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Abstract—Many applications are increasingly requiring numer-
ical simulations for solving complex problems. Most of these nu-
merical algorithms are massively parallel and often implemented
on parallel high-performance computers. However, classic CPU-
based platforms suffers due to the demand of higher resolutions
and the exponential growth of data. FPGAs offer a powerful
and flexible alternative that can host accelerators to complement
such platforms. Developing such application-specific accelerators
is still challenging because it is hard to provide efficient code for
hardware synthesis. In this paper, we study the challenges for
porting a numerical simulation kernels onto FPGA. We propose
an automated tool flow from a domain-specific language (DSL) to
generate accelerators for computational fluid dynamics on FPGA.
Our DSL-based flow simplifies the exploration of parameters and
constraints such as on-chip memory usage. We also propose a
decoupled optimization of memory and logic resources, which
allows us to better use the limited FPGA resources. In our
preliminary evaluation, this enabled doubling the amount of
parallel kernels, increasing the accelerator speedup versus ARM
execution from 7 to 12 times.

Index Terms—FPGA, DSL, HLS, CFD

I. INTRODUCTION

In the last years, data-intensive applications have permeated
many computing areas due to the surge of deep learning and
the ever-increasing demand for resolution in physics simu-
lations (e.g., molecular dynamics, weather simulations). At
the same time, the diminishing returns of technology scaling
has led to vast system heterogeneity, with GPUs and tensor
accelerators [5, 14, 26]. Hardware accelerators achieve high
performance and energy efficiency thanks to specialization and
spatial parallelism [7]. Reconfigurable hardware, like FPGA
devices, is an attractive solution to democratize the use of such
accelerators for different users [23].

Despite the progress in high-level synthesis (HLS) [21], we
still face a large semantic gap between application experts and
FPGA hardware architects for FPGA-based systems. This paper
targets physicists and numerical experts for computational fluid
dynamics (CFD). In this domain, the researchers must not
only adapt the algorithms for a particular simulation but also
face fragmented tools, integration tasks, complex libraries, and
HLS directives for different targets. Integration tools can tackle
such complexity by raising the abstraction level with language
support, or by improving analysis and optimization to generate
hardware from low-level code like C or Fortran.

Research on hardware generation from low-level code has
a long history, with methods dating back to early auto-
parallelising compilers [12]. Recent advances in code anal-
ysis and optimization reduce the manual effort required to
produce HLS-friendly code, for instance, by inserting HLS
pragmas [30] or by generating optimized systolic arrays [38].
Parallelism extraction is however sensitive to coding style. An
alternative is to express a high-level specification with rich
semantics in the form of a domain-specific language (DSL).
High-performance DSLs have been successfully used to target
CPUs and GPUs, e.g., for image processing [25], general tensor
computations [15, 32], and deep learning [4, 34]. Similar flows
have been proposed for FPGAs [16, 31]. Since most DSLs have
high-level operators and data structures, compilers can decide
shapes, layouts, and schedules to generate target-aware code.

In this paper we present a proof-of-concept of an end-to-
end methodology that leverages the high-level semantics in
DSLs to create FPGA-based systems and accelerate numerical
kernels in CFD simulations (cf. Section III). As in other DSLs,
we lower our specification into a polyhedral model, allowing
us to leverage existing polyhedral transformations. Our key
contributions are: (1) a study of code generation strategies
to produce code that is amenable to commercial HLS (cf.
Section IV), and (2) an approach to decouple the computational
logic from management of on-chip data to improve the overall
system efficiency and create composable architectures (cf.
Section V). Decoupling computation from data management is
particularly important for CFD and data-intensive applications
to better coordinate data exchanges with the host CPU, hide/re-
duce the communication latency, and increase parallelism. Our
decoupled approach is relevant also for other DSL-to-hardware
compilation flows. We provide a preliminary evaluation for a
fundamental CFD kernel, which helps identifying the potential
and the challenges for upcoming FPGA nodes in HPC (cf.
Section VI). For example, by exploiting memory sharing, we
can fit more parallel kernel instances, increasing the speedup
from 7.09× to 12.58× compared to ARM execution.

II. BACKGROUND ON FLUID DYNAMICS

A. Spectral Element Methods

In numerical mathematics, spectral element methods (SEM)
are common in solving partial differential equations (PDEs),



1 var input S : [11 11]
2 var input D : [11 11 11]
3 var input u : [11 11 11]
4 var output v : [11 11 11]
5 var t : [11 11 11]
6 var r : [11 11 11]
7 t = S # S # S # u . [[1 6] [3 7] [5 8]]
8 r = D * t
9 v = S # S # S # r . [[0 6] [2 7] [4 8]]

Fig. 1. DSL code for the Inverse Helmholtz operator.

like the Navier-Stokes equations, which are impossible to solve
analytically. SEM approximates the solution using functions,
like the Fourier series, transforming the unknown physical
quantities of the problem into spectral coefficients.

To reduce the numerical complexity, the simulated volume
is divided into Neq smaller volumes. By partitioning the total
space into several sub-spaces or elements, SEM reduces the
numerical error introduced by the approximation. To further
reduce the error, SEM uses an approximation based on poly-
nomials of a higher degree (p > 1). The solution is expressed
as a linear system of equations which can be solved locally for
each element. An element solution e can be represented in three
dimensions as a tensor vijk,e with i, j, k ∈ {0, . . . , p}. Often,
the polynomial degree p is the same for all spatial dimensions.

In this paper we focus on the Helmholtz equations, which
are common in PDE solvers. Moreover, the Inverse Helmholtz
operator is complex enough to subsume simpler operators (e.g.,
interpolation) which are similarly relevant in CFD simula-
tions [13]. The operator can be formulated as:

tijk,e =

p∑
l=0

p∑
m=0

p∑
n=0

ST
li · ST

mj · ST
nk · ulmn,e (1a)

rijk,e = Dijk,e · tijk,e (1b)

vijk,e =

p∑
l=0

p∑
m=0

p∑
n=0

Sli · Smj · Snk · rlmn,e . (1c)

B. CFDlang DSL

In this paper we extend the CFDlang DSL for tensor oper-
ations [27]. CFDlang is target-agnostic and offers the user an
interface that is close to the mathematical problem specification.
The CFDlang notation is motivated by the tensor product
notation often found in CFD applications. Equations 2a-2c are
all equivalent to Equation 1a.

v =
(
ST ⊗ ST ⊗ ST

)
u (2a)

=
(
ST ⊗ ST ⊗ ST ⊗ u

)iljmkn

lmn
(2b)

= (S⊗ S⊗ S⊗ u)
limjnk

lmn (2c)

In CFDlang, Equation 2c could be represented as
S#S#S#u . [[1 6] [3 7] [5 8]]. Here S#S#S#u is the
outer product of all tensors involved in the contraction. The
dimensions of this product tensor are numbered from 0-8.
The index pairs in the square brackets then specify which
dimensions are reduced in the contraction. In addition CFDlang

Fig. 2. Target system instance for the Inverse Helmholtz: we replicate the
accelerator (along with its PLM) operator multiple times for parallel execution.

supports most of the tensor operations typically used for CFD
simulations such as tensor contractions (cf. 1a and 1c), inner
and outer products, and entry-wise multiplication (cf. 1b).

Figure 1 shows a description of the complete Inverse
Helmholtz operator in CFDlang. Lines 1-6 describe all required
tensors including the intermediate values for t and r. Lines
7 and 9 show a tensor contraction and line 8 contains a
Hadamard product. In CFDlang the program does not determine
the order of operations and the exact implementation, allowing
the compiler to optimize the operations for a particular target.

III. SYSTEM ARCHITECTURE AND METHODOLOGY
OVERVIEW

A. System-level FPGA-based Design for CFD Simulations
From the system-level perspective, the CFD simulation runs

on the host, which sends the kernel data to the FPGA (S, D, and
u) and retrieves the output (v) after the kernel execution. Since
CFD simulations are massively parallel, we can parallelize
multiple elements. We design each accelerator by combining
HLS and Private Local Memory (PLM) optimization tools. This
allows us to optimize the two parts independently and replicate
them based on the amount of FPGA resources requested by
HLS. Figure 2 shows an example where m = k and so
each PLM instance (for one element) is associated with the
corresponding kernel. If k < m (e.g., m = 16 and k = 4), the
same accelerator operates on consecutive PLM elements.

B. Decoupled CFDlang-to-Bitstream Flow
We propose a modular tool flow that simplifies the creation

of FPGA accelerators for numerical simulations directly from
CFDlang. Concretely, it helps the user optimize intra-kernel and
inter-kernel parallelism, and host-accelerator interfacing.

Figure 3 shows an overview of our flow. The CFDlang’s
representation gives us fine-grained control to rearrange data
accesses or modify the number of parallel accesses. In this work
we extend the CFDlang compiler infrastructure with FPGA-
specific optimizations and hardware generation. We added a
polyhedral engine, using libISL [9], for intra-kernel transfor-
mations for HLS and memory optimization.

The data layout and the kernel implementation generated by
the compiler are then optimized separately. We use commer-
cial HLS (currently Vivado HLS) to generate the accelerator
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Fig. 3. Tool flow from CFDlang to FPGA bitstream generation.

implementation, from C code generated from the compiler. We
use high-level operator information in the DSL and leverage
polyhedral analysis to fine-tune the generated code so that it
is amenable for HSL (cf. Section IV). This source-to-source
approach allows us to profit from excellent results from HLS
tools for the computational part. Classic HLS tools, however,
have limited support for implementing multi-bank, multi-port
memories. For this reason we use Mnemosyne [22], which
takes over the generation of the memory architecture for the
accelerator and supports us in the effective use of FPGA
BRAMs. We modified the CFDlang compiler to automatically
create the Mnemosyne input metadata during the compilation
(cf. Section IV-F). This is crucial since the compiler can support
sophisticated partitioning or sharing of data among multiple
memory banks through code analysis.

The system generator in Figure 3 automatically creates the
logic for replicating the kernels (produced by HLS) and the
memories (produced by Mnemosyne). The tool flow finally
produces the artifacts for interfacing with bitstream generation
and the corresponding host software to control the accelerators.

From the perspective of an application developer, we enable
a seamless integration of the CFDlang in Fortran or C++ code.
The kernel with the respective accelerator is then called via a
predefined function handle from the surrounding application.

IV. DSL LOWERING

A. CFDlang Compiler Extension: Overview

Figure 4 shows an overview of our current CFDlang com-
piler. As discussed in Section II, the compiler accepts tensor
programs such as the Inverse Helmholtz kernel (cf. Figure 1).

The CFDlang frontend creates a simple intermediate repre-
sentation (IR) that models each statement by constructing an
expression tree for the right-hand side (RHS). In this represen-
tation, the compiler can detect the independence of reduction
dimensions in contraction expressions to exploit associativity.
This allows transforming Equation (2c) into an equivalent
expression that computes multiple reductions of lower ranks:

t =

(
S⊗

(
S⊗ (S⊗ u)

cz
xyz

)by
cxy

)ax

bcx

These transformations operate entirely on the IR and are the
basis for existing CFDlang optimizations.

CFDlang

C99
Mnemosyne

Configuration

Reference Schedule

Constraint Space

Optimized Schedule

AST

Expression Tree

S
ch

e
d
u

le
 

M
e
m

o
ry

 M
o
d
e
l

Canonicalization

Layout Materialization

Reschedule

Analysis

Code Generation

Compiler
Parameters

C
o
m

p
ila

ti
o
n
 F

lo
w

ii

iv

iii

i

v

Fig. 4. The extended CFDlang compilation flow. This diagram shows the
different levels of abstraction and the operations performed on them.

As shown in Figure 4, we extended the compiler by gradual
abstraction, incrementally lowering the input to a more flexible
and concise constraint-based description. We apply existing
transforms during step i© before introducing any new abstrac-
tions. Our flow can further specialize this abstract representa-
tion to achieve more HLS-friendly kernels. The process stops
once a rigid C99 implementation has been reached.

B. Modelling Tensor Values

After having produced a pseudo-SSA form in step i©, all
expressions are fixed. The order in which individual elements
of these expressions are computed is still undefined, and the
IR does not reflect the per-element dependencies. Therefore,
we introduce a value-based abstraction of tensor expressions,
which differs from memory-based methods, such as the typical
memref-based usage of the linalg dialect in MLIR [17].

As the language only knows statically shaped non-aliasing
tensor values, we can reference any particular element of any
tensor using an index tuple. Since we build on isl, we use its
notation. For example, the set of index tuples for the tensor t
in the kernel from Figure 1 is written as:

{t[ i, j, k︸ ︷︷ ︸
index tuple

] : 0 ≤ i < 11 and 0 ≤ j < 11 and 0 ≤ k < 11}

Every tensor spans its own, unique index space with its rank
setting the number of dimensions. This also applies to scalars,
which are modelled as 0-dimensional, and thus have exactly
one valid “index” each. When reasoning about types, we refer
to any tensor index space using the shorthand tensor[. . .].

Every expression in the IR defines all elements of a unique
tensor via the RHS expression. There are named tensors that
appear on the left-hand side of an assignment, which may
either be part of the kernel interface (cf. input and output
in Figure 1) or local temporaries like t. All other expressions
define transient (a.k.a. virtual) tensors without an explicit name.

We can examine assignments via mappings of data dependen-
cies tensor[. . .]→

⋃
tensor[. . .] from output to operand tensor



elements. For the Hadamard product in Line 8, r = D ◦ t, we
obtain elements mappings from r to D and t:

r[i, j, k] 7→ D[i, j, k] ∪ t[i, j, k]

We compute this mapping, called the operand map, for every
tensor expression by transitive application.

Consider the contraction expression on Line 7, the Equa-
tion 2c. From the internal structure of the reduction, we can
define an inner domain for the expression that includes the
reduction indices {t[i, j, k, α, β, γ] : . . .}, from which we then
construct an inner operand map:

t[i, j, k, α, β, γ] 7→ S[i, α] ∪ S[j, β] ∪ S[k, γ] ∪ u[α, β, γ]

To obtain the composable mapping over the outer, output tensor
domain, we project out these indices.

C. Computing a Reference Schedule

In a polyhedral model, a statement stmt[. . .] is a space
over some integer control variables, and its points are called
instances. A schedule S : stmt[. . .]→ [. . .] maps these instances
to the schedule space, which is an anonymous integer tuple
space that reflects an executable loop program structure. These
tuples impose a total ordering via lexicographical comparison,
enabling a mathematical abstraction for code transformations.

We promote every assignment to a statement, allowing us to
leverage existing schedule optimizations for tensor expressions.
The order of the domain elements is not fixed by the CFDlang
program, but there is an implicit reference schedule that defines
what orders are valid. We construct the reference schedule from
the assignments and their operand maps to enable layout-aware
transformations. During construction, we use the operand maps
to avoid materializing transients, and inner domain maps to
lower reductions into schedule space.

D. Layout Materialization

In step ii© of Figure 4, we use the reference schedule to
concretize tensor memory layouts as pre-optimization. This
allows us to adapt to external constraints, such as the host
memory layout, and to make use of array partitions during
rescheduling. This differs from typical polyhedral approaches
that perform the layout independently from their scheduling.
Instead, we use a model-driven construction of the layouts
through command-line options, and modify our schedule ac-
cordingly. Such options include layout expressions which map
tensors to arrays. An array is a one-dimensional index space
array[i], later implemented using concrete platform memory.
For example, the C99 standard innermost dimension layout of
t reads t[i, j, k] 7→ t[121i+ 11j + k]. Every tensor must have
an affine layout, and we default to the row major layout. These
expressions can also be used to implement implicit reshaping
as is commonly done in host-device interfaces.

Options include also partitioning maps which map arrays to
arrays. These mappings can declare relations of the very general
type

⋃
array[i] →

⋃
array[o], provided that their union has

an injective fixpoint. This means that they can, in fact, split
and merge arrays, despite the name. This allows non-surjective

S
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v t3

t1 t0

t2

t

Fig. 5. Graph of the memory-interface and address-space compatibilities for
Inverse Helmholtz kernel. Interface arrays are grouped on the left.

mappings, which can be used to implement explicit address-
space sharing if the transformation is legal (cf. Section V-A2).

The reference schedule reflects these mappings after their
application by transforming the statement data dependencies,
and splitting the statements to operate over disjoint sets of array
partitions. As a result, the subsequent rescheduling process
can independently schedule computations in different array
partitions regardless of the original expression structure.

E. Rescheduling and Code Generation

In step iii©, we use isl’s Pluto scheduler to compute schedules
from the constraints derived from the reference schedule. We
obtain these constraints through layout-aware dataflow analysis.
We use read-after-write (RAW) dependencies as cost function
in the isl rescheduler to reduce the dependence distance and
thus the live intervals. Read-after-read (RAR) dependencies
also feed a cost function that attempts to place the statements at
coincident schedule space points. This helps reduce the pressure
on temporary storage.

Finally, step v© calls isl’s code generator to produce a
C99 program that implements the computed schedule. Our
precomputed operand maps simplify the generation of the
expressions for each element.

F. Liveness Analysis

To optimize the memory architecture, Mnemosyne needs
external information on the memory interface. Based on this,
it applies sharing transformations based on a memory compat-
ibility graph, which we can easily compute from the CFDlang
program for any given schedule. We perform these analyses
and generate such metadata in step iv©.

Figure 5 shows a memory compatibility graph derived from
a valid schedule of the kernel in Figure 1. In this graph, nodes
represent arrays, with the edges indicating sharing potential.
Two arrays are address-space compatible if their lifetimes do
not overlap for the entire execution of the accelerator. Two
arrays are memory-interface compatible if it is possible to
define a total temporal ordering of the memory operations such
that the same type (either read or write) never happens at the
same time on both arrays.

Dataflow analysis returns RAW dependencies in the form:

RAW : array[i]→ [write[. . .]→ read[. . .]]
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Fig. 6. Generation of accelerator kernel from C code: optimized PLM units
store the arrays and are accessed with standard memory ports. For readability,
the interface uses multi-dimensional arrays instead of flattened 1-D arrays.

This relation maps array elements that transport a value from
the statement write to the statement read. By definition, the
value at the specified array element is live at all schedule space
points between these statements. By applying the schedule S
to both statements, we transform the RAW dependencies into
the liveness intervals I = (S × S) ◦ RAW over schedule space
tuples:

I : array[i]→ [[. . .]→ [. . .]]

Correctly inferring the liveness of input and output arrays
requires a modified virtual schedule. In this schedule, two
statements first and last are defined, modelling writes to
inputs and reads from outputs.

Since the schedule space tuples are lexicographically or-
dered, we can define a second-order helper function ge_le
that turns a mapping from one tuple to another into a set of
all tuples between them. Finally, we obtain L = ge_le ◦ I ,
mapping every array element to the set of schedule tuples at
which it carries a live value.

ge_le : [[. . .]→ [. . .]]→ [. . .]

L : array[i]→ [. . .]

To determine whether two arrays are address-space compatible,
one must now simply determine whether their images in L are
disjoint.

V. GENERATION OF HARDWARE ARCHITECTURE

Our compiler-based flow can generate optimized FPGA
architectures with several accelerators executing in parallel on
different elements (cf. Section II). To do so, we divide the
creation of the target system (cf. Section III-A) in two steps.
In the first step, we generate the accelerator logic (kernel body)
and the memory subsystem for a single kernel starting from the
artifacts generated by the DSL compiler (cf. Section V-A). In
the second step, we create a parallel architecture by replicating
the memories and the kernels as many times as they can fit
into the given FPGA (cf. Section V-B). Then, we generate the
logic for coordinating the execution and the memory accesses to
the different memory instances, along with the corresponding
software counterpart for configuring and executing the entire
CFD simulation.

A. Kernel Generation

To separate the generation of the computational part and
the PLM units we export all memory elements from the

accelerator. The compiler transforms each memory element
(e.g., array or tensor) into an interface parameter of the code
to be synthesized. Figure 6 shows an example of resulting C
prototype and the corresponding hardware interface generated
by HLS. We implement each array with a PLM unit, i.e., a set of
BRAMs that can store the corresponding data (e.g., 121 64-bit
elements for array S) and the logic and ports to implement the
required read and write accesses. Mnemosyne creates shared
PLM units exploiting compiler information (cf. Section V-A2).

1) High-Level Synthesis: We use commercial HLS tools to
generate the RTL code from the C code produced by the
compiler. When using uni- and multi-dimensional arrays as
input parameters, existing HLS tools assume the memory is
outside the component. They generate a standard memory
interface, assuming fixed latency when scheduling memory
accesses. We can apply state-of-the-art HLS optimizations (i.e.,
loop unrolling and pipelining) since they are independent of
the memory interface. Array partitioning can be also applied to
increase the parallelism, demanding multi-port memories that
we manage during memory architecture generation.

2) Memory Architecture Generation: Each memory element
is implemented outside the accelerator on BRAMs. We apply
memory sharing to reduce the BRAM requirements of each
kernel. To this end, we exploit the information computed
during liveness analysis (cf. Section IV-F). Mnemosyne uses
this information to generate zero-conflict memory architectures
while guaranteeing fixed latency of the memory accesses. It
can also create multi-port, multi-bank architectures based on
the requested HLS optimizations.

B. System Generation

After generating the accelerator and the corresponding opti-
mized memory subsystem, we can compute how many replicas
can fit into the given FPGA. After reserving FGPA resources
for interfaces (e.g., AXI controllers), which can be easily pre-
characterized, we can define the set of resources A available for
the accelerators and extra routing logic. We can then estimate
the resource requirements of the HLS accelerator (H) and its
memory (M ) from the reports. So, our system must respect the
following equation:

[H] · k + [M ] ·m ≤ [A] (3)

We assume m ≥ k, since accelerators can only execute in
parallel if they each have a memory architecture to work with.
To simplify the logic around the accelerators and the PLM units,
m must be a power-of-two multiple of k. This constraint greatly
simplifies the system integration logic.

We developed a tool to read the kernel and memory in-
terfaces, the CDFlang metadata, and the board information to
automatically create 1) the accelerator instances, 2) the logic to
drive the data from the host to the different PLM units and vice
versa, and 3) the system description ready for logic synthesis
along with the corresponding software host code.

Given the number of accelerator (k) and memory (m) replica,
we determine how many times to execute each accelerator
(parameter batch = m/k) and, in turn, how to connect the
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modules. If k = m, the memory ports are simply connected
between accelerators and memories of equal index, as shown in
Figure 7b. Each accelerator operates on a single PLM element.
If k < m, each kernel operates on batch memories, as shown
in Figure 7c. For instance, if k = 2 and m = 4, we have that
batch = 2 and each accelerator (ACC) operates on two PLMs.
In the first execution, ACC0 will access PLM0 and ACC1 will
access PLM2. On the second execution ACC0 will access PLM1

and ACC1 will access PLM3. This architecture can amortize
long setup times for the data transfers.

The CPU host communicates with the accelerator using an
AXI-lite memory mapped interface and an interrupt line. Each
of the k accelerators use the ap_ctrl interface which consists
of a ap_start control input, and ap_done, ap_idle,
ap_ready status outputs. To be able to control k accelerators
using a single AXI-lite interface to the CPU, we implemented
an AXI-lite peripheral to receive the AXI transactions and up-
date the memory mapped registers as if the CPU was interacting
with a single kernel generated by HLS with an AXI-lite control
interface. To start execution, the host writes a start command
to a memory mapped register. When all of the k accelerators are
ready to begin, the AXI-lite peripheral broadcasts the start
signal to all accelerators. Once each of the k accelerators has
signaled that it is done processing, the AXI-lite peripheral raises
the interrupt line back to the CPU. When a round is completed,
the batch counter is incremented up to m/k. The batch
counter is then forwarded to the memory integration logic, as
shown in Figure 7c.

The CPU host code executes the accelerator for the total
number of elements in the CFD simulation (Ne), requiring
Ne/m main loop iterations. This loop includes the input
data transfers, execution, and output data transfers. The CPU
transfers the input array data for m points through the AXI
interface. m instances of each array are transferred to power-
of-two aligned addresses. Then, in a loop which executes m/k
times, the start command is sent over the AXI-lite control
interface, triggering the execution of k accelerators. The CPU
waits for the done interrupt. After this loop is finished, m points
are complete and ready in the output memories. The data is
transferred in m output arrays available to the CPU.

VI. EVALUATION

We implemented a prototype of our DSL-to-FPGA tool flow
for the CFD simulation targeting the Xilinx Zynq UltraScale+

MPSoC ZCU106 board. This system allows us to get prelimi-
nary feedback on the challenges of FPGA acceleration for such
workloads. The board features a quad-core ARM Cortex-A53
and a xczu7evffvc1156-2 FPGA, which has 504K system logic
cells (around 230K LUTs and 460K FFs) and 312 block RAMs.
We use Xilinx Vivado HLS 2019.2 for kernel synthesis and
Mnemosyne for the optimization of the accelerator’s memory.
We developed an in-house tool for the generation of the system
integration logic, the FPGA system description, and the host
code. We added hardware timers to measure the execution time
of the kernel computation with and without the data transfers.
We demonstrate the flow on the Inverse Helmholtz operator
with a polynomial degree equal to p = 11.

We used CFDlang to generate different C variants having
alternative shapes, layout, and compatibility information. The
CFD accelerator kernel requires around 2,314 LUTs, 2,999 FFs,
and 15 DSPs. We generated the FPGA systems ignoring sharing
compatibilities and using Mnemosyne only as PLM generator.
The PLM units for one kernel require 31 BRAMs so we can
fit up to m = 8 units and so k = 8 kernels. However,
when enabling compatibilities obtained from liveness analysis
(cf. Section IV-F), we can fit up to 16 PLM units and kernels
(The PLM units for one kernel now require only 18 BRAMs).
Resource usage in all cases (from m = k = 1 to m = k = 16,
when possible) are reported in Table I (including the rest
of the architecture), while Figure 9 provides a detailed view
on BRAM utilization in all cases. We also generated FPGA
systems where the temporary arrays were left inside the HLS
accelerator. In these cases, the memory system used 9 BRAMs
and the accelerator used 24, for a total of 33 BRAMs, showing
that exporting the temporary arrays to allow control over their
implementation does allow for better optimization. All kernels
are synthesized at the target frequency of 200 MHz. We
executed a prototypical CFD simulation of 50,000 elements
with all data in DRAM.

First, we tested k < m variants to determine if larger data
transfers can reduce communication latency. These experiments
did not show much improvements due to limitations in the
current implementations of the data transfers. So, we performed
all remaining tests with k = m.

Figure 9 shows the speed up that we achieved with our
parallel architectures. Since memory sharing is transparent to
accelerator execution, the values are the same for the two sets



TABLE I
RESOURCE UTILIZATION FOR NO MEMORY SHARING AND MEMORY

SHARING ARCHITECTURES

m, k LUT FF DSP

1 11,318 (4.9%) 9,523 (2.1%) 15 (0.9%)
No 2 15,929 (6.9%) 12,583 (2.7%) 30 (1.7%)

Sharing 4 25,728 (11.2%) 18,663 (4.1%) 60 (3.5%)
8 42,679 (18.5%) 30,795 (6.7%) 120 (6.9%)

1 11,292 (4.9%) 9,533 (2.1%) 15 (0.9%)
2 15,572 (6.8%) 12,596 (2.7%) 30 (1.7%)

Sharing 4 24,480 (10.6%) 18,663 (4.1%) 60 (3.5%)
8 42,141 (18.3%) 30,782 (6.7%) 120 (6.9%)
16 77,235 (33.5%) 55,053 (12.0%) 240 (13.9%)
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Fig. 8. BRAM utilization of parallel accelerators w/- and w/o memory sharing.

of experiments, except in case m = k = 16 which is possible
only with memory sharing. We can see that, as expected, the
speedup for accelerator execution is nearly the ideal, k. The
total speedup is lower due to the communication overhead but
can reach up to 12.58× in case of 16 kernels.

For a fair comparison with software execution, we executed
a reference implementation of the operator on the ARM A53
CPU available on the ZCU106 (SW Ref. in Figure 10). This
is the same CPU which performs the data transfers in the
hardware execution tests and is configured to run at 1.2 GHz,
which is 6× faster than the kernels running on FPGA. Figure 10
shows the comparison for all experiments. The C code given
as input to HLS (SW HLS Code) is slower on CPU. We also
compared the software with the hardware execution with a
variable number of kernels (HW k = 1, HW k = 8, HW
k = 16). In case of HW k = 1, the code has 30% slow-
down compared to the software execution because of the faster
ARM frequency and the CPU-FPGA data transfers. The best
architecture, HW k = 16, executes up to 8.62× faster than the
CPU. From the CFD expert viewpoint, all results have been
achieved by writing only 9 lines of DSL (Figure 1) and no
particular hardware knowledge (except from board resources).

VII. RELATED WORK

We focused our work on spectral element methods which
use tensor expressions. Some of existing DSLs such as Tensor
Flow Eager [2] are based on software libraries like Tensor
Flow or Theano [1, 3]. These approaches raise the abstraction
level, but they offer limited flexibility in the back-end. DSLs
such as Tensor Comprehension (TC) or TVM, on the other
hand, were developed to optimize for various platforms. While
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TC specializes in GPUs, TVM also supports FPGA back-ends.
However, this back-end is based on a template architecture and
does not offer flexibility for custom tensor expression or for
replicating the respective kernels, as also in [11].

Halide is a representative DSL for stencil operations [25],
while Halide-HLS [24] and HeteroHalide [18] offer hardware
back-ends. Halide separates computation and scheduling for
image processing. This allows applications to be flexibly suited
to the target architectures, but also shifts the burden of under-
standing the platform to the application developer.

We leverage the polyhedral model for the scheduling of
tensor operators, which was a useful approach in many do-
mains [8, 36]. We use the polyhedral model to determine access
patterns, lifetime ranges, and streaming constraints [37, 35]. An
automatic flow to generate systolic arrays from the polyhedral
model has been proposed in [38]. Polyhedral models can
support the interplay of polyhedral optimizations and hardware
back-ends with the memory subsystem.

We extended the CFDlang compiler [28, 32] to target hard-
ware generation. The IR uses primitive operations without any
notion of domain semantics that can be found instead in ML-
specific approaches such as TPP [10]. Modern frameworks
such as MLIR [17] can ease the combination of independent
DSL frontends, tensor middle-ends, and hardware backends.
Via adapters such as Teckyl [33], one can already construct
flows that consume TC [34] and process them entirely within
MLIR. The MLIR community is missing a value-based tensor
dialect, as opposed to the memory-reference based linalg
dialect. We foresee a similar dialect, possibly based on TeIL.

The design of domain-specific accelerators for scientific



simulations demands an efficient distributed computing model.
Approaches such as [29] use DSLs to explicitly encode inter-
kernel pipelining and parallelism on a device. When evaluated
for CFD codes in [20], partitioning and communication plan-
ning have impact on the scalability of these implementations.
We focus instead on increasing the utilization and throughput
of a single device guided by kernel resource usage.

While HLS simplifies the creation of hardware accelera-
tors [21], memory optimization, system-level integration, and
programmability are still open challenges. Several HLS opti-
mizations can improve the use of local memories or physical
banks during computation [6, 22]. Indeed, PLMs dominate the
resource requirements, especially in data-intensive accelera-
tors [22]. While independent accelerators can naturally share
physical banks, compiler-level analysis can help extracting
relevant information about intra-kernel compatibilities. Many
existing FPGA architectures, like IBM CloudFPGA [39] and
ESP [19], separate the computational parts from the intercon-
nection logic. For example, the ESP services allow designers
to integrate accelerators without any impact to the rest of the
system. We extend the same concepts to the local memory ar-
chitecture. We also enable the creation of parallel architectures.
The two approaches are orthogonal.

VIII. CONCLUSIONS AND FUTURE WORK

We presented an end-to-end tool flow to accelerate CFD
simulations, combining DSL compiler, commercial HLS and
memory optimization tools to seamlessly create a custom
accelerator to exploit the intrinsic parallelism of the application.
On a Xilinx Zynq Ultrascale+ ZCU106, we deployed 16 parallel
kernels, achieving a speed-up of 12.58× over the single-kernel
execution and 8.62× over the ARM CPU (which runs 6×
faster). These are promising preliminary results that motivate
our future work on more advanced DSL tranformations, MLIR
integration, better data transfer strategies, and scaling-up to
clusters of larger FPGA boards. This is an important step to
make FPGA acceleration viable for fluid dynamics.
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