EVEREST: A design environment for extreme-scale
big data analytics on heterogeneous platforms

Christian Pilatof, Stanislav Bohm/l, Fabien Brocheton¥, Jeronimo Castrillonf, Riccardo Cevasco'T,
Vojtech Cima”, Radim Cmar , Dionysios Diamantopoulos*, Fabrizio Ferrandif, Jan Martinovic”,
Gianluca Palermo’, Michele Paolino**, Antonio Parodi¥, Lorenzo Pittalugaﬁ, Daniel Raho**,
Francesco Regazzonit, Katerina Slaninovall, Christoph Hagleitner*

*IBM Research Europe, Switzerland, t Politecnico di Milano, Italy, YUniversita della Svizzera italiana, Switzerland,
8Technische Universitit Dresden, Germany, YCentro Internazionale di Monitoraggio Ambientale, Italy,
I 1T4Innovations, VSB — Technical University of Ostrava, Czech Republic, **Virtual Open System, France,
J”LDuferco Energia, Italy, ij:NUMTECH, France, XSygic, Slovakia

Abstract—High-Performance Big Data Analytics (HPDA) appli-
cations are characterized by huge volumes of distributed and het-
erogeneous data that require efficient computation for knowledge
extraction and decision making. Designers are moving towards a
tight integration of computing systems combining HPC, Cloud,
and IoT solutions with artificial intelligence (AI). Matching the
application and data requirements with the characteristics of the
underlying hardware is a key element to improve the predictions
thanks to high performance and better use of resources.

We present EVEREST, a novel H2020 project started on Octo-
ber 1st, 2020 that aims at developing a holistic environment for the
co-design of HPDA applications on heterogeneous, distributed, and
secure platforms. EVEREST focuses on programmability issues
through a data-driven design approach, the use of hardware-
accelerated Al, and an efficient runtime monitoring with virtu-
alization support. In the different stages, EVEREST combines
state-of-the-art programming models, emerging communication
standards, and novel domain-specific extensions. We describe the
EVEREST approach and the use cases that drive our research.

I. INTRODUCTION

Thanks to the pervasive use of technology, we collect vol-
umes of data that are doubling every two years. Big Data
analytics aims at extracting hidden knowledge from the data
and take valuable actions, often with the support of artificial
intelligence (Al) [1]. For example, precision medicine can
create custom medical practices after analyzing patients’ data
that are continuously collected. Data sources are inherently
distributed and heterogeneous, while accurate predictions and
decisions often lead to demanding processing requirements.
High-Performance Big Data Analytics (HPDA) applications
expose a high parallelism and can benefit from hardware
acceleration, but the limited bandwidth and the excessive
power consumption for data movements put high pressure on
communication and storage. HPDA applications thus require
(1) efficient hardware acceleration for data processing [2], [3],
(2) communication cost reduction, by moving the computation
closer to the data sources [4], [5], and (3) data protection
from unauthorized accesses during all application phases [6].
To accelerate data processing, HPDA systems will combine
heterogeneous nodes [7], with general-purpose processors and
FPGA devices, across different technologies (e.g., HPC, cloud
computing, and edge devices). Optimizing communication and
storage requires to match the characteristics of the target system

(e.g., distribution of the nodes and communication infrastruc-
ture, size of on-chip and off-chip memories, and number of
memory channels) and the applications (e.g., data distribution
and access patterns). Al methods and security threats may
impose additional application and architectural constraints, es-
pecially when the data and the computation are geographically
distributed. Since a one-fits-all solution is impossible, future
HPDA systems will be data-driven with application-specific
optimizations to match the application requirements, the nature
and locality of the data, and the hardware characteristics [4].
Programming such systems necessitates the use of complex
data management techniques and domain-specific annotations,
which are not well supported in current design frameworks.
This leaves most of the effort to the application developers.
Solutions to these programmability issues demand methods to
represent functional and non-functional properties, drive the
hardware-software compilation, and dynamically manage the
underlying distributed hardware in order to obtain fast, scalable,
and secure HPDA systems.

The EU project EVEREST (dEsign enVironmEnt foR
Extreme-Scale big data analyTics on heterogeneous platforms
- http://www.everest-h2020.eu) proposes a design environment
for HPDA applications on distributed and heterogeneous sys-
tems. The EVEREST target system seamlessly combines nodes
with IBM POWERY9 CPUs and coherent FPGA accelerators
(for cloud computing), and disaggregated FPGA devices [8]
(for edge computing). The EVEREST design environment com-
plements state-of-the-art programming models (e.g., OpenCL,
SYCL, OpenMP) with domain-specific extensions to (1) pro-
vide extra characteristics of the algorithms and data, (2) exploit
the available hardware resources with alternative code/hardware
variants, (3) promote the use of high-level synthesis (HLS) [9]
for generating Al accelerators, and (4) improve the dynamic
control of the distributed execution [10], [11].

II. EVEREST APPROACH

Our EVEREST System Development Kit (SDK) is a design
environment to ease the description, optimization and execution
of Big Data applications with heterogeneous data sources onto
FPGA-based architectures, operating at design and run time.

http://www.everest-h2020.eu

At design time, we focus on (1) the application description
along with non-functional requirements, (2) the generation
of several hardware and software variants, and (3) the cus-
tomization of the distributed memory architecture. We aim at
developing a data-driven hardware/software compilation frame-
work that takes as input an application description using a
combination of workflow libraries, Al libraries and frameworks,
and domain-specific extensions. The compilation engine ex-
plores code variants and uses HLS for generating hardware
accelerators. We represent the resulting application with main-
stream parallel programming models (like SYCL). Flexible
memory managers will enable to co-optimize computation,
communication, and storage, to move the computation closer to
the data, and to implement hardware-assisted data protection.

At runtime, we build a virtualized environment to dynami-
cally select the code variant to execute for each task, based on
the workload and data conditions. The virtualized environment
will abstract hardware characteristics of the EVEREST nodes
(based on different CPU architectures e.g., x86 on the cloud
and ARM/RISC-V on the edge) to present an integrated execu-
tion environment for the applications. This combined solution
allows designers to match the data requests with the underlying
hardware to optimize the data transfers, exploit the spatial
parallelism with the hardware accelerators, and react to changes
in the workload conditions.

III. DATA-DRIVEN COMPILATION FRAMEWORK
A. Application specification and definition of requirements

The EVEREST design framework receives as input the
application description (i.e., a workflow pipeline where each
node can be specified in C/C++ or with proper Al libraries).
Industry-grade applications often encompass end-to-end data
processing workflows composed of a large number of intercon-
nected computational tasks of various granularity. EVEREST
will feature a scalable platform based on HyperLoom [10] for
describing and executing complex workflows in large scale
distributed environments with various virtualized heterogeneous
resources. The envisioned platform aims to improve resource
utilization and reduces the overall workflow processing time.

Application experts are offered embedded domain-specific
languages (DSLs) to express the semantics and security re-
quirements of computational tasks to enable high-level code
optimizations. DSL extensions have been successfully demon-
strated in many domains, such as computational fluid dy-
namics [12], hybrid particle-mesh simulations [13], tensor ex-
pression optimizations [14]-[16], and dataflow languages [17].
EVEREST proposes a data-centric approach for security, deal-
ing with confidentiality, authentication and integrity of the
data handled by the system with hardware-assisted data
protection applied to both edge devices and data center nodes.
EVEREST will propose a comprehensive library of optimized
accelerators for memory and near memory encryption, fitting
the area, energy and performance constraints of the platforms.
We will include information flow tracking, monitoring, and
protection against malicious uses, including side-channel and
buffer-overflow attacks [18].

A®B®C
/.—».—»‘4»‘ | auto A = Matrix(m, n),
/ [B = Matrix(m, n)

'Application high-level dat’aflowf C = Matrix(m, n,';

| auto u = Tensor<3>
(n, n, n);
auto v = (A*B*C) (u);

Simulation
kernel

ML-Kernel

Implemented with high-level
abstractions, e.g., in MLIR

Multi-variant and optimized IR with
SW/HW components (memory managers)

Standard Bin/bit-
compilers stream

Fig. 1. Overview of the data-driven compilation flow.

Unified IR
framework

Middle- S Hwinfo J
el SW-optimization Opt-IR
C-code

Meta-data/Info: HW ﬁl
HW

interfaces, variants info
Implementation (SYCL, C, HDL,
meta-data, EVEREST APIs)

EVEREST aims at developing a unified MLIR representation
for the transparent support of several high-level ML frameworks
(e.g., TensorFlow or PyTorch) and high-level optimizers (e.g.,
XLA, Glow, TVM) [19].

B. Generation of software and hardware variants

DSLs will be used to concisely express performance-critical
functionality and annotate data characteristics and require-
ments. Tensors and particles are two examples of EVEREST
data-centric programming abstractions that will enable opti-
mization of data communications and generation of custom
memory subsystems. DSLs for expression languages will en-
able highly-optimized kernel generation either in software or
hardware to enlarge the optimization space [14], while allowing
more control for provably safe execution [15].

For a higher-level coordination of the workflow kernels,
EVEREST will look at functional abstractions to implicitly
express the application dataflow [17], [20] and its integration
on HyperLoom [10]. The compiler front-end unifies the or-
chestration and the kernel specifications into a single MLIR
as shown in Fig. 1. We will extend the LLVM compilation
framework [21] with dedicated MLIR dialects [22] for domain-
specific kernels. The tool chain will support standard exchange
formats used in machine learning (e.g., NNEF or ONNX).

The middle-end of the compilation flow will rely on high-
level architecture models [23, Chapter 6] [24] and simula-
tors [25], [26] to explore the design space and create multiple
hardware and software variants. These variants are perfor-
mance/energy trade-offs that are exposed to the runtime system.
For instance, a software-only implementation could explore
layouts of particles as array-of-structures or structure-of-arrays,
or could tile complex tensor expressions to fit the memory
hierarchy while allowing different threading implementations
for the runtime. Hardware variants could implement a chain
of tensor operations directly on the FPGA logic before writing
back to main memory. Hardware/software partitioning will be
driven by annotations and the two parts will be co-optimized,
including hardware estimations for code-snippets (cf. Fig. 1).

EVEREST will leverage FPGA resources to create hardware
accelerators with high-level synthesis, especially for data-

intensive and Al tasks. In EVEREST, we use Bambu, an open-
source HLS tool based on both GCC and LLVM [27]. Bambu
will optimize execution and memory bandwidth of accelerators.
Data distribution introduces additional challenges in terms of
variable read/write latency and energy based on the location of
the data. Since the memory behavior of an application ranges
from statically predictable patterns [3] to irregular memory
accesses [2], we will use a fully automated and transparent
memory management at both compile time and runtime
with a combination of polyhedral-based transformations [28],
multi-port memories [29] and dedicated micro-architectures
to schedule the memory accesses [5], interleave the memory
requests and hide the communication latency with the dis-
tributed memories [30]. We will generate and optimize such
accelerators based on the information extracted from the DSL
annotations. EVEREST will extend high-level synthesis for
the automatic integration of security features, like application-
specific dynamic information flow tracking [18], [31]. We will
also develop and use a library of cryptographic functions, to
ensure data integrity, confidentiality, and authentication. Such
cryptographic routines will match application requirements and
dynamic behaviors. Dedicated hardware monitors will detect
anomalies with respect to the expected data behaviors (timing
patterns, access patterns, typical sizes and ranges), activating
proper dynamic adaptation in the form of “auto-protection”.

Given the set of variants, the backend will generate software
implementation relying on state-of-the-art programming models
(e.g. SYCL) to enable seamless integration in the tooling
infrastructure. Meta-information about the variants will be
provided to the runtime system to support dynamic selection.
Finally, standard toolchains will be used to generate binaries
and bitstreams for the target devices.

IV. VIRTUALIZATION-BASED RUNTIME OPTIMIZATION

EVEREST features a distributed runtime support to man-
age and coordinate the computation across the different system
nodes. Tasks are defined in a way that allows runtime migration
of both data and computations. FPGA accelerated applications
and the runtime framework will be designed with a virtualized
environment to abstract the hardware resources. This approach
improves efficiency and security. Also, we will be able to
seamlessly move the computation between edge nodes and also
between edge and cloud parts. The runtime layer optimizes the
use of heterogeneous and distributed resources by parallel ap-
plication instances running in different virtual machines (VMs).
The EVEREST virtualized runtime environment automatically
manage the code to run and configure the hardware based on
the workload conditions and the data distribution. virtualiza-
tion techniques will abstract hardware characteristics of the
heterogeneous target nodes to present an integrated execution
environment for the applications. As described in Section V,
the nodes may feature different CPUs (i.e., x86 in the cloud and
ARM/RISC-V in the edge [32]) and accelerators (e.g., GPUs
and FPGAs [33]). Fig. 2 shows an overview of the EVEREST
virtualized runtime environment. Its implementation includes
both hypervisor and guest OS extensions to manage, optimize,

Guest
EVERES'!' Dashboard Application
(to submit workloads) G uost runtime
* Auto Tuning and adaptation
Multi-Node Guest monitoring
Multi-node server Worker & profiing tables
[Virtualization Extensions
T
! /
1
Host runtime Host
Edge/cloud ulti-Node [Host monitoring KVM
& profil
nodes Launcher profiling tables st
[Yirtualization Extensions]
¥
1o FPGA MEM
VFPGA Manager
W GPU
C L=l | | FAPT Remoti
=l

Fig. 2. Virtualized runtime environment overview.

and monitor the access to hardware from guest applications.
These extensions provide:

1) Data protection layer. The system monitors the execution
to identify malicious attacks (see Section III-A and react
by using the security mechanisms added by the compiler.

2) Dynamic hardware-software adaptation strategy. We
propose an intelligent policy to select the code variant or
hardware configuration to execute, among the ones pre-
generated at compile time, based on the system status.

3) Virtualization support and hypervisor extensions. Hard-
ware configurable parameters, including accelerator APIs,
are exposed directly to the applications inside the VMs,
requiring also guest OS enhancements (e.g., drivers).

The EVEREST virtualization environment will interact with
the underlying hardware to select the variants to execute.
EVEREST provides dynamic application auto-tuning capa-
bilities based on mARGOt [11], a dynamic decision-maker that
performs an automatic selection of the variant to execute for
each critical kernel identified at compile time. For example,
a variant that makes heavy access to unavailable hardware
resources can be replaced by a variant that fits better with the
system status. This selection is based on (1) the dynamic char-
acteristics of the target system (e.g., available resources) [34],
(2) the optimization goal set for execution (e.g., performance
or energy consumption) [35], [36], (3) the additional dynamic
requirements (e.g., security monitoring, data features [37]), and
(4) the available techniques for data management (e.g., data
representations and distributed allocation). The selection will
generalize the concept of affinity between the code variants and
the available system configurations and requirements. Hardware
monitors will collect the information to make the selection.

Guest programs will configure the underlying hardware or
make specific requests based on workload conditions, environ-
ment changes and the availability of specific hardware resources
(e.g., communication channels, remote notes). API remoting
techniques will improve data exchanges. The distributed run-
time also leverages the configuration of pre-defined hardware
resources for deep learning, like reconfigurable Al networks.

V. EVEREST TARGET SYSTEM

In EVEREST, we envision a hierarchy of processing en-
vironments, as shown in Fig. 3. The outermost layer (End-

End-Point Devices 1 EDGE 1 CORE CLOUD L)

1 1 1
x100ms TRADITIONAL APPROACH E E E
1 1
Edge Nodes Centralized

Homogenous Nodes
Public cloud

o |

Hybrid cloud
¥ "EVEREST

Private cloud

“" Homogenous &
.’ Heterogenous Nodes

Loosely-coupled network-attached
accelerators on FPGAs

ﬂ ‘Fpa%:’:vm/ﬁ/ ‘

#PaA o / FBGaNoce // FoaaNods
=3 - -

Tightly-coupled bus-attached
accelerators on FPGAs

rrrrrrrr

Fig. 3. EVEREST ecosystem overview.

Point Devices) receives the stream of data and performs initial
processing under strict latency constraints and with the limited
performance available in end-point devices. These requirements
dictate very fast data pre-processing, inference and perhaps
only limited training. Depending on the application, these edge
nodes can be complemented by an inner-edge environment that
does more extensive processing, training and data analysis. The
inner-edge environment features more powerful hardware and
less stringent requirements for real-time processing. The results
of this layer are then forwarded to the core cloud services
(public, private or hybrid), where more extensive analysis and
model building is performed on heterogeneous hardware.
Today’s edge nodes are typically scaled versions of cloud
servers, which primarily combine CPUs with tightly-coupled
co-processors (e.g. GPUs). However, CPUs and GPUs are
optimized towards batch processing of in-memory data and
can hardly provide deterministic performance for the processing
of streaming data coming from the I/O channels of end-point
devices. Future edge servers call for a new heterogeneous com-
puting node tailored to the processing of streaming data at low
power consumption and high energy efficiency. To support this
vision, the EVEREST project targets distributed architectures
composed of industry established computing nodes, with CPUs
and GPUs, as well as experimental heterogeneous nodes with
FPGAs. Each experimental node may feature one or more
FPGA devices for hardware acceleration and one or more phys-
ical memories (either local or external to the FPGA), as shown
in Fig. 4. Such systems will run Linux as Operating System
(OS) and a hypervisor to manage the hardware resources. Note
that the EVEREST approach is not limited to these architec-
tures. In fact, specifying the workflow pipelines at a higher
level of abstraction, within the specifications of EVEREST
SDK and virtualization technology, as discussed previously,
will enable the porting of the applications to architectures
with heterogeneous GPU-based nodes and end-user embedded
devices. We aim at developing a small multi-node demon-
strator based on the technology and the components available
during the project’s timeline. To develop the EVEREST SDK
for heterogeneous systems, we focus on two state-of-the-art
FPGA-based research platforms: a CPU-managed system that

PA——

EVEREST Heterogeneous Node
POWER9 CPU with bus-attached FPGA

EVEREST Node
Network-attached FPGA

FPGA device POWER9 FPGA device

EVEREST o - -Im
B, Joencar] [omue e

FPGA, ...

D] [oman]

Up to 64x per 2U node

(cloudFPGA)

Fig. 4. EVEREST featured system as a combination of heterogeneous nodes
with OpenCAPI cache coherent and TCP/UDP protocols.

up to 4x per 2U node

(Wistron Mihawk)

Gb/5 X2 /Byal-port Mellanox
ConnectX-5 100G

{}TC P/UDP

DC Network

TCPIUDP TCPIUDP

rely on tightly-coupled bus-attached FPGAs [38] and an FPGA-
disaggregated system that relies on loosely-coupled network-
attached FPGAs [8]. The final EVEREST demonstrator will
feature both nodes to examine how the different architectural
configurations can accommodate big data workloads at the edge
and on the cloud.

In EVEREST, the POWEROY node with tightly-coupled bus-
attached FPGAs forms the basic platform to research these
challenges. In addition, the system is augmented with loosely-
coupled network attached FPGAs to increase the parallel pro-
cessing capability from multiple I/Os streams. The latter plat-
form will be also evaluated as an edge node, where processing
closer to the multiple I/O streams can offer great performance
due to the low-latency and high-energy efficiency of the FP-
GAs. Both bus-attached FPGAs and network-attached FPGAs
are envisioned as a scale-up opportunity of the POWER9 node,
while multiple such nodes will be extended across the data-
center, as a scale-out configuration.

The demonstrator based on loosely-coupled network-
attached FPGAs will rely on the cloudFPGA platform [8].
CloudFPGA is a research platform that disaggregates the
FPGA accelerator from the server, turning it into a stand-alone
computing resource. Such network-attached FPGAs can be de-
ployed at large scale and independently of the number of CPU
servers in the data-center (DC). The network attachment allows
them to seamlessly connect with each other as well as with
one or more CPUs. The resulting disaggregated heterogeneous
computing infrastructure is capable to dynamically adapt to
the scale of any workload. Meanwhile, large-scale applications
ranging from business analytics to scientific simulations and Al
have started to scale out using distributed frameworks such as
Hadoop, Spark, HyperLoom, and Tensorflow. The cloudFPGA
platform enables a user to acquire, distribute, configure and
operate stand-alone network-attached FPGAs at large scale
in DC infrastructures. The use of a shell-role architecture
combined with partial reconfiguration provides for isolation of
the system management functions from the user logic within the
network-attached FPGA. This approach protects the integrity
of the DC network by creating a separation between privileged
and non-privileged user logic functions.

VI. EVEREST USE CASES

We drive our research with three industrial applications: (1)
a weather analysis-based prediction model for the energy
trading market, (2) an application for air-quality monitoring

of industrial sites, and (3) a traffic modeling framework for
intelligent transportation in smart cities. The applications are
representatives of future HPDA applications: they have large
and heterogeneous data sets (Volume and Variety), including
historical and real-time data (Velocity) with important security
concerns during communication and storage (Veracity). They
are also aligned with the United Nations Sustainable Develop-
ment Goals (no. 7, 9, 11 and 13).

A. Weather-based predictions for renewable energy production

In 2017, for the first time, the European Union generated
more electricity from wind, solar and biomass than from
coal according to new analysis from Sandbag and Agora
Energiewende. The European energy market shows a strong
interplay between the different energy sources: for example, a
drought period can affect the hydroelectric production, demand-
ing gas generation to counterbalance. Also, the prediction of
energy production from renewable sources (in particular wind)
is uncertain. Renewable energy production forecasting systems
currently rely on an ensemble of meteorological predictions
provided by global circulation models with grid spacing be-
tween 15 and 25 km and hourly temporal resolution. This
ensemble predicts variables such as 2m temperature, near-
surface wind speed, incoming solar radiation, and rainfall depth,
that become input of a subsequent deep learning model trying
to characterize the complex input/output relationship of the
given power plant under consideration. Even using ensemble
approaches, large uncertainties still exist when operating fore-
casting systems based on meteorological variables predictions
at tenths of km’s, especially when dealing with sudden local
changes in cloud cover and wind intensity.

In EVEREST, we aim at reducing the cost of imbalance
in case of severe meteorological ramp-up/down events. The
application will forecast the energy produced by a wind farm
in the next day with a 24-hour prediction on a hourly basis.
Thanks to transparent hardware acceleration, we will be able
to increase the resolution of weather forecast ensembles to
better predict high-localized meteorological variations at hourly
scale [39], [40]. Thanks to AI tools, we will combine the
resulting weather models with historical data.

B. Air-quality monitoring in industrial sites

Every year new publications show the impact of air quality
on public health. The latest figures from the World Health
Organization (WHO) show that air pollution kills an estimated
seven million people worldwide every year. WHO data shows
also that 9 out of 10 people breathe air containing high levels
of pollutants, and that the economic impact of this pollution
on health is estimated to 5.7K billions of dollars per year.
Industry contributes to this impact and must adapt on the
one hand to increasing regulatory constraints and on the other
hand to citizen pressure, in particular due to the development
of low-cost air-quality sensors providing massive amounts of
(low quality) spatial information. To support manufacturers,
NUMTECH offers Plum’air, a service that allows an industrial
site to collect real-time information about the monitoring and
control of the pollution. In forecast mode, it can be used as a

decision tool for an industrial site to adapt its activity in order
to reduce its impact, especially in the transition phase before
the implementation of heavy investments in terms of emission
treatment or reduction systems. In this mode, Plum’air aims
at forecasting the environmental impacts due to atmospheric
releases of an industrial site at local scale (within 10 km from
emission sources).

In EVEREST, we forecast the environmental impacts of
chemical pollutants combining high-resolution weather ensem-
bles with local data. Together with hardware acceleration, we
will be able to obtain accurate information about the environ-
ment so that the industrial site can promptly delay production
activities that may have an impact (e.g., increase of atmospheric
releases) or activate emission reduction treatments.

C. Traffic modeling for intelligent transportation

Traffic modelling and prediction is a critical component
for Smart Cities to build their intelligent traffic management
system (ITS). Our approach for designing such a component
is by creating a traffic modelling ecosystem comprised of
tightly coupled processing elements such as reading big sensory
data real-time and of a long-history records; traffic simulator
which boosts the raw sensory data dataset into rich training
sequences; traffic prediction model which learns from the
training data set; route calculation as a service exploiting traffic
prediction model. As the main data input into the system we
will use provisioned origin-destination matrix (O/D) and a
large historical data set of floating car data (FCD). FCD is
represented by geo position and the speed of vehicle sensed
approximately each 5 seconds from navigation devices, that is
from millions of devices every day over the period of several
years. However, our model will operate on selected cities (like
Vienna) counting thousands of vehicles daily. Traffic simulator
simulates individual clients driving around the smart city by
combining both macro and microscopic approaches, optimizing
the traffic flow [37], [41], [42]. The simulator calculates traffic
model in near-real time while it requires access to historical
records and a streaming long data chunks for ML predictions.
It updates the traffic model for various conditions as well as it
can generate training sequences for traffic predictions.

In EVEREST, we will improve the key processing compo-
nents of the traffic modeling eco-system. The use of efficient
Al methods will allow the edge nodes to collect and process
more data, while addressing all privacy and security concerns.
Also in this case, the EVEREST SDK will allow non-expert
designers to easily express the application requirements for the
compilation framework and the runtime system.

D. Why using the EVEREST SDK?

The applications will demonstrate how the EVEREST SDK
can unleash novel market opportunities for the respective com-
panies. The EVEREST SDK will provide following benefits:

o Quality of predictions: the possibility of integrating real-
time and historical data by means of AI will allow more
accurate predictions. This aspect is crucial for all applica-
tions as their commercial value lies on precise and timely
knowledge extracted from the data.

o Performance and energy efficiency: the efficient use
of heterogeneous resources and, in particular, hardware
acceleration will reduce the time and the energy spent for
obtaining the results with significant competitive advantage.
For example, intra-day renewable energy prediction will
open new market opportunities. Similarly, industrial sites
require fast and efficient systems for air-quality monitoring.

« Dynamic adaptation: due to the distributed and heteroge-
neous nature of the data (e.g., traffic data), the combination
of code and hardware variants, dynamic autotuning, and
virtualization will enable a transparent use of the hardware
resources even in case of changes to the configurations.

o Design productivity: non-expert programmers will use
domain-specific extensions to express the semantics of the
application and the security requirements of the data. The
EVEREST SDK will automatically carry out the related
optimizations, broadening the customers that can be reached
with complex heterogeneous platforms.

o Programmability support: the EVEREST SDK will hide
the platform details to the application, enabling the porting
across target platforms with different characteristics.

VII. CONCLUDING REMARKS

EVEREST provides a data-driven design framework for
extreme-scale Big Data applications on distributed FPGA-
based architectures. The EVEREST SDK combines multiple
domain-specific languages, compiler optimizations, and HLS to
generate multiple code variants that are dynamically selected
by matching characteristics of the application and the available
hardware. Our major goals are not only to accelerate the
application execution, but also to ease the design of complex
Al-enabled applications by non-expert programmers, hiding
most of the details of the underlaying hardware system.

ACKNOWLEDGEMENTS

This project has received funding from the EU Horizon 2020
Programme under grant agreement No 957269.

REFERENCES

[1]1 S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for mapping
convolutional neural networks on FPGAs: A survey and future directions,”
ACM Comput. Surv., vol. 51, no. 3, Jun. 2018.

[2] V. G. Castellana et al., “High level synthesis of RDF queries for graph
analytics,” in Proc. of ICCAD, 2015, p. 323-330.

[3] R.Zhao et al., “Accelerating binarized convolutional neural networks with
software-programmable FPGAs,” in Proc. of FPGA, 2017, p. 15-24.

[4] K. Kambatla et al.,, “Trends in big data analytics,” Journal of Parallel
and Distributed Computing, vol. 74, no. 7, pp. 2561 — 2573, 2014.

[S] M. Minutoli et al., “Efficient synthesis of graph methods: A dynamically
scheduled architecture,” in Proc. of ICCAD, 2016.

[6] C. Jin, V. Gohil, R. Karri, and J. Rajendran, “Security of cloud fpgas: A
survey,” arXiv preprint arXiv: 2005.04867, 2020.

[7] P. Mantovani et al., “Agile SoC development with Open ESP,” in Proc.
of ICCAD, 2020, pp. 1-9.

[8] F. Abel et al., “An fpga platform for hyperscalers,” in Proc. of HOTI,
2017, pp. 29-32.

[9] R. Nane et al., “A survey and evaluation of FPGA high-level synthesis
tools,” IEEE Trans. CAD Integ. Cir. Sys., vol. 35, no. 10, Oct. 2016.

[10] V. Cima et al., “Hyperloom: A platform for defining and executing
scientific pipelines in distributed environments,” in Proc. of PARMA-

DITAM, 2018, pp. 1-6.
[11] D. Gadioli, E. Vitali, G. Palermo, and C. Silvano, “margot: A dynamic

autotuning framework for self-aware approximate computing,” [EEE
Transactions on Computers, vol. 68, no. 5, pp. 713-728, 2019.

[12]
[13]
[14]
[15]
[16]
(171

(18]

[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]

[29]

[30]

(31]

(32]

(33]

(34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

N. A. Rink et al., “CFDlang: High-level code generation for high-order
methods in fluid dynamics,” in Proc. of RWDSL, 2018, pp. 1-10.

S. Karol et al., “A domain-specific language and editor for parallel particle
methods,” ACM Trans. on Mathematical Software, vol. 44, no. 3, 2018.
A. Susungi et al., “Meta-programming for cross-domain tensor optimiza-
tions,” in Proc. of GPCE, 2018, pp. 79-92.

N. A. Rink and J. Castrillon, “TelL: a type-safe imperative Tensor
Intermediate Language,” in Proc. of ARRAY, 2019, pp. 57-68.

T. Chen et al., “TVM: An automated end-to-end optimizing compiler for
deep learning,” in Proc. of OSDI, 2018, pp. 578-594.

S. Ertel, A. Goens, J. Adam, and J. Castrillon, “Compiling for concise
code and efficient 1/0,” in Proc. of CC, 2018, pp. 104-115.

C. Pilato, K. Wu, S. Garg, R. Karri, and F. Regazzoni, “TaintHLS: High-
level synthesis for dynamic information flow tracking,” IEEE Trans. CAD
Integ. Cir. Sys., vol. 38, no. 5, pp. 798-808, 2019.

V. Sze et al., “Efficient processing of deep neural networks: A tutorial
and survey,” Proceedings of the IEEE, vol. 105, no. 12, 2017.

S. Ertel et al., “STCLang: State thread composition as a foundation for
monadic dataflow parallelism,” in Proc. of Haskell Symposium, 2019.
C. Lattner et al., “Making Context-Sensitive Points-to Analysis with Heap
Cloning Practical For The Real World,” in Proc. of PLDI, 2007.

C. Lattner et al., “MLIR: A compiler infrastructure for the end of Moore’s
law,” arXiv preprint arXiv:2002.11054, 2020.

J. Castrillon and R. Leupers, Programming Heterogeneous MPSoCs: Tool
Flows to Close the Software Productivity Gap. Springer, 2014.

C/DA - Design Automation, “IEEE 2804-2019 - IEEE standard for
software-hardware interface for multi-many-core,” Jan. 2020.
Lowe-Power et al., “The gem5 simulator: Version 20.0+,” arXiv preprint
arXiv: 2007.03152, 2020.

C. Menard et al., “System simulation with gem5 and systemc: The
keystone for full interoperability,” in Proc. of SAMOS, 2017, pp. 62—-69.
C. Pilato and F. Ferrandi, “Bambu: A modular framework for the high
level synthesis of memory-intensive applications,” in Proc. of FPL, 2013.
Y. Wang, P. Li, and J. Cong, “Theory and algorithm for generalized
memory partitioning in high-level synthesis,” in Proc. of FPGA, 2014.
C. Pilato et al., “System-level optimization of accelerator local memory
for heterogeneous systems-on-chip,” IEEE Trans. CAD Integ. Cir. Sys.,
vol. 36, no. 3, p. 435448, Mar. 2017.

C. Pilato et al., “A runtime adaptive controller for supporting hardware
components with variable latency,” in Proc. of AHS, 2011, pp. 153-160.
C. Pilato et al., “Securing hardware accelerators: A new challenge for
high-level synthesis,” IEEE Embedded Systems Letters, vol. 10, no. 3,
pp. 77-80, 2018.

T. Sechkova, E. Barberis, and M. Paolino, “Cloud & edge trusted
virtualized infrastructure manager (vim)-security and trust in openstack,”
in Proc. of WCNCW, 2019, pp. 1-6.

S. Chiotakis, S. Pinneterre, and M. Paolino, “vfpgamanager: A hardware-
software framework for optimal fpga resources exploitation in network
function virtualization,” in Proc. of EuCNC, June 2019, pp. 47-51.

E. Paone et al., “Evaluating orthogonality between application auto-tuning
and run-time resource management for adaptive OpenCL applications,”
in Proc. of ASAP, 2014, pp. 161-168.

D. Gadioli et al., “SOCRATES — a seamless online compiler and system
runtime autotuning framework for energy-aware applications,” in Proc. of
DATE, 2018, pp. 1143-1146.

R. Khasanov and J. Castrillon, “Energy-efficient runtime resource man-
agement for adaptable multi-application mapping,” in Proc. of DATE,
Mar. 2020, pp. 909-914.

E. Vitali et al., “An efficient monte carlo-based probabilistic time-
dependent routing calculation targeting a server-side car navigation sys-
tem,” IEEE Transactions on Emerging Topics in Computing, 2019.

D. Diamantopoulos and C. Hagleitner, “Helmgemm: Managing gpus and
fpgas for transprecision gemm workloads in containerized environments,”
in Proc. of ASAP), vol. 2160-052X, 2019, pp. 71-74.

M. Lagasio et al., “Predictive capability of a high-resolution hydrom-
eteorological forecasting framework coupling wrf cycling 3dvar and
continuum,” Journal of Hydrometeorology, vol. 20, no. 7, 2019.

M. Lagasio et al., “A synergistic use of a high-resolution numerical
weather prediction model and high-resolution earth observation products
to improve precipitation forecast,” Remote Sensing, vol. 11, no. 20, 2019.
M. Golasowski et al., “Alternative paths reordering using probabilistic
time-dependent routing,” Advances in Intelligent Systems and Computing,
vol. 1036, pp. 235-246, 2020.

V. Ptosek et al., “Real time traffic simulator for self-adaptive navigation
system validation,” in Proc. of EMSS, 2018, pp. 274-283.

	Introduction
	EVEREST Approach
	Data-driven Compilation Framework
	Application specification and definition of requirements
	Generation of software and hardware variants

	Virtualization-based Runtime Optimization
	EVEREST Target System
	EVEREST Use Cases
	Weather-based predictions for renewable energy production
	Air-quality monitoring in industrial sites
	Traffic modeling for intelligent transportation
	Why using the EVEREST SDK?

	Concluding Remarks
	References

