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Wave Digital Modeling and Implementation of
Nonlinear Audio Circuits with Nullors

Riccardo Giampiccolo, Graduate Student Member, IEEE, Mauro G. de Bari,
Alberto Bernardini, Member, IEEE, Augusto Sarti, Senior Member, IEEE

Abstract—The nullor is a theoretical two-port element suitable
to model several multi-port devices common in audio circuitry,
such as ideal operational amplifiers, operational transconduc-
tance amplifiers, and transistors operating in linear regime. In
this manuscript, we present an approach for the Wave Digital
(WD) modeling and implementation of circuits with multiple
nullors. In particular, we propose an approach to compute
scattering matrices of WD topological junctions absorbing nullors
that is less computationally demanding than the techniques
available in the literature on WD Filters. We show that the
proposed approach turns out to be particularly useful when
simulating nonlinear circuits through the Scattering Iterative
Method (SIM), a WD fixed-point method recently developed for
the solution of circuits with multiple nonlinearities, because it
requires a frequent update of the scattering matrices. We also
provide a novel convergence analysis of SIM applied to WD
structures composed of multiple one-port nonlinear elements and
a topological junction absorbing nullors. In order to verify the
effectiveness of the proposed methodology, we discuss some WD
implementations of analog audio circuits with multiple diodes
and opamps, including a precision half-wave rectifier and a wave
folder circuit.

Index Terms—Wave Digital Filters, nonreciprocal connection
networks, nullors, nonlinear audio circuits.

I. INTRODUCTION

IRTUAL Analog (VA) modeling is achieving resounding

success in the audio market, being at the basis of several
digital audio plug-ins. VA modeling refers to that class of dig-
ital audio algorithms specifically designed to emulate analog
audio equipment [1]. Many musicians and sound engineers,
in fact, relish VA products for being cheaper and less bulky
with respect to their analog counterparts. The peculiar sound
qualities of analog audio circuits are especially due to their
nonlinearities [2]. For instance, several audio compressors, sat-
urators, wave folders, or wave shapers exploit diode chains to
modify and increase the harmonic content of audio signals. In
the literature, VA modeling is addressed employing two main
methodologies: black-box approaches that infer a reference
circuit model starting from pairs of input/output data, e.g.,
using neural networks [3] or descriptions based on the Volterra
series [4]; white-box approaches that emulate the reference
circuit by simulating the corresponding system of ordinary
differential equations, e.g., using the State-space method [5],
the Port-Hamiltonian method [6], or Wave Digital Filters
(WDFs) [7]. White-box techniques are generally more accurate
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than black-box methods though they might be characterized
by a high computational cost, especially when dealing with
circuits with multiple nonlinearities. However, since modern
audio interfaces are equipped with banks of Digital Signal
Processors (DSPs) and/or Field-Programmable Gate Arrays
(FPGAs) to which the processing of digital effects in Digital
Audio Workstations (DAWSs) can be offloaded, there will be
the possibility of implementing increasingly computationally
demanding VA algorithms in the near future.

Among white-box techniques, WDF methods are proving
to be very promising tools. First introduced by A. Fettweis
in the °70s for the design of digital filters based on the
discretization of reference passive circuits [7], sharing some
common features of Transmission-Line Modeling techniques
[8], WDF theory is based on a port-wise description of a
reference circuit, where port currents and port voltages (the
so-called Kirchhoff variables) are substituted with linear com-
binations of incident and reflected waves with the introduction
of a free parameter per port called port resistance. WDFs are
highly modular, since they allow us to model circuit elements
and topological connection networks in a separate fashion.
The reference circuit is represented in the WD domain as
an interconnection of one-port and multi-port WD blocks,
each characterized by a scattering relation that expresses
the reflected waves as functions of the incident waves. By
properly choosing port resistances and making use of stable
discretization methods (e.g., trapezoidal rule, Backward Euler,
etc.) [9], circuits containing linear elements and up to one
nonlinear element (characterized by an explicit WD scattering
relation) can be implemented in the WD domain in a fully
explicit fashion, i.e., removing all the implicit equations, called
delay-free-loops (DFLs) in the WDF literature [7]. This is done
by setting the free parameters of WD structures in such a
way that certain ports of circuit elements or WD junctions are
made reflection-free: in WDF theory such a process is called
adaptation [7], [10]. However, when the reference circuit is
characterized by multiple nonlinear elements, the adaptation
process is not sufficient to eliminate all the DFLs, and iterative
procedures must be used to solve the reference circuit. Several
iterative Wave Digital (WD) methods to solve circuits with
multiple nonlinearities are discussed in the literature [11]-[14].
Amongst others, the Scattering Iterative Method (SIM) [13],
[15] is an efficient fixed-point method that is paving the way
towards the real-time implementation of several circuits con-
taining multiple nonlinear elements [9], [16]. Moreover, lots
of SIM operations are embarrassingly parallelizable, leading
the way towards the parallel digital implementation of large
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nonlinear audio circuits.

The modeling of connection networks as multi-port scatter-
ing junctions characterized by scattering matrices is an essen-
tial aspect of the WD implementation of analog circuits. It has
been shown in [16] that the formation of scattering matrices
of junctions is the bottleneck of the SIM algorithm, therefore,
the development of efficient strategies for their computation is
in order. Connection networks can be classified according to
their properties, such as reciprocity and losslessness [17], [18].
A peculiar class is the one of lossless reciprocal connection
networks [18], [19], that include pure topological junctions,
i.e., interconnections of wires and junctions embedding ideal
transformers. Connection networks embedding linear nonre-
ciprocal multi-ports, such as gyrators, controlled sources, or
nullors [17], are, instead, often nonreciprocal, and can be
either active, lossy, or lossless. A general approach for the
WD realization of arbitrary (reciprocal, nonreciprocal, lossless,
or nonlossless) connection networks is presented in [17] and
is based on the Modified Nodal Analysis (MNA) framework.
Another approach solely applicable to lossless reciprocal con-
nection networks, which is less general though more efficient
than [17], is presented in [18], [19]. Linear multi-ports are
often embedded in the WD scattering junctions because they
would otherwise cause DFLs, as extensively discussed in [17],
[20]. In the recent publication [20], however, it has been
shown that, by adopting a vector definition of wave variables
for modeling two-port linear elements in the WD domain, a
large class of two-ports can be adapted (i.e., the dependence
of the pair of reflected waves on the pair of incident waves
is removed) thus eliminating the DFLs that would otherwise
arise when using scalar definitions of wave variables. Not
only the approach in [20] increases the modularity of WDFs,
but it also leads to more efficient WD implementations of a
large class of circuits containing linear multi-ports [20]. As
a further remarkable result, it has been shown in [20] that
using vector waves, unlike the case of scalar waves, it is
possible to derive a wave-based description of the nullor as
a separate two-port. Unfortunately, even using vector waves
the nullor cannot be adapted [20]; hence, the MNA-based
approach presented in [17] that embeds nullors into topological
junctions is still preferable when the reference circuit contains
more than one nullor because DFLs are avoided. Nevertheless,
according to the approach in [17], each nullor adds a row and
a column to the MNA matrix, and thus the cost of its inversion
and, consequently, the cost to compute the scattering junction
matrix can become significantly high.

However, circuit models containing multiple nullors are
useful in VA modeling [21], [22]. In fact, although nullors
are theoretical two-port elements with no physical counterpart,
they can be employed to model numerous other multi-ports,
such as ideal transistors [21], [23], vacuum tubes, operational
amplifiers (opamps) [17], [20], [22], and operational transcon-
ductance amplifiers (OTAs) [21] operating in linear regime,
usually simplifying the system of equations that describes the
reference circuit [24]-[26]. Moreover, the nullor also proved
to be the essential circuit element in the context of inverse VA
modeling [27].

In this manuscript, we propose a novel approach that is less

computationally demanding than the one presented in [17] for
the implementation of WD junctions absorbing nullors. The
proposed approach is an extension of the efficient method
discussed in [18], [19] solely applicable to lossless reciprocal
connection networks. The proposed method relies on the fact
that a nonreciprocal network containing nullors can be repre-
sented using a pair of complementary reciprocal networks. We
show that the speed-up provided by the proposed method is
particularly useful when implementing circuits characterized
by multiple nonlinearities with the SIM algorithm. Indeed, as
extensively discussed in [16], the update of the scattering junc-
tion matrix is the most computationally demanding operation
of SIM. We also provide a novel convergence analysis of the
SIM algorithm when applied to WD structures with multi-
ple nonlinear one-ports and a single nonreciprocal junction
embedding nullors. In fact, the studies on SIM convergence
present in the literature are restricted to WD structures with
lossless reciprocal junctions [9], [13].

The manuscript is organized as follows. Section II provides
background knowledge on WDFs, in particular on the model-
ing of linear and nonlinear one-ports. After recalling the nullor
constitutive equation, Section III introduces the novel method
for the WD realization of connection networks embedding
nullors, and it discusses its advantages in terms of computa-
tional cost with respect to the MNA-based method presented
in [17]. Section IV gives an overview on the SIM algorithm,
and it provides a novel convergence analysis of SIM applied
to WD structures characterized by nonreciprocal scattering
junctions absorbing nullors. Two examples of application of
the proposed approach are reported in Section V. Section VI
concludes this manuscript.

II. MODELING ONE-PORTS IN THE WD DOMAIN

The design process of Wave Digital Filters (WDFs) [7] starts
from a port-wise description of the reference analog circuit, in
which elements and connection networks can be independently
handled. Each port of a WD block is characterized by an
incident wave a and a reflected wave b, defined as linear com-
binations of the port voltage v and the port current ¢. Different
definitions of wave variables (which lead to different benefits)
are available in the literature [7], [10], [17], [18], [28]. In [17],
[18], the following generalized parametric definition of waves
has been discussed

a=2"1 v+ 2°i, b=2r"1tv— 2", 4))

where Z # 0 is a free parameter called port resistance and
p € R determines the wave type. It is also useful to express
the inverse mapping of (1), which is
b —b
Gl B Gl )
2 2

Current, power, and voltage waves are the most used in the
WDF literature [7] and can be obtained setting p as

0 current waves
p= 0.5 power waves . 3)
1 voltage waves
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A. Linear Elements

A large class of linear one-port elements, including resistors,
resistive sources, and even capacitors and inductors [9], can be
described by means of the following discrete-time Thévenin
model

v[k] = R,|kli[k] + V,[k], “4)
where k is the sampling index, v[k] is the port voltage, i[k]
is the port current, V4 [k| is a voltage parameter, and Rg[k] is

a resistive parameter. A general WD realization of such an
element can be obtained substituting (2) into (4)

22°[k]

blk] = R, k] + Z[K] [+] Ry [K] +Z[k]Vg[k]' )
If we set Z[k] = Rg[k], (5) reduces to
blk] = Rg™ [k]Ve[K] , 6)

thus removing the instantaneous dependence of b[k] on al[k]:
the element, in this case, is said to be adapted [7]. It is
important to notice that the adaptation condition Z k| = R,[k]
does not depend on p.

B. Nonlinear Elements

The constitutive equations of nonlinear circuit elements are
often implicit, and thus, unlike linear one-ports, they cannot
be adapted. Nevertheless, as demonstrated in [9], [13], the
instantaneous dependence of b[k] on a[k] can be minimized
by dynamically changing the port resistance in order to meet
the slope of the tangent at the current operating point on the
t — v characteristic.

Diodes are the most common one-port nonlinear elements
in audio circuits. Over the past few years, different techniques
have been employed to model such elements in the WD
domain, e.g., based on Newton-Raphson solvers [13], the
Lambert W function [29], [30], or the Wright w function [31].

Let us consider the extended Shockley diode model used in
[9], [16], whose implicit equation is

)

where the sampling index £ is omitted for the sake of clarity,
I is the saturation current, 7 is the ideality factor, V; is the
thermal voltage, whereas R and R, are the series and parallel
resistances of the p-n junction. Making use of the parametric
definition of waves (1), a possible WD realization of such
a model is characterized by the following explicit scattering
relation [31]

v— Ryt

P

f(vai)=Is<e><p( —i=0, (7

b:h(a):a—ﬁw<1m+5+%), @)

where w(+) is the Wright w function, implemented as discussed
in [32], and
2RI, +a (277 (Ry+ Ry) — Z' ")

4= Z1=» 1 77 (R, + Ry) ’
_ 20V
R (Z'""+ RZ")
T (2 1 2 (Rt Ry))
5— a(Z'=P — RZ7P)

2V '

B
®)

Let us now consider two identical diodes in antiparallel
configuration, whose one-port extended Shockley model is
shown in Fig. 1. The implicit equation that relates ¢ to v is

. v— R —(v — Ryi) v—Rg
g(v,i) = I | exp Vi — exp Vi + R, —i=0.
(10)

As an approximation, considering only one diode to conduct
at a time (i.e., the reverse current of the diode is negligible
w.r.t. its forward current) and v and 7 sufficiently large in
absolute value, we have

ex <—|v — RS“) > ex (——|v — Rsil)
N7 LT '

It follows that, by exploiting (11), the pair of antiparallel
diodes can be implemented as a single one-port WD element
with scattering relation

b = sgn(a)h(|a|),

(an

(12)

where sgn(-) is the sign function [29].

Ry
AAA%
+
R, v

Fig. 1. Extended Shockley model of the antiparallel diodes considered in this
work.

III. MODELING CONNECTION NETWORKS WITH NULLORS

Introduced in [24], [25], the nullor is a theoretical two-port
element used in circuit theory to model the ideal behavior
of several multi-ports, including active and nonreciprocal
elements, such as transistors, opamps, controlled sources, etc.
[26] As shown in Fig. 2, the nullor is composed of two one-
port theoretical elements, the nullator and the norator [24],
that do not have any physical meaning [25]. The nullator
has both port voltage and port current equal to zero, whereas
the norator shows unconstrained port variables, i.c., they can
assume arbitrary values. The constitutive equation of a nullor

is therefore
v1| 0 0 V2
ARG
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i =0 i orientation of the arrows follows the same convention of the

bt T port currents. The branches are partitioned into two sets: ¢

twigs (edges of a tree) and [ links (edges of the relative

v =0 v2 cotree). Moreover, in order to make this double decomposition

Fig. 2. Nullor circuit symbol. The nullator (port 1) is represented with an
ellipse, while the norator (port 2) with two circles.

where v; and % are the port voltage and the port current of
the nullator port, while vy and 45 are the port voltage and the
port current of the norator port.

Our aim is to derive WD realizations of junctions including
interconnections of nullors, which are often nonreciprocal
[24]. Tt follows that the modeling approach dedicated to
lossless reciprocal topological junctions, based on a tree-cotree
decomposition [33] of the reference connection network and
on the derivation of the corresponding fundamental loop and
cut-set matrices [18], [19], cannot be used in these cases. In the
next Subsection we show that, by considering a pair of directed
graphs (digraphs) instead of just one as in [18], [19], we can
still resort to a loop or cut-set analysis even if we deal with
nonreciprocal connection networks containing nullors [34]. In
fact, by solving the network for voltages, nullators behave like
short circuits, whilst norators like open circuits. On the other
hand, by solving the network for currents, the opposite holds
true [26]. Moreover, we show that by combining the results
of the two analyses, we can look at the initial problem as a
set of linear independent homogeneous equations [34].

A. Fundamental Loop and Cut-set Analyses

Let us consider a nonreciprocal N-port connection network
containing L > 1 nullors. Let us also assume that the
nullors are the only elements absorbed in the connection
network. Following the method proposed in [34], such a
connection network can be described using two reciprocal N-
port connection networks derived from it: the first (called V-
network) with nullators replaced by short circuits and norators
by open circuits, and the second (called I-network) with nul-
lators replaced by open circuits and norators by short circuits.
Naming v = [vq,...,vn]|T the vector of port voltages and
j=1[j1,---,jin]|T the vector of port currents, the Kirchhoff’s
laws can be thus represented in matrix form as

i=Bli

.- Qv ° (14)

where By is the fundamental loop matrix of the I-network of
size [ X N, and Qy is the fundamental cut-set matrix of the
V-network of size t x N; morcover, [ +t = N. In (14), v,
is the vector of independent port voltages and j; the vector of
independent port currents. Matrix By and Qv can be formed
by employing the tree-cotree digraph decomposition [18], [19],
[33] of the two networks. The N branches of each oriented
graph represent the ports of the connection network, and the

compliant with the reference circuit, the two digraphs must
share the same tree.

By combining the outcomes of the two analyses, it is
possible to write the Kirchhoff’s laws as sets of independent
homogeneous equations as [35]

QVj:O7
QIj:O7

where By is the [ x N fundamental loop matrix of the V-
network and Q) is the ¢ x N fundamental cut-set matrix of
the I-network. In addition, given that the V-network and the I-
network are reciprocal, the following orthogonality properties

]3\/V:07

Biv=0, (15)

BVQ’{/ = 07 QVB’{/ = 07 (16)
BQf =0, QBf=0,
hold true [35].
Starting from (14), we can write
Qv=[Qv IJ, Bi=[ B, (17)

where QV and BI are matrices of size t x [ and [ X ¢, respec-
tively, and I is a properly sized identity matrix. Similarly, we
can also write

QI = [QI I] )

where QI and BV have again size ¢t x [ and [ x t, respectively.
Substituting (17) and (18) in (16) yields

By =[I By, (18)

A I A I
Qv 1] {Ed =0, [Q I [Bﬂ =0, (19
from which we derive the following identities
Qv=-B), Q=-B (20)

It follows that Qy, By, Qi, and Bj can be expressed as
functions of only two matrices, along the lines of what shown
in [18] for reciprocal lossless connection networks. By setting
QV = Fv, BV = —F%, QI = FI’ and BI = —F?, in fact, we
have
Qv =[Fv 1], By=[ -Fy],
Q= [FI I] , B, = [I —FIT] .

This result is compliant with the intuition that the V-network
and the I-network share a common set of independent variables
[34].

As an explicative example, let us consider the circuit of the
precision half-wave rectifier shown in Fig. 3(a), also known as
super diode, and used in analog sound synthesizers to create
low-frequency oscillations (LFOs) or controlled voltage (CV)
waveforms. If we assume the opamp in Fig. 3(a) to be ideal, we
can substitute it with its nullor-based equivalent [26]. Fig. 3(b)
shows the 4-port topological connection network related to the
circuit in Fig. 3(a) embedding the nullor-based opamp model.
By replacing the nullator with a short circuit and the norator
with an open circuit, we derive the V-network represented in
Fig. 3(c). The I-network, instead, is shown in Fig. 3(d). The

@
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(a) Precision half-wave rectifier (super diode). (b) Topological connection network of the circuit in (a) embedding the nullor-based model of the

opamp; (c¢) V-network obtained from the connection network in (b) by replacing the nullator with a short circuit and the norator with an open circuit; (d)
I-network obtained from the connection network in (b) by replacing the nullator with an open circuit and the norator with a short circuit.

4 4
3 B 2 3 B 2
A —-y--dc A - o-d C
L4 1~ o

(b)

Fig. 4. (a) Tree-cotree decomposition of the V-network shown in Fig. 3(c);
(b) Tree-cotree decomposition of the I-network shown in Fig. 3(d). The two
oriented graphs share a common tree, represented with continuous lines,
whereas the relative cotree is represented with dashed lines.

digraphs corresponding to the V-network and the I-network are
shown in Fig. 4 where one possible common tree (continuous
lines) and the associated cotree (dashed lines) are highlighted.
Collected the independent port variables in the vectors vy =
[v3,v4]T and ji = [j1,72]", according to the performed tree-
cotree digraph decomposition, the matrices Qy, By, Qq, and
B are formed using eq. (21), where

0 -1 -1 -1
yielding
0 -1 1 0 1 0 0 0
QV_[O 1 0 1}’ BV_{O 11 1]’
-1 -1 1 0 1 0 1 0
Q‘_[o 1 0 1}’ Bl_[o 11 —1}'
(23)

B. Properties of the Scattering Matrix

A WD realization of an N-port topological junction embed-
ding nullors is characterized by the scattering relation

b] = SaJ y (24)

where S is the so-called scattering matrix, while a; and
by are column vectors of length N collecting the waves
incident to the junction and the waves reflected by the junction,
respectively. Vectors a; and by can be expressed as
by = Z°~'v — Z*j,

ay=2Z""'v+2°j, (25)

where Z = diag[Z1, ..., Zy] is a diagonal matrix having port
resistances as non-zero entries.

As mentioned above, v and j are solutions of the sets of lin-
ear independent homogeneous equations in (15) (Kirchhoff’s
laws). Hence, being £ and ( arbitrary real numbers, even {v
and (j arc solutions of the same systems of equations [35].
By substituting £v and (j in (25) and then (25) in (24), we
obtain

EZP~ v — (ZPj =S (€277 'v + (2%j) . (26)

By choosing £ =1 and { = —1, it is evident that the relation
ay Sb; must be true as well [36]. It follows that the
scattering matrix S is an involutory matrix and the self-inverse

property

SS =1 (27)

must be met. On the other hand, S does not satisfy the
properties of losslessness and reciprocity [18], known, instead,
to hold true for reciprocal lossless topological junctions.

C. Derivation of the Scattering Matrix
By substituting (14) into (25), we obtain

ay = Z°7'Quvi + 2B, (28)
by = Z°7'Qyvi — Z°Bj; . (29)
If we left-multiply both sides of (28) for Q;Z~* and both

sides of (29) for ByZ!~” we get
QiZ "a; = QIZ7'Qyvy, (30)
ByZ' by = —ByZB/ji, 31)

respectively. By solving (30) for v, and (31) for j, we can
write

vi= (QZ7'QY) " QiZ"ay, (32)
ji=— (BvZB]) ' ByZ'~’b,, (33)
which, once substituted into (28) and (29), lead to
a;j = Z " 'WZ Pa; — Z°AZ' " by, (34)
by = Z° 'WZ Pa; + Z°AZ' by, (35)
where
T =Ql(QZ'Ql) Qi 6

A =B (ByZBl) 'By.
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TABLE I
FORMATION OF THE SCATTERING MATRIX OF A GENERAL JUNCTION EMBEDDING NULLORS:
COMPUTATIONAL COST COMPARISON BETWEEN THE PROPOSED METHOD AND THE MNA-BASED METHOD PRESENTED IN [17].
PARAMETER p REPRESENTS THE WAVE TYPE, WHEREAS K THE NUMBER OF CIRCUIT NODES.

Size of Matrix to be inverted Cost of Scattering in Multiplies
Vp pFONp#1 p=0Vvp=1
Circuit Name Proposed MNA-based Proposed MNA-based Proposed MNA-based
Method Method Method Method Method Method

General NPT | infe x t,1x 1} | (K= 14+L) x (K =14 L) | min{2N +12,2N + 2} | 2N+ (K —1)? | min{N + 2, N + 12} | N+ (K —1)2
Pm‘;'i"g“ ;:?“ﬁ” 2% 2 4x4 12 17 8 13
Sa“e;i'gKesy(:;‘"“ 2% 2 5% 5 14 26 9 21

B'%';stf';';"" 4x4 10 x 10 34 67 25 58

Finally, the scattering matrix S can be computed by adding
(34) to (35) and solving for by as

S =27°"1wZ " -1, (37)
or by subtracting (34) from (35) and solving for ay as
S=1-2ZPAZ'"". (38)

In fact, thanks to the involutority property (27), eqs. (37) and
(38) are two equivalent expressions. It is worth noticing that,
it [ > t, (37) is computationally cheaper than (38), since
it entails the inversion of W (¢ X t matrix) rather than A
(I x I matrix). On the other hand, if ¢ > [ the opposite holds
true. Then, it is worth pointing out that, if Qy = Qp and
By = By, (37) and (38) reduce to the formulas derived in [18]
for reciprocal lossless topological junctions. As a final remark,
since some pathological interconnections of nullors might
lead to unsolvable networks [37], the matrices QiZ~ QY and
ByZB] could be singular. In those cases, the scattering matrix
cannot be computed following this approach.

D. Computational Cost Comparison with MNA-based Method

The state-of-the-art method for computing the scattering
matrix of a topological junction embedding nullors, to which
we will compare the method proposed in the previous subsec-
tion, is presented in [17] and it is based on the MNA approach.
According to [17], the scattering matrix S can be computed
as (see eq. (23) and eq. (27) in [17])

S=22°""A, [10]X, [10]"A,Z7" -1, (39

where I indicates an identity matrix of proper size, 0 is a zero
matrix of proper size, X is a reduced version of the extended
nodal matrix from which the kth column and the kth row have
been removed, whereas Ap is a reduced version of the port
incidence matrix from which the kth row has been removed,
as explained in [17].

As shown in Table I, the computational cost comparison
between the proposed method and the MNA-based method
considers both the size of the matrix to be inverted in order
to form S and the cost of scattering in multiplies, which is
the number of multiplications involving the defining terms of

— Vout

AAA

Fig. 5. (a) Unity-gain Sallen-Key low-pass filter; (b) Biquad filter composed
of three opamps: Vipy: is the output of the band-pass filter, Vigpy: is the output
of the high-pass filter, and V; pr is the output of the low-pass filter.

S and required to compute by given a; in accordance to (24).
Following what done in Table III of [17], the cost is evaluated
assuming that all matrices in eqs. (37), (38), and (39) have
been already computed. The matrix to be inverted using the
proposed method is either Q;Z~1QY, or ByZBY, depending
on which one has a smaller size, while using the MNA-method
it is X. Being K the number of nodes of the circuit and L the
number of nullors, the size of X is (K —1+L)x (K —1+1L),
hence, it quadratically increases with the number of nullors.
The method proposed in this manuscript, instead, is more cost-
effective since it entails the inversion of a ¢t x ¢ or [ x [ matrix
that is always smaller than X, in size. General formulas of
the cost in multiplies for performing the scattering are also
reported in Table I.

As examples, along with the already discussed precision
rectifier circuit in Fig. 3(a), we consider other two circuits
widely spread in audio systems: a Sallen-Key low-pass filter
[38] and a Biquad filter (universal filter) [39], represented
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in Fig. 5(a) and Fig. 5(b), respectively. As for the precision
half-wave rectifier circuit, also in these cases, the opamps are
substituted with their nullor-based models. The connection
network of the Sallen-Key filter circuit is characterized by
5 ports that are, in order, connected to onc-port clements:
Ci1, Cy, Vi, Ry, and Ry. The fundamental loop and cut-
set matrices of the V- and I-networks obtained from the
connection network can be computed by substituting in (21)
the following matrices

0 0 1 0
Fy=| 0 -1/, F=|1 -1 (40)
-1 -1 0 -1

The connection network of the Biquad filter circuit is charac-
terized by 10 ports that are, in order, connected to one-port
elements: Vi,, R3, Ro, Rg, Ry, Ry, C1, Cy, and Rs. In this
case, matrices Fy and F} are

1 0 0 0 0
o0 1 1 0 0
Fv=10 0o o —1|
0o 0 0 -1 0]
(41)
1 0 0 0 0]
1 1 0 1 0
Fi=1o 0 21 0 o
o 0 0 0 -1}

Table I shows the results of the comparison for the three
considered examples. We can notice that the proposed method
is always computationally more convenient than the MNA-
based method. This fact is particularly promising in the
context of the SIM algorithm for solving circuits with multiple
nonlinearities in the WD domain that requires to frequently
update the scattering junction matrix, as we will extensively
discuss in the next sections.

IV. SCATTERING ITERATIVE METHOD

Introduced in [13] for the static analysis of large photo-
voltaic arrays, and later employed in [9], [16] for the emulation
of dynamic audio circuits, the Scattering Iterative Method
(SIM) is a WD iterative method for the simulation of circuits
containing multiple nonlinearities.

Similarly to what done in [9], [16], we assume that the
circuit is modeled in the WD domain using a single multi-port
scattering junction to which all the elements are connected. Let
us name a = [ai,...,ay]| the vector of waves incident to
the elements (reflected by the junction) and b = [by,...,by]|"
the vector of waves reflected by the elements (incident to the
junction). It follows that the vector of port voltages v is the
same of Section III, whereas the vector of port currents of
the elements i is defined as i = —j, yielding a = by and
b = ay. In order to find a solution to the nonlinear circuit in
the WD domain at a generic sampling step (indicated with the
sampling index k) of the discrete-time simulation, the SIM
algorithm performs the following four stages in an iterative
fashion:

1) Initialization and Update: the free parameters

Zi|k],..., Zn]k] are set as close as possible to

the tangent slope at the current working point on
the 7 — v characteristic. For linear elements, this is
straightforward and can be achieved employing the
adaptation conditions known in traditional WDFs [7].
For nonlinear one-ports, instead, optimal slopes can
only be estimated as a function of i,[k — 1] and
vnlk — 1], i.e., the values of the nth port current and
port voltage at the operating point of the previous
sample. Moreover, if the free parameters are varied,
the scattering matrix S must be updated (using the
formulas discussed in the previous section).

2) Local Scattering Stage: the waves by [k], in case they
are reflected by adapted linear elements, are computed
as in (6), whereas in case they are reflected by one-port
nonlinear elements as

VK] = f(al VK] (42)

where v is the fixed-point index, and the generic non-
linear function f,(-) indicates the WD mapping (see
e.g., (8) and (12)) employed to model the element
connected to port n.

3) Global Scattering Stage: the vector a¥)[k] of the waves

incident to the elements can be computed as follows
a[k] = S[k]b™) k] . 43)

4) Convergence Check: Local Scattering Stage and Global
Scattering Stage are reiterated until the inequality

VK] = vOTDIR]l2 < s

holds true, where vV [k] = (a™)[k] + b [k])/2 and
esmv is a small threshold (e.g., esv = 107°).

(44)

The scattering matrix S is usually recomputed at each sam-
pling step k. Hence, when dealing with networks containing
nullors, a careful choice of the technique used to compute S
(among those discussed in Section III) can really make the
difference in terms of computational complexity, as we will
show in some examples of application in Section V.

A. Convergence Analysis

In the literature [9], [13], it has been shown that SIM always
converges to the correct circuit solution, under the following
assumptions:

« the free parameters are positive (i.e., Z,[k] > 0V n, k);

« each circuit elements is characterized by a monotonically
increasing ¢ — v characteristic;

« the junction is lossless and reciprocal.

In this manuscript, we consider the more general case in which
the connection network embeds nullors; hence, the resulting
WD junction might be nonreciprocal and/or nonlossless. This
means that we cannot rely on the reciprocity and losslessness
properties of S [18], which have been extensively used to
derive a proof of SIM convergence in [13], [40]. In the light
of this, in the following we provide some considerations on
the convergence properties of SIM, when it is applied to WD
structures characterized by nonreciprocal topological junctions
containing nullors.
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SIM is a fixed-point method and, by combining (42) and
(43), its update formula at each fixed-point iteration can be
expressed in a compact fashion as

a®) — sf (a('y—l)) 7

where, for the sake of clarity, the sampling index & has been
removed and f(a) = [fi(ay),..., fn(an)]" is the vector of
scattering functions related to the one-port elements. It is worth
noticing that here f, indicates either a linear or a nonlinear
scattering function (e.g., (6), (8) or (12)). Let us indicate the
i — v characteristic of cach clement as v, (i, ). Moreover, we
consider it to be continuous and differentiable V i,, € R. As
already shown in [40], [41], it is convenient to rewrite (1) as

an = Z{ on (in) + Z8in = bn(in) . (46)
by = 287 0 (in) — ZPiy = P (in) - 47)

(45)

Assuming that ¢, (i,,) is invertible, we can write the generic
scattering relation of the nth circuit element as

by, = fn(an) = @Dn(d)r_;,l(an)) .
The derivative of (48) with respect to a,, can be then assessed
via
_ 1’[;;((25;1(&")) _ U;z(ln) — Iy,
O(dn'(an))  vh(in) +Zn’

where v], (i,,) is the derivative of v, (i,,) with respect to i, It
follows that the Jacobian matrix of f(a) can be expressed as

(48)

fhan) (49)

Ui(il)—zl

filar) 0 )T 21 0
/ ‘ vy (in)—Z;
0 Fn(ay) 0 TN T Zn

(50)

According to (45), as extensively discussed in [40], a
sufficient condition for SIM to converge is

stad (SJ¢(a)) <1, VaecRY, (51)

where the operator srad(-) returns the spectral radius (i.e.,
the maximum eigenvalue in modulus) of the matrix in the
argument. Given that each v, (i,) is monotonically increasing,
i.e., v}, (in) > 0, and that each free parameter Z,, is positive
(in fact, typically we set Z,[k] = v],(in[k — 1])), the entries
of J¢(a) are all less than one in absolute value, i.e.,

|fl(a,)] <1, Vn=1,...,N. (52)
As a consequence, we have that
srad (Jp(a)) <1, YaeRN. (53)

Let us assume, without loss of generality, that the nonlinear
elements of the circuit are connected to the first P ports of the
N-port scattering junction, where 1 < P < N. The scattering
matrix S can be thus expressed in block matrix form as

S {511 S12} ’ (54)

S21 S22

where S1; is a P x P matrix, Sz is a P x (N — P) matrix,
S21 is a (N — P) x P matrix, and Saz is a (N — P) x

(N — P) matrix. Assuming that all linear elements are adapted,
the corresponding free parameters are set as Z, = vl (i) =
Ry, at each sampling step, where Ry, is known and does not
depend on i,, [9]. It follows that, according to (49) and (50),
the diagonal entries of J¢(a) with indexes P +1,..., N are
zero, and we can write

Je(a) = { 0 0

where Jg11(a) collects the first P diagonal entries of J¢(a).
Since the block matrix

(56)

SJ¢(a) = [Sni'm(a) o]

SzlJﬂl(a) 0

has a block of zeros in the counter-diagonal, we have that

srad (SJ¢(a)) = srad (S11Je11(a)) - 57

By considering the properties of the spectral radius and the
Schwarz inequality, it is possible to find an upper bound to (57)
as follows

srad (S11Js11(a)) < [S11Tma(@)ll2 < IS1all2Tma(a)ll2 . (58)

Since Jg11(a) is a diagonal matrix, we have that ||Jg11(a)||2 =
srad(Jg11(a)); moreover, the inequality srad(Jeq(a)) < 1
holds true since srad(J¢(a)) < 1. SIM convergence thus
depends on the 2-norm of Sy1, raising interest in the properties
of such a submatrix. In particular, if the inequality

||811||28rad(.]f11(a)) <1 59)

holds true, then SIM convergence is ensured.

Let us define QV, EV, QI, and ]31 as the matrices collecting
the first P columns of Qy, By, Qi, and By, respectively, and
Z as the diagonal matrix collecting the first P diagonal entries
of Z, i.e., gathering all the free parameters of the nonlinear
one-ports. It is possible then to directly compute Sy; from
the loop/cut-set analysis of the connection network embedding
nullors employing one of the two following formulas, derived
from (37) and (38), respectively,

Si1 = 22p—1Q$ (QIZ_lQ;F/)_l QZ " -1,

7o RT N 1lp 71— (60)
S11 =1-2Z°B{ (BvZB|) ByZ'"".

In general, matrix Sq7 is not involutory as S, i.e., S11S11 # L.
However, we can still exploit (60) to derive some interesting
properties of Sq;. For construction, the digraphs of the V-
and I-network are very similar, since the only differences lie
where the nullors are placed. As a consequence, both the pair
of matrices Qy and Q; and the pair of matrices By and B;
have often some identical columns. By exploiting the property
of matrix congruence, it can be verified that if the two matrices
Z*~'Q¥ and Q;Z " or the two matrices Z°B and ByZ'~*
are symmetric, then also S1; is symmetric. In the cases in
which QV = QI or BV = BI, matrix Sq1 is always symmetric
when p = 0.5. If, instead, one of the two conditions is not
verified, Sy7 is, in general, not symmetric for any value of
p. The symmetry of S;1; would be a useful property since it
would allow us to recast the convergence criterion. In fact, if
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25, 25

(a)
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25
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Fig. 6. Precision half-wave rectifier: Euclidian norm (or 2-norm) of matrix S as a function of port resistances Z; and Z2 and of wave parameter p. (a)
norm ||S11||2 considering p = 0 or p = 1; (b) norm ||S11||2 considering p = 0.5; (c) norm |[S11]|2 considering p = 0.25 or p = 0.75. For p = 0.5,
matrix S11 is symmetric, and, as a consequence, the norm assumes a constant value, being thus independent of Z; and Zs.

S11 is symmetric, then ||S11||2 = srad(S11) and (59) can be
written as

srad(Sq1)srad(Je1(a)) < 1. (61)
As a final remark, it is worth noticing that the smaller the
left-hand side of (59) the higher the speed of SIM convergence;
hence, the smaller ||Sq1]|2 and srad(Je1(a)) the better. As
a significant example, we notice that if the reference circuit
is linear and all the clements arec adapted we have that
srad(Jg11(a)) = 0 and SIM converges in one iteration.

V. EXAMPLES OF APPLICATION

In this Section, we apply the proposed method for the
WD simulation of two audio circuits. The accuracy check is
performed by comparing the results of the WD implemen-
tations to those of LTspice (a widely used freeware Spice-
like simulator). We then draw a comparison between the
performance of SIM employing the MNA-based technique
[17] for the computation of scattering matrices absorbing
nullors and the performance of SIM employing, instead, the
proposed double-digraph method, highlighting the perks of
such a novel approach.

Ry D, D,
TL T1 T1
4 1 2
Ry SH
3 ‘WD 4-port Topological
Scattering Junction
‘/ill (—

Fig. 7. A possible WD realization of the circuit shown in Fig. 3. The T-shaped
stubs indicate port adaptation.

A. Precision Half-Wave Rectifier

As a first example, let us consider the precision half-
wave rectifier shown in Fig. 3(a) and already analyzed in
Subsection III-C. This circuit is part of many analog audio
systems, including the SIGN section of the Kinks Eurorack
module, produced by Mutable Instruments [43]. Resistances
are set as Ry = 200 k2 and Ry, = 100 k2, whereas the
IN4148 diodes are described using the extended Shockley
model of Subsection II-B, whose parameters are Ry = 1 m{2,
R, = 100 MQ, I, = 4.352 nA, V{ = 25.85 mV, and
n = 1.905. As input signal, we consider a sinusoidal voltage
Vinlk] = Asin (2rkfy/fs), where k is the sampling index,
A = 5 V is the amplitude, f; = 500 Hz is the signal
frequency, and f; = 44.1 kHz is the sampling frequency.
The WD implementation of the considered circuit is shown in
Fig. 7, where all the one-ports are connected to a single WD
topological junction. The free parameters of linear elements
are set to meet the relative adaptation condition, while those
of nonlinear elements are set to match the tangent slope of
their ¢ — v characteristic at the operating point of the previous
sample. As shown in Subsection III-C, if we assume the opamp
to be ideal, we can substitute it with its nullor equivalent,
and apply the method explained in Section III to derive the
scattering junction matrix S. We perform the cut-set analysis
and employ (37) to compute S. Let us reorder the ports of the
junction in a different way w.r.t. what done in Subsection III-C,
such that port number 1 and port number 2 are connected to
the two diodes. Matrices Qy and Qg are redefined by changing
the order of their columns accordingly as

1-1 0 0 1-1-1 0
QV:[O 10 1}’ Q‘:[o 10 1]' 62)

Therefore, following the conventions introduced in Subsec-
tion IV-A, matrices Qv and Q) are

Qu = B _ﬂ L Q= B ‘ﬂ , (63)
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Fig. 8. Circuit schematic of a wave folder inspired to Wave Multiplier B by J. Haible [42].

and can be substituted into (60) in order to compute matrix
S11. The eigenvalues of Sy can be expressed as functions of
the reference port resistances as

Zi+Zy—Zy
Zl+Z2+Z4’

where 7y, Z5, and Z4 are the free parameters of diode D1,
diode D», and resistor R, respectively. Moreover, we notice
that A1 (S11) and A2(S11) are independent of p. As pointed out
in Subsection IV-A, since QV = QI, matrix Sq1 is symmetric
when p = 0.5. Hence, in this case, according to (64) we have
that ||S11]|2 = srad(S11) = 1, therefore SIM convergence is
assured. A further study on the 2-norm of S;; is shown in
Fig. 6. In particular, ||S11]|2 is plotted as a function of Z; and
Zs. Five values of p are taken into account: p = 0, p = 0.25,
p = 05, p = 0.75, and p = 1. It turns out that, in this
example, the values of ||S11]|2 for p = 0 and p = 1 are the
same and they are reported in Fig. 6(a); the result for p = 0.5
is shown in Fig. 6(b), whereas Fig. 6(c) reports the results for
p = 0.25 and p = 0.75 that are also the same. We notice that
for p = 0.5 we always have ||S11]|2 = 1 independently of Z;
and Z,, confirming the aforementioned considerations.

The output signal of the circuit is the voltage across
resistor Ro. Fig. 9 shows that the results obtained with the
implemented WDF and the LTspice result are practically
indistinguishable. Finally, with the purpose of comparing the
performance of SIM coupled to the MNA-based approach for
computing S [17] and SIM coupled to the proposed double-
digraph approach, 100 identical runs of 5 s of simulation are
performed (in the MATLAB 2020 environment on a standard
Intel i5-core processor), and the average simulation time %, iS
then computed. Table II shows the results of such a comparison
for three different values of wave parameter p: p = 0, p = 0.5,
and p = 1. For all the three cases, with the proposed approach,
a noticeable improvement in terms of SIM performance can
be appreciated even dealing with such a small circuit.

Ai(S11) =1, A2(S11) = 64

B. Wave Folder

Let us now consider the circuit shown in Fig. 8 representing
a wave folder inspired to Wave Multiplier B by J. Haible

0.5

=&
TnaonnnnnnnC

ARARRARRAR

"o 0.002 0.004 0006  0.008 0.01 0.012 0014 0.016 0.018 0.02

Time (s)

Fig. 9. Output voltage of the precision half-wave rectifier shown in Fig. 3.
The blue curve represents the WD implementation, whereas the dashed red
curve the LTspice implementation.

TABLE 11
PRECISION HALF-WAVE RECTIFIER: COMPARISON BETWEEN THE
AVERAGE SIMULATION TIME OF SIM COUPLED TO THE PROPOSED
APPROACH AND TO THE MNA-BASED APPROACH FOR DIFFERENT

VALUES OF p.
p=0| p=05]| p=1
SIM + Proposed Approach 545 5s 214 s
SIM + MNA-based Approach 82s 8s 243 s

[42]. The circuit is composed of multiple nonlinear elements
that allow to turn elementary signals (e.g., sinusoids, triangu-
lar waves, etc.) into complex waveforms rich in overtones.
The circuit parameters are set as follows: R; = 100 k€2,
Ry = 100 k2, Rs = 33k, Ry = 2.7kQ, Ry = 27 kQ,
Rs = Ry = Rg = Ry = Rijg = R11 = Ry = Ryi3 = 15 kQ,
Ri4 =56k, Ri5 = 5.6 kQ, Ri = 56 k2, R17 = 6.8 k€,
Ris = 56k, Rig = 470 , and Ry = 500 k. Poten-
tiometer P; is modeled by means of a time varying resistor
Ryoe = pPr, where P = 10k and p € (0,1]. Also in
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Fig. 10. Wave folder: matrices QV and Ql required for the formation of Sy17.
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Fig. 11. Wave Digital implementation of the circuit shown in Fig. 8. The
T-shaped stubs indicate port adaptation.

this case, the nonlinear elements of the circuit are 1N4148
diodes, and the parameters of the Shockley model are the
same employed in Subsection V-A. The pair of antiparallel
diodes is modeled using a single WD nonlinear element, as
described in Subsection II-B. The WD realization of the wave
folder circuit is shown in Fig. 11. As in the previous example,
assuming the opamps to be ideal, it is possible to exploit the
method explained in Section III to encompass the nullor-based
equivalent models in the WD 31-port topological junction. All
the free parameters are set according to SIM “Initialization
and Update” stage described in Section IV. As far as the
computation of the scattering matrix is concerned, by applying
the double-digraph decomposition we obtain a number ¢ = 15
of twigs and a number [ = 16 of links. It follows that (37)
is less computationally demanding than (38) and thus a cut-
set analysis is performed. Knowing that the nonlinearities are
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0 0 0 0 0 0 0 0 0 0
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Fig. 12. Different plots of the output voltage related to the circuit shown
in Fig. 8 obtained tweaking parameter 4 (controlling potentiometer Pp), i.e.,
varying the wave folding. (a) Output voltage with p = 0.25; (b) output
voltage with u = 0.5; (c) output voltage with u = 1. The blue curve
represents the WD implementation, whereas the dashed red curve the LTspice
implementation.

connected to the first ten ports, submatrix S1;7 can be assessed
employing (60) and considering the matrices shown in Fig. 10.
Unlike what we obtained for the precision half-wave rectifier,
matrices QV and QI are not equal, and thus S;; will not
generally be symmetric for any value of p.

We set the the input signal as Viy[k] = Asin (27kfo/ f;)
where A = 3V, fo = 500 Hz, and f; = 44.1 kHz. The
output voltage of the circuit, instead, is shown in Fig. 12,
where it is depicted for three different values of , i.e., the
parameter modeling potentiometer P; and thus controlling the
wave folding. The matching between the curves assures the
accuracy of the proposed method.
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TABLE 111
WAVE FOLDER: COMPARISON BETWEEN THE AVERAGE SIMULATION
TIME OF SIM COUPLED TO THE PROPOSED APPROACH AND TO THE
MNA-BASED APPROACH FOR DIFFERENT VALUES OF p.

p=0 p=0.5 p=1
SIM + Proposed Approach 20.1s 238 s 23.7 s
SIM + MNA-based Approach | 32.8 s 37.1s 36.8 s

As a final test, we consider as input signal Vi,[k] a periodic
triangular wave with amplitude A = 3 V, fundamental fre-
quency fo = 500 Hz and sampling frequency f; = 44.1 kHz.
Table III shows a comparison regarding i, for 5 s of
simulation between SIM coupled to the proposed approach
for the computation of the scattering matrix and SIM coupled
to the MNA-based approach [17]. The cases of p = 0, p = 0.5,
and p = 1 are considered. The results are averaged over
100 identical runs of the two algorithms. Also this example
confirms that the double-digraph technique proposed in this
manuscript for the formation of the scattering matrix turns out
to be more efficient than the state-of-the-art method. Moreover,
the advantage is even more remarked than in the previous
example, since the size of the matrix to be inverted for the
MNA-based approach is 23 x 23, whereas for the proposed
approach is 15 x 15.

VI. CONCLUSIONS

In this manuscript, we proposed an efficient method for the
derivation of scattering matrices of WD junctions absorbing
nullors, which are theoretical two-ports useful for modeling
several multi-port devices in audio circuits, such as linear
opamps. The proposed method is based on a double-digraph
decomposition of the reference connection network containing
nullors, which is generally nonreciprocal and nonlossless, into
a pair of reciprocal and lossless connection networks (the V-
network and the I-network). By merging the information of the
V-network and the I-network, we then derived two formulas
for computing the matrices of the scattering junctions. Such
formulas are characterized by a reduced computational cost
w.rt. the state-of-the-art MNA-based method discussed in
[17]. The proposed methodology turned out to be particularly
useful for the simulation of circuits with multiple nonlin-
carities through the Scattering Iterative Method (SIM) [9],
[13], [16], a fixed-point method that has shown, over the past
few years, great performance in emulating audio circuits with
multiple nonlinearities, since it requires a frequent update of
the scattering matrices of the topological junctions. In fact,
in order to emulate nonlinear audio circuits containing active
elements, iterative procedure are usually required to break the
delay-free-loops formed at the interconnections between WD
blocks. In addition, specific criteria of convergence are given
for the case of nonreciprocal scattering junctions absorbing
nullors.

It is worth noticing that a straightforward extension of
the proposed method can be done for the WD realization
of topological junctions embedding both nullors and ideal
transformers by integrating the approach discussed in [18] with
the methodology described in this manuscript.
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