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Abstract

This paper presents a strategy for optimal manoeuvre design of multi-satellite formation flying in low Earth orbit environment, with
the aim of providing a tool for mission operation design. The proposed methodology for formation flying manoeuvres foresees a con-
tinuous low-thrust control profile, to enable the operational phases. The design is performed starting from the dynamic representation
described in the relative orbital elements, including the main orbital perturbations effects. It also exploits an interface with the classical
radial-transversal-normal description to include the maximum delta-v limitation and the safety condition requirements. The methodol-
ogy is applied to a remote sensing mission study, Formation Flying L-band Aperture Synthesis, for land and ocean application, such as a
potential high-resolution Soil Moisture and Ocean Salinity (SMOS) follow-on mission, as part of a European Space Agency mission con-
cept study. Moreover, the results are applicable to a wide range of low Earth orbit missions, exploiting a distributed system, and in par-
ticular to Formation Flying L-band Aperture Synthesis (FFLAS) as a follow-on concept to SMOS.
� 2021 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).
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1. Introduction

Distributed systems have increased their importance in
space application in the last decade. The idea of exploiting
the benefits of distributed spacecraft for a common objec-
tive can improve the mission performances, and exploiting
formation flying for Earth observation could provide an
unprecedented advantage to the field in terms of higher
spatial resolution (Leitner, 2004; Bandyopadhyay et al.,
2016). Remote sensing for Earth applications is typically
applied in Low Earth Orbit (LEO), resulting in a small
field-of-view or limited angular resolution of the scientific
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instrument onboard a single-satellite mission. Formation
flying gives the possibility to increase the payload perfor-
mances in terms of spatial and temporal resolution and
field of view as it increases the effective size of the instru-
ment (Krieger et al., 2007; Moreira et al., 2015). During
the operational life of a mission, different phases may
require different geometries of the satellites in the forma-
tion. Consequently, the design of the mission requires a
clear definition of reconfiguration strategies for multiple
satellites, for the definition of the performances. In partic-
ular, this paper presents an algorithm for a fuel-optimal
manoeuvre strategy, that can be flexible to different mission
operation scenarios. When it comes to the design of a space
mission, it is important to define the main operational
modes and the transitions among them. For formation fly-
ing, one of the main factors that influence the design is the
collision-free flight during the overall mission profile. A
ommons.org/licenses/by-nc-nd/4.0/).
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suitable collision avoidance strategy should be defined
among the satellites in the formation (Wermuth et al.,
2015; Koenig and D’Amico, 2018). For Earth observation
missions, the close formation is introduced to achieve the
concept of a distributed scientific payload. In the particular
case of a potential follow-on to ESA’s Soil moisture and
Oceans Salinity (SMOS) mission, it would be required for
the satellites to fly at a distance in the order of ten meters.
Such close separation poses a stringent requirement on
inter-satellite collision avoidance for a safe flight.

The concept of formation flying reconfiguration has
been extensively analysed in the literature (Tillerson
et al., 2002; Armellin et al., 2004; Acikmese et al., 2006;
Morgan et al., 2014; Koenig and D’Amico, 2018; Sarno
et al., 2020). Acikmese et al. (2006) proposed a guidance
algorithm for formation reconfiguration with heuristic col-
lision avoidance constraints when the satellite distances are
in the order of tens of metres. The formulation as a second-
order cone algorithm is suitable for onboard implementa-
tion. Morgan et al. (2014) proposed a decentralised model
predictive control algorithm for reconfiguration of swarms
of spacecraft in J 2 invariant orbits, with a flight distance in
the order of hundreds of metres. He proposed a convex
approximation of the prohibited zone for a collision-free
flight area of the swarms of spacecraft. A similar approach
was described by Sarno et al. (2020), who proposed an
autonomous low thrust reconfiguration for a distributed
system when the relative distances are in the order of hun-
dreds of metres. The path planning was optimised via
genetic algorithms and integrated with a convex optimisa-
tion law for rapid onboard computation of the control law.
Starting from these literature findings, this work proposes a
strategy for reconfiguration that can be applied to close
formation flying for remote sensing applications in general,
and for Formation Flying L-band Aperture Synthesis
(FFLAS) in particular (Scala et al., 2020b). The low-
thrust engine technology is considered for the control law
implementation, allowing the continuous control of the
satellites’ state. This is essential for close formation, in
the order of few tens of metres, to continuously control
the relative position and avoid possible unwanted beha-
viour, which might lead to a collision. Moreover, a low-
thrust technology could provide a good delta-v capacity
for a long mission lifetime. For the case of FFLAS, a mis-
sion duration of at least 10 years is envisioned. The devel-
opment of an inter-satellite collision avoidance strategy is
presented, to deal with the close proximity of the satellites.
The strategy proposed exploits the benefits of the convex
optimisation, to find the global optima of the control
law, as in Morgan et al. (2014) and Sarno et al. (2020).
Additional constraints are introduced in the definition of
the problem, to simulate a real mission scenario. A limita-
tion upon the maximum thrust available is introduced to
deal with the technological limitation of the onboard
engine. The algorithm presented is applied to the FFLAS
mission concept for remote sensing, which is being devel-
oped at Politecnico di Milano in collaboration with Airbus
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Defence and Space Spain, under a European Space Agency
(ESA) mission study (Scala et al., 2020b). The transition
among the main mission modes is simulated, to present a
delta-v optimal solution for a three-satellite formation fly-
ing. In particular, the transition between the nominal Earth
observation mode and the Cold Sky Pointing mode is sim-
ulated for the calibration of the scientific payload at least
once per month.

The work presented in this paper starts from the liter-
ature findings applied to formations baseline in the range
of tens to thousands of kilometres. The aim is to extend
the approach for fuel-optimal trajectories to close forma-
tions with an inter-satellite distance in the order of few
tens of meters. To provide an accurate description of the
dynamics, the linearised dynamical model is based on
ROEs representations, including the effect of the mean
Earth oblateness term, J 2. For a better inclusion of this
effect, the relative dynamics is described in the Relative
Orbital Elements (ROEs) framework. This representation
provides a accurate description of the dynamics, in the
order of few centimetres for a time-frame of 10 to 20 orbi-
tal periods (Gaias and Colombo, 2018). The accuracy of
the model with respect to the non-linear description of
the dynamics has an important impact on the reliability
of the solutions. Being able to provide a trajectory
description with a dynamical representation accurate at
the centimetres level is of primary importance for more
refined analyses, such as the inclusion of the navigation
sensors in the state reconstruction. The paper is organised
with an initial overview in Section 2, describing the refer-
ence systems used in the analysis. Moreover, it presents
the relative orbital dynamical model in the ROEs environ-
ment, based on a semi-analytical model. The direct and
inverse transformation between the relative state in the
Hill frame and the ROEs framework is presented, starting
from the work by Gaias and Lovera (2020). The remote
sensing scenario for Earth observation is presented in Sec-
tion 3, with the FFLAS mission based on an L-band aper-
ture synthesis interferometer. Then, the optimal formation
reconfiguration methodology is described in Section 4.
Starting from the classical formulation of the control sys-
tem, first, a discretisation procedure is implemented, and
then, the problem is converted into a convex formulation.
The optimal control is described as a fuel-optimal prob-
lem, constrained by the maximum thrust level given by
the low-thrust engine and by the minimum inter-satellite
distance. The convex optimisation problem is solved with
the disciplined convex programming, based on the CVX

software developed by Grant et al. (2013). Finally, Sec-
tion 5 presents the application of the proposed methodol-
ogy to the three satellites mission study for remote
sensing, FFLAS. The main operational modes are pre-
sented and the optimal control law for the transition is
proposed for a fast reconfiguration, in less than an orbital
period of the reference orbit. Specifically, the transition
from the nominal Earth observation mode to both the
cold sky pointing and the safe mode is proposed, together



Fig. 1. RTN frame centred in the formation flying reference orbit.
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with a collision avoidance strategy in case of failure of the
main engine of one satellite.

2. Reference frames and dynamical model

This section provides an overview of the reference
frames and the relative dynamical equations used to
develop the manoeuvre strategy. The analysis is carried
out in both the relative orbital elements framework and
the classical Radial-Transversal-Normal (RTN) frame.
The former allows a better representation and inclusion
of the main perturbations, such as the Earth oblateness
J 2, in the relative motion. On the other hand, the RTN
frame provides an immediate and straightforward inclusion
of the maximum thrust limitation and collision avoidance
constraints. Section 2.1 gives an overview of the absolute
orbital frame, the RTN frame, the ROEs framework and
the body-fixed frame. The latter allows a representation
of the control effort in the body axis, providing information
for the design and configuration of the onboard thruster.
Section 2.2 presents the State Transition Matrix (STM)
in the ROEs framework used to describe the natural free
motion of the formation flying. Since the control effort is
easily included in the RTN frame, we transformed back
the STM into this frame for a better representation of
the natural forced motion of the formation.

2.1. Reference frames

An accurate definition of the reference systems used to
describe the absolute and relative dynamics is of impor-
tance to have a clear insight of the analyses performed to
define the reconfiguration strategies of the formation
flying.

2.1.1. Inertial absolute orbital frame

The orbital frame used to describe the absolute position
and velocity is the Earth Mean Equator at J2000 epoch
(EMEJ2000), at midnight. The absolute state vector,
including position and velocity, can be defined in the
EMEJ2000 for both the reference orbit and the satellites
orbit. In this paper, the reference orbit is identified with
subscript c in the state vector:

xc ¼
rc

vc

� �
ð1Þ

with rc and vc being the position and velocity vectors of the
reference orbit respectively. Considering a formation made
by N satellites, the absolute state of a generic j-th space-
craft, with j ¼ 1; . . . ;N , is defined as:

xj ¼
rj

vj

� �
ð2Þ

with rj and vj being the position and velocity vectors of the
j-th orbit respectively. From the absolute state vector x, it
is possible to represent the Keplerian orbital elements of
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the reference orbit and the formation flying satellites. In
this paper, we consider the mean Keplerian elements,
instead of the classical osculating ones. We define the mean
Keplerian elements of the reference orbit as
ac ¼ fac; ec; ic; Xc; xc; Mcg, with the semi-major axis, the
eccentricity, the inclination, the right ascension of the
ascending node, the argument of perigee, and the mean
anomaly, respectively. Similarly for a generic satellite j in
the formation, we define the mean Keplerian elements as
aj ¼ fa; e; i; X; x; Mgj for j ¼ 1 : N .
2.1.2. Radial-transversal-normal frame

The relative motion is typically described in the Radial-
Transversal-Normal orbital frame, also defined as the Hill
Orbital Frame, introduced by Hill (1878). The RTN frame
is commonly used in the representation of the formation
flying relative motion, due to the insight representation of
the time evolution of the relative satellites’ position,
(D’Amico, 2005). The RTN unit vector triad is defined as
eR; eT and eN , where: eR is aligned with the radial direction,
pointing outward, eN is aligned with the orbit momentum
vector, eT to complete the right-hand coordinates system.
Their mathematical expressions are reported in Eq. (3),
with rc and vc the inertial position and velocity of the ref-
erence orbit.

eR ¼ rc=rc
eN ¼ ðrc � vcÞ=krc � vck
eT ¼ eN � eR

ð3Þ

This frame is described by a rotation of the synodic frame
given by the mean motion of the reference orbit x ¼ neN,
where n is the mean motion. The RTN frame is represented
in Fig. 1, where the case of a quasi-circular orbit is repre-
sented, with the transversal axis in the direction of the orbi-
tal velocity.
2.1.3. Relative orbital elements frame

The relative orbital elements framework was described
by D’Amico (2005) for easier inclusion of the orbital per-
turbation in the modelling of the relative motion. Differ-
ently from the classical RTN representation, the ROEs
allows a semi-analytical representation of the dynamical
model, with a better insight into the relative motion. More-
over, the resulting control model accuracy is higher than



Fig. 3. Satellite body-fixed reference frame.
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the classical RTN approach (Gaias et al., 2020). The ROEs
describe the orbital elements of each satellite in the forma-
tion with respect to their reference orbit. Starting from the
mean Keplerian elements of the reference orbit and a gen-
eric satellite j of the formation as fac; ec; ic; Xc; xc; Mcg
and fa; e; i; X; x; Mgj, respectively, as defined in Sec-

tion 2.1.1, the ROEs can be computed. The relative orbital
elements of the j-th satellite are defined in Eq. (4) by daj, as
a set of dimensionless variables from the formulation in
D’Amico (2005).

daj ¼

da

dk

dex
dey
dix
diy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

j

¼

ða� acÞ=ac
u� uc þ ðX� XcÞ cosðicÞ
e cosðxÞ � ec cosðxcÞ
e sinðxÞ � ec sinðxcÞ

i� ic
ðX� XcÞ sinðicÞ

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

j

; ð4Þ

where u ¼ M þ x is the mean argument of latitude,
depending on the mean anomaly M and on the argument
of perigee x. The ROEs are composed of the relative
semi-major axis da, the relative mean longitude dk and
the relative eccentricity de and inclination di vectors respec-
tively. The interpretation of the ROEs in the RTN frame is
shown in Fig. 2, where the ROEs are shown in terms of
cross-track and along-track displacement.

2.1.4. Body-fixed frame

A third reference frame that is considered in the analysis
is the body-fixed frame. It allows the representation of the
j-th spacecraft attitude profile in a frame that is tied to the
satellites’ system. This reference frame is centred in the
satellite body (centre of mass) and follows the attitude evo-
lution in time. There is no standard convention for defining
this frame, but it is typically selected along the symmetry
axis and/or the main axes of inertia (Montenbruck et al.,
2015). In this paper, the body-fixed frame fxb; yb; zbg is
defined following the principal axis of the satellites, and
we consider the three-axis of the on-board engine aligned
with this frame, to enable a consistent description of the
control effort of the j-th satellite. It is important to describe
the transformation among the body-fixed frame and the
RTN frame. This is typically described by three subsequent
rotation of the yaw, roll and pitch angle (w; h, and /
respectively), as shown in Fig. 3. The rotation matrix that
relates the RTN and the body fixed frame is
Fig. 2. Interpretation of relative orbital elements in the RTN frame.
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RRTN
b ¼ Rzbð/Þ � RybðhÞ � RxbðwÞ, where R is the rotation

matrix around the xb; yb and zb axis of an angle /; h or w
respectively. The matrix RRTN

b is used for the conversion
between the state vector in the RTN frame (xRTN ) and the
in that body axis (xb):

xb ¼ RRTN
b � xRTN

xRTN ¼ ðRRTN
b ÞT � xb

(
ð5Þ

For a remote sensing formation flying mission, such as
FFLAS, the nominal attitude of the satellites is Earth
pointing for observation purposes. This condition requires
the xb axis aligned with the radial direction, but with the
opposite sign (pointing to the centre of the Earth). In this
work we assume that the attitude of the satellites during
the manoeuvres can ensure the alignment of the yb and zb
axes with the transversal and normal directions respec-
tively, maintaining the thrusters in the correct direction.
2.2. Relative dynamical model

This work focuses on the dynamical representation of
relative motion in the LEO environment, at an altitude
higher than 500 km (see Section 3). The most relevant per-
turbing effect for such a condition is given by the Earth’s
oblateness, while the other sources are considered negligi-
ble in the preliminary analysis presented in this paper.
The solar radiation pressure and the third body perturba-
tion are at least an order of magnitude lower than the pri-
mary J 2 effect. In literature, the use of the Hill-Clohessy-
Wiltshire (HCW) equations has been widely discussed.
The classical HCW equations are typically used to describe
the natural relative motion, without the inclusion of exter-
nal orbital perturbations (Clohessy and Wiltshire, 1960).
The orbital perturbations, like the Earth’s oblateness or
the atmospheric drag, can highly influence the natural
motion in LEO orbits. Thus, the HCW equations can
introduce significant errors in the long-term prediction of
the relative motion of satellites. To account for these limi-
tations, the main perturbation effects have been included in
several models in the RTN reference frame for a quasi-
circular reference orbit. Vadali et al. (2000), Schweighart
and Sedwick (2002) and Izzo et al. (2003) proposed a nat-
ural relative motion model, including the Earth’s oblate-
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ness’ effect. A similar model was developed by Sabatini and
Palmerini (2008), including also the drag disturbance. In
their work, they demonstrated how the proposed model
provides a dynamical behaviour closer to the non-linear
propagator, with respect to the previous ones. Thus, the
thrust free relative motion for the j-th satellite in the forma-
tion could be expressed in the RTN frame by the following
relation:

_xjðtÞ ¼ ArtnðtÞxjðtÞ ð6Þ
where, ArtnðtÞ is the state matrix including the Earth’s
oblateness effect as described in detailed in Sabatini and
Palmerini (2008), and xjðtÞ ¼ x; y; z; _x; _y; _zf g0 is the state
vector of the j-th satellite. For the sake of this work, the
drag effect is not considered, since the satellites in the for-
mation are close to each other, with an inter-satellite dis-
tance in the order of few tens of meters, and the effect of
the differential effect of the drag could be neglect in this
preliminary analysis. The model proposed by Sabatini
and Palmerini (2008) provides an error of the relative posi-
tion of about 5% to 10% of the relative distance, consider-
ing a relative orbit of a few hundred to a few thousand
metres.

Another approach exploiting the ROEs framework was
presented in a previous work by Gaias and Colombo
(2018). Only the terms related to the second order zonal
contribution J 2 are considered in this work, and the first
order relative mean motion in ROEs is expressed as:

d _ajðtÞ ¼ AaðtÞdajðtÞ ð7Þ
where, AaðtÞ is the first-order state matrix, whose terms are
reported in the Appendix A for sake of clarity, and dajðtÞ
are the relative orbital elements of the j-th satellite. This
first-order approach in the da variables requires only small
da; dex; dey , and dix. The formation flying geometry consid-
ered in this work consists of satellites flying on similar
quasi-circular orbits, with a small difference in the relative
orbital elements. In Gaias and Colombo (2018) it is
described how this approach provides a small error for
the propagation of the ROEs than the classical integration
procedure (non-linear approach). For a relative orbit of a
few hundreds of meters, the errors remain in the order of
a few centimetres to one metre for the first 20 orbital rev-
olutions. To gain such accuracy, it is important to exploit
an osculating-to-mean transformation in the same order
of the reference dynamics. In particular, since we consid-
ered a first-order relation in Eq. 7, a first-order correction
based on both canonical and Lie transformation was used,
as described in Gaias et al. (2020). For a close-range forma-
tion - when the inter-satellite separation is less than 1 kilo-
metre - a linear mapping from ROEs to relative states in
RTN frame is considered with the procedure presented in
Gaias and Lovera (2020). The change of variables is
obtained by introducing the Lyapunov transformation
(Gaias and Lovera, 2020). It requires the knowledge of
the mean argument of latitude uc and of the mean motion
nc of the reference orbit. The matrix used for the mapping
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from ROEs to relative states in RTN is reported in Eq. (8).
This formulation is non-singular for all time t and it can be
inverted with the inverse transformation from the relative
state in RTN to ROEs.

TðtÞ ¼

1 0 � cos nt � sin nt 0 0

0 1 2 sin nt �2 cos nt 0 0

0 0 0 0 sin nt � cos nt

0 0 n sin nt �n cos nt 0 0

� 3 n
2

0 2n cos nt �2 sin nt 0 0

0 0 0 0 n cos nt n sin nt

2
666666664

3
777777775
ð8Þ

The direct and the inverse transformations are the
following:

x ¼ TðtÞ � ada
ada ¼ T�1ðtÞx

�
ð9Þ

where da represents the relative orbital elements, and x the
relative states in RTN. These equations can be used to pass
from the representation in ROEs, as in Eq. (7), to the rel-
ative state in RTN representation, and vice versa. The
direct transformation from Eq. (7), exploits the change of
variables:

_xjðtÞ ¼ TAaðtÞT�1 � TT�1
� �

xj ¼ ÂxjðtÞ ð10Þ
where Â is the new state matrix in RTN for the dynamic
motion description. A similar procedure can be done for
the inverse transformation starting from Eq. (6). The repre-
sentation in Eq. (10) maintain the accuracy level of the
ROE-based model: the error with respect to the non-
linear representation is less than one metre. Its transforma-
tion in the RTN frame could still provide such accuracy
when the inter-satellite distance is less than one kilometre,
thus can be applied for proximity manoeuvre design.

3. Problem definition

The analyses presented in this work are developed for
the three-satellite FFLAS mission, but are valid for multi-
ple satellites formation for remote sensing purposes, in
LEO, at a mean orbital altitude of 770 km. The beneficial
effect of exploiting formation flying to increase the virtual
aperture of the instruments was widely studied (Krieger
et al., 2007; Moreira et al., 2015). A close formation, with
an inter-satellite distance in the order of tens of meters, can
significantly improve the resolution of a Synthetic Aperture
Radiometer instrument: the equivalent payload aperture
size increases with the dimensions of the formation. Simi-
larly, this work considers the possibility of performing L-
band aperture synthesis radiometry using three spacecraft
(FFLAS mission concept). Each individual hexagonal
array interferometer, as in (Kerr et al., 2020; Martı́n-
Neira et al., 2020), could provide up to 25 km spatial res-
olution for a payload aperture size of about 15 m diame-
ters. Introducing the formation flight concept, a
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triangular formation of three arrays with dimension side in
the order of 10 m to 15 m, could provide an equivalent
aperture of 21 m diameter and up to 10 km resolution
(Zurita et al., 2013; Martı́n-Neira et al., 2020). This
improvement of achieving a larger aperture with spacecraft
in formation flight is in the direction of Earth’s observa-
tions scientific needs, where most of the hydrological pro-
cesses occur in the 1–10 km scale. Future mission studies
for Earth observation could take advantage of the forma-
tion flying to improve the spatial resolution and as a con-
sequence the scientific performances capabilities, such as
the mission study FFLAS that we are considering in this
work as the study case. These premises serve as a starting
point for the reconfiguration manoeuvres design. As
described in Section 1, some research has already been pro-
posed to study optimal manoeuvre for formation flying
(Sabatini and Palmerini, 2009; Morgan et al., 2014;
Sarno et al., 2020). Starting from the work done in litera-
ture, we propose and apply an optimal reconfiguration
method to close formation flying, with the focus on the
most relevant manoeuvre required during mission opera-
tions. To ensure the performance increase exploiting dis-
tributed aperture synthesis payloads, it is required that
the satellites fly in close formation with a fixed relative
position. Specifically, this translates into the need for a
forced relative motion during the nominal phase of the mis-
sion. In this way, the aperture synthesis can be realised as a
single augmented instrument. The low thrust technology is
the most suitable to continuously control the relative posi-
tion among the satellites. Moreover, the instruments
should be at the same orbit altitude to ensure correct inter-
ferometric processing. For this reason, a formation flight
lying on the transversal-normal plane (Fig. 1) enables such
performances. Another important consideration concerns
the relative inter-satellite distance. Depending on the array
geometry of the payload, it can be shown that a proper
selection of the relative distance is required to perform
interferometry (Zurita et al., 2013). Considering an L-
band array with a hexagonal geometry, the best formation
for interferometry is obtained by rigidly flying three hexa-
gons facing arms at the vertices of an equilateral triangle
of side equal to twice the inner diameter of the hexagon.
These considerations result in a close - tight - formation,
where the small inter-satellite distance is a critical aspect
and requires a robust collision avoidance strategy. A final
aspect that should be considered for the FFLAS mission
is the need for periodic calibration of the synthetic aperture
payload. The instrument should be typically calibrated
once a month, pointing the instrument in the cold sky
direction. This translates into the need of designing a fuel
optimal manoeuvre for the transition between the nominal
Earth Pointing Mode (EPM) and the Cold Sky Pointing
Mode (CSPM), for calibration purposes. The previous con-
siderations introduce some requirements for the satellite
formation establishment of FFLAS. The close - tight - for-
mation requires a forced relative motion to control the rel-
ative position, where the low-thrust technology is the most
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suitable to provide continuous control, even with a limita-
tion in the maximum thrust level. Moreover, for observa-
tion purposes, the aperture plane of the formation will lie
in the transversal-normal plane, and then the satellites will
perform a calibration manoeuvre at least once per month,
to switch from EPM to CSPM configuration. Finally, an
inter-satellite collision avoidance strategy should be imple-
mented in the manoeuvre, to tackle the close relative posi-
tion among the satellites.

4. Orbital control methodology

This section presents the model and the methodology
followed to design optimal low-thrust manoeuvres for
FFLAS, or in general, remote sensing close formation
flight. For this work, the initial and final state vectors of
the satellites depend on the mission operations profile.
Thus, the optimal formation reconfiguration strategy relies
on the knowledge of initial and final condition a priori. The
degree of freedom in this sense is the time of the manoeu-
vre, which can be set as a fraction/multiple of the orbital
period to compute the manoeuvre trajectory and the con-
trol terms. Both the constraints on the maximum available
thrust and the collision avoidance are considered in the
implementation of the optimal control problem.

The analysis presented in this section is based on the trans-
formation of the classical optimal control problem into a
convex formulation. The convexification of the problem
grants the existence of a unique solution of the problem,
and it does not require several iterations to converge to the
optimal solution (Morgan et al., 2014). An approach, relying
on convex formulation, has already been discussed in previ-
ous studies for relative motion manoeuvre (Mitani and
Yamakawa, 2013; Morgan et al., 2014; Koenig and
D’Amico, 2020; Sarno et al., 2020). Moreover, Scala et al.
(2020a) applies the convex approach for formation reconfig-
uration after the satellite injection by the launcher. The con-
vex representation allows a simple immediate discretisation
of the system dynamics, including the effect of the control
action. The reduced computational effort required by this
approach (Morgan et al., 2014), is suitable for an implemen-
tation on-board the satellites, which have reduced computa-
tional capability. The solution of the convex optimisation
problem provides the thrust level for the guidance of the opti-
mal reconfiguration manoeuvre of the spacecraft.

The reconfiguration manoeuvre can be described as a
global time-optimal or a fuel-optimal problem. In this case,
the approach was to fix the time for the reconfiguration
and optimise propellant consumption. Now, the optimal
problem is manipulated into a convex form and this
requires the discretisation of the entire control problem,
for both constraints and cost function.

4.1. Optimal control system

The fuel-optimal reconfiguration manoeuvre can be
defined under the classical Optimal Control Problem
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(OCP) formalism. The control system is described by an
ordinary differential equation for the j-th satellite in the
formation.

_xjðtÞ ¼ f t; xj; u
� � ¼ AjxjðtÞ þBjujðtÞ ð11Þ

where xj ¼ xj; yj; zj; _xj; _yj; _zj
� �T

is the state corresponding

to the j-th satellites state vector, uj ¼ uxj ; uyj ; uzj
n oT

is the

control input vector, and t is the time. The matrix A is
the matrix representing the natural relative motion under
the influence of external perturbations, andB is the control
matrix. The low thrust control is introduced in the dynam-
ical system as a continuous effect on the natural dynamics.
This paper describes the control in the RTN relative frame
as a control input uðtÞ, included in the dynamical system
through the control input matrix B:

B ¼

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð12Þ

The matrix B relates the control term to the velocity com-
ponents in the system dynamics. The objective of the anal-
ysis is to find the optimal control input uðtÞ, such that the
performance index, or cost function, is minimised. The per-
formance index for this fuel-optimal control problem is
defined for each j-th satellite as following:

J ¼
Z
t

ujðtÞ
�� ��

1
dt ð13Þ

The 1-norm is used in the cost function to minimise the
sum of the magnitude of the control components in the
RTN directions. This corresponds to the minimisation of
the propellant mass for the manoeuvre; the control effort
is related to the propellant mass via the spacecraft wet mass
and the engine thrust level: Tj ¼ ms=cj � uj. The initial and

final conditions of the dynamic system in Eq. (11) influence
the dynamics with the following relations:

xjðt0Þ ¼ x0;j

xjðtf Þ ¼ xf ;j

�
ð14Þ

where x0;j is the initial state of the j� th satellite and xf ;j is
the final (or boundary) condition. Finally, as discussed in
Section 3, the problem is subject to some constraints on
the collision avoidance and the maximum available thrust.
Thus, at any time instant, the maximum thrust limitation
translates into a limitation in the maximum acceleration
Tmax ¼ ms=cj � amaxj . The collision avoidance constraint is

expressed in terms of minimum allowable distance between
the j-th and i-th satellites.

ujðtÞ
�� �� 6 amaxj

C xjðtÞ � xiðtÞ
� ��� ��

2
P dthr

(
ð15Þ
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where amaxj is the maximum acceleration that the thruster

can provide, C ¼ I3�3 03�3½ � is the matrix to retain only
the position components in the state vectors xjðtÞ and
xiðtÞ, and dthr is the minimum safe distance to avoid
inter-satellite collision.
4.2. Convex Optimal Control System

In this section, the discretisation procedure for the OCP
is described. The discretisation procedure is the first step to
write an optimal control problem in a convex form. This is
conceptually similar to the least-square and the linear pro-
gramming. A Convex Optimal Control Problem (COCP)
can be efficiently solved with different methods, such as
the interior-point methods (Boyd et al., 2004). Thanks to
the sparsity of the matrices involved, it is typically very
time efficient and can handle large problems up to thou-
sands of variables and constraints. The most challenging
part to deal with the convex formulation is the transforma-
tion of the OCP into a convex form. Three main require-
ments define a convex problem: both the objective and
the inequality constraint functions must be convex, and
the equality constraints must be affine (Boyd et al., 2004).
The main advantage of a COCP is the equivalence among
local and global optimal points. The first step to convert an
OCP in classical form into a convex formulation is the dis-
cretisation of both the objective and the constraint func-
tions, in Eqs. (11)–(15).
4.2.1. Discretisation procedure

The approach followed for discretising the system is
based on the Laplace transformation of the state equations
(Rowell, 2002). The time is divided into K finite time
instants, each representing the sample interval for the state
x and the update interval for the control term u. Moreover,
the zero-order-hold approach is considered, with the con-
trol term piecewise constant in each time instant k

(Morgan et al., 2014). For the procedure, we considered:

� Time discretisation: k ¼ 1; . . . ;K (where tk¼1 ¼ t0 and
tk¼K ¼ tf )

� Time interval: Dt ¼ tkþ1 � tk
� Total time: T ¼ K � 1Dt
� Number of satellites in the formation: j ¼ 1; . . . ;N

System dynamics. The discretisation of Eq. (11) requires
the solution of the non-homogeneous system, via the
Laplace transformation. This procedure leads to the fol-
lowing expression, which includes the convolution integral
for the control effort (Acikmese et al., 2006).

xj½k þ 1� ¼ eADt xj½k� þ
Z Dt

0

eAsdsBuj½k� ð16Þ

Now, considering that the state matrix A is invertible, the
integral term is expressed as:



F. Scala et al. Advances in Space Research 68 (2021) 4359–4378
Z Dt

0

eAsds ¼ A�1 eADt � I
� � ð17Þ

where I is the identity matrix. Finally, recalling that the
expression eADt is equivalent to the matrix formulation
IþADt, we obtain the final expression of the system
dynamics:

xj½k þ 1� ¼ IþADtð Þxj½k� þBDtuj½k� ð18Þ
where j ¼ 1; . . . ;N . The matrix A represents the system
dynamics of the formation flying. Depending on the nom-
inal value of the inter-satellite distance, different consider-
ations should be done. First, for an inter-satellite distance
6 1km, the linear mapping between ROEs and RTN frame
reported in Eq. (8) is valid and the ROE-based state matrix
of Eq. (10) can be used. For this case of proximity opera-
tions, when the matrix A correspond to the state matrix
of Eq. (10), the description in relative orbital elements is
considered to maintain a better accuracy level in the opti-
mal manoeuvre design. This case could be applied to the
nominal operations required by a remote sensing mission,
like FFLAS, such as the payload calibration manoeuvre
or the safe mode transition. On the other hand, for different
mission operational scenarios, the inter-satellite distance
could be larger than 1 km, such as after the orbital injection
by the launcher and the subsequent initial reconfiguration
manoeuvre to set the nominal formation geometry. For
this case, the linear mapping in Eq. (8) is not accurate
and the formation dynamics could not benefit from the
relation in Eq. (10). In this case, the dynamic is described
by the RTN-based state matrix, as in the formulation of
Eq. (6) (Sabatini and Palmerini, 2008).

Objective function. The objective function (or cost func-
tion) described in Eq. (13) is dicretised thanks to the piece-
wise constant control property in each time interval:

J ¼
XK
1

uj½k�
�� ��

1
ð19Þ

where j ¼ 1; . . . ;N and the 1-norm is used again for an
optimal solution with minimum fuel consumption.

Initial and final conditions. The initial and final condi-
tions of the system dynamics can be described as:

xj½k ¼ 1� ¼ x0;j

xj½k ¼ K� ¼ xf ;j

�
ð20Þ

where the relation is valid for each satellite in the formation
with j ¼ 1; . . . ;N .

Thrust constraints. The maximum thrust limitation con-
straint in Eq. (15) can be discretised as following:

uj½k�
�� �� 6 amaxj ð21Þ
where j ¼ 1; . . . ;N and the maximum bound is imposed so
that at each time interval, the acceleration provided by the
thrusters is bounded by the engine technological limit.

Inter-satellite collision avoidance constraint The mini-
mum distance constraint between the j-th and the i-th satel-
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lites (with j – i) requires a mode detailed discussion. First,
the expression in Eq. (15) is discretised as follows:

C xj½k� � xi½k�
� ��� ��

2
P dthr ð22Þ

where j ¼ 1; . . . ;N � 1 and i > j. To guarantee that the
collision avoidance constraint is satisfied on ðtk; tkþ1Þ8k,
and to prepare the relation for a correct convexification,
the expression in Eq. (22) is transformed in the following
relation (Morgan et al., 2014):

�xj½k� � �xi½k�
� �T

CTC xj½k� � xi½k�
� �

P dthr C �xj½k� � �xi½k�
� ��� ��

2
ð23Þ

for i > j and j ¼ 1; . . .N � 1, where the �xj½k� represents an
initial guess of the optimal trajectory followed by the
spacecraft. The closer the initial guess is to the actual tra-
jectory, the more accurate the convex program solution
will be. In this work, the initial guess is selected as the result
obtained from a first running of the convex problem, with-
out collision avoidance constraints. Then, the collision
avoidance is added to the problem formulation and the ini-
tial guess is refined with the resulting trajectory and control
from the first running of the convex problem. Finally, this
refined initial condition is used to obtain a refined solution.
The expression in Eq. (23) generates separating planes
among the satellites, transforming the circular prohibited
zone of Eq. (22) into a suitable convex formulation. This
formulation defines a collision-free zone with separating
planes, ensuring a sufficient condition for the collision
avoidance of the j-th and i-th satellite couple (Morgan
et al., 2014).

4.2.2. Convex optimal control system

The classical formulation of the control system was dis-
cretised in Section 4.2.1, and it was prepared for the convex
formulation. Now, using the approach described in Boyd
et al. (2004), we want to express the control system in a
convex formulation, with equality and inequality
constraints:

minimise : f 0ðxÞ
subject to : f iðxÞ 6 0 i ¼ 1; . . . ;m

hiðxÞ ¼ 0 i ¼ 1; . . . ; p

ð24Þ

where x 2 Rn is the optimisation variable, including the
state vectors of all the satellites in the formation. The
aim is to solve the OCP for the overall formation to prop-
erly minimise propellant while dealing with the inter-
satellite collision avoidance constraint.

For each satellite j, with j ¼ 1; . . . ;N , we can define a
column vector x̂j, which includes the state vector and the
control term at each time instant k:

x̂j ¼ x1j � � � xkj � � � xKj u1j � � � ukj � � � uK�1
j

n oT

ð25Þ
where x̂j is a ð6K þ 3ðK � 1ÞÞ size vector. For conciseness,
we define M ¼ ð6K þ 3ðK � 1ÞÞ the length of the decisional
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vector of each j-th satellite. For the whole formation, we

define the full state column vector X̂ as the decisional vec-
tor, with size ðN �MÞ:

X̂ ¼

x̂1

..

.

x̂j

..

.

x̂N

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð26Þ

System dynamics. The relation in Eq. (18) is now expressed

in terms of the full state column vector X̂. For each j-th
satellite, the discrete system dynamic at instant k is:

xkþ1
j � IþADtð Þxk

j �BDtukj ¼ 0 ð27Þ
where j ¼ 1; . . . ;N . Considering the k-th instant, in matrix
form the system dynamics for satellite j are the following.

½06�6ðk�1Þ; �ðI6 þADtÞ; I6; 06�3ð2K�k�3Þ; �BDt; 06�3ðK�k�1Þ� � x̂j ¼ 0

ð28Þ

where the matrix is called Asd . Thus, for the overall forma-
tion, the system dynamics can be expressed as:

� � � � � � � � �
06ðK�1Þ�Mðj�1Þ Asd 06ðK�1Þ�MðN�jÞ

� � � � � � � � �

2
64

3
75 � X̂ ¼ 0 ð29Þ

where j ¼ 1; . . . ;N . Finally, the system dynamics in convex
formulation for the overall formation is represented as:

Âsd X̂ ¼ 0 ð30Þ
Objective function For the cost function, we define a

matrix H to extract, from the state vector of each j-th
satellite, the control terms ukj :

Hj x̂j ¼ 06K ; I3ðK�1Þ
	 


x̂j

¼ 01�6K ; u1j ; � � � ; ukj ; � � � ; uK�1
j

h iT ð31Þ

where j ¼ 1; . . . ;N . Finally, for the overall formation, the
objective function including the contribution of each satel-
lite becomes:

J ¼ ðĤX̂ÞDt�� ��
1

ð32Þ

where Ĥ ¼ � � � ; Hj; � � �	 
T
for every j ¼ 1; . . . ;N .

Note that the expression in Eq. (32) is equivalent to the
objective function defined for the classical control problem
in Eq. (13). In fact, it correspond to the sum of the norm-1
at each time instant k of the control effort ukj . The value

from the matrix multiplication is multiplied by the discre-
tised time interval Dt, to recover the cost of the manoeuvre
in the overall time interval DT .

Initial and final conditions. The same procedure used for
the system dynamics and the objective function is used to
write the initial and final conditions in terms of the full
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state column vector X̂. The final result of the described
procedure is the following relation:

ÂIC X̂ ¼ X0

ÂFC X̂ ¼ Xf

(
ð33Þ

where the matrices ÂIC and ÂFC are defined as:

ÂIC ¼
� � � � � � � � �

0M�Mðj�1Þ AIC 0M�MðN�jÞ
� � � � � � � � �

2
64

3
75 ð34Þ

ÂFC ¼
� � � � � � � � �

0M�Mðj�1Þ AFC 0M�MðN�jÞ
� � � � � � � � �

2
64

3
75 ð35Þ

For each row defined by j ¼ 1; . . . ;N , where AIC and AFC

are ðM �MÞ matrices with only not-null components the

A
ð1:6;1:6Þ
IC ¼ I6 and A

ð6K�5:6K;6K�5:6KÞ
FC ¼ I6 for each j-th satel-

lite. While the X0 and Xf terms are ð6KNÞ column vectors
for the initial/final conditions of the overall formation,
defined as:

X0 ¼ x0;1 � � � x0;j; � � � x0;N

	 
T ð36Þ

Xf ¼ � � � xf ;1 � � � xf ;j; � � � xf ;N

	 
T ð37Þ
Thrust limitation For the thrust limitation, the relation is

defined for multiple thrusters, i.e. each satellite j could pro-
vide a thrust in a generic direction along the relative RTN
frame. The thrusters are considered oriented in the body
axis frame ðxb; yb; zbÞ, hence, depending on the attitude, it
is possible to recover the components in the relative RTN
frame with the relation in Eq. (5). The maximum thrust
given by the on-board engine poses a limit in both positive
and negative directions of the firings. The relation in Eq.
(21) is manipulated in the matrix form in terms of the full
state column vector as follows:

Âth X̂ 6 amax B̂th ð38Þ

where the matrix Âth is defined for the multiple thruster
case to extract from the full state column vector the control
components ukj for each j ¼ 1; . . . ;N and for each

k ¼ 1; . . . ;K.

Âth ¼
� � � � � � � � �

06ðK�1Þ�Mðj�1Þ Ath 06ðK�1Þ�MðN�jÞ
� � � � � � � � �

2
64

3
75 ð39Þ

where Ath ¼ ~Ath;� ~Ath

	 

, and for each satellite j, the

matrix to extract the control component from the state vec-

tor is ~Athð:; 6K þ 1 : MÞ ¼ I3ðK�1Þ. Finally the column vec-

tor B̂th is defined depending on the thruster configuration:

InRTN : B̂th ¼ I6NðK�1Þ�1

InTNonly : B̂th ¼ 0; 1; 1; � � � 0; 1; 1½ �T
ð40Þ
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Inter-satellite collision avoidance constraint The collision
avoidance constraint is the most important one, since it
provides a collision-free zone for the optimal manoeuvre.
As defined in Eq. (23), the relation could be converted in

matrix form with the full state column vector X̂ for each
pair of satellites j and i with j ¼ 1; . . . ;N � 1 and i > j as:

B̂CA ÂCA
�X

� �T � ÂCA X̂
� �� �

P d2
thr ĈCA ð41Þ

where �X is the matrix form of the initial guess of the opti-

mal trajectory �xj½k�. The matrix ÂCA is defined to extract

the term xj½k� � xi½k� from the full state vector X̂ and from

the initial guess �X at each time step k. The generic formu-

lation of ÂCA for the collision avoidance constraint of
satellite i and j is the following:

ÂCA ¼
..
.

Ai;j
CA½k�
..
.

2
6664

3
7775 ð42Þ

Ai;j
CA½k� ¼ 03;6ðk�1Þ I3 03;3ð3K�2Þ �I3 03;3ð6K�2k�1Þ

	 

ð43Þ

for k ¼ 1; . . . ;K and j ¼ 1; . . . ;N � 1; i > j. The matrix

B̂CA is introduced to extract the quadratic form of the
inter-satellite distance between satellite j and satellite i.

Similarly, the matrix ĈCA is selected to represent in quadra-

tic form the component C �xj½k� � �xi½k�
� �

of Eq. (22) at each

time instant k from the initial state �X. The quadratic form
of the collision avoidance constraint grants the convexity
of the formulation, and the closer the initial guess is to
the actual optimal trajectory, the more easily the optimal
control problem will converge to the solution.
4.3. Disciplined convex programming

The disciplined convex programming is exploited in this
article to solve the COCP defined by Eq. (32) subject to the
constraints in Eqs. (28), (33), (38), and (41). Both the objec-
tive and the inequality constraints are expressed in convex
formulation, while the equality constraints are affine.

There exist different software for the resolution of disci-
plined convex problems. An example is the SeDuMi soft-
ware, which can be employed to solve a problem
involving linear and quadratic equations and inequalities,
developed by Sturm (1999). A second example is the
semidefinite program solver SDPT3, an infeasible path-
following algorithm for semidefinite-quadratic-linear pro-
gramming developed by Toh et al. (1999). Finally, a third
similar approach is the GuRoBi for linear and non-linear
mathematical optimisation problems (Gurobi
Optimization, 2021). We take advantage of the sparse
properties of the matrices defined in the convex problem,
for a more computationally efficient resolution. Moreover,
we use the CVX Matlab� based software from Grant et al.
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(2008) and Grant et al. (2013), which allows to solve a con-
vex problem in a simple formulation, with the possibility to
select either the SDPT3, SeDuMi or GuRoBi solvers. The
input specifications of the CVX software are shown in
Algorithm 1.

Algorithm 1. Convex optimal problem for formation
reconfiguration in CVX format.
The SeDuMi solver is the default solver for CVX soft-
ware, and it is typically used for most problems. Neverthe-
less, for some situations, the SDPT3 or GuRoBi works
better and with higher reliability (Grant et al., 2013). For
our optimal problem, the SDPT3 was preferred for a more
stable solution, when the collision-avoidance constraint is
employed. To guarantee a more accurate and reliable solu-
tion, the tolerance level of the solver is set at to

½�1=2; �1=2; �1=4�, where � ¼ 2:22� 10�16 is the machine preci-
sion. Note that the dimension of the problem should be
defined before the call to the CVX solver. For our problem,
the dimension of the full state variable depends on the
number of satellites N and on the number of time step K.
A consideration about the time step should be done, before
passing to the study case results in Section 5. The time step
is selected as a fraction of the orbital period of the reference
orbit of the formation. It is important to consider a frac-
tion of the orbital period to guarantee the convergence of
the optimal problem. In particular, for an accurate solution
and to guarantee the convergence, the discretisation for a
manoeuvre in one orbital period should not be higher than
2=nc, where nc is the mean motion of the reference orbit
(Sarno et al., 2020).
4.4. Algorithm performances evaluation

The performances of the selected methodology based on
disciplined convex programming are tested against a pro-



Fig. 4. Coplanar to PCO reconfiguration for a 10-satellite formation.
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gressive number of satellites (from 2 to 12), to evaluate the
computational time. The different solvers available for the
CVX software, as described in Section 4.3, are tested for
performance evaluation. The test case presented in this sec-
tion simulates a classic coplanar to Projected Circular
Orbit (PCO) (Alfriend et al., 2009), considering the simula-
tion parameters reported in Table 1. The reference orbit is
an SSO with the Keplerian elements equal to
f7:416e6m; 0; 98:5�; 0�; 0�g. The satellites are initially
placed in a coplanar formation configuration along the
transversal direction, with an initial inter-satellite distance
of 50 meters. The final condition for each satellite j is
selected as a PCO using the procedure described in
Alfriend et al. (2009), based on magnitude-phase form of
the relative motion:

da ¼ 0

dk ¼ q
ac

� �
sin aj
tan ic

dex ¼ � q
2ac

� �
sin aj

dey ¼ � q
2ac

� �
cos aj

dix ¼ q
ac

� �
cos aj

diy ¼ � q
ac

� �
sin aj

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð44Þ

where q ¼ 200 m is the radius of the PCO in the
transversal-normal plane, while aj is the phase angle for
each satellite, selected to get an equally distributed forma-
tion along the final orbit. An example of the reconfigura-
tion trajectory for the 10-satellites formation case is
shown in Fig. 4. The solution is obtained imposing a first
guess of the trajectory without collision avoidance con-
straint and then refining the solution with a second itera-
tion of the optimisation. This procedure guarantees the
correct inclusion of the collision avoidance constraint in
the simulation.

Fig. 5 show the performances of the algorithm against
the number of satellites. Fig. 5a represents the computa-
tional time to set up the matrices for the convex problem,
which is required to initialised the CVX software. The
behaviour is exponential with the increasing number of
satellites, varying from a minimum of 2 s to a maximum
of about 3 min for the 12-satellites case. This time is
required only for the initialization of the convex problem
and does not affect the CVX solver time. Fig. 5b shows
the computational time required by the CVX solver to pro-
Table 1
Parameters for simulation setting.

Properties Value

Manoeuvring time [s] 3=4P
Discretisation step [sec] 25
Minimum inter-satellite distance [m] 20
Satellites Mass [kg] 50
Maximum Thrust [mN] 10
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vide the optimal solution, considering the three possible
solvers of CVX, GuRoBi, SDPT3 and SeDuMi. In this case,
the behaviour scales approximately linearly with the num-
ber of satellites, with a maximum of about 30 s for the 12
satellites case. For the coplanar to PCO reconfiguration,
the SDPT3 provides slightly better performances with a
higher number of satellites.
5. Application to the study case: FFLAS

The proposed methodology developed in Section 4 is
applied to a formation flying mission concept for remote
sensing and Earth observation. The generic mission sce-
nario was described in Section 3, where the importance
of using multiple satellites as distributed nodes is described.
In this work, we consider a mission scenario made by three
satellites, embarking each a hexagonal L-band antenna
array (Zurita et al., 2013; Martı́n-Neira et al., 2020). The
geometry trade-off analyses and the mission concept were
described by Scala et al. (2020b). The concept of the mis-
sion takes advantage of the basic parameter for the L-
band payload, resulting from the lessons learnt of the
SMOS mission (Kerr et al., 2016; Martı́n-Neira et al.,
2020). The three-satellite formation flies on a Sun-
Synchronous Orbit (SSO) at a nominal altitude of
770 km, with a Local Time of the Ascending Node (LTAN)
of 6:00 a.m. The L-band aperture synthesis payload is
selected as a hexagonal array, of about 7 m in diameter,
a slightly smaller size than the SMOS one. The centres of
each satellite in the formation are placed at the vertices
of an equilateral triangle of about 13 m sides. Each satellite
weight about 1300 kg of dry mass and has four low-thrust
engines onboard, considering as baseline the QuinetiQ T5
(Randall et al., 2017). Two main modes have been identi-
fied for the nominal operation in orbit. The Earth pointing
mode for the L-band aperture synthesis imaging the
Earth’s surface, and the cold sky pointing mode, for the
calibration of the interferometer. This work presents the
possible strategies for the transition among the two nomi-
nal modes of the mission, together with a safe-mode tran-
sition design. This is of primary importance in FFLAS,



(a) Computational time for setting up the simulation.

(b) Computational time for CVX solver.

Fig. 5. Algorithm performance evaluation with 2 to 12 satellites
formation.
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for a safe formation definition in case of non-nominal sit-
uations arises. Finally, it is also presented the satellite-to-
satellite collision avoidance manoeuvre in case of a failure
of the main engines of one satellite in the formation.

Earth Pointing Mode (EPM). The Earth Pointing Mode
is the nominal operational mode of FFLAS. In this mode,
the satellites in the formation should maintain the normal
to the payload aligned with the radial reference axis, in
Fig. 6. EPM and CSPM configuration
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the direction of the centre of the Earth. As a consequence,
the nominal attitude of each satellite in the body frame is
the following (Section 2.1.4):

xb
yb
zb

8><
>:

9>=
>; ¼

�1 0 0

0 1 0

0 0 �1

2
64

3
75

x

y

z

8><
>:

9>=
>; ð45Þ

where the x-axis xb of the spacecraft points in the geocen-
tric nadir direction for observation purposes, and the y-
axis yb of the spacecraft is in the orbit vector direction.
The EPM formation geometry for the test case mission
study FFLAS is shown in Fig. 6a. The solar panels (the
orange lines in Fig. 6a) are in the Sun direction, to max-
imise the power production, and the attitude of the forma-
tion is selected to allow the inter-satellite communication
link, to exchange continuously the raw data necessary for
the interferometric. The inter-satellite link antennas are
shown in green, blue and red in Fig. 6a, to represent the
optical link geometry.

Cold Sky Pointing Mode (CSPM). The Cold Sky Point-
ing Mode is the calibration mode for the aperture synthesis
radiometer payload. The calibration of the payload is
essential for a good quality interferometric imaging and it
is typically required at least once per month. During this
mode, the z-axis zb of each satellite should be in the cold
sky inertial direction. The transition to the CSPM attitude
is designed with the optimal manoeuvre procedure, pre-
sented in Section 4. The CSPM formation geometry for
FFLAS is shown in Fig. 6b. With respect to the EPM con-
figuration, it is shown how the satellites B and C switch
their position to provide a cold sky pointing attitude, but
maintaining the correct optical link among them. More-
over, to respect the cold sky pointing direction, an attitude
slew manoeuvre of 180� is needed for each satellite, to
move the pointing direction of the payload towards the
cold sky. The attitude of the satellites in the CSPM is
described by the following relation:
for the three-satellite formation.
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where the body frame is aligned with the radial-transversal-
normal frame, and the interferometric radiometer points to
the cold sky direction.

Thruster configuration. The analyses presented here con-
sider the thrusters placed in the Transversal-Normal plane
(TN) only. The motivation behind this selection is based on
the need of reducing the mass budget of the satellites.
Moreover, this is needed for satellite internal configuration
purposes. Thus, no thrust in the radial direction could be
provided, and the acceleration is given only in the yb and
zb axis of the satellite. As a consequence, in the OCP, the
thrust limitation is given by the second relation in Eq.
(40). The maximum thrust level that the thrusters could
provide is set equal to 25 mN, considering as a baseline
for the propulsive system, the QinetiQ T5 engine
(Randall et al., 2017).
5.1. Optimal manoeuvre strategy from Earth pointing to cold

sky pointing mode

The transition between the EPM and the CSPM is
designed with a fuel-optimal control problem, considering
the following requirements:

� The attitude of the satellites should be compliant with
the Sun direction, to ensure enough power generation,

� The transition should be performed in less than one
orbital period and a two-axis thruster configuration is
considered,

The inter-satellite collision risk is managed by imple-
menting two cases for the minimum distance among the
satellites: 10 m (Case i) and 12 m (Case ii). This means that
at each time instant, the distance among the satellites
should not violate such conditions, to ensure a safe transi-
tion to the calibration mode. The OCP was initialised con-
sidering the conditions in Table 2. The time for
propagation is provided in terms of orbital periods P,
and the time step represents the discretisation step along
the orbit. The total time of the transition is selected equal
Table 2
Input conditions for the optimal manoeuvre design between earth pointing
and cold sky point mode.

Properties Value

Manoeuvring time [s] 3=4P
Discretisation step [sec] 25
Minimum distance [m] 10 and 12
State of Sat A [m, m/s] 0; 0; �5:6; 0; 0; 0½ �
Initial state - Sat B [m, m/s] 0; 6:5; 5:6; 0; 0; 0½ �
Initial state - Sat C [m, m/s] 0; �6:5; 5:6; 0; 0; 0½ �
Final state - Sat B [m, m/s] 0; �6:5; 5:6; 0; 0; 0½ �
Final state - Sat C [m, m/s] 0; 6:5; 5:6; 0; 0; 0½ �
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to 3=4 of the orbital period to deal with the constraint on
the maximum available thrust and the minimum allowable
inter-satellite distance. The CVX problem was initialised
with the semi-definite quadratic-linear programming
SDTP3, accordingly to the COCP described in Section 4.3.
On a Windows computer with Intel(R) Core(TM) i7-
4720HQ CPU @ 2.60 GHz at 2.59 GHz and a RAM of
16.0 GB, the convex optimisation is solved in about 2.5 s
for the case of a minimum inter-satellite distance of
10 m, and in about 5 s for the 12 m case.

Case i. The optimal trajectory for the manoeuvre is
shown in Fig. 7, where Fig. 7a reports the 3-dimensional
trajectory evolution in the RTN frame, while Fig. 7c shows
the time evolution of the ROEs components during the
delta-v optimal manoeuvre. An important parameter to
monitor is the inter-satellite distance, to control the feasi-
bility of the mission itself, as shown in Fig. 8a. This infor-
mation is particularly relevant for FFLAS since the
satellites fly at a close distance from each other. The stan-
dard control effort (as for the EPM) for the satellite A
maintenance is required, and the control behaviour during
the manoeuvre transition for satellites B and C is shown in
Fig. 8b.

Due to a quasi symmetrical behaviour in the trajectory
followed by satellites B and C, it can be seen how the con-
trol effort in the normal direction (zb) is coincident for both
satellites. Moreover, due to the requirement of having
thrusters aligned with the transversal and normal (yb and
zb) direction, for both satellites the control effort in the
radial direction is null. The red dot lines represent the tech-
nological limitation of the onboard engine, with a maxi-
mum thrust equal to 25 mN. The delta-v budget for Case
i is shown in Fig. 8c, resulting in a total delta-v for the opti-
mal transition from Earth pointing to cold sky pointing of
about 3.801 cm/s.

Case ii. The delta-v optimal trajectories for Case ii is
shown in Fig. 7, providing both the three-dimensional rep-
resentation in RTN frame and the ROEs time evolution in
Fig. 7b and d, respectively. The trajectory is similar to Case
i, except for the constrain to maintain a higher inter-
satellite distance of 12 m. The standard control effort (as
for the EPM) for satellite A is required, while the control
behaviour for satellites B and C is shown in Fig. 8e. As
for Case i, the control effort in the normal direction (zb)
is coincident for both satellites. Moreover, for all satellites
the control effort in the radial direction is null. Overall, the
control effort and the time of firings is higher than for Case
i since the problem is more constrained from a collision
avoidance point of view, as shown in the delta-v budget
in Fig. 8e. The total delta-v for the optimal transition
increases to about 7.523 cm/s. This is due to a higher safety
level in the minimum allowed inter-satellite distance.

The control of satellite A, together with satellites B and
C are needed to ensure a safe reconfiguration, controlling
the inter-satellite distance continuously during the manoeu-
vre, for both cases. The real-time minimum inter-satellite
distance computation is shown in Fig. 8d, where the



Fig. 7. Optimal manoeuvre for Earth pointing to cold sky pointing transition for Case i and Case ii, with minimum inter-satellite threshold of 10 m (left)
and 12 m (right).
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requirements are met through optimisation. This second
case grants higher confidence in the collision avoidance risk
among the satellites of the formation but requires a delta-v
for satellites B and C twice the one in the first case. The
trade-off must be done depending on the final delta-v bud-
get and in the collision avoidance level to be maintained
during operations. Note that the time evolution of the dis-
tance between satellites A and B has the same behaviour as
the A-C distance. This is due to the symmetric properties of
the optimal trajectory obtained in the analysis.
5.2. Safe-mode

This section presents the manoeuvre transition to Safe
Mode. The transfer strategy relies on the optimal delta-v
4372
trajectory design exploiting the COCP. The followings con-
straints were considered:

� A two-axis thruster configuration is considered in the
transversal and normal axis of the body frame,

� The inter-satellite collision risk is managed by setting the
minimum distance among the satellites of 10 m,

� The attitude of the satellite should remain fixed during
the manoeuvre, to ensure the correct thrusting in the
normal and transversal directions.

The optimal problem was initialised considering the
conditions in Table 3. The time for propagation is provided
in terms of orbital periods P, and the time step represents
the discretisation step along the orbit. The propagation
time was selected to be 3=4 of the orbital period, as before,



Fig. 8. Optimal manoeuvre for Earth pointing to cold sky pointing transition for Case i and Case ii, with minimum inter-satellite threshold of 10 m (top)
and 12 m (bottom).

F. Scala et al. Advances in Space Research 68 (2021) 4359–4378
for a trade-off among the need for a fast transition to the
safe mode in case of non-nominal situations and the con-
straints on the maximum available thrust and the minimum
allowable inter-satellite distance. The CVX problem was
initialised with the semi-definite quadratic-linear program-
ming SDPT3 (Grant et al., 2013). Two cases were consid-
ered for the Safe Mode formation geometries:

1. Increasing the formation baseline of the aperture angle
in the Radial-Normal (RN) plane,

2. Introducing an RN separation margin for the passive
safety sufficient condition.

Case i: The formation aperture baseline was increased
from 13 m (nominal side of the equilateral triangle) to
50 m and the aperture plane was maintained on the TN
plane. Moreover, the relative attitude among the satellites
was retained to ensure the correct inter-satellite link.
Table 3
Input conditions for the optimal manoeuvre design between Earth
pointing and safe mode.

Properties Value

Manoeuvring time [s] 3=4P
Discretisation step [sec] 25
Minimum inter-satellite distance [m] 10
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Passive safety was considered by evaluating the distance
during the natural formation evolution.

Fig. 9d shows how the satellites remain safely far apart
from one to each other, with no collision risk. The optimal
trajectory for the transition from EPM to SM is shown in
Fig. 9a and b. The trajectories for satellites B and C are
quite similar to each other, while satellite A follows a dif-
ferent path. During the optimisation, the RTN inter-
satellite distance was evaluated to check for compliance
with the collision threshold, as shown in Fig. 9d. This
shows how the evolution of the RTN distance between
satellites A and B is equal to the A and C one, this is an
effect of the symmetry of the optimal trajectories of satel-
lites B and C. The control law required by the formation
during the transition is shown in Fig. 9c. The resulting
delta-v budget to perform the manoeuvre is about 6 cm/s
for the three satellites for the Safe mode establishment.

Case ii: This second case implements the radial-normal
separation margin, introducing a phasing of the relative
eccentricity/inclination vectors. The nominal formation
aperture of 13 m was increased to 50 m, as in Case i. On
the contrary, the aperture plane was slightly inclined on
the TN plane, introducing a radial separation of þ5 m
and �5 m with respect to the TN plane, for satellites B
and C, respectively. For this reason, a higher delta-v is
required to maintain satellites B and C out of the TN
plane. The introduction of a radial separation provides a
passive safety in both RTN and RN inter-satellite distance



Fig. 9. Optimal manoeuvre for Earth pointing to safe mode transition for Case i. Minimum inter-satellite threshold set to 10 m.
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computation, as shown in Fig. 10a. On the other hand, it
introduces the risk of formation evaporation in case of a
malfunctioning of the propulsive system, due to the separa-
tion in the radial direction. The optimal trajectory for the
transition from EPM to SM is shown in Fig. 10a and b.
The trajectories for satellites B and C are designed to place
the satellites at different components in the radial direction:
satellite B gains a radial separation of �5 m, while satellite
C moves to þ5 m in the radial direction. On the other
hand, satellite A follows a different path and remains with
a null component in the radial direction. During the opti-
misation, both the RTN and the RN inter-satellite distance
was evaluated to check for compliance with the collision
threshold, as shown in Fig. 10d. Specifically, the RN dis-
tance was required to be compliant to the collision thresh-
old only at the final time instant. The control law required
by the formation during the transition is shown in Fig. 10c.
Note that in this second case, the delta-v required for the
manoeuvre, about 6.34 cm/s for A and 11.3 cm/s for B
and C, is higher than Case i, due to the transversal compo-
nent of the acceleration needed to move satellite B and C
out of the TN plane.
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5.3. Thruster failure detection of one satellite in the nominal

geometry formation

This section presents the manoeuvre to be implemented
in case of a malfunctioning of the propulsion system of one
satellite in the formation. The case of malfunctioning of
satellite A is described. If the on-board low thrust engine
undergoes a non-nominal behaviour or a failure is
detected, an inter-satellite collision avoidance manoeuvre
shall be implemented. Specifically, the case under analysis
requires an instantaneous manoeuvre for both satellites B
and C in less than half of the orbital period. Therefore,
when the failure of the propulsive system is detected in
satellite A, satellites B and C should automatically imple-
ment the priority of actions to automatically transit to a
safe region, to avoid any possible collision. The first
manoeuvre to be implemented should be fast enough to
exit from the collision region. Then once the collision has
been avoided, the need to pass to the two-satellite backup
formation is evaluated, and, in that case, the consequent
reconfiguration could be implemented. The final position
of B and C, after the collision avoidance manoeuvre, is



Fig. 10. Optimal manoeuvre for Earth pointing to safe mode transition for Case ii. Minimum inter-satellite threshold set to 10 m.
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selected according to the safe mode formation geometries
defined in Section 5.2. In particular, the transition to Case
i is considered. The control thrust needed by satellites B
and C is shown in Fig. 11b, respecting the need of using
only the thrust in the normal and transversal directions.
A real-time RTN and RN inter-satellite distance is evalu-
ated during the manoeuvre, to ensure no collision in the
formation. The collision threshold evaluation is reported
in Fig. 11c. Once the first collision avoidance manoeuvre
Fig. 11. Optimal manoeuvre for in case the propulsive system of the satellite A
satellite B and C as soon as the failure is detected.
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is implemented, the formation should run an analysis to
understand and detect the causes of the failure on satellite
A. At this point, if satellite A can recover from the failure,
satellites B and C should manoeuvre to reconfigure the
nominal Earth pointing formation. On the contrary, if
the failure of satellite A cannot be recovered, satellites B
and C should manoeuvre to switch to the backup two-
satellite formation. The second possibility should imple-
ment a low thrust transfer to move in a safe position with
fails. The collision avoidance manoeuvre should be implemented by the
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respect to the failed satellite. The real mission scenario
needs to implement a prediction of the future position of
satellite A to define a safe area, where the backup two-
satellite formation could continue the nominal operations.
It should also investigate the possibility to perform a colli-
sion avoidance manoeuvre with satellite A after some prop-
agation time. A similar strategy is implemented for the
cases when satellite B or C fails.

6. Conclusions

In this paper, we show a fast approach to perform the
reconfiguration of multiple satellites formation in different
operational scenarios. The manoeuvring plan is defined via
the optimisation of the control problem in the convex
form. This methodology allows a fast resolution of the sys-
tem (2 s to 5 s for the cases presented), by discretising the
problem. Moreover, the methodology applied, ensures
the application of a delta-v only at optimal time instants,
saving propellant consumption. Specifically, the reconfigu-
ration problem is approached as a minimisation problem.
The cost function aims at minimising the total delta-v for
the manoeuvrers, while fulfilling the maximum thrust con-
straint. The explicit derivation of the constraint from the
system dynamics, initial conditions, and final conditions
support the software implementation of the proposed strat-
egy. A convex approach is computationally less expensive
than an optimisation including the integration of the
dynamics at each time step. This could also be envisioned
as a proper method to be implemented in the onboard soft-
ware for formation manoeuvrer implementation. The per-
formances of the convex approach are presented for a
different number of satellites in the formation, up to a max-
imum of 12 spacecraft. This could provide a baseline for
larger formations in terms of computational time.

The approach presents possible strategies for the recon-
figuration manoeuvre in the typical operational scenarios
of a remote sensing mission, as FFLAS. First, the imple-
mentation of the optimal transition between the Earth
pointing and the cold sky pointing mode is presented.
The latter is essential for the calibration of the scientific
instrument (the L-band interferometer), which is required
at least once a month. Thus, it is important to propose
optimal delta-v trajectories, to reduce the overall amount
of propellant on-board. Moreover, due to the close forma-
tion geometries, with inter-satellite distance in the order of
tens of metres, we presented a fast and fuel-saving trajec-
tory for the transition to a safe mode. This ensures the pos-
sibility to automatically deal with non-nominal situations
in orbit and to minimise the collision risk among the
satellites.

The work presented was implemented at Politecnico di
Milano, for the FFLAS mission concept, under the super-
vision of ESA ESTEC. Specifically, it was identified the
need to design fuel-optimal manoeuvre for the nominal
and non-nominal operation scenarios. During the analysis,
the necessity to maintain a correct orientation among the
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satellites was considered, to guarantee the best perfor-
mances both in terms of scientific payload and the inter-
satellite telecommunication link.
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Appendix A. State transition matrix including Earth’s

oblateness

The relative mean motion is described through the
model proposed by Gaias and Colombo (2018), which
includes the primary perturbation in the LEO environment
by the non-homogeneous Earth’s mass distribution, in rel-
ative orbital elements representation. In this work, only the
effect of the second-order term of the zonal harmonic (J 2) is
considered. The state transition matrix that describes the
linearized model for a generic eccentric reference orbit is
given by:

Aa ¼

0 0 0 0 0 0

aG2;a 0 cosxG2;e sinxG2;e G2;i 0

aG3;a 0 cosxG3;e sinxG3;e G3;i 0

aG4;a 0 cosxG4;e sinxG4;e G4;i 0

0 0 0 0 0 0

aG6;a 0 cosxG6;e sinxG6;e G6;i 0

2
666666664

3
777777775

ðA:1Þ

where the coefficients Gi;aj is defined by the following

notation:

Gi;aj ¼
@gi
@aj

ðA:2Þ
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where only the partial with respect to a; e;x, and i should
be computed:

g2 ¼ _M þ _xþ _X cos ic
g3 ¼ �e sinx _x

g4 ¼ þe cosx _x

g6 ¼ _X sin ic

8>>><
>>>:

ðA:3Þ

The corresponding value for the partial derivatives of _X; _x
or _M are reported in Gaias and Colombo (2018). These
parameters account for the J 2 perturbing effect, which
can be simplified considering a quasi-circular reference
orbit.
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