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Background
Most chemotherapeutic agents in use today were discovered by their ability to kill 
rapidly dividing cancer cells. When administered to patients, these agents also injure 
rapidly dividing normal cells, thereby causing harmful side effects to patients. For 
example, doxorubicin, which interferes with the DNA thereby stopping DNA replica-
tion in rapidly dividing cancer cells, can also cause congestive heart failure [1]. The 
severity of such side effects may therefore outweigh the benefits of these therapeutic 

Abstract 

Background:  A pair of genes is defined as synthetically lethal if defects on both cause 
the death of the cell but a defect in only one of the two is compatible with cell viability. 
Ideally, if A and B are two synthetic lethal genes, inhibiting B should kill cancer cells 
with a defect on A, and should have no effects on normal cells. Thus, synthetic lethality 
can be exploited for highly selective cancer therapies, which need to exploit differ-
ences between normal and cancer cells.

Results:  In this paper, we present a new method for predicting synthetic lethal (SL) 
gene pairs. As neighbouring genes in the genome have highly correlated profiles of 
copy number variations (CNAs), our method clusters proximal genes with a similar 
CNA profile, then predicts mutually exclusive group pairs, and finally identifies the SL 
gene pairs within each group pairs. For mutual-exclusion testing we use a graph-based 
method which takes into account the mutation frequencies of different subjects and 
genes. We use two different methods for selecting the pair of SL genes; the first is 
based on the gene essentiality measured in various conditions by means of the “Gene 
Activity Ranking Profile” GARP score; the second leverages the annotations of gene to 
biological pathways.

Conclusions:  This method is unique among current SL prediction approaches, it 
reduces false-positive SL predictions compared to previous methods, and it allows 
establishing explicit collateral lethality relationship of gene pairs within mutually exclu-
sive group pairs.

Keywords:  Synthetic lethality, Copy number alteration, DNA damage repair genes

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Pinoli et al. BMC Bioinformatics          (2021) 22:250  
https://doi.org/10.1186/s12859-021-04168-7

*Correspondence:   
pietro.pinoli@polimi.it 
1 Department 
of Electronic, Information 
and Bioengineering, 
Politecnico di Milano, Piazza 
Leonardo da Vinci 32, Milan, 
Italy
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04168-7&domain=pdf


Page 2 of 17Pinoli et al. BMC Bioinformatics          (2021) 22:250 

agents. The key to development of safe and effective anticancer therapies lies in iden-
tifying molecular targets and their specific inhibitory compounds in a manner to 
induce selective lethality, by killing only cancer cells but sparing normal cells.

Cancer cells are genetically different from normal cells. So, highly selective cancer 
therapies need to exploit the distinctive molecular and cellular traits that sensitize 
only cancer cells to drugs. One avenue to exploit these genetic differences that has 
shown considerable promise recently is via synthetic lethality (SL). SL, first defined 
by Bridges [2] in 1922, refers to the genetic relationship between two (or more) genes 
where simultaneous genetic defects in both (or all) genes cause cell death but a defect 
in only one of the genes alone is compatible with cell viability [3, 4].

The concept of SL can be used to choose anticancer drug targets. Specifically, pro-
tein products of genes that are synthetic lethal to cancer-causing alterations should 
theoretically represent excellent targets for anticancer therapies [5, 6]. Ideally, if genes 
A and B are synthetic lethal, then inhibition of B should kill cancer cells harbouring 
alterations in A, but should have no effect on normal cells. For example, the inhibition 
of poly (ADP-ribose) polymerase (PARP) in cancer cells that harbour loss-of-function 
alterations in breast cancer susceptibility genes BRCA1 and BRCA2 is dramatically 
lethal to the cells [7, 8]. BRCA-deficient cells show reduced ability to repair DNA 
double-strand breaks (DSBs) which are lethal forms of DNA breaks. PARP aids restart 
of stalled replication forks during the DNA replication phase (S) of cell division, 
converting these to DSBs and promoting their repair by BRCA-mediated (homolo-
gous recombination) or alternative DSB-repair (the canonical non-homologous 
end-joining) pathways. However, inhibition of PARP in cells harbouring BRCA1/2 
defects results in accumulation of DSBs beyond a level that is tolerated by these cells, 
whereas normal cells can still repair their DSBs. While cells with germline knockout 
of PARP can still survive, lethality is induced by PARP inhibition in BRCA-deficient 
cells. Indeed the discovery of the BRCA-PARP synthetic lethality has been a pioneer-
ing breakthrough, and clinical trials on breast, ovarian, and prostate cancers using 
PARP-inhibition therapy (olaparib, rucaparib and niraparib) have shown encourag-
ing remission rates in patients while also being well-tolerated (fewer side effects) by 
patients [9]. Nowadays, SL is considered one of the main engine for anti-cancer drug 
target discovery [10], further corroborated by recent advances such as CRISPR-based 
gene editing, which allows to screen a large number of potential drug targets. In par-
ticular, systematic tumor sample sequencing have been producing a vast amount of 
data highly valuable for inferring SL relationships between genes and many computa-
tional methods have been proposed to explore them [11].

Mutations in a pair of genes that causes SL are expected to be rarely observed in the 
same cells. Therefore, we can abductively conclude that a pair of genes is a SL pair when 
mutations in these two genes are mutually exclusive. Assume P is a set of patients and 
a and b a pair of genes. Let Ma , Mb and Mab be the number of patients in P harbour-
ing mutations in the gene a, in the gene b and in both genes, respectively. If a and b are 
synthetic lethal we expect the events of a mutation on a and a mutation on b to be mutu-
ally exclusive and Mab to be lower than expected (when the two events are independ-
ent). An obvious but naive approach for testing mutual exclusion of mutations in gene 
pairs is using a hypergeometric test, that assigns to Mab a probability pMab

 based on the 
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hypergeometric distribution; one then regards those gene pairs for which pMab
 is below 

an arbitrary threshold to be mutually exclusive.
However, this approach makes the following assumptions: (1) mutations are mutually 

independent (i.e., a mutation on a gene a does not affect the probability of a mutation 
of a gene b in the same subject), (2) every gene has the same chance to be mutated in a 
patient, and (3) every patient has the same probability of harbouring a mutation. These 
assumptions easily do not hold true in the context of human genetics. This is particularly 
evident if we consider copy number alterations (CNA). In humans, CNAs in genes that 
are located close by in the human genome (e.g., within 20  cM) tend to be correlated 
because genetic recombinations take place over large segments of the human genome, 
sometimes involving the whole arm of a chromosome. Consequently, groups of closeby 
genes present very similar CNA profiles across patients; e.g., Fig. 1 shows the CNA pro-
files of genes proximal to TP53. The 15 highlighted genes are located in a focal region 
of chromosome 17 of just 200 kbp; thus, the deletion of any of them is highly corre-
lated with the deletion of the others, as reflected by their CNA profiles, which are mostly 
overlapped.

The presence of certain mutations (e.g. mutations in DNA-damage repair genes) in 
a patient can cause other mutations to accumulate in that patient. Thus, for a given 
gene, the probability of being mutated in a patient strongly depends on the patient 
itself and is not uniform across all the patients in the population. For example, Table 1 
reports a classification of 1073 cancer cell lines from the NCI-60 Human Tumor Cell 
Lines  [12] and the Broad Cancer Cell Line Encyclopedia (CCLE)  [13] according to 
their mutations profile on two genes, namely TP53 and CTCF. We observe that 6 out 
of the 472 cell lines with TP53 wild type present a mutation on CTCF (1.27%), while 
17 out of the 601 cell lines with TP53 mutated have a mutation also on CTCF (2.82%). 

Fig. 1  CNA profiles. CNA events usually involve broad regions of the genome. Therefore, close genes 
generally show very similar CNA profiles. a The genomic position of genes close to TP53. b the CNA profiles of 
of the genes highlithed in a 

Table 1  Classification of the NCI-60 and CCLE cell lines according their mutation state of TP53 and 
CTCF

Cell lines with TP53 mutated have more than the double probability of having a mutation at CTCF

CTCF WT CTCF MUT

TP53 WT 466 6

TP53 MUT 584 17
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Therefore, the probability of having a mutation on CTCF more than doubles in cell 
lines harbouring a mutation on TP53, suggesting that the mutations in different genes 
are actually not independent events. These issues render the hypergeometric distribu-
tion inappropriate as a null distribution in the mutual exclusivity test.

Finally, the hypergeometric test considers any pair of genes independently of the 
other and regardless their position in the genome and the respective neighbour genes. 
When searching for SL pairs of genes, this approach leads to the generation of many 
false positives. For example, consider two synthetic lethal genes x and y. Since the 
pair x and y is SL, the two genes’ mutations are also in mutual exclusion. However, 
any gene z in the proximity of x is very likely to show a CNA profile similar to the one 
of x; therefore, it is also likely that y is in mutual exclusion with any of these genes z. 
Even more, any gene t close to y is likely to have a CNA profile similar to the one of y 
and therefore to be in mutual exclusion with x and with any of the genes z close to x. 
Thus, a single SL pair may generate a considerable number of false positives.

The method used in this work mitigates these issues. Genes are clustered into 
groups according to both their CNA profile and location on the genome. The test of 
mutual exclusivity is run on pairs of groups, rather than pairs of genes, while the iden-
tification of the driver SL gene pair, which induced the mutual exclusivity between 
the groups, is moved to a separate subsequent phase, where additional information 
on the genes (e.g., pathway annotations) is considered. To test the significance of the 
mutual exclusivity, we use a graph-based method, similar to a previous work [14]; in 
comparison to the hypergeometric test, the graph-based method preserves the differ-
ent mutation frequencies of different subjects and genes.

Methods
Data

We run our pipeline on a set CNA experiments from cBioPortal [15] that comprises 
the patients of TCGA provisional studies on bladder urothelial carcinoma (BLCA), 
breast invasive carcinoma (BRCA), colon adenocarcinoma (COADREAD), glioblas-
toma multiforme (GBM), head and neck squamous cell carcinoma (HNSC), kidney 
renal clear cell carcinoma (KIRC), brain lower grade glioma (LGG), lung adenocarci-
noma (LUAD), lung squamous cell carcinoma (LUSC), ovarian serous cystadenocar-
cinoma (OV), prostate adenocarcinoma (PRAD) and thyroid carcinoma (THCA). The 
dataset constructed on the union of these 12 cancer types spans across 6,831 patients 
and 24,776 genes. Detailed information about the datasets involved in this study is 
reported in Additional file 1.

The data provided by cBioPortal had been processed by GISTIC2 [16], that, for each 
patient, assigns a score to each gene. A score of −2 indicates that the gene is homozy-
gous deleted while −1 indicates a hemizygous deletion and 0 that the gene is wild 
type. Conversely, positive values of 1 and 2 indicate that the gene is weakly or strongly 
amplified in the genome. For our analysis we only focused on homozygous deletion 
and discarded all of the other kinds of alteration. Also, we restricted the analysis to 
only those genes showing a homozygous deletion in at least 50 patients (approxi-
mately 0.8% of the population).
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For GARP scores, we used data for a set of 50 breast cell lines, published by Marcotte 
et al. [17]. For pathway analysis, we used annotations to Reactome pathways [18], as pro-
vided by Pathway Commons [19].

Data representation

We represent the CNA data as a gene × patient matrix M, as exemplified in Table 2. In 
M, every row corresponds to a gene and every column to a sample/patient. An entry 
M[i, j] is equal to 1 if the jth patient has a copy number alteration of the ith gene, zero 
otherwise. The CNA profile of a gene a is the row of the matrix M that corresponds to 
the a gene and Ma is the number of elements equal to 1 in that row.

Gene clustering

We cluster the genes in order to obtain groups of genes that are both close to each other 
on the genome and show a similar CNA profile across patients. As we do not have any 
indication on the number of groups, on the cardinality of those clusters and on the max-
imum distance between the genes in a given group, we use a data-driven procedure. We 
first group together genes close on the genome and showing similar CNA profile; then, 
we substitute every group with its consensus gene and finally we search for mutual exclu-
sion between pairs of consensus genes.

Distance We associate to each pair of genes g1 and g2 a distance D between them, 
computed as:

where dist(g1, g2) is the distance (in base pairs) between the transcription start sites of 
the two genes, Pr(g1) and Pr(g2) are the empirical probabilities of having a mutation 
on the gene g1 and g2 respectively and Pr(g1, g2) is the empirical probability of having 
a mutation on both the genes. If two genes are located on two different chromosomes 
their relative distance is set to infinity. Otherwise, their distance depends on both their 
relative position on the genome and their mutation profiles. Note that the genomic 
distance between genes appears in the numerator of one of the two components of D, 
hence D increases with the genomic distance. Also, the correcting factor of 20 Mbp has 
been chosen since it corresponds to a distance of 20 cM. For what it concerns the muta-
tions profiles, Pr(g1)× Pr(g2) < Pr(g1, g2) when the mutations on the two genes tend to 
co-occur. Therefore, a strong similarity (overlap) of the two mutations profiles will make 
the second component of D to decrease.

D(g1, g2) =

{

dist(g1,g2)
20Mb

+
Pr(g1)×Pr(g2)

Pr(g1,g2) , if g1 and g2 are on same chr

∞ otherwise

Table 2  Matrix representation of the dataset of CNAs

Sample 1 Sample 2 . . . Sample M

Gene 1 0 1 . . . 0

Gene 2 0 1 . . . 1

. . . . . . . . . . . . . . .

Gene N 1 0 . . . 0
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Clustering Algorithm As clustering algorithm we select Affinity Propagation [20], 
where we use as measure of similarity (or affinity) between two genes the inverse of their 
distance D. Compared to other popular clustering algorithms such as k-means, Affinity 
Propagation does not require the number of clusters to be determined before running 
the algorithm, as it automatically estimates the number of clusters.

Consensus gene The output of the Affinity Propagation is a list of clusters (groups) of 
genes. Affinity Propagation does not constrain the size of the clusters and singletons are 
allowed. A cluster corresponds to a sub-matrix of M, obtained by selecting only a sub-
set of the rows of M. Let C be a cluster of genes identified by Affinity Propagation and 
call MC the sub-matrix of M corresponding to C. We represent every cluster of genes C 
with its consensus gene cC , defined as a vector of length |P|, the number of patients, such 
that every element of cC [i] is set to 1 if a majority of the genes in C are altered in the ith 
patient (i.e., most of the elements in the ith column of MC are equal to 1), and 0 other-
wise. The output of this step is a matrix cluster × patient, thus having the same number 
of columns as M but fewer rows.

Calling mutual exclusion between consensus genes

Our method for assessing the mutual exclusivity between two group of genes is com-
posed of two steps: first we compute, for every pair of consensus genes, a score that indi-
cates the “degree” of mutual exclusivity; then, we associate a p value to the score so as to 
understand its significance.

Let a and b be two consensus genes, and Ma , Mb and Ma,b the usual counts of muta-
tions and co-mutations. Their score is the Hamming distance minus intersection 
(HDMI), which is defined as the number of patients with exactly one of the two gene 
mutated minus the number of patients with both genes mutated, normalized over the 
total number of patients.

where the component Ma +Mb − 2Mab is the Hamming distance between binary vec-
tors. Notice that, for fixed values of Ma and Mb , higher values of HDMI correspond to 
more mutually exclusive consensus genes (indeed, HDMI decreases with Mab ); for an 
extended overlap between the profiles of a and b we can obtain negative values of HDMI. 
Also, HDMI favours consensus genes with many mutations (i.e., to obtain high values of 
HDMI, high values of Ma and Mb are necessary). This bias is intended, since we believe 
it to be more useful to favor the genes that are mutated/altered in a larger portion of the 
population. Due to this bias, it impossible to discern positive and negative cases using a 
fixed threshold on HDMI; hence we associate the HDMI to a significance value.

Next we describe the procedure we have designed to associate a significance score to 
the HDMI of two consensus genes a and b. First we represent the data in the consensus 
genes × patients binary matrix as a bipartite graph B = �(P ∪ C),E� , where P is the set of 
patients, C is the set of consensus genes, and {(p, c) ∈ E : p ∈ P, c ∈ C} if gene c is altered 
in patient p, as illustrated in Fig. 2.

Notice that the out-degree of the a consensus gene a is Ma . If we consider the nodes 
corresponding to two consensus genes a and b, we can compute Mab as the number of 

HDMI(a, b) =
Ma +Mb − 2Mab −Mab

|P|
=

Ma +Mb − 3Mab

|P|
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patient nodes connected to both genes. The method determines if Mab is significant 
by considering the probability of finding at most Mab co-alteration in a null model. 
For computing significance, we use a null model made of 10,000 random bipartite 
graphs, generated from the original one by an edge swapping procedure, consisting 
of randomly selecting two edges in the graph and swapping their ending points. Pairs 
of edges (p1, c1), (p2, c2) are randomly picked from the graph such that (p1, c2) /∈ E 
and (p2, c1) /∈ E and swapped: E := E ∪ {(p1, c2), (p2, c1)} \ {(p1, c1), (p2, c2)} . Doing so 
changes the pattern of alterations across the patients, but preserves the patient and 
gene alteration totals; see Fig. 3.

Every random bipartite graph is generated by 100,000 swaps; each of the 10,000 ran-
dom graphs produced by the procedure has the important property of preserving the 
degrees of the original graph. Thus, every node of any random graph has exactly the 

Fig. 2  Bipartite graph. The consensus genes × patients matrix (a) can be interpreted as a contact matrix of 
a bipartite undirected graph (b), in which one layer of nodes corresponds to the consensus genes and the 
other to the patients. An edge between two nodes is present if and only if the corresponding consensus 
gene is “mutated” in the corresponding patient

Fig. 3  Legal and illegal swaps. A random edge swap may lead to a legal (a) situation where no pair of nodes 
is connected twice and to (b) an illegal situation, where two nodes are connected by a pair of edges. In the 
case of (b) the swap is prohibited



Page 8 of 17Pinoli et al. BMC Bioinformatics          (2021) 22:250 

same number of incident edges as the corresponding node in the original graph. This 
means that the mutation frequencies of consensus genes and patients are preserved.

Given two consensus genes a and b we are now ready to associate to their HDMI 
distance a significance. For each random graph i we compute the number of patients 
in which both a and b are mutated Mi

ab , and we associate to the HDMI the following 
pvalue:

In other words, the p value corresponds to the portion of random graphs in which we get 
a Mi

ab lower or equal to the observed one. Notice that lower Mi
ab actually corresponds to 

higher HDMI(a, b), since the other two components of the measure ( Ma and Mb ) do not 
vary.

Identifying synthetic lethality candidates

The previous step produces pairs of gene groups (X, Y) where mutations in the genes in 
X tend to be mutually exclusive to mutations in the genes in Y. Given that the mutation 
profiles of the genes within the same group are similar, the HDMI value and the associ-
ated p value computed on X and Y is a valid approximation of the HDMI and associated 
p value between any pair of genes x ∈ X and y ∈ Y  . Since we postulate that SL implies 
mutual exclusion, we expect at least one pair of gene x ∈ X and gene y ∈ Y  to be an SL 
pair, though we do not know the exact gene pair (x,y).

We propose two different methodologies to identify the actual SL pairs among the 
set of candidates. The first one is based on the Gene Activity Rank Profile (GARP) 
[17] scores for each gene, if these are available. GARP scores measure gene essential-
ity through siRNA-mediated knock-down screening. For a given cell line, the GARP 
score is a value (usually in the range [+5,−10] ) experimentally associated to each gene 
that measures the essentiality of that gene in that cell line, with lower values indicating 
higher essentiality. For a pair of mutually exclusive gene groups X and Y, we leverage 
GARP scores to find the pair of SL genes by iterating the following procedure for each 
pair of genes x ∈ X and y ∈ Y :

•	 among the set of cell lines for which GARP scores are available, extract 3 sub-sets: 
(a) cell lines where both gene x and gene y are wild type, (b) cell lines where x is wild 
type and y is mutated and (c) cell lines where x is mutated and y is wild type;

•	 compute the median GARP score of gene x on the sets (a) and (b);
•	 compute the median GARP score of gene y on the sets (a) and (c);
•	 call the pair to be SL if the median GARP of x on set (b) is below the median GARP 

of x on set (a) and the median GARP of y on set (c) is below the median GARP of y 
on set (a).

The relationship in the last point states that x becomes more essential in cell lines where 
y is mutated than in cell lines where y is wild type and, conversely, y becomes more 
essential in cell lines where x is mutated than in cell lines where x is wild type. Thus, a 

p(HDMI(a, b)) =
|{Mi

ab : Mi
ab ≤ Mab, i = 1, . . . , 10, 000}|

10,000
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mutation on gene x compromises the viability of the cell in the cell lines where also y is 
mutated more than in the cell lines where y is wild type, and vice versa.

Unfortunately, for some pairs of genes we may not be able to identify the three 
required sub-sets of cell lines, e.g., in the case where none of the cell lines for which 
GARP scores are available harbours a mutation of a certain gene.

For this reason, we introduce a second approach for spotting the correct SL pair of 
genes. This approach is based on the assumption that two SL genes would likely partici-
pate in the same biological pathways. Therefore, we look for those pairs (x,y) in (X,Y) that 
are observed to be in many pathways together, and predict these pairs to be the synthetic 
lethal pairs. For example, in Fig. 4, we present two groups which were called to be mutu-
ally exclusive by our method. As can be seen, among the 75 possible pairs of genes, just 
one of them, namely the pair made of the CDKN1B and TP53, shares several pathways 
(e.g., ErbB Signaling Pathway [21] and miRNAs involved in DNA damage response [22]). 
The remaining 74 pairs are collateral mutually exclusive. Therefore, their CNA profiles 
actually show a mutual exclusion, but this is “inherited” from the presumed synthetic 
lethality of the two near-by genes.

A caveat is that, the pathway-based method is biased in favor of genes that are anno-
tated to many pathways. A possible solution to this problem is to use the hypergeometric 
test on the sets of pathways associated with the two genes; i.e. test whether the number 
of pathways shared by the two genes is higher than would be expected when the two 
genes were independent. This, indeed, is the approach we adopt in the Results Section.

Results
We present here the results obtained by applying our method to a large dataset of CNA 
from many patients and compare our predictions with the one provided by the standard 
procedure based on the hypergeometric test.

Clustering

The clustering step on the defined dataset produced 660 groups of genes with their cor-
responding consensus genes. In Fig. 5 the distribution of the cardinality of the resulting 

Fig. 4  Example of a pair of mutually exclusive groups of genes. Two groups of genes called to be in mutual 
exclusion are represented respectively on the vertical and horizonal dimension of an heatmap. The numbers 
in the cells of the heatmap represents the number of common pathways of the two corresponding genes. 
The p value of the count of common pathways between TP53 and CDKN1B is 1.88e−17
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clusters is reported; most groups contain 3–8 genes. Additional file 3 reports the list of 
genes assigned to each cluster.

Mutual exclusion for DDR genes

In our test we focused on seven DNA Damage Repair (DDR) genes, namely PTEN, 
TP53, BRCA2, ATM, CDH1, RB1 and MSH3. Each of these seven genes correspond to 
a group of genes. Additional file  2 reports the computed pvalue and HDMI score for 
all the pairs of clusters. For each of the seven groups we identified the set of mutually 
exclusive partner groups with a p value lower than 0.05. Note that each gene has a dif-
ferent threshold value of HDMI that corresponds to a p value of 0.05. Then we applied 
the GARP-based procedure to identify the real SL pair of genes. The results are reported 
in Table 3. We applied two slightly different variants of the method: In one case, column 
garpDD, for a given gene g, we compared cell lines in which g is wild type against cell 
lines in which g is homozygous deleted; in the other case, column garpALT we com-
pared cell lines in which g is wild type against cell lines in which g is either homozygous 
deleted or harbours somatic mutations. The results are reported in the form n/N, where 
N is the number of pairs for which we have GARP data to perform the test and n is the 
number of cases in which we found at least a pair of genes confirmed by GARP scores.

Fig. 5  Cluster sizes. Distribution of the sizes of the groups of genes generated by the clustering step

Table 3  Summary of the prediction for 7 DDR genes

All the results refer to a p value < 0.05. HDMI reports the threshold used for the HDMI between the groups; pairs is the 
count of groups found to be in mutual exclusion with the group of the corresponding DDR gene; garpDD is the number 
of pairs for which at least a pair of genes has been validated considering only cell lines with deep deletion, divided by the 
number of group pairs for which data for the validation are available; garpALT as previous, but also considering somatic 
mutations

Gene HDMI Pairs garpDD garpALT

PTEN 0.040 71 49/66 54/67

TP53 0.025 51 33/43 40/50

BRCA2 0.030 34 0/00 30/34

ATM 0.020 26 18/24 21/24

CDH1 0.025 33 16/32 18/32

RB1 0.040 52 44/52 45/52

MSH3 0.025 18 8/13 17/18
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With the first method we were able to check 230 out of 285 pairs of groups (80.7%); for 
168 out of those 230 (73%) pairs we found at least one pair of genes confirmed based on 
GARP scores. With the second method we were able to test 277 pairs (corresponding to 
the 97.2% of the total). In 225 out of those 277 pairs (81.2%) we found at least a gene pair 
confirmed based on GARP scores.

Identification of SL pairs by pathway analysis

We next ran the alternative method based on the comparison of pathway annotations 
to identify the SL pair of genes, and used GARP scores for validation. For each pair of 
groups X and Y predicted to be in mutual exclusion, we are interested in finding at least 
a pair of genes x ∈ X and y ∈ Y  such that the hypergeometric test on the pathways anno-
tated to x and y yields a p value lower than 0.05. Then, we validate the predicted SL gene 
pairs by means of GARP scores.

Results are reported in Table 4: column pairs reports the number of mutually exclu-
sive group pairs involving the considered DDR gene; column PW reports the number of 
pairs of groups for which we found at least a pair of genes which passes the hypergeo-
metric test on the pathways; column Validated is in the form n/N, where N is the num-
ber of cases for which we have GARP data and n is the number of validated cases (we 
regard a pair of groups X and Y to be validated when at least one of the gene pairs x ∈ X 
and y ∈ Y  passing the hypergeometric test on pathways also passes the GARP test).

Notably, for 166 out of 285 (58.2%) pairs of groups we were able to find at least one 
gene pair passing the hypergeometric test on pathways; for 146 of such pairs we were 
also able to check the GARP score and in 71 cases (48.6%) at least one of the gene pairs 
identified by the pathway method were also confirmed through the GARP test.

Examples of SL predictions

Here, we report two interesting examples of SL interactions identified by our method, 
PTEN-WDR48 (Fig. 6) and TP53-BCL2 (Fig. 7).

In the first example, tumour suppressor PTEN is a phosphatase that is a constitu-
ent of the negative feedback loop of the PI3K-AKT pathway, a key serine/threonine 
signalling pathway responsible for cell growth and proliferation. PTEN controls PI3K-
AKT activity by negatively regulating downstream AKT molecules [23]. WDR48 is a 

Table 4  Summary of the prediction for 7 DDR genes

All the results refer to a p value < 0.05. HDMI reports the threshold used for the HDMI between the groups; pairs is the 
count of groups found to be in mutual exclusion with the group of the corresponding DDR gene; PW is the number of 
group pairs for which at least one gene pair passed the hypergeometric test on pathways; Validated is the number of group 
pairs for which at least one of the gene pairs identified by the hypergeometric test on pathways is also confirmed by the 
GARP test (considering both deep deletion and somatic mutations)

Gene HDMI Pairs PW Validated

PTEN 0.040 71 43 24/35

TP53 0.025 51 32 12/28

BRCA2 0.030 34 15 7/12

ATM 0.020 26 15 6/14

CDH1 0.025 33 15 4/15

RB1 0.040 52 35 16/35

MSH3 0.025 18 11 2/7
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serine/threonine phosphatase that regulates human deubiquitinating enzymes (USP 
1, 12, 46) to control DNA damage and it is also important in other cellular processes 
e.g., synaptic transmission, signaling via Akt, Notch and T cell receptor pathways. 
In this sense, PTEN and WDR48 demonstrate overlapping functions   [24]. Thus, if 
WDR48 is deleted, the cell may not survive, unless PTEN and other backup genes are 
active. Conversely, if PTEN (as a tumor suppressor) is deleted, the cell might improve 
in tumorigenesis; with the inhibition of WDR48 the cell might survive, but it is likely 
to have functional impairment. This is well reflected by the asymmetry in Fig. 6a: if 
a cell is WDR48-deficient and we inhibit PTEN, the cell dies. Conversely, if the cell 
is PTEN-deficient and WDR48 is inhibited, the cell may survive (albeit functional 
impaired). This may suggest that the use of a PTEN inhibitor in a WDR48-deficient 
cancer could result in an effective treatment, but not the other way round (i.e., using a 
WDR48 inhibitor in a PTEN-deficient cancer).

Fig. 6  PTEN versus WDR48. a The GARP score comparison in different conditions; both PTEN and WDR48 
become more essential when the partner is deleted. b The matrix of the common pathways between the 
genes of the two groups. The size of intersection of the set of pathways annotated with PTEN and WDR48 is 
significant, with Benjamini–Hochberg adjusted p value 8.13e−04

Fig. 7  TP53 versus BCL2. a The GARP score comparison in different conditions; both TP53 and BCL2 become 
more essential when the partner is deleted. b The matrix of the common pathways between the genes of the 
two groups. The size of intersection of the set of pathways annotated with TP53 and BCL2 is significant, with 
Benjamini–Hochberg adjusted p value 1.08e−05
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In the second example, both TP53 and BCL2 belong to the programmed cell death or 
apoptosis pathway. However, while TP53 is pro-apoptotic and triggers cell death upon 
sensing DNA damage or other triggers during cell cycle, overactivation of BCL2 is anti-
apoptotic. Therefore, we expect that in the event of loss of TP53, a simultaneous loss of 
BCL2 restores the apoptosis of cells [25, 26] (in agreement to Fig. 7a).

Example of collateral SL pair

The TP53 is the most frequently mutated gene in human cancer; its homozygous dele-
tion often exhibits a co-deletion of the neighbour gene FXR2, which belongs to the Frag-
ile X gene family. In the dataset of CNA that we analyzed in this study the 62% of the 
patients having a homozygous deletion of TP53 also have FXR2 homozygously deleted.
It has been demonstrated that in human cancer it is possible to selectively block cell 
proliferation by inhibiting, in those cells deleting FXR2, the remaining family member 
FXR1 [27]. Thus, targeting FXR1 is potentially a therapeutic approach for those human 
cancers harbouring a homozygous deletion of TP53. We say that TP53 and FXR1 are in a 
collateral synthetic lethal relationship.

Comparison with baseline method

To further assess our method, we run the hypergeometric test used in previous work 
[28] on the same dataset and validated the results using both pathways and GARP 
scores. Results are reported in Table 5 and show that our method has a higher precision 
and sensivity (both about doubles) compared to the hypergeometric test, when taking 
the top n predictions by the hypergeometric test (where n equals the total number of 
gene pairs in the mutually exclusive groups identified by our approach).

Example of validation based on survival analysis

We tested our prediction method on a dataset of > 6800 CNA experiments involving 
24,776 genes. In our experiments, we focused on 7 DDR genes. In total, we identified 
660 groups with 12,117 predicted mutually exclusive interactions between the groups. 
On average, there were slightly over 6 genes per group, with the largest group contain-
ing 23 genes, including CDKN2A and CDKN2B respectively. The subnetwork of SL 

Table 5  Validation of the SL gene pairs identified by means of the hypergeometric test on CNA 
profiles

For each DDR gene, we ranked the predictions and considered the top pairs, in the same number as the predictions of 
our method. The we validated such predictions with both the pathway (hyp-PW) and the gene essentiality (hyp-GARP) 
methods. We report the summary of the predictions for 7 DDR genes; all the results refer to a p value < 0.05. In order to 
facilitate the comparison with our method the table also reports the our-PW value (which corresponds to the PW value of 
Table 4) and our-GARP value (which corresponds to the garpDD value of Table 3)

Gene #pairs hyp-PW hyp-GARP our-PW Our-GARP

PTEN 71 13 19 43 49

TP53 51 14 0 32 33

BRCA2 34 0 4 15 0

ATM 26 3 10 15 18

CDH1 33 5 4 15 16

RB1 52 7 19 35 44

MSH3 18 0 5 22 8
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interactions involving DDR genes namely, ATM, BRCA1, BRCA2, CDH1, PTEN, TP53, 
and RB1, containes 69 groups involving 488 distinct genes. A gene found in several of 
these groups was POLR3D, a DNA-directed RNA III polymerase subunit, which is lost 
(hom del, loss of mRNA or protein expression) in about 8% breast cancer cases, however, 
its loss, in patients for which at least on of the DDR gene is lost , results in significantly 
better disease-free survival ( p = 0.0278 ), as shown in Fig. 8. This suggests SL inhibition 
of POLR3D could be explored as an avenue in DDR-deficient breast cancers.

Discussion and conclusions
Several computational approaches have been proposed for inferring synthetic lethal-
ity pairs of genes from genomic alterations. In 2008 Yeang et  al.  [29] was the first to 
publish a method to analyze somatic alteration patterns from large datasets of samples. 
In 2011 RME [30] used a network analysis method to identify recurrent and mutually 
exclusive genetic aberrations, while in 2012 Dendrix  [31] used a Markov chain Monte 
Carlo method to address a similar problem. In the same year, Ciriello et al. developed 
MEMo  [14] whose aim is to identify modules of mutually exclusive genes in cancer. 
MEMo was the first to use the edge swapping approach to test the mutual exclusivity 
of aberrant events. In 2015, Srihari et al. [28] adopted the hypergeometric test to infer 
mutually exclusive pairs of genes. More recently, a novel method based on a forward 
selection algorithm that initially identifies seed pairs of mutually exclusive genes and 
then expands the selected set [32].

The method we have proposed in this work differentiates from the above for the pre-
liminary step of clustering genes according to their aberration profile across patients 
and for the approach of testing mutual exclusivity of groups of genes rather than single 
genes, by means of the novel HDMI measure associated with the edge swapping. Finally, 
we use additional information (viz. essentiality data and pathway annotations) to iden-
tify driver gene pairs.

In our approach, we explicitly took care of confounding due to genetic linkage (i.e., 
neighbouring genes in the genome have highly correlated profiles of CNA); thus we 
first cluster proximal genes whose CNA profiles are similar, then predict mutually 
exclusive group pairs on the basis of mutation profiles, and finally identify the SL gene 

Fig. 8  Survival analysis of POLR3D. Homozygous deletion of POLR3D (which is observed in the 8% of breast 
cancer cases), results in a significantly better disease-free survival
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pairs within each group pairs. We proposed two different methods for selecting the 
pair of SL genes; the first is based on the gene essentiality measured in various condi-
tions by means of GARP score, while the latter leverages the annotations of gene to 
biological pathways. This aspect is unique among current SL prediction approaches; it 
has the effect of reducing false-positive SL predictions, as well as making explicit col-
lateral lethality relationship of other gene pairs within mutually exclusive group pairs.

We estimate from our result (Table 3) that 73–81% of the mutually exclusive group 
pairs are valid (i.e., they each contains at least one SL gene pair). Hence at the level of 
group pairs, we have predicted 285 mutually exclusive groups at 73–81% precision. 
For what concerns the identification of the SL gene pair, we estimated from our result 
(Table 4) that 49% of the predicted SL gene pairs are valid (i.e., the pair selected by the 
pathway-based method is also confirmed by GARP scores), thus the precision of our 
method is 49% and the sensitivity is 32% (= 71/225).

Beside predicting SL pairs, our method is also able to identify collateral lethal pairs, 
by considering other gene pairs in mutually exclusive group pairs. Recall that when a 
gene x is often deleted along with a gene y and a gene z is in a synthetic lethality rela-
tionship with x, then z is often also in a collateral lethality relationship with y. That is, 
inhibiting z in cancer cells bearing y deletion is often lethal to these cells. Thus our 
mutually exclusive group pairs serve as an expanded list of drug targets for cancers 
bearing any of the 7 DDRs studied here.
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