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Abstract—The advent of the fourth industrial revolution (In-
dustry 4.0) aims at increasing automation and efficiency in
manufacturing processes by the adoption of information and
communication technologies. Several of the proposed solutions
rely on precise localization of material, equipment or operators.
This article investigates the employment of Ultra WideBand
(UWB) real-time location systems (RTLS) in a factory environ-
ment and proposes an augmentation technique to mitigate the
impairments that arise in such a complex scenario. A Bayesian
filtering method is developed to jointly track the motion dynamics
and the time-varying visibility conditions of the UWB antennas,
with particle-based implementation to deal with the non-linearity
of the UWB measurements. Laboratory tests and industrial
experiments are carried out to evaluate the performance of three
commercial off-the-shelf UWB technologies, namely Decawave,
Sewio and Ubisense. The experimental data are then used to
calibrate and test the developed filtering technique, showing
that it is possible to significantly reduce the positioning error
originating from dense multipath and NLOS effects by jointly
tracking the target dynamics and visibility conditions.

Index Terms—UWB, Industrial Localization, NLOS Compen-
sation, Bayesian Tracking, Jump Markov System, Particle Filter

I. INTRODUCTION

FOR decades, Ultra WideBand (UWB) radar has been used
in military and civilian applications for high-resolution

sensing and imaging [1]. Nowadays, this technology is be-
ing considered as a viable solution for precise localization,
especially for Global Navigation Satellite System (GNSS)-
denied environments. Compared to other widespread localiza-
tion technologies, such as Bluetooth, Zigbee and RFID, UWB
has the ability to provide enhanced ranging accuracy [2]–[5],
multipath resolution and robustness to interference [1], [6], [7]
thanks to the large bandwidth. These technical characteristics
make the UWB technology suitable for a variety of emerging
location-based services, ranging from consumer to Industrial
Internet of Things (IIoT) applications. Regarding the former,
UWB modules have been released for smartphones since 2019
to provide enhanced spatial awareness services [8], enabling a
potential massive market penetration. In IIoT context, likewise,
accurate location information jointly with gigabit communica-
tion capability are interesting features for autonomous indus-
trial systems. This led many companies, such as Decawave,
Sewio, OpenRTLS, Time Domain, Ubisense and Zebra, to
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develop proprietary commercial UWB solutions operating over
unlicensed bands.

Though the application is extremely relevant and timely
due to the emergence of Industry 4.0, as of today very
few experimental studies have been performed to assess the
performances of UWB-based Real-Time Location Systems
(RTLS) in real industrial environments [9]–[20]. In [9], a first
comparative analysis is carried out with Decawave, Bespoon
and OpenRTLS. A similar study is presented in [10], where
Decawave devices are analyzed in various environments. De-
cawave suite is compared to Bespoon in [11] and to Ubisense
in [12] for various propagation conditions, using a Particle
Filter (PF) technique, fitted to the Time of Arrival (ToA)
experimental data. Decawave DW1000 modules are analyzed
also in [13], where the ranging accuracy is evaluated in an
heavy machines laboratory, while the MDEK1000 is evalu-
ated in [14], [15]. Several asynchronous UWB localization
solutions are presented in [16]–[18], while [19] and [20] focus
on anchor calibration and error correction in UWB networks,
respectively. Lastly, a joint Radio Frequency Identification
(RFID) and UWB system is developed in [21] to deliver
enhanced location awareness in intelligent warehouse man-
agement systems.

A main critical issue emerging from all the above studies
is the severe degradation due to multipath and Non Line of
Sight (NLOS) propagation in real industrial facilities, typi-
cally filled with metallic obstacles (e.g., robots, machinery
and cabinets) [22], [23]. To mitigate the effects, a decision
theoretic framework has been proposed in [24] to discriminate
Line of Sight (LOS)/NLOS conditions using perfect or partial
knowledge of ToA distribution. A statistical characterization of
the Channel Impulse Response (CIR) for NLOS identification
is employed in [25], [26], while other mitigation approaches
rely on Bayesian filtering embedding statistical information
on the propagation conditions [27], [28], biased or mixture
models [29], [30], map information [31], [32], sensor fusion
[33]–[35] or variational techniques with skewed/heavy-tail dis-
tributions [36]–[40]. Machine learning techniques have been
recently emerging as candidate solutions, where set of features
are chosen so as to capture NLOS characteristics [41], [42]. A
brand new research trend is also 5G positioning at millimeter
waves (mmWave), where ultra-wide spectrum portions [43],
[44] can be exploited to enhance the time resolution and
enable Simultaneous Localization and Mapping (SLAM) [45],
[46]. Furthermore, the use of massive Multiple-Input Multiple-
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Output (MIMO) leads to precise Angle of Arrival (AoA)
measurements, facilitating the resolution of NLOS components
in the spatial domain, thus improving the localization accuracy
[47], [48].

The main limit of the above discussed techniques is the need
of either low-level (raw) data, such as CIR, which might not
be accessible in commercial off-the-shelf UWB solutions, or
of specialized hardware, such as massive MIMO. It is goal of
this work to provide an augmentation approach that embeds
the information coming from the environment, rather than
relying on the raw signals or ad-hoc technologies. This makes
the proposed technique suitable for a wide range of legacy
UWB systems. The proposed approach mitigates the multipath
impairments by a Bayesian filtering technique that operates on
the pseudo-ranges affected by NLOS bias and gathered by the
UWB devices. Similarly to [28], the method uses a Markovian
switching model to handle the LOS/NLOS transitions. With
respect to [28], however, here the tracking filter is redesigned
to work with Time Difference of Arrival (TDoA) rather
than baseband Power Delay Profile (PDP) signals, making
the proposed solution suited for integration with commercial
UWB systems. Moreover, it is more computationally efficient
and scalable for increasing number of APs/tags, as it requires
to handle only few scalar TDoA quantities rather than the full
PDP for each UWB link. The proposed technique relies on a
Jump Markov System (JMS) to jointly track the tag motion
dynamics and the LOS/NLOS sight conditions experienced
over the UWB links. The undesired, yet unavoidable, range
offset due to NLOS propagation is modeled by an exponential
random process, which accounts for the UWB signal reflec-
tions from the environment. The proposed approach assumes
that the NLOS excess delay is a stationary random process,
i.e., with statistics that are spatially invariant over the whole
environment. This is an approximation, as the NLOS bias
might be non stationary but only a high-complexity approach
could catch the location-specific multipath configuration (e.g.,
a ray tracer). Other methods, such as [31], [32], can be
employed to compute the NLOS bias all over the space,
however, they are typically computationally expensive since
a dense point grid is required for building the error map. On
the other hand, the proposed method is shown to be robust and
have affordable complexity, and it requires only the calibration
of few parameters, namely the ones characterizing the NLOS
distribution. Another feature of the proposed model is that it
can be generalized to incorporate other distributions that might
characterize different environments, resulting in a resilient
and adaptive tracking filter to be considered for enhancing
localization accuracy in complex industrial environments.

As a second contribution, we present a set of experimental
tests conducted with commercial UWB devices in both lab-
oratory and industrial environments, namely Decawave [49],
Ubisense [50] and Sewio [51]. Compared to our preliminary
work [52], here we propose the JMS augmentation technique,
we extend the experimental study with additional tests and we
validate the proposed approach on the overall collected data.
The availability of experimental data allows us to calibrate
the stochastic model of the proposed approach in order to
better adhere the IIoT context, as well as to validate the
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Fig. 1. UWB localization in a real factory (Pirelli Tyre, Milan): 4 APs localize
a moving tag in an indoor environment with industrial machines and materials
(gray areas). LOS links are in green, while the NLOS ones in red. Dimension
of the area: 16× 14 m.

algorithm in real industrial conditions. Experimental results
show significant performance gains compared to state-of-the-
art methods for NLOS compensation [36], [37] in factory
environments with high density of metallic scatterers and
dynamic conditions due to ongoing production activities.

The paper is organized as follows. The proposed aug-
mentation solution is described in Sec. II. Sec. III provides
the technical characteristics of the selected UWB devices,
while the experimental tests are illustrated in Sec. IV. Sec. V
provides the validation of the proposed tracking technique on
collected raw data and Sec. VI draws conclusions.

Notation: bold letters indicate column vectors which can
belong to the set of real numbers R or the set of naturals
N. Symbol IN identifies an identity matrix of size N × N ,
while 0N stands for a null vector of size N × 1. Matrix
transposition operator is (·)T . Symbol | · | denotes cardinality
of a set, while ‖·‖ is the Euclidean norm. Probability is
indicated with P (·). Throughout the paper, the probability
density function (pdf) of a random variable x, with mean µ,
can be shaped according to different well-known distributions.
We indicate with N (x;µ, σ2) a Gaussian pdf with variance
σ2, with L(x;µ, b) a Laplace pdf with diversity parameter
b, with E(x;λ) an exponential pdf with rate λ, and with
ST (x;µ, σ2, δ, ν) a Skew t distribution [36, eq. (1)] with
spread σ, shape parameter δ and ν degrees of freedom.

II. AUGMENTATION SYSTEM FOR NLOS MITIGATION

In this section, we present the localization model (Sec. II-A)
and the Bayesian framework used for deriving the tracking
filter (Sec. II-B), followed by an illustrative example revealing
the intuition of the proposed approach (Sec. II-C).
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A. Localization Model
We consider a 2D localization scenario as illustrated in

Fig. 1, where a tag moves in an UWB infrastructured area
U ⊂ R2 and periodically sends pilot UWB signals to L ≥ 3
Access Points (AP)s located at known fixed positions, which
are in charge of estimating tag’s position by multi-lateration
and/or multi-angulation. The static position of the `-th AP,
with ` = 1, . . . , L, is p` = [p`,x p`,y]

T ∈ U , while the mobile
tag is indicated by the time-variant (over time t) position vector
ut = [ux,t uy,t]

T ∈ U . The dynamics of ut are modeled as a
first-order Markov process as:

ut = fV (ut−1) + wt = ut−1 + vt ·∆t+ wt , (1)

where vt = [vx,t vy,t]
T is the 2D velocity, ∆t the sam-

pling interval and wt the driving noise with known pdf
fW (wt). We consider a zero-mean Gaussian driving process
with standard deviation σw (to be calibrated according to
the specific target dynamics) on both x and y axes, which
leads to fW (wt) = N (wt; 02,Cu), with Cu = σ2

wI2.
The tag transition pdf between two consecutive time instants
is p(ut|ut−1) = fW (ut 9ut−1 9 vt ·∆t), and it has to be
defined and calibrated for each specific application. Here we
assume to know the 2D mean velocity vector vt, as it can be
extracted from embedded Inertial Measurement Unit (IMU)
sensors available in commercial UWB systems. Nevertheless
the proposed methodology is general enough to be applied to
any motion dynamics of the target.

Following the approach in [28], we propose to estimate and
compensate NLOS related biases by adding a sight variable
into the Bayesian state and leveraging this additional infor-
mation to counterbalance APs heavily affected by propagation
impairments. The sight condition between the tag and the `-th
AP is represented by a first-order Markov chain s(`)t with value
s
(`)
t = 0 for LOS and s(`)t = 1 for NLOS and transition prob-

abilities: p0 = P (s
(`)
t = 0|s(`)t−1 = 0) = P (s

(`)
t = 1|s(`)t−1 = 1)

and p1 = P (s
(`)
t = 1|s(`)t−1 = 0) = P (s

(`)
t = 0|s(`)t−1 = 1). The

values of p0 and p1 are environment-specific and have to be
calibrated for the specific application.

This model assumes that the sight condition s(`)t evolution
over time is independent of the tag position ut as well as
of another sight condition s

(k)
t of AP k = 1, . . . , L, with

k 6= `. Despite the sight condition s
(`)
t is related to ut, this

models allows to statistically describe its evolution in a simple,
yet efficient, way. It follows that there are no constraints
on the type of the tag trajectory as ut may assume any
value. Assuming mutual independence of APs sight conditions,
the overall sight process is a first-order Markov chain with
transition probabilities:

P (st = k|st−1 = h) =
L∏
`=1

P (s
(`)
t = k`|s(`)t−1 = h`) , (2)

for k = [k1 · · · kL]T and h = [h1 · · · hL]T , with k,h ∈ S =
{0, 1}L.

At time t, the estimated range between the tag and AP ` is
modeled as:

ρ
(`)
t = d

(`)
t + s

(`)
t ∆d

(`)
t + n

(`)
t , (3)

where d
(`)
t = ‖ut − p`‖ is the true distance, n(`)t is the

measurement noise and ∆d
(`)
t is the excess range due to

NLOS. The noise term n
(`)
t is modeled as a Gaussian random

variable with mean and variance that depend on the specific
sight condition [53] as follows. For LOS (i.e., s(`)t = 0),
it is modeled as p(n(`)t ) = N (n

(`)
t ; 0, σ2

LOS) while in case
of NLOS (i.e., s(`)t = 1) p(n

(`)
t ) = N (n

(`)
t ;µn, σ

2
NLOS),

where µn is the mean excess range. On the other hand, the
NLOS excess range p(∆d(`)t ) = E(∆d

(`)
t ; 1/σd) is modeled

as an exponential random variable with rate 1/σd, in line
with the widespread literature on UWB channel modeling in
indoor environments [54]–[57]. This model is assessed over
the considered environment, allowing us to compensate the
NLOS effects in any position of the space. In our analysis, we
assume that the noise n(`)t is independent of the distance d(`)t ,
of the range estimated by any other AP k 6= ` and of the excess
range ∆d

(`)
t . Furthermore, the range errors over different links

have the same statistics, i.e., {σ2
LOS, σ

2
NLOS, µn, σd} do not

vary with AP index `.
The TDoA measurement ρ(`,k)t = ρ

(`)
t − ρ

(k)
t is computed

as difference between ToAs of links ` and k, with ` 6= k and
its modeling accounts for any combination of sight conditions
s
(`)
t and s(k)t . The possible values it can assume are indicated

in Table I, where d(`,k)t = d
(`)
t − d

(k)
t , n(`,k)t = n

(`)
t − n

(k)
t ,

∆d
(`,k)
t = ∆d

(`)
t −∆d

(k)
t , σ2

1 = 2σ2
LOS, σ2

2 = σ2
LOS + σ2

NLOS

and σ2
3 = 2σ2

NLOS. For s(k)t = s
(`)
t = 1, ∆d

(`,k)
t is computed

as the difference between two i.i.d. exponential distributions,
i.e., it is a Laplace random variable L(∆d

(`,k)
t ; 0, b) with

diversity parameter b = σd [58]. We recall that a random
variable x is Laplace distributed with mean m and diversity
parameter b if its pdf is described as:

L(x;m, b) =
1

2b
exp

(
−|x−m|

b

)
. (4)

Besides TDoA, we also consider AoA measurements for
UWB positioning. In a 3D space, the angular information
includes the azimuth AoA α

(`)
t and the elevation AoA β

(`)
t ,

which are defined as:

α
(`)
t = arctan

(
(p`,y − uy,t)/(p`,x − ux,t)

)
, (5)

β
(`)
t = arcsin

(
(p`,z − uz,t)/d(`)t

)
. (6)

We denote with ρ
(`)
α,t = α

(`)
t + n

(`)
α,t and ρ

(`)
β,t = β

(`)
t + n

(`)
β,t,

the available measurements of azimuth and elevation AoA,
respectively, where n(`)α,t and n(`)β,t are the measurement noises.
As in [56], [59]–[61], we consider the AoA measurement error
as a Laplace random variables, i.e., n(`)α,t ∼ L(α

(`)
t , 0, bα) and

n
(`)
β,t ∼ L(β

(`)
t , 0, bβ).

Considering without loss of generality the AP ` = 1 as
reference, the set of TDoA measurements available at time
t is ρt = [ρ

(1,2)
t · · · ρ(1,L)t ]T , which depends on the sight

conditions st = [s
(1)
t · · · s(L)t ]T of all APs. The set of AoA

measurements available at time t is ρα,t = [ρ
(1)
α,t · · · ρ

(L)
α,t ]

T ,
which does not depend on the sight condition values. The
overall set of measurements available at time t is thus Ωt =
[ρTt ρTα,t]

T , where ρt and ρα,t are independent.
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TABLE I
MODELING OF THE TDOA MEASUREMENT ρ

(`,k)
t WITH RESPECT TO THE

DIFFERENT PROPAGATION CONDITIONS OF APS ` AND k

ρ
(`,k)
t s

(`)
t s

(k)
t p(n

(`,k)
t ) p(∆d

(`,k)
t )

d
(`,k)
t + n

(`,k)
t 0 0 N (n

(`,k)
t ; 0, σ2

1) -

d
(`,k)
t + ∆d

(`)
t + n

(`,k)
t 1 0 N (n

(`,k)
t ;µn, σ2

2) E(∆d
(`)
t ; 1/σd)

d
(`,k)
t −∆d

(k)
t + n

(`,k)
t 0 1 N (n

(`,k)
t ; 9µn, σ2

2)E(−∆d
(k)
t ; 1/σd)

d
(`,k)
t + ∆d

(`,k)
t + n

(`,k)
t 1 1 N (n

(`,k)
t ; 0, σ2

3) L(∆d
(`,k)
t ; 0, b)

As a whole, the localization process is described as a
combination of a JMS and an Hidden Markov Model (HMM).
The state xt is hidden into the TDoA measurements ρt with
dynamics controlled by the sight conditions st. The state xt is
also hidden into the AoA measurements ρα,t but the dynamics
are not controlled by the sight conditions since the LOS/NLOS
contribution is modeled by a unique Laplace distribution. To
estimate ut, it is necessary to also track the variations of st,
thereby we propose a joint Bayesian estimation of the position-
sight state xt = (ut, st), as described in the next section.

B. Bayesian Tracking Method of the Joint Position-Sight State

The estimate of xt based on the observations up to time t,
i.e., Ω1:t = [ΩT

1 · · · Ω
T
t ]T , is obtained following a Bayesian

approach. This leads to the evaluation of the a-posteriori pdf
p(xt|Ω1:t) as a combination of the a-priori pdf p(xt|Ω1:t−1)
and the conditioned pdf p(Ωt|xt) as:

p(xt|Ω1:t) ∝ p(Ωt|xt) p(xt|Ω1:t−1) . (7)

The a-priori pdf is evaluated for t > 1 according to the
Chapman-Kolmogorov equation [62] incorporating the tag
motion model (1) and the Markov chain for sight condition
as:

p(xt|Ω1:t−1) =∑
st−1∈S

P (st|st−1)

∫
U
p(ut|ut−1) p(xt−1|Ω1:t−1)dut−1 ,

(8)

while for t = 1, p(x1|Ω0) = p(u0)P (s0) accounts for the
available a priori information about the initial sight conditions
and position. To ease the notation, the action sign has been
omitted from (8).

To compute the conditioned pdf, it is important to recall that
the L − 1 TDoA and L AoA observations are conditionally
independent. This follows from the independence assumption
among the sight conditions, as well as between the TDoA and
AoA observations. Furthermore, the state xt is not directly
observable from the observations. Following these considera-
tions, the conditioned pdf is computed as:

p(Ωt|xt) =
L∏
k=2

p(ρ
(1,k)
t |ut, s(1)t , s

(k)
t )

L∏
`=1

p(ρ
(`)
α,t|ut) , (9)

where each likelihood p(ρ
(1,k)
t |ut, s(1)t , s

(k)
t ) is derived from

the measurement model in Table I. Due to this modeling,

each combination of LOS/NLOS condition influence the cor-
responding pdf as:

p(ρ
(1,k)
t |ut, s(1)t = 0, s

(k)
t = 0) = N (ρ

(1,k)
t ; d

(1,k)
t , σ2

1) , (10)

p(ρ
(1,k)
t |ut, s(1)t = 1, s

(k)
t = 0) =∫

N (ρ
(1,k)
t ; d

(1,k)
t +∆d

(1)
t +µn, σ

2
2) E(∆d

(1)
t ; 1/σd) d∆d

(1)
t ,

(11)

p(ρ
(1,k)
t |ut, s(1)t = 0, s

(k)
t = 1) =∫

N (ρ
(1,k)
t ; d

(1,k)
t 9∆d

(k)
t 9µn, σ

2
2) E(9∆d

(k)
t ; 1/σd) d∆d

(k)
t ,

(12)

p(ρ
(1,k)
t |ut, s(1)t = 1, s

(k)
t = 1) =∫

N (ρ
(1,k)
t ; d

(1,k)
t +∆d

(1,k)
t , σ2

3)L(∆d
(1,k)
t ; 0, σd) d∆d

(1,k)
t .

(13)

The integrals in (11) and (12) can be computed in closed
form using the Exponentially Modified Gaussian (EMG) dis-
tribution [63]. More specifically, equation (11) reduces to:

p(ρ
(1,k)
t |ut, s(1)t = 1, s

(k)
t = 0) =

1

2σd
e

1
2σd

(
2µn+

σ22
σd
−2ρ(1,k)t

)
erfc

µn +
σ2
2

σd
− 2ρ

(1,k)
t√

2σ2

 ,

(14)

where erfc is the complementary error function, while for (12)
we have:

p(ρ
(1,k)
t |ut, s(1)t = 0, s

(k)
t = 1) =

1

2σd
e

1
2σd

(
−2µn+

σ22
σd

+2ρ
(1,k)
t

)
erfc

−µn +
σ2
2

σd
+ 2ρ

(1,k)
t√

2σ2

 .

(15)

On the other hand, the integral in (13) can be evaluated us-
ing the Laplace-Normal (LN) pdf, arising as the sum between
independent Laplace and Gaussian random variables as [64]:

p(ρ
(1,k)
t |ut, s(0)t = 1, s

(k)
t = 1) =

1

2σd
Φ

(
ρ
(1,k)
t

σ3

)[
R

(
σ3
σd
− ρ

(1,k)
t

σ3

)
+ R

(
σ3
σd

+
ρ
(1,k)
t

σ3

)]
,

(16)

where Φ (·) is a zero-mean Gaussian pdf with unitary variance
and R (x) is the Mill’s ratio defined as:

R (x) =

1− 1

2

[
1 + erf

(
x√
2

)]
Φ (x)

, (17)

while erf(x) = 1 + erfc(x) is the error function.
Regarding the azimuth AoA, the likelihood p(α

(`)
t |ut) is

computed as:

p(ρ
(`)
α,t|ut) = L(ρ

(`)
α,t;α

(`)
t , bα) , (18)

i.e., as a Laplace pdf centered around the true azimuth.
The a-posteriori distribution of xt is evaluated for any t

through the recursive computation of (7)-(8). The estimate
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Fig. 2. Comparison of likelihoods for tracking filter with (right) and without
NLOS compensation (left). The analysis shows the marginal likelihood
functions (top) and the product (bottom).

x̂t = (ût, ŝt) can be then obtained either using the Maximum
A Posteriori (MAP) or the Minimum Mean Square Error
(MMSE) criterion. However, closed-form computations are not
possible in the general case, therefore sub-optimal solutions
are used instead, such as grid-based filters or PF. In this paper,
we adopt a PF approach since it can attain the same accuracy
as a grid-based one with less computational complexity. In
this specific case, each particle x

(n)
t with n = 1, . . . , NP is

identified by the joint position-sight state
(
u
(n)
t , s

(n)
t

)
, with

u
(n)
t ∈ U and s

(n)
t ∈ S. For any additional information on the

PF implementation of the tracking filter used to estimate xt,
the interested reader can refer to Appendix A.

C. Illustrative Example of the Proposed Method

In this section, we provide a visual and intuitive representa-
tion of the proposed mixed LOS/NLOS model. In Fig. 2, we
depict a snapshot of the TDoA measurement likelihoods and
their combination in the factory scenario with link 2 between
the tag and AP2 affected by NLOS with an excess range
∆d

(2)
t = −2 m. The parameters used for the computation

of the likelihoods are: σLOS = 0.25 m, σNLOS = 0.5 m
and σd = 2.5 m. The TDoA measurements are computed
by using AP1 as master anchor. For visualization purposes,
the likelihoods have been independently rescaled to fit in the

TABLE II
DEVICES TECHNICAL PARAMETERS

Decawave Sewio Ubisense
Frequencies 3.5-6.5 GHz 3-7 GHz 6-8 GHz
Bandwidth 500, 900 MHz 500 MHz 800 MHz

Measurement ToA TDoA TDoA+AoA
Accuracy 30 cm 30 cm 15 cm
Coverage 290 m 50 m 160 m

(a)

(b)

(c)

Tag 1
Tag 2
Tag 3
Tag 4
Tag 5

Ubisense

Sewio

Tag 1

(d)

Fig. 3. UWB experimental setting: a) TREK1000 unit, b) Sewio RTLS TDoA
kit, c) Ubisense Dimension4 sensor (left) and tag (right), d) cardboard box
used for the experiments.

range (0,1). Looking at the figure, it is intuitive to infer that
if NLOS propagation is not compensated (i.e., all the the
marginal likelihoods are computed using (10)), it exists a
strong bias in the likelihood of ρ(1,2)t , which results to be
translated far from the true tag position. This leads to an
inaccurate localization in case of equally weighted product
among all the three marginal pdfs. On the other hand, with
the proposed NLOS mitigation, we have an enlarged marginal
for ρ(1,2)t which accounts for the NLOS bias statistics of the
considered scenario (according to (15)) and provides more
accurate localization once all the likelihoods are multiplied
together: i.e., the product is very close to the true position as
the NLOS range offset is compensated.

III. UWB TECHNOLOGIES FOR TESTING

This section presents an overview of the UWB technologies
selected for testing: Decawave TREK1000 (Fig. 3a), Sewio
RTLS TDoA kit (Fig. 3b) and Ubisense Dimension 4 (Fig. 3c).
Table II summarizes their main specifications.

A. Decawave

The Decawave TREK1000 evaluation kit is composed of 4
UWB units. Each board, depicted in Fig. 3a, is equipped with a
DW1000 module, an STM32F105 ARM Cortex M3 processor
and an omnidirectional antenna. The DW1000 module is an
UWB ranging chip compliant to the IEEE 802.15.4-2011
UWB standard [65]. It spans six Radio Frequency (RF) bands
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in the frequency range 3.5 − 6.5 GHz, with a bandwidth
of 500 MHz or 900 MHz and three different transmission
rates: 110 kbit/sec, 850 kbit/sec and 6.8 Mbit/sec. It is fully
configurable to support two-way ranging via Time of Flight
(ToF) estimation or one-way TDoA. Synchronization among
reference nodes is performed wirelessly, allowing an easy
installation and preventing from laborious prior calibration.
The reported ranging accuracy is 10 cm, which translates into
30 cm accuracy for 3D positioning. The maximum coverage
supported is 290 m. The TREK1000 kit supports only two
channels, namely the second and fifth centered around 4 and
6.5 GHz, respectively, and two data rates: 110 kbit/sec and
6.8 Mbit/sec. Using the dip-switches provided on the board, it
is possible to configure each unit as tag or anchor and choose
the channel specifications. The location update rate provided
by each board is 3.57 Hz.

B. Sewio

Sewio products make use of the Decawave DW1000 UWB
ranging chip to provide location estimates based on TDoA
measurements. The manufacturer reports an accuracy of 30
cm considering 3D localization with a maximum coverage
of 50 m. According to the documentation, the kit tested
herein does not employs any tracking filtering, but it has
been made available in the new model version, the RTLS
UWB kit. Sewio ships the RTLS TDoA kit depicted in
Fig. 3b, which is composed of five anchors, two IMU tags,
two Piccolino tags and the license for the RTLS Studio
Platform and SAGE Analytics, two software packages used for
configuration, management and data visualization purposes.
Anchors are reference nodes equipped with the DW1000 chip
and an omnidirectional antenna. Rather than relying on timing
cables, anchors’ are synchronized wirelessly. This allows the
system to be configured quickly, making it suitable for any
environment. Tags employ the same chip, an omnidirectional
antenna, an ultra-low-power ARM EFM32G M3 (for Piccolino
tags) and inertial sensors. The IMU tag supports all available
sensors (i.e. accelerometer, gyroscope, magnetometer, barome-
ter, thermometer) while Piccolino only the accelerometer. The
tags have preconfigured update rates of 1 Hz and 10 Hz in
case of static and dynamic conditions, respectively.

C. Ubisense

We use the UWB system Ubisense Dimension4 (D4), which
combines TDoA and AoA measurements to estimate the tag’s
position by Bayesian filtering. The manufacturer reports that
only two anchors are sufficient for 3D location estimation.
The UWB pulses are transmitted at a central frequency of
6.55 GHz, occupying a bandwidth of 800 MHz. The nominal
accuracy is 15 cm in LOS conditions, while for complex
environments it reduces to 50 cm. The maximum coverage
is 160 m. The research and development kit is composed
by four sensors, ten tags and the license for SmartSpace
platform, a configuration and data visualization utility. Each
sensor, depicted in Fig. 3c (left), is an anchor node that
hosts an antenna array, the UWB radio receivers, a built-in
accelerometer, and a processor. Sensors’ synchronization is

AP2
AP1

AP3

Fig. 4. UWB localization in indoor environment at IoTLab - Politecnico di
Milano: test area and anchors’ deployment.

performed via timing cables. On the other hand, tags, shown
in Fig. 3c (right), are ultra-low power UWB transmitters,
equipped with a motion detector and a battery. They support
two main location update rates, namely the slow and the
fast rates, that can be configured according to the specific
application (the maximum update rate can be increased up
to 30 Hz).

IV. EXPERIMENTAL TESTS IN INDOOR SCENARIOS

This section presents the experimental tests carried out to
assess the performances of the UWB systems presented in
Sec. III. We first analyze the capabilities of Decawave UWB
localization kit in laboratory facilities (Sec. IV-A), then we
analyze the results of experiments carried out in the Pirelli Tyre
S.p.A. research plant (Sec. IV-B). Due to project requirements
and industrial constraints, Ubisense and Sewio were both
tested in the research plant while only Decawave was available
in the laboratory. The goal of the laboratory tests is to evaluate
the separate impact of possible impairments that arise in indoor
environments under controlled conditions, while the experi-
mental tests are aimed at assessing the overall localization
performances of UWB systems in real operating industrial
environments. Moreover, the selection of Ubisense and Sewio
devices allows us to collect raw data on TDoA and AoA for the
evaluation of the proposed tracking methodology. The analysis
aims to assess the capabilities of UWB indoor localization
in terms of both the location error and the accuracy of the
raw range/angle radio measurements used for localization. We
evaluate the location error as εt = ‖ût − ut‖, the ranging
error εr,t = ρt − dt, the azimuth error εα,t = ρα,t − αt and
the elevation error εβ,t = ρβ,t − βt, computed over all the
L APs. To simplify the notation, from now on the temporal
subscript t on the errors is removed as it should be easily
inferred from the discussion on each specific analysis.

A. Laboratory Scenario

A preliminary validation of the UWB technology for posi-
tioning has been carried out in the laboratory facility IoTLab
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(c) Shadowing
Fig. 5. UWB localization in an indoor environment at IoTLab - Politecnico di Milano for different propagating conditions: a) LOS, b) NLOS c) shadowing.
By fixing the reference system as coincident with AP1, i.e., p1 = (0, 0) m, with x axis pointing downwards and y axis rightwards, the six positions selected
for the experiments are: (1.79, 0) m, (0, 1.79) m, (1.79, 1.79) m, (3.57, 1.79) m, (0, 3.57) m, (1.79, 3.57) m. Dimension of the area: 18× 11 m.

Fig. 6. CDF of UWB localization accuracy in indoor environment at IoT Lab
- Politecnico di Milano for LOS, NLOS and shadowing conditions.

of Politecnico di Milano, shown in Fig. 4. We used Decawave
TREK1000 devices to conduct a number of experiments in
a controlled environment, evaluating how propagation condi-
tions affect the localization performance.

In all the experiments, three APs are placed at fixed loca-
tions over a tripod at a height of 2 m, as illustrated in Fig.
4. Six Ground-Truth (GT) positions, measured with a laser
distance meter, are chosen to evaluate the performance of
UWB static localization The selected positions are depicted
by the cross markers in Fig. 5 and specified in the caption of

the same figure. For each position, the tag is mounted on a
tripod at a height of 1 m and UWB measurements are recorded
for 240 seconds. The total number of location fixes for each
position is 857 (i.e., 240 s × 3.57 Hz).

To characterize the main problems that arise in indoor envi-
ronments and assess their impact on the localization accuracy,
three experimental tests performed under different propagation
conditions are presented: LOS, NLOS and shadowing propa-
gation. A non obstructing link between anchors and tag is
considered in the LOS experiment. On the other hand, for the
NLOS test, metallic shields are placed in front of the anchors.
The metallic shield employed in the test is square-shaped
with dimensions 0.4× 0.4 m. Finally, shadowing propagation
is simulated by making three people move around the tags,
following a circular trajectory.

Fig. 5 shows the location estimates provided by the
TREK1000 software as black dots, the true positions as cross
symbols, and the Elliptical Error Probable at 95% confidence
(EEP95) confidence as the black solid line for the aforemen-
tioned experiments. The LOS test (Fig. 5a) shows location
estimates close to the real position. On the contrary, the NLOS
(Fig. 5b) and the shadowing (Fig. 5c) ones exhibit a mismatch
between true and estimated locations. The NLOS test shows
a positive range bias whereas the shadowing one exhibits a
large dispersion of the position estimates. It should be noted
that, in the NLOS test, three clusters appear as a result of
the experiment setup. The APs are separately obscured using
the metallic shield one at a time, thus, each cluster originates
from a particular AP affected by NLOS. On the other hand, the
shadowing test presents a wider position dispersion (without
the distinction of the three separate clusters) compared to
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(a) LOS (b) NLOS (c) Shadowing

(d) LOS (e) NLOS (f) Shadowing

Fig. 7. Decawave UWB ranging statistics: a) LOS, b) NLOS and c) Shadowing histograms for each position, d) LOS, e) NLOS and f) Shadowing real vs
estimated ranges for aggregated data.

AP3

AP4AP2

AP1

Fig. 8. UWB localization in industrial environment at Pirelli Tyre S.p.A.
research plant: tracking area and anchors’ deployment.

the NLOS one, resulting from the presence of walking peo-
ple that generate random propagation conditions (shadowing,
scattering and diffraction) for each tag-AP link. Rather than
completely blocking the UWB signal as the metallic shield
does, the main impact of shadowing is a random fluctuation
of the power of the first signal arrival at the AP, leading to
errors in the detection of the signal peak.

A more detailed analysis of these estimates is provided in
Fig. 6, where the Cumulative Distribution Function (CDF)
of the location error ε of aggregated data is reported for all
three tests. In 95% of the occurrences, the LOS test attains a
positioning error lower than 18 cm, while 28 cm and 33 cm
are achieved in the NLOS and shadowing cases.

The last analysis on the positioning accuracy of Decawave

system is presented in Fig. 7. The upper part of the figure
reports the histogram of the ranging error εr for each po-
sition considered in the experiments, while the bottom part
highlights the relationship between true and estimated ranges
aggregated over all positions. Comparing the results, the LOS
test shows ranging errors that are distributed around zero
with a maximum value of 0.22 m for all positions. On the
other hand, the NLOS and shadowing tests present far more
dispersion resulting in long-tail behaviours. More specifically,
in case of NLOS, the error distribution presents a second
component centered around 0.3 m due to the blockage of
the direct path, while the shadowing one exhibits a decaying
tail that extends up to 0.5 m caused by the rapidly varying
received power. Considering the combined effects caused by
NLOS and shadowing propagation, high accuracy localization
may be difficult to achieve, especially if the impairments
are not compensated properly. This is further exacerbated
when considering highly complex scenarios, such as industrial
environments, as discussed in the next section.

B. Industrial Scenario

In this section, we present the second set of tests carried
out in an industrial site of Pirelli Tyre S.p.A. (see Fig.
8), where Ubisense and Sewio devices are validated. Both
static localization as well as dynamic location tracking are
considered in the experimental tests.

As depicted in Fig. 8, four APs are deployed in the site at
a height of 3.73 m, both for Sewio and Ubisense. The UWB
tags (three for Sewio, five for Ubisense) are attached onto a
cardboard box (see Fig. 3d) and moved across 25 locations at a
height of 1 m. The positions selected for the industrial tests are
reported in Fig. 9, where the spacing between each one of them
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AP1
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AP4

ε @95% = 0.40 m

(a) Ubisense

AP1

AP2

AP3

AP4

ε @95% = 0.40 m

3

(b) Sewio
Fig. 9. UWB localization at Pirelli Tyre S.p.A. research plant - Static tags: a) Ubisense, b) Sewio. Light gray areas indicate walls, machines or cabinets.

Fig. 10. CDF of UWB localization (static tags) in industrial scenario at Pirelli
Tyre S.p.A. research plant for Ubisense and Sewio.

is 1 m. In each location, thirty seconds of measurements are
gathered while the tags are still in their positions. A transition
between two adjacent locations is manually done while the
system is running, therefore, to avoid mobility effects, we
discard the three initial and three final seconds (out of thirty)
for each location. The whole experiment takes 30×25 = 750 s
for completion, 600 of which are considered as valid. The
measured update rates found throughout the test are 7.44 Hz
for Ubisense and 1.48 Hz for Sewio, which corresponds to
a total number of location estimates of 22320 and 2592,
respectively.

The results of the UWB validation process are illustrated in
Fig. 9 for both systems, where the location estimates provided
by the two solutions translated to the cardboard box center
are reported as colored dots, each one referring to a different
tag, and the EEP95 is superposed using the solid black line.
To highlight the position biases, we added a dashed line
that connects the mean location estimate to each respective
true position. The comparison between the two technologies
shows that Ubisense provides a higher accuracy than Sewio
in the considered setting. This was expected as Ubisense uses
both TDoA and AoA for estimating the position (Sewio only
TDoA), it employs Bayesian filtering (as opposed to no filter-
ing), and has a larger bandwidth of 800 MHz (compared to
500 MHz). Nevertheless, a performance degradation for both
systems is experienced in the lowest part of the layout (i.e.,
between AP1 and AP3), where severe propagating conditions
are encountered due to metallic objects that obscure the UWB
tags. Furthermore, this portion of the map is outside the area
delimited by the anchors, that negatively impact the geometric
performance factor.

The analysis on the overall localization performance in
terms of CDF of the positioning error is provided in Fig. 10.
In 95% of the case Ubisense achieves a localization error
ε less then 40 cm, while Sewio attains a larger value of
1.17 m. Results indicate that the optimized combination of
TDoA and AoA, jointly with the employment of Bayesian
filtering techniques, as performed by Ubisense, outperforms
stand-alone TDoA-based systems. Nevertheless, the calibra-
tion process demanded by Ubisense might not be always
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(a) TDoA (b) Azimuth (c) Elevation

(d) TDoA (e) Azimuth (f) Elevation

Fig. 11. Ubisense UWB localization statistics: a) TDoA, b) Azimuth and c) Elevation histograms for each position of the trajectory, d) TDoA, e) Azimuth
and e) Elevation real vs estimated measurements aggregated over all positions.
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(a) Ubisense
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(b) Sewio
Fig. 12. UWB localization at Pirelli Tyre S.p.A. research plant - Mobile tags: a) Ubisense, b) Sewio. Light gray areas indicate walls, machines or cabinets.

feasible in industrial applications. Conversely, Sewio requires
less infrastructure installation and calibration effort.

Similarly to the analysis in Fig. 7 for the laboratory scenario,
here we investigate the accuracy of raw UWB measurements to
assess the impact of the industrial environment on the ranging
performance. We opted to analyze the raw TDoA and AoA

data for Ubisense as these data were not accessible for Sewio.
For TDoA, the measurements are referred to a master anchor
(i.e, `-th AP in Sec. II) that is dynamically selected at each
time step based on the received power so as to guarantee that it
is as much as possible in LOS condition. On the other hand,
AoAs are reported as low-level fields in the logfile. Not all
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AP1

(a) AP1

AP2

(b) AP2

AP3

(c) AP3

AP4

(d) AP4

Fig. 13. LOS/NLOS Coverage Maps: a) AP1, b) AP2, c) AP3, and d) AP4.
Gray areas indicate LOS condition, white areas imply NLOS and black areas
denote walls, machines or cabinets.

anchors were available at each time instant, due to poor signal
quality. Nevertheless, we assured to gather as much raw data
as to guarantee a reliable statistical characterization.

Fig. 11 reports the histogram of the UWB measurement er-
rors for each position of the considered trajectory (top figure),
together with the plots of the measured vs. true location-related
parameters aggregated over all locations (bottom figure). Note
that the TDoA ranging error is computed as the difference
between the ranging error of the master AP and the ranging
error of each other AP. In the TDoA case (Figs. 11a and 11d),
the measurements are distributed around the true TDoA for
most of the positions. However, from position 3 to 9 and from
11 to 17, long tail distributions are detected which indicate that
non-Gaussian behavior is experienced as a result of multipath.
Azimuth and elevation AoAs (Figs. 11b-11e and Figs. 11c-
11f, respectively) present a wide angular dispersion up to
more than 20 deg. In particular, for position 11, 12 and 17,
the azimuth AoA is quite spread, indicating the presence of
metallic scatterers that lower the accuracy in angle estimation.
This behaviour has been detected also for the elevation data,
where large errors are detected from position 8 to 13.

The last analysis is dedicated to a dynamic localization test
where the tags were moved along the “U” walk, crossing
the 25 GT positions of Fig. 9. Fig. 12 shows the trajec-
tory estimated by Ubisense (Fig. 12a) and Sewio (Fig. 12b)
(colored dots correspond to different tags). Again, Ubisense
outperforms Sewio, confirming that the combination of hy-

brid (TDoA and AoA) measurements by tracking filters is
mandatory for high precision positioning in harsh industrial
environments. Nevertheless, NLOS mitigation techniques are
required for dealing with severe propagating conditions, as in
the lowest portion of the scenario, where false localization is
highlighted.

V. ANALYSIS OF THE JMS FILTER PERFORMANCE

This section is dedicated to the validation of the Bayesian
tracking filter presented in Sec. II. The numerical assessment
of the proposed technique is performed using the raw TDoA
and azimuth AoA data extracted from the Ubisense system
by the tests in Sec. IV. The results of the proposed technique
are presented for the TDoA+AoA (azimuth) case and TDoA-
only. The comparison is performed considering two baseline
approaches: the first one compensate the NLOS propagation
by employing a univariate Skew t distribution, as reported in
previous state-of-the-art methods [36], [37], while the second
one does not employ any compensation technique. We first
detail the setting parameters and configurations in Sec. V-A,
then the results of tracking are reported in Sec. V-B.

A. System Parameters and Configuration

The performance of the proposed augmentation method is
evaluated in the same industrial test as in Sec. IV-B. Due
to the way each TDoA is delivered by Ubisense, only 2
out of 4 conditioned probabilities of the model described in
Sec. II-A are experienced. In fact, since the master anchor for
multi-lateration is selected as the one with the most favorable
propagation conditions (i.e., close to LOS), the observed sight
states reduce to LOS/LOS (i.e., s(`)t = 0, s

(k)
t = 0) and

LOS/NLOS (i.e., s(`)t = 0, s
(k)
t = 1). This behavior has

been found analyzing all the available raw data extracted by
Ubisense software. On the other hand, all the available azimuth
AoA are processed and aggregated together to form the overall
dataset. The collected data covers NTF = 25 realizations
of trajectory of 25 positions shown in Fig. 9, with N = 8
TDoA and azimuth AoA measurements collected by each AP
in each position over 1 s, corresponding to approximately 200
measurements. The likelihood of each set of N measurements
is obtained by multiplying the corresponding N marginal
likelihoods.

As far as the sight evolution process is concerned, we rely
on the floor plan of the area to extract the sight condition of
all L APs and build the LOS/NLOS maps shown in Fig. 13.
The coverage maps are computed by performing ray-tracing
from each tag location ut ∈ U (excluded the black areas,
which are walls, machines or cabinets) to the position p` of
each AP. For each tag-AP link `, the sight condition s

(`)
t is

selected to be in LOS (i.e., s(`)t = 0) if the line connecting
the tag position ut and the AP position p` does not intersect
any black point, otherwise s(`)t = 1 (i.e., NLOS). Using this
technique, the sight processes are deterministically assigned
by the geometry layout, relaxing the independence assumption
between positions and sight states. This procedure may not
be fully representative of the actual wireless propagating
conditions since it does not include any dynamic changing
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(a) LOS/LOS TDoA (b) LOS/NLOS TDoA (c) Aggregated TDoA (d) Aggregated Azimuth AoA

Fig. 14. Comparison of observed statistics with respect to fitted data: a) LOS/LOS TDoA, b) LOS/NLOS TDoA, c) Aggregated TDoA d) Aggregated azimuth
AoA. For each histogram is superimposed with the solid red line the fitted distribution: a) Gaussian, b) EMG, c) Skew t, d) Laplace.

of the environment and it does not consider the vertical
axis, leading to possible misclassifications of sight conditions.
Nevertheless, the proposed approach can be extended to 3D
maps when available and periodically re-trained to account for
possible changes.

To calibrate the sight evolution probabilities {p0, p1}, we
simulate a training trajectory of length I = 104 samples in the
layout. The relative frequencies of transition from LOS to LOS
(p0) and from NLOS to LOS (p1) are evaluated by counting
how many transitions occur within the training trajectory for
all APs yielding p0 ≈ p1 ≈ 0.8.

A statistical characterization of UWB measurements is
given in Fig. 14, where the histogram of TDoA and azimuth
AoA errors are shown. For TDoA, the analysis considers both
the separate cases of LOS/LOS and LOS/NLOS conditions, in
Fig. 14a and Fig. 14b, respectively, as well as the aggregated
TDoA in Fig. 14c. For azimuth AoA, instead, the histogram
of aggregated data is illustrated in Fig. 14d. On top of
the histograms in Fig. 14, a red curve of associated fitted
distribution is superimposed. Specifically, we have that the
separate cases of LOS/LOS and LOS/NLOS are modeled as
discussed in Sec. II-B, leading to the Gaussian and EMG
pdfs in (10) and (15), respectively, with fitting parameters
summarized in Table III. Without distinguishing between the
two conditions, we also consider a state-of-the-art model of
the aggregated TDoA that employs a Skew t distribution [36],
[37], i.e., p(ρ(`,k)t |ut) = ST (ρ

(`,k)
t ; d

(`,k)
t +µst, σ

2
st, δst, ν).

In this case, the fitting yields to the following parameters:
µst = −0.421 m, σst = 0.224 m, δst = 0.652 m, ν = 4.
Lastly, the azimuth AoAs follow a Laplace distribution with
diversity parameter bα = 4.13 deg.

We would like to remark that, as an alternative to our ap-
proach, σd can also be chosen according to the tabulated values
reported in experimental studies on UWB channel modeling
such as in [54], [66]–[68]. Typical values range from 1 up to
60 ns and are ruled by the specific environment considered.
The value found fitting the delay distribution is 1.43 ns (i.e.,
0.43/c, where c is the speed of light), which is consistent with
the literature. As a second comment, to cope with the heavy
tail in the histogram in Fig. 14b, we added a constant term
to the EMG pdf, corresponding to 3% of the model’s peak.
Lastly, regarding the azimuth AoA, our fitting lead us to select
bα = 4.13 deg, even if higher values in the range 5 − 27

TABLE III
FITTING PARAMETERS FOR THE PROPOSED LOS/NLOS MODELING.

parameter value parameter value

σLOS 0.169 m σNLOS 0.16 m

σ1 =
√

2σLOS 0.239 m σ2 =
√
σ2
LOS + σ2

NLOS 0.232 m

σd 0.43 m µn 0.328 m

deg can be experienced in indoor environments [56], [59]–
[61]. However, we recall that Ubisense outputs filtered data,
suggesting that highly unreliable or incoherent raw angular
measurements are already discarded by the system.

B. Assessment of Tracking Methods

After having presented the system configuration and de-
tailed the fitting parameters, in this section we evaluate the
performances of the proposed technique against the ones
obtained by two PF-based tracking techniques. The first one
employs the Skew t distribution to account for NLOS effects
[36], [37], while the second does not employ any NLOS
mitigation countermeasures, i.e., it assumes ∆d

(`)
t = 0 m in

(3). In this second case, all TDoAs are Gaussian distributed,
i.e., p(ρ(`,k)t |ut) = N (ρ

(`,k)
t ; d

(`,k)
t + µpf , σ

2
pf ), with fitted

parameters µpf = −0.497 m and σpf = 1.764 m.
As far as the dynamic evolution of the position is concerned,

the same model and statistical parameters presented in Sec.
II-A are used for all filters. The consistency of the PF solution
has been evaluated numerically for different number of parti-
cles NP. We choose NP = 1000 since any increase beyond
this value does not provide any meaningful improvement on
the result. Finally, the same initialization process has been
used for all tracking filters so as to evaluate the localization
performances under the same conditions. To evaluate the
performances of the tracking filters we use the Location Root
Mean Square Error (RMSE) computed over NTF realizations
as RMSEt = (

∑NTF
n=1 ε

2
t/NTF)1/2.

Fig. 15 shows the tracking capabilities of a PF without
NLOS compensation (Fig. 15a), of a PF with Skew t modeling
of TDoA measurements (Fig. 15b), and of the proposed
technique, for both the implementations with only TDoA
measurements (Fig. 15c) and with TDoA+AoA (Fig. 15d).
The true trajectory is reported as a black solid line, while
the estimated locations of each tag are shown as colored dots.
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Fig. 15. Performance comparison of tracking filters localization in the industrial factory: (a) PF without NLOS compensation (b) PF with Skew t (c) Proposed
PF with NLOS compensation (TDoA) (d) Proposed PF with NLOS compensation (TDoA+AoA).
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Fig. 16. CDF of the location error of the tracking filters in the industrial
environment.

The EEP95 is superposed as the black solid line. The averaged
mean over all tags are connected one another with a orange
solid line to highlight the reconstructed trajectory.

Analyzing the outcomes of Fig. 15 we highlight that the
proposed NLOS compensation with and without AoA informa-
tion outperforms the other two baseline approaches of Fig. 15a
and Fig. 15b. In particular, the reconstructed trajectory (orange
line) of Fig. 15c and 15d is closer to the true path (black line).
It can be also noticed that the AoA information is particularly
helpful in the bottom part of the trajectory (between AP1 and
AP3). On the other hand, the orange lines of the Skew t-
based filter and PF without NLOS compensation are subject
to high positions biases resulting in a mismatch between true
and estimated trajectories.

Comparing with the legacy Ubisense performance in Fig. 9a,
the location error of the tracking methods in Fig. 15c and in
Fig. 15d are higher. However, it is important to recall that
Ubisense uses both TDoA and all AoA measurements and
can access built-in motion detector to discriminate station-
ary/mobility conditions, thus adapting the localization algo-
rithm. Conversely, the proposed work aims to demonstrate
the advantage of embedding prior information on the scenario
of propagation (i.e., LOS/NLOS conditions) into the filtering
approach by the JMS framework. The proposed approach has
been also shown to provide higher positioning accuracy when
the azimuth AoA information is properly integrated within
the localization framework. In addition, it could be possible
to exploit also the elevation information to refine the sight
state detection and provide even more precise results. This
further integration is not considered here as this would require
a 3D floorplan of the considered scenario to fully characterize
the sight conditions along the vertical dimension. It is not
trivial nor common to get such additional information as it
requires a 3D mapping of the environment, which also needs
to be constantly updated any time new furniture or assets are
moved. It comes that it is hardly achievable and feasible in an
industrial site with operation activities.

The overall performance gain of the proposed augmentation

Fig. 17. Tracking filters localization results: comparison among PF filters in
terms of location RMSE (top) and sum of sight conditions values for each
location (bottom).

technique with and without the azimuth angles can be appreci-
ated by looking at Fig. 16, where the CDF of location error is
reported by aggregating the outcomes provided by all tags for
all positions. The PF with NLOS compensation that exploits
TDoA and AoA achieves a localization error ε less than 53
cm in 95% of the cases, whereas the compensation approach
that relies only on TDoA measurements attains a slightly larger
value of 67 cm. On the other hand, the two baseline approaches
exhibit a much larger error: the PF with the Skew t obtains
a positioning error less than 1.06 m in 95% of the cases,
while the PF without NLOS compensation a large 2.10 m.
This confirms that the proposed approach is able to reduce
false localization due to NLOS propagation, particularly if the
AoA information is combined with the TDoA.

The upper part of Fig. 17 shows the location RMSE and
the aggregated sight condition values S(t) =

∑L
`=1 s

(`)
t for

each time step (or, equivalently, tag position). Comparing the
results, it can be seen that the the PF without NLOS com-
pensation performs rather poorly for 4 ≤ t ≤ 20, where the
location RMSE reaches values up to 1.4 m. This is expected
since most of the location considered are heavily subjected
to NLOS conditions as confirmed by Fig. 11a where large
TDoA ranging errors are reported. The PF with Skew t better
performs compared to the PF without NLOS compensation
but it is not able to completely compensate NLOS propagation
from 5 ≤ t ≤ 15. In fact, from t = 5 onward many TDoAs are
affected by large errors that are outside the support of the Skew
t distribution and cannot be lowered. As the time t increases,
the location errors accumulates and the PF with Skew t
attains almost the same performance of the PF without NLOS
propagation for 13 ≤ t ≤ 15. On the other hand, the TDoA
and TDoA+AoA filters are able to compensate the NLOS
effects since the location RMSE for 4 ≤ t ≤ 20 is heavily
reduced compared to the other two methods analyzed before.
In these positions, the integration of the AoA information
yields better results compared to the TDoA-only approach,
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making the overall solution more robust to NLOS propagation.
Higher accuracy is reached in the area between AP1 and
AP2 rather than between AP3 and AP4, as expected being
the NLOS contribution more pronounced in the vicinity of
AP1/AP2 compared to the neighborhood of AP3/AP4. In fact,
the overall TDoA distribution of Fig. 11a for 5 ≤ t ≤ 10
shows high error components while for 15 ≤ t ≤ 20 larger
errors are detected more sparingly.

The estimated sight conditions s(`)t of all APs (black dots)
are compared to the ones extracted from the LOS/NLOS
coverage maps in Fig. 18 (black solid lines). Analyzing the
results, only few location points present an incorrect sight
condition (in correspondence of the variation) while the major-
ity of them exhibit correct LOS/NLOS values. These results
confirm that the use of first-order Markov modeling for the
sight conditions is effective and no advanced (but heavier
from a computational point of view) techniques are demanded.
Moreover, the localization precision is not that much affected
by sight estimation errors, thus the proposed method is robust
against non-prefect LOS/NLOS state information.

C. Assessment of TDoA Ranging Error Compensation

To fully characterize the performances of the proposed ap-
proach for NLOS compensation, as a final analysis we provide
a comparison on the estimated TDoA ranges obtained by the
proposed TDoA-only PF with NLOS mitigation with respect
to the raw TDoA provided by the Ubisense system. This
comparison is reported in Fig. 19, where the estimated TDoA
(averaged over the available measurements for each position of
the trajectory) is plotted over time. The comparison considers
the proposed filter with NLOS compensation in the version of
TDoA-only availability (black solid curve), the average TDoA
provided by the Ubisense system output (red solid curve)
and the true TDoA (black dashed line). Besides the average
values, we also indicate with the shaded area the confidence of
the estimate associated to the standard deviation. To ease the
visualization of the results, we manipulated all TDoAs such
that the master anchor is always the first anchor (i.e., AP1).

This allows to visualize all results considering the anchor pairs
AP1-AP2, AP1-AP3, and AP1-AP4. Comparing the results,
the proposed TDoA-only compensation approach better copes
with the NLOS degradation rather than the Ubisense outcomes.
In fact, for most of the positions of the trajectory, the recon-
structed TDoAs of the proposed methods are always close to
the true value, while the TDoAs estimated by Ubisense suffers
from a severe NLOS degradation. This analysis confirms that
the proposed approach is able to compensate for the large
errors caused by severe multipath and NLOS propagation and
improve the the estimation precision of TDoA of commercial
solutions.

VI. CONCLUSIONS

This work addressed the problem of UWB localization in
IIoT applications. A novel Bayesian augmentation technique
has been proposed for NLOS mitigation and validated in a real
industrial environment. An extensive measurement campaign
has been carried out, using commercial UWB devices. After
a first assessment of different technologies (Decawave, Sewio
and Ubisense) in both laboratory and industrial facilities, the
Ubisense system was selected for an in-depth analysis of
NLOS effects in harsh indoor propagation conditions and for
the assessment of the proposed augmentation methods as it
allows the extraction of information related to the physical-
layer. Raw TDoA and AoA UWB data were extracted from
the industrial campaign and used for validating the developed
filter. Experimental results show that it is possible to reduce the
positioning error from approximately 2.10 m down to 67 cm
(on average) in a very complex multipath environment inside a
real factory using only 4 APs overall, with an average 60% of
time in NLOS condition exploiting only TDoA measurements.
If the AoA are also integrated in the proposed method, the
localization error can be further reduced to 52 cm. To better
characterize the performances of the developed approach with
respect to other works, a comparison with a state-of-the-art
technique is presented. Results show that the compensation
approach proposed herein is able to outperform also the state-
of-the-art method, which achieves a positioning error of 1.06
m compared to 67 cm obtained by the TDoA-only PF with
NLOS compensation.

Thus, the developed NLOS mitigation technique is effective
in reducing false localization in harsh industrial environments
and it is able to deliver highly accurate responses that are
appropriate for most IIoT applications to guarantee reliable
and robust operation. Furthermore, the proposed augmenta-
tion system is robust against non-perfect estimation of the
sight conditions experienced at the reference stations. Further
research activity will target a possible development of a
mitigation system capable of learning the NLOS statistics,
starting from a rough information of the sight conditions and
updating the map while tracking the target.

APPENDIX A

In this Appendix, we explain in detail the PF methodology
used in the paper. The estimate of the composite state xt
can be obtained at any time instant t through the recursive
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(a) TDoA 1-2 (b) TDoA 1-3 (c) TDoA 1-4

Fig. 19. TDoA ranging estimates analysis: black solid line indicates the true TDoA over the whole trajectory points, black solid line the estimated TDoA
from the NLOS compensation approach (TDoA-only) and red solid line the raw TDoA estimated by Ubisense.

computation of (7) and (8). At first, the a-priori pdf of equation
(8) can be approximated as the sum of NP independent and
identically distributed (i.i.d.) Dirac’s pulses

{
u
(n)
t , s

(n)
t

}NP

n=1
equally weighted as:

p(ut, st|Ω1:t−1) ≈ 1

NP
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δ
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(n)
t

)
δ
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,

(19)
where the particle subset u

(n)
t can assume any continuous

value within the 2D space, while s
(n)
t is defined over the

discrete set S. Using (7) and (19) the a posteriori probability
is approximated as:
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t )/NP. After normalization, (20)

reduces to:
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t . Then, the MMSE position
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,

where dec(x) is a function that is equal to 1 when x ≥ 1/2
and 0 otherwise.

The last step required when dealing with PF is the re-
sampling strategy. In fact, in order to model the evolution
of each particle from the joint state

(
u
(n)
t , s

(n)
t

)
to the next

one
(
u
(n)
t+1, s

(n)
t+1

)
and evaluate p(xt+1|Ω1:t+1), it is required

to compute the sequential importance resampling [62]. The
current set of particles {u(n)

t , s
(n)
t }

NP
n=1 is resampled, either

deterministically or randomly [62], so as to obtain a new
set {ũ(n)

t , s̃
(n)
t } such that P (ũ

(n)
t = u

(n)
t , s̃

(n)
t = s

(n)
t ) =

w
(n)
t ,∀n. After this step, particles with negligible weights are

discarded in favor of stronger weights which are reallocated
over a new set with equal values w̃(n)

t = N−1P .

REFERENCES

[1] S. Gezici, Zhi Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch,
H. V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios:
a look at positioning aspects for future sensor networks,” IEEE Signal
Processing Magazine, vol. 22, no. 4, pp. 70–84, Jul. 2005.

[2] M. Z. Win and R. A. Scholtz, “Characterization of ultra-wide bandwidth
wireless indoor channels: a communication-theoretic view,” IEEE Jour-
nal on Selected Areas in Communications, vol. 20, no. 9, pp. 1613–1627,
Dec. 2002.

[3] ——, “Impulse radio: how it works,” IEEE Communications Letters,
vol. 2, no. 2, pp. 36–38, Feb. 1998.

[4] Y. Gu, A. Lo, and I. Niemegeers, “A survey of indoor positioning
systems for wireless personal networks,” IEEE Communications Surveys
Tutorials, vol. 11, no. 1, pp. 13–32, Mar. 2009.

[5] A. Alarifi, A. Al-Salman, M. Alsaleh, A. Alnafessah, S. Alhadhrami,
M. Al-Ammar, and H. Al-Khalifa, “Ultra wideband indoor positioning
technologies: Analysis and recent advances,” Sensors, vol. 16, pp. 1–36,
May 2016.

[6] M. Z. Win and R. A. Scholtz, “On the energy capture of ultrawide band-
width signals in dense multipath environments,” IEEE Communications
Letters, vol. 2, no. 9, pp. 245–247, Sep. 1998.

[7] ——, “On the robustness of ultra-wide bandwidth signals in dense
multipath environments,” IEEE Communications Letters, vol. 2, no. 2,
pp. 51–53, Feb. 1998.

[8] Apple, “Apple - iPhone 11,” https://www.apple.com/iphone-11.
[9] J. Wang, A. K. Raja, and Z. Pang, “Prototyping and experimental

comparison of IR-UWB based high precision localization technologies,”
in 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing
and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and
2015 IEEE 15th Intl Conf on Scalable Computing and Communications
and Its Associated Workshops (UIC-ATC-ScalCom), Aug. 2015, pp.
1187–1192.

[10] A. Albaidhani, A. Morell, and J. L. Vicario, “Ranging in UWB using
commercial radio modules: Experimental validation and NLOS miti-
gation,” in 2016 International Conference on Indoor Positioning and
Indoor Navigation, Oct. 2016, pp. 1–7.

[11] A. R. Jimnez and F. Seco, “Comparing Decawave and Bespoon UWB
location systems: indoor/outdoor performance analysis,” in 2016 Inter-
national Conference on Indoor Positioning and Indoor Navigation, Oct.
2016, pp. 1–8.

[12] A. R. Jimnez Ruiz and F. Seco Granja, “Comparing Ubisense, BeSpoon,
and DecaWave UWB location systems: Indoor performance analysis,”
IEEE Transactions on Instrumentation and Measurement, vol. 66, no. 8,
pp. 2106–2117, Aug. 2017.

[13] B. Silva and G. P. Hancke, “IR-UWB-based non-line-of-sight identifi-
cation in harsh environments: Principles and challenges,” IEEE Trans-
actions on Industrial Informatics, vol. 12, no. 3, pp. 1188–1195, Jun.
2016.

[14] R. Simedroni, E. Puschita, T. Palade, P. Dolea, C. Codau, R. Buta, and
A. Pastrav, “Indoor positioning using Decawave MDEK1001,” in 2020
International Workshop on Antenna Technology, May 2020, pp. 1–4.

[15] E. Puschita, R. Simedroni, T. Palade, C. Codau, S. Vos, V. Ratiu,
and O. Ratiu, “Performance evaluation of the UWB-based CDS indoor

https://www.apple.com/iphone-11


17

positioning solution,” in 2020 International Workshop on Antenna Tech-
nology (iWAT), Feb. 2020, pp. 1–4.

[16] S. He and X. Dong, “High-accuracy localization platform using asyn-
chronous time difference of arrival technology,” IEEE Transactions on
Instrumentation and Measurement, vol. 66, no. 7, pp. 1728–1742, Jul.
2017.

[17] Y. Zhou, C. L. Law, Y. L. Guan, and F. Chin, “Indoor elliptical
localization based on asynchronous UWB range measurement,” IEEE
Transactions on Instrumentation and Measurement, vol. 60, no. 1, pp.
248–257, Jan. 2011.

[18] A. Cazzorla, G. De Angelis, A. Moschitta, M. Dionigi, F. Alimenti, and
P. Carbone, “A 5.6-GHz UWB position measurement system,” IEEE
Transactions on Instrumentation and Measurement, vol. 62, no. 3, pp.
675–683, Mar. 2013.

[19] P. Krape and M. Munih, “Anchor calibration for real-time-measurement
localization systems,” IEEE Transactions on Instrumentation and Mea-
surement, vol. 69, no. 12, pp. 9907–9917, Dec. 2020.

[20] J. Sidorenko, V. Schatz, N. Scherer-Negenborn, M. Arens, and
U. Hugentobler, “Error corrections for ultrawideband ranging,” IEEE
Transactions on Instrumentation and Measurement, vol. 69, no. 11, pp.
9037–9047, Nov. 2020.

[21] K. Zhao, M. Zhu, B. Xiao, X. Yang, C. Gong, and J. Wu, “Joint RFID
and UWB technologies in intelligent warehousing management system,”
IEEE Internet of Things Journal, pp. 1–1, May 2020.

[22] D. Dardari, A. Conti, U. Ferner, A. Giorgetti, and M. Z. Win, “Ranging
with ultrawide bandwidth signals in multipath environments,” Proceed-
ings of the IEEE, vol. 97, no. 2, pp. 404–426, Feb. 2009.

[23] J. Khodjaev, Y. Park, and A. Saeed Malik, “Survey of NLOS
identification and error mitigation problems in UWB-based positioning
algorithms for dense environments,” Annals of telecommunications -
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