
Multiple Structure Recovery
via Probabilistic Biclustering

M. Denitto1, L. Magri1, A. Farinelli1, A. Fusiello2, and M. Bicego1

1 University of Verona, Department of Computer Science, Verona, Italy
2 DPIA - University of Udine, Italy

Abstract. Multiple Structure Recovery (MSR) represents an important and chal-
lenging problem in the field of Computer Vision and Pattern Recognition. Re-
cent approaches to MSR advocate the use of clustering techniques. In this paper
we propose an alternative method which investigates the usage of biclustering
in MSR scenario. The main idea behind the use of biclustering approaches to
MSR is to isolate subsets of points that behave “coherently” in a subset of mod-
els/structures. Specifically, we adopt a recent generative biclustering algorithm
and we test the approach on a widely accepted MSR benchmark. The results
show that biclustering techniques favorably compares with state-of-the-art clus-
tering methods.

1 Introduction

The extraction of multiple models from noisy or outlier-contaminated data – a.k.a. Mul-
tiple Structure Recovery (MSR) – is an important and challenging problem that emerges
in many Computer Vision applications [7,10,31]. With respect to single-model estima-
tion in presence of noise and outliers, MRS aims at facing the so called pseudo-outliers
(i.e. “outliers to the structure of interest but inliers to a different structure” [27]), which
push robust estimation to its limit. If, in addition, the number of structures is not known
in advance, MSR turns into a thorny model-selection problem, as one have to pick,
among all the possible interpretations of the data, the most appropriate one.

In the literature, the problem of MSR has been successfully tackled by leveraging
on clustering techniques [18,19,13,25]. Generally, the data matrix to analyze reports the
points to cluster on one dimension and the features/descriptors on the other dimension
[1]. Clustering approaches group the rows (or the columns) of a given data matrix on
the basis of a similarity criterion. For example in these recent approaches J-linkage[30],
T-linkage [18] and RPA [19]. The feature vector used to represent data is derived form
the preferences expressed by the data points for a pool of tentative structures obtained
by random sampling. Hence cluster analysis is performed via either agglomerative or
partitional methods where distances measure the (dis)agreement between preferences.

Although it has been shown that clustering provides good solution to the MSR prob-
lem, there are situations where the performances of clustering can be highly compro-
mised by data matrix structure (e.g. noisy data matrices; or rows behaving similarly
only in a small portion of the data matrix). Retrieving information in scenarios where
clustering struggles can be done through a recent class of approaches called bicluster-
ing.
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Fig. 1: Example of overlapping biclusters on Multiple Structure Recovery. In this case
the possible biclusters are the: b1) the points lying on m1, b2) the points lying on m2

and b3) the points lying on the intersections.

With the term bi-clustering we refer to a specific category of algorithms perform-
ing clustering on both rows and columns of a given data matrix [17].The goal of bi-
clustering is to isolate sub-matrices where the rows present a “coherent behavior” in a
restricted columns subset, and vice-versa. Compared with clustering, biclustering ex-
ploits local information to retrieve structures that cannot be found performing analysis
on whole rows or columns. The problem of biclustering (also known as co-clustering,
and strongly related to subspace clustering) is gaining increasing attention in the Pat-
tern Recognition community, with many papers being published in recent years (e.g.
[22,11,4,8]). Even if it was originally proposed in biological scenarios (i.e. analysis of
gene expression microarray datasets [17,2,20]), biclustering has been widely adopted
in many other contexts ranging from market segmentation to data mining [6,21,14].

This paper is positioned exaclty in this context, investigating the performance of
biclustering on MSR. The main advantage of using biclustering on MSR is that bi-
clustering can isolate portions of the data matrix where a subset of points share similar
attitudes in a subset of models. Compared to clustering, biclustering retrieves additional
information on which models better describes a particular subset of points. Moreover,
biclustering provides better understanding of the data since different biclusters can over-
lap (on rows, columns or both). This means that a certain point can belong to different
biclusters and hence it can be characterized by distinct subsets of models (see Fig. 1 for
an example). Thus biclustering approaches can easily deal with intersections, which is
a known problematic situation when using clustering algorithms [28].

To the best of our knowledge there exists only a preliminar work applying biclus-
tering techniques to MSR [28]. In [28] authors show that the application of biclustering
techniques to MSR is promising and provides superior solution when compared with
clustering. While this provides a significant contribution to the state of the art, there is
large room for improvements since the method adopted by the authors has some limita-
tions (i.e. it works with sparse binary matrices and it needs some pre-processing/post-
processing operations to retrieve the final solutions).

In this paper we investigate the use of a recent probabilistic biclustering approach,
namely Factor Analysis for BIcluster Acquisition (FABIA) [12] for MSR. We choose
this algorithm because it has been shown to perform better than the state of the art in the
Microarray Gene Expression analysis, a widely exploited scenario to test biclustering
algorithms [12,17].



We evaluate the performances of probabilistic biclustering on a real benchmark
dataset (Adelaide dataset) and we compare against the recent clustering algorithms
adopted for MSR. Results confirm that biclustering favorably compares with the state-
of-the-art.

The reminder of the paper is organized as follows: Section 2 provides a brief re-
view of MSR and the clustering methods we compare to. Section 3 formalizes the bi-
clustering problem and the algorithm we adopt. Section 4 presents and discusses the
experimental evaluation. Finally, some concluding remarks are presented in Section 5

2 Background and Related Work

This section provides background knowledge about the proposed framework. It formal-
izes the MSR problem and the clustering approaches currently adopted.

2.1 Multiple Structure Recovery

MSR aims at retrieving parametric models from unstructured data in order to organize
and aggregate visual content in significant higher-level geometric structures. This task
is commonly found in many Computer Vision applications, a typical example being 3D
reconstruction, where MSR is employed either to estimate multiple rigid moving ob-
jects (to initialize multibody Structure from Motion [7,23]), or to produce intermediate
geometric interpretations of reconstructed 3D point cloud [10,31]. Other instances in-
clude face clustering, body-pose estimation and video motion segmentation. In all these
scenarios the information of interest can be extracted from the observed data and ag-
gregated in suitable structures by estimating some underlying geometric models, e.g.
planar patches, homographies, fundamental matrices or linear subspaces.

More formally, to set a general context, let µ be a model e.g. lines, subspace, ho-
mography, fundamental matrices or other geometric primitives and X = {x1, . . . , xn}
be a finite set of n points, possibly corrupted by noise and outlier. The problem of MSR
consists in extracting k instances of µ termed structures from the data, defining, at
the same time, subsets Ci ⊂ X, i = 1, ..., such that all points described by the i-th
structures are aggregated in Ci . Often the models considered are parametric, i.e. the
structures can be represented as vectors in a proper parameter space.

2.2 Clustering

The extensive landscape of approaches aimed at MSR can be broadly categorized along
two mutually orthogonal strategies, namely consensus analysis and preference analysis.
Focusing on preference analysis, these methods reverse the role of data and models:
rather than considering models and examining which points match them, the residuals
of individual data points are taken into account [32,29,3]. This information is exploited
to shift the MSR problem from the ambient space where data lives to a conceptual [24]
one where it is addressed via cluster analysis techniques.

T-Linkage [18] and RPA [19] can be ascribed to these clustering-based methods as
they share the same first-represent-then-clusterize approach. Both the algorithms repre-
sent data points in a m-dimensional unitary cube as vectors whose components collect



the preferences granted to a set of m hypotheses structures instantiated by drawing at
random m minimal sample sets – the minimum-sized set of data points necessary to
estimate a structure. Preferences are expressed with a soft vote in [0, 1] according to the
continuum of residuals in two different fashions. As regards T-linkage, a voting func-
tion characterized by an hard cutoff is employed. RPA, instead, exploits the Cauchy
weighting function (of the type employed in M-estimators) that has an infinite rejection
point mitigating the sensitivity of the inlier threshold.

The rationale beyond both these representations is that the agreement between the
preferences of two points in this conceptual space reveals the multiple structures hid-
den in the data: points sharing the same preferences are likely to belong to the same
structures.

T-Linkage captures this notion through the Tanimoto distance, which in turn is used
to segment the data via a tailored version of average linkage that succeeds in detect-
ing automatically the number of models. If rogue points contaminate the data, outlier
structures need to be pruned via ad hoc-post processing techniques.

RPA, on the contrary, requires the number of desired structures as input but in-
herently caters for gross contamination. At first a kernelized version of the Tanimoto
distances is feed to Robust Principal Analysis to remove outlying preferences. Then
Symmetric Non Negative Factorization [15] is performed on the low rank part of the
kernel to segment the data. Hence, the attained partition is refined in a MSAC frame-
work. More precisely, the consensus of the sampled hypotheses are scrutinized and the
structures that, within each segment, support more points are retained as solutions.

While T-linkage can be considered as a pure preference method, RPA attempts to
combine also the consensus-side of the MSR problem. However it does not fully reap
the benefit of working with both the dimensions of the problem, as biclustering does,
for preference and consensus are considered only sequentially.

All these methods can be regarded as processing the Preference Matrix, where each
entry (i, j) represents the vote granted by the i-th point to the j-th tentative structures.
Rows of that matrix provides the representation of points that are used to derive the
affinity matrices for clustering. Column of that matrix are the consensus set of a model
hypothesis.

An example where clustering struggles is provided in Fig. 2, which describes a
simple MSR problem: to group similar points on the basis of their behavior with re-
spect to the proposed models we should perform clustering on the Preference Matrix
P which describes the relationship between the points {x1, x2, x3, x4} and the models
{m1, · · · ,m13}. Assume we perform clustering adopting the Hamming distance (i.e.
number of different bits): since the distance between the x3 and the x4 is smaller than
the distance between x3 and x2, clustering would assign the third and the fourth point
to the same group. However looking at the problem diagram it is clear that points x1, x2
and x3 should belong to the same cluster. This information can be retrieved performing
a simultaneous clustering of both rows and columns of the Preference Matrix, isolat-
ing a subset of models (m1,m2 and m3) where the points x1, x2, x3 share a similar
behavior (shaded area in Fig. 2). This is exactly what biclustering techniques do.

Next section provides a more formal definition of the biclustering problem, focusing
on the approach adopted to analyze the Preference Matrix (FABIA [12]).
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d(x2, x3) = H amming(x2, x3) = 7

d(x3, x4) = H amming(x3, x4) = 6

Fig. 2: Shortfalls of clustering on MRS.

3 Biclustering

As mentioned in Section 1 and 2.2 the goal of biclustering applied to MSR is the si-
multaneous clustering of points and structures/models of a given Preference Matrix,
merging the well known concepts of consensus analysis and preference analysis. Due
to the similarity of RPA (where the kernelized matrix is factorized in order to obtain
point clusters) we present biclustering from a sparse low-rank matrix factorization per-
spective, also the most suitable to understand the insights behind the FABIA algorithm
[12].

We denote as D ∈ Rn×m the given data matrix, and let R = {1, . . . , n} and
C = {1, . . . ,m} be the set of row and column indices. We adopt DTK , where T ⊆ R
and K ⊆ C, to represent the submatrix with the subset of rows in T and the subset
of columns in K. Given this notation, we can define a bicluster as a submatrix DTK ,
such that the subset of rows of D with indices in T exhibits a “coherent behavior” (in
some sense) across the set of columns with indices in K, and vice versa. The choice of
coherence criterion defines the type of biclusters to be retrieved (for a comprehensive
survey of biclustering criteria, see [17,22,8]).

A possible coherence criterion for a bicluster (sub-matrix) is for the corresponding
entries to have a similar value, significantly different from the other entries of the ma-
trix. For example, a data matrix containing one bicluster with rows T = {1, 2, 3, 4} and
columns K = {1, 2} may look like

D =


10 10 0 0
10 10 0 0
10 10 0 0
10 10 0 0
0 0 0 0
0 0 0 0

 , v =


5
5
5
5
0
0

 , z =


2
2
0
0

 .

From an algebraic point of view, this matrix can be represented by the outer product
D = vzT of the sparse vectors v and z. We call these vectors prototypes (for v) and
factors (for z). Generalizing to k biclusters, we can formulate the biclustering problem
as the decomposition of the given data matrix D as the sum of k outer products,

D =

k∑
i=1

viz
T
i = V Z, (1)

where V = [v1, . . . , vk] ∈ Rn×k and Z = [z1, . . . , zk]
T ∈ Rk×m.



The connection between biclustering and sparse low-rank matrix factorization can
be highlighted by observing that the factorization of the original data matrix shows that
it has rank no larger than the number of biclusters (usually much lower than the number
of rows or columns). Moreover, if the size of the matrix D is much bigger than the
bicluster size (as it is typically the case in many applications), the resulting prototype
and factor vectors should be composed mostly by zeros (i.e., the prototypes and factors
should be sparse).

3.1 FABIA

In the biclustering literature, there are several proposals of biclustering methods through
matrix factorization (e.g., [33,16]); however, to the best of our knowledge, the only
probabilistic approach is FABIA.

FABIA is a generative model for biclustering based on factor analysis [12]. The
model proposes to decompose the data matrix by adding noise to the strict low rank
decomposition in (1),

D =

k∑
i=1

viz
T
i + Y = V Z + Y, (2)

where matrix Y ∈ Rn×m accounts for random noise or perturbations, assumed to be
zero-mean Gaussian with a diagonal covariance matrix. As explained above (Section 3)
the protoypes in V and factors in Z should be sparse. To induce sparsity, FABIA uses
two types of priors: (i) an independent Laplacian prior, and (ii) a prior distribution that
is non-zero only in region where prototypes are sparse (for further details, see [12]).
The model parameters are estimated using a variational EM algorithm [9,12], for all the
details about FABIA derivation and implementation3, please refer to [12].

4 Experimental Evaluation

This section provides the performances comparison between some clustering methods
recently applied to MSR [18,19,25] and the probabilistic biclustering approach pre-
sented in Section 3.1. The comparison with [28] was not possible since the code is not
available. The workflow of the overall procedure can be sketched as follows: starting
from an image i) we generate the hypothesis and compute the Preference Matrix fol-
lowing the guidelines in [19]; ii) then the probabilistic biclustering technique have been
applied.

To assess the quality of the approaches we used the widely adopted Adelaide real
benchmark dataset4. Moreover we conduct a reproducibility analysis, since it is known
that RPA algorithm can produce very different solutions due to the random initialization
required by the Symmetric NNMF step.

3 code available from http://www.bioinf.jku.at/software/fabia/fabia.
html

4 The dataset can be downloaded from https://cs.adelaide.edu.au/˜hwong/
doku.php?id=data

http://www.bioinf.jku.at/software/fabia/fabia.html
http://www.bioinf.jku.at/software/fabia/fabia.html
https://cs.adelaide.edu.au/~hwong/doku.php?id=data
https://cs.adelaide.edu.au/~hwong/doku.php?id=data


Table 1: Misclassification error (ME %) for motion segmentation (left) and planar seg-
mentation (right). k is the number of models and % out is the percentage of outliers.

k %out T-lnkg RCMSA RPA FABIA

biscuitbookbox 3 37.21 3.10 16.92 3.88 3.86
breadcartoychips 4 35.20 14.29 25.69 7.50 4.22
breadcubechips 3 35.22 3.48 8.12 5.07 0.87
breadtoycar 3 34.15 9.15 18.29 7.52 0.60
carchipscube 3 36.59 4.27 18.90 6.50 1.52
cubebreadtoychips 4 28.03 9.24 13.27 4.99 1.07
dinobooks 3 44.54 20.94 23.50 15.14 9.72
toycubecar 3 36.36 15.66 13.81 9.43 9.50
biscuit 1 57.68 16.93 14.00 1.15 0
biscuitbook 2 47.51 3.23 8.41 3.23 1.32
boardgame 1 42.48 21.43 19.80 11.65 8.96
book 1 44.32 3.24 4.32 2.88 0
breadcube 2 32.19 19.31 9.87 4.58 19.42
breadtoy 2 37.41 5.40 3.96 2.76 19.62
cube 1 69.49 7.80 8.14 3.28 1.66
cubetoy 2 41.42 3.77 5.86 4.04 2.21
game 1 73.48 1.30 5.07 3.62 0
gamebiscuit 2 51.54 9.26 9.37 2.57 2.44
cubechips 2 51.62 6.14 7.70 4.57 0.53

mean 9.36 12.37 5.49 4.61
median 7.80 9.87 4.57 1.66

k %out T-lnkg RCMSA RPA FABIA

unionhouse 5 18.78 48.99 2.64 10.87 21.54
bonython 1 75.13 11.92 17.79 15.89 6.82
physics 1 46.60 29.13 48.87 0.00 0.00
elderhalla 2 60.75 10.75 29.28 0.93 3.04
ladysymon 2 33.48 24.67 39.50 24.67 11.81
library 2 56.13 24.53 40.72 31.29 20.47
nese 2 30.29 7.05 46.34 0.83 4.92
sene 2 44.49 7.63 20.20 0.42 2.20
napiera 2 64.73 28.08 31.16 9.25 21.85
hartley 2 62.22 21.90 37.78 17.78 23.59
oldclassicswing 2 32.23 20.66 21.30 25.25 7.92
barrsmith 2 69.79 49.79 20.14 36.31 29.88
neem 3 37.83 25.65 41.45 19.86 11.20
elderhallb 3 49.80 31.02 35.78 17.82 18.63
napierb 3 37.13 13.50 29.40 31.22 36.68
johnsona 4 21.25 34.28 36.73 10.76 17.96
johnsonb 7 12.02 24.04 16.46 26.76 24.50
unihouse 5 18.78 33.13 2.56 5.21 15.76
bonhall 6 6.43 21.84 19.69 41.67 24.02

mean 24.66 28.30 17.20 15.94
median 23.38 29.40 17.53 17.96

4.1 Adelaide Dataset

We explored the performances of probabilistic biclustering on two type of experiments,
namely motion and plane estimation. In motion segmentation experiments, we were
provided with two different images of the same scene composed by several objects
moving independently; the aim was to recover fundamental matrices to subsets of point
matches that undergo the same motion. With respect to the plane segmentation scenario,
given two uncalibrated views of a scene, the goal was to retrieve the multi-planar struc-
tures by fitting homographies to point correspondences. The AdelaideRMF dataset is
composed of 38 image pairs (19 for motion segmentation and 19 for plane segmenta-
tion) with matching points contaminated by gross outliers. The ground-truth segmen-
tations are also available. In order to assess the quality of the results, we adopted the
misclassification errors, that counts the number of wrong point assignment according
to the map between ground-truth labels and estimated ones that minimize the overall
number of misclassified points (as in [26]). For fair comparison, the Preference Matrix
fed to FABIA was generated relying on the guided sampling scheme presented in [19].

FABIA parameters which regulate the factors/prototypes sparsity and the thresh-
old to retrieve biclusters memberships have been varied in the range suggested by the
authors in [12]. The best results on the whole Adelaide dataset (motion and plane esti-
mation) are reported in Table 1. The performances of other methods are taken from [19];
results show that FABIA provides higher quality solutions on the motion segmentation
dataset, and on average it performs better on the planar segmentation. Focusing on the
motion segmentation dataset, there are only three situations where FABIA works worse
than clustering approaches. A possible explanation on why FABIA struggles could be



Table 2: Increasing the number of biclusters improve the results obtained by FABIA on
the motion segmentation dataset.

biscuitbookbox
k = 3 3.86
k = 4 1.35

breadcube
k = 2 19.42
k = 4 11.36

breadtoy
k = 2 19.62
k = 4 1.22

because general biclustering approaches are tested in scenarios where the number of
biclusters is much higher than in MSR (i.e. ∼100 in Gene Expression analysis versus
3-7 in this dataset). To overcome this behavior we run FABIA increasing the number of
biclusters to retrieve and aggregating the results on the basis of column overlap as done
in [5], this leads to an improvement of the solution quality; results are reported in Table
2.

4.2 Reproducibility

In this section we assess the reproducibility of the two methods that better perform on
the Adelaide dataset: RPA and FABIA. The goal is to demonstrate that probabilistic
approaches can overcome the problem of reproducibility present in RPA. For a fair
comparison we adopted the 2R3RTCRT video sequence from the Hopkins dataset5: a
dataset where both the approaches retrieve good and similar solutions.

Hopkins dataset is a motion segmentation benchmark where the input data consists
in a set of features trajectories across a video taken by a moving camera, and the prob-
lem consist in recovering the different rigid-body motions contained in the dynamic
scene. Motion segmentation can be seen as a subspace clustering problem under the
modeling assumption of affine cameras. In fact, under the assumption of affine pro-
jection, it is simple to demonstrate that all feature trajectories associated with a single
moving object lie in a linear subspace of dimension at most 4 in R2F (where F is the
number of video frames). Feature trajectories of a dynamic scene containing k rigid
motion lie in the union of k low dimensional subspace of R2F and segmentation can be
reduced to clustering data points in a union of subspaces.

To test the reproducibility of RPA and FABIA we run the algorithms on the same
Preference Matrix hundred times, and for each trial we assess the misclassification er-
ror; the results are reported in Fig.3. The figure shows the result obtained by the ap-
proaches in each iteration and its distance from the average results. Results clearly
show that while the two approaches are compatible on average, FABIA retrieves the
same solution in each iteration while RPA is much less stable.

5 The dataset can be downloaded at http://www.vision.jhu.edu/data/
hopkins155/

http://www.vision.jhu.edu/data/hopkins155/
http://www.vision.jhu.edu/data/hopkins155/
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Fig. 3: Reproducibility. The methods have been run 100 times on the same Preference
Matrix. Plots show the misclassification error in of each trials along with the distance
from the mean (RPA mean = 1.93%, FABIA mean = 1.95%).

5 Conclusion and discussion

In this paper we present an alternative to clustering for the problem of Multiple Struc-
ture Recovery (MSR), namely biclustering. In general, biclustering techniques allow to
retrieve superior and more accurate information than clustering approaches, characteriz-
ing each cluster of points with the subset of features that better describes them. The goal
of biclustering approaches applied to MSR is isolate submatrices inside the Preference
Matrix where a subset of points behave “coherently” in a subset of models/structures.
We tested the recent probabilistic biclustering approach FABIA on the Adelaide bench-
mark dataset, proving that it favorably compares with the state of the art. Moreover we
tested the reproducibility of the analyzed methods showing that FABIA is much more
stable than the second competitor RPA.
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