mal model (deliverable D1) of the following entities:* a) the warehouse layout:
b) the robots; ¢) the tasks; d) the human operator. Specifications intentionally
leave room for interpretation. For example, each team is free to choose whether
the layout should be a standalone automaton or hard-coded into the model (i.e.,
as a two-dimensional array). The goal is to push each team to make design
choices while drafting their model and provide reasonable justifications.

For the past ten years, the project focused on temporal logic [3], while, as of
the last two editions of the course, the formalism of choice is Timed Automata
(TA) [2]. The system under analysis dictates this choice since its behavior mainly
hinges on timely synchronization among the different elements. Several features
also naturally lend themselves to be expressed as clock constraints. For example,
robots move every K time units, a new task spawns every T time units, and the
operator takes time H to pick the item, where K, T, H are constant parameters.

Subsequently, students have to verify through model-checking a critical
property (deliverable D2). The mandatory property is: “it never happens that
the number of tasks in queue exceeds the maximum queue size.” This property
subsumes that the chosen system configuration (e.g., number of robots, robot
speed, tasks spawn rate, etc.) allows robots to complete tasks quickly enough to
avoid task overflow. The property must be expressed in TCTL (Timed Compu-
tation Tree Logic). For illustrative purposes, a possible formulation is shown in
Eq.1, where parameter MAX_T corresponds to the queue size and the number of
tasks currently stored in the queue is captured by variable ny,sks.

YV O (easks < MAX_T) (1)

Both the modeling and verification tasks of the assignment must be entirely
carried out through the Uppaal tool [13]. As mentioned in Section 2, the course
program includes a whole session dedicated to a hands-on demo of the tool.

Starting this year, we have included the option to add stochastic features
to the developed model that count as extra points in the final evaluation. These
optional model features capture the uncertainty (refined by probability distri-
butions) of the system’s behavior. The introduction of probability distributions
makes the automaton network no longer eligible for exhaustive model-checking
but fit for Statistical Model Checking (SMC) [1]. To this end, students at-
tend two additional lectures on the fundamentals of SMC and the Uppaal SMC
extension. If they choose to pursue the stochastic path, they must verify through

4 The full set of requirements is available at: https://bit.ly/3mEJbgc.

https://bit.ly/3mEJbgc

6 L. Lestingi

SMC the probability of property in Eq.1 holding within a time-bound 7, whose
formulation in PCTL logic is given in Eq.2.

Pgr(D Ntasks S MAX,T) (2)

Despite the extra effort, 55% of the teams have chosen to develop the stochas-
tic features. Although they may have been motivated by the chance of getting a
higher grade, this shows genuine interest on their side towards the project topics.
The evaluation survey results presented in Section 5 confirm this intuition.

5 Evaluation Survey Results

We have invited students to fill an online evaluation survey® to assess their
satisfaction level for the course and its effectiveness. Despite it being optional,
64% of all students who participated in the group assignment filled out the
survey, whose results we comment in detail in the following. In some cases, results
are compared with the ones previously presented by Askarpour and Bersani [3]
to assess the evolution of the course with respect to its previous editions. About
75% of all students attended the course during their 1%¢ M.Sc. year (fourth year
of academic education according to the Italian system). For 6 students out of 10,
this was an optional course, which is a reassuring indication given the historical
low attendance that affects this course.

Concerning the students’ attitude and expectations towards learning formal
methods before attending the course, only 20% of them state that they had
prior experience with formal methods. Moreover, Fig. la shows the students’
self-assessed level of confidence for these topics before attending this course
which amounts to an average of 2.33/5. Although this may be a physiological
consequence of a student’s lack of knowledge in a specific area before receiving
education, we can consider the increase of confidence shown in Fig. 1b as a
valuable achievement. The reported confidence level after attending the course is,
indeed, 3.8/5 and, most importantly, no student chose a value lower than 3, which
hints at a homogeneous improvement for the whole classroom. The reported
reasons of low confidence unsurprisingly mention mathematical notation and
lack of prior expertise as the main sources.

The questionnaire features questions specifically targeting the group assign-
ment effectiveness. The results shown in Fig. 2 provide evidence that this is a
successful strategy. Almost 75% of the students chose the project as the most ap-
preciated part during the course. Moreover, the vast majority (93.3%) stated that
working on the project increased their interest in course topics and, according
to these results, no one lost interest because of the project. To complement the
data in Fig. 2, 93.3% of the respondents also stated that the course stimulated
their curiosity towards FM, and 4 people out of 10 said that they would consider
a FM-related project for their Master Thesis (compared to the 1/10 ratio from
two years ago [3]). Finally, the question about whether they would recommend

® Interested readers find the full set of questions at: https://bit.ly/3gAiHbS.

https://bit.ly/3gAiHbS

Teaching FM to Software Engineers through Collaborative Learning

40.0 66.7

333

[%]
[%]

26.7

6.7
6.7

0.0
1 2 3 4 5 1 2 3 4 5

0.0

(a) Before attending the course (b) After attending the course.

Fig. 1: Students self-assessed level of confidence ([1 — 5]) on course topics.

B Project BN Positive
. Tool Presentations m Neutral
B Lectures B Negative

(a) Favourite part of the course. (b) Impact on interest on course topics.

Fig. 2: Students replies targeting group assignment effectiveness.

the course to other students received an average score of 4.0/5.0, which is in line
with the average of Politecnico courses (3.2/4.0).

Despite the favorable scenario, these results are not exempt from validity
threats. Although most students enrolled in the course filled the survey, the
original classroom size was meager, leading to only 25 replies. Furthermore, the
survey carried out by Askarpour and Bersani in 2019 did not include specific
questions about the project [3]. Therefore, we can only assess its effectiveness
based on a single-year investigation. We will undoubtedly iterate the analysis
for upcoming editions of the course to monitor future progress.

6 Conclusion

This paper reports on the strategy adopted at Politecnico di Milano for teaching
Formal Methods to Computer Science students, specifically for the Software
Engineering curriculum. The approach hinges on Collaborative Learning through
the assignment of a group project. The answers given by students through an
evaluation questionnaire provide evidence that the approach succeeds in building
their confidence and stimulating their interest in course topics.

L. Lestingi

Acknowledgments

The credit for the course structure and syllabus goes to the official professors in
charge, previously Prof. Dino Mandrioli and currently Prof. Pierluigi San Pietro.

References

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Transactions

on Modeling and Computer Simulation (TOMACS) 28(1), 1-39 (2018)

Alur, R., Dill; D.L.: A theory of timed automata. Theoretical computer science
126(2), 183-235 (1994)

Askarpour, M., Bersani, M.M.: Teaching formal methods: An experience report. In:
Intl. Workshop on Frontiers in Softw. Eng. Education. pp. 3-18. Springer (2019)
Bareiss, R., Griss, M.: A story-centered, learn-by-doing approach to software engi-
neering education. In: Tech. Symp. on Comp. Sc. Education. pp. 221-225 (2008)
Desel, J.: Teaching system modeling, simulation and validation. In: Winter Simu-
lation Conference Proceedings. vol. 2, pp. 1669-1675. IEEE (2000)

Ghezzi, C., Mandrioli, D.: The challenges of software engineering education. In:
Intl. Conf. on Software Engineering. pp. 115-127. Springer (2005)

Gibson, P., Méry, D.: Teaching formal methods: Lessons to learn. In: 2nd Irish
Workshop on Formal Methods 2. pp. 1-13 (1998)

Gleirscher, M., Marmsoler, D.: Formal methods in dependable systems engineering;:
a survey of professionals from Europe and North America. Empirical Software
Engineering 25(6), 4473-4546 (2020)

Héhnle, R., Bubel, R.: A hoare-style calculus with explicit state updates. Formal
Methods in Computer Science Education pp. 49-60 (2008)

Hinchey, M., Jackson, M., Cousot, P., Cook, B., Bowen, J.P., Margaria, T.: Softw.
eng. and formal methods. Communications of the ACM 51(9), 54-59 (2008)
Korecko, S., Sorad, J., Dudldkové, Z., Sobota, B.: A toolset for support of teaching
formal software development. In: Intl. Conf. on Software Engineering and Formal
Methods. pp. 278-283. Springer (2014)

Laal, M., Laal, M.: Collaborative learning: what is it? Procedia-Social and Behav-
ioral Sciences 31, 491-495 (2012)

Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. vol. 1, pp. 134-152.
Springer-Verlag (1997)

Liu, S., Takahashi, K., Hayashi, T., Nakayama, T.: Teaching formal methods in
the context of software engineering. ACM SIGCSE Bulletin 41(2), 17-23 (2009)
Mandrioli, D.: On the heroism of really pursuing formal methods. In: FME Work-
shop on Formal Methods in Software Engineering. pp. 1-5. IEEE (2015)

Parnas, D.L.: Really rethinking ’formal methods’. Computer 43(1), 28-34 (2010)
Parts, V., Teichmann, M., Riiiitmann, T.: Would engineers need non-technical
skills or non-technical competences or both? (2013)

Spichkova, M., Liu, H., Laali, M., Schmidt, H.W.: Human factors in software reli-
ability engineering. arXiv preprint arXiv:1503.03584 (2015)

Spichkova, M., Zamansky, A.: Teaching of formal methods for software engineering.
In: ENASE. pp. 370-376 (2016)

Tucker, A.B., Kelemen, C.F., Bruce, K.B.: Our curriculum has become math-
phobic! In: Tech. Symp. on Computer Science Education. pp. 243-247 (2001)

	Teaching Formal Methods to Software Engineers through Collaborative Learning (Short Paper)

