
On the instability of embeddings for recommender systems:
the case of Matrix Factorization

Giovanni Gabbolini∗
Insight Centre for Data Analytics
University College Cork, Ireland

giovanni.gabbolini@insight-centre.org

Edoardo D’Amico∗
Insight Centre for Data Analytics
University College Dublin, Ireland

edoardo.d’amico@insight-centre.org

Cesare Bernardis
Politecnico di Milano, Italy
cesare.bernardis@polimi.it

Paolo Cremonesi
Politecnico di Milano, Italy
paolo.cremonesi@polimi.it

ABSTRACT

Most state-of-the-art top-N collaborative recommender systems
work by learning embeddings to jointly represent users and items.
Learned embeddings are considered to be effective to solve a variety
of tasks. Among others, providing and explaining recommenda-
tions. In this paper we question the reliability of the embeddings
learned by Matrix Factorization (MF). We empirically demonstrate
that, by simply changing the initial values assigned to the latent
factors, the same MF method generates very different embeddings
of items and users, and we highlight that this effect is stronger
for less popular items. To overcome these drawbacks, we present a
generalization of MF, called Nearest Neighbors Matrix Factorization
(NNMF). The new method propagates the information about items
and users to their neighbors, speeding up the training procedure
and extending the amount of information that supports recommen-
dations and representations. We describe the NNMF variants of
three common MF approaches, and with extensive experiments
on five different datasets we show that they strongly mitigate the
instability issues of the original MF versions and they improve the
accuracy of recommendations on the long-tail.
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1 INTRODUCTION

Themain goal of a wide variety of top-N collaborative recommender
systems is to learn embeddings to jointly represent users and items
[9, 14, 35]. Embeddings are derived in such a way that similar items
(or similar users) have similar embeddings [20]. Embeddings can be
learnt with either Matrix Factorization (MF) or deep learning (DL)
techniques [14, 19]. For both families of techniques, the learning
procedure requires to sample the interaction space during the train-
ing (e.g., stochastic-gradient-descent [28], skip-grams with negative
sampling [22]).

Embedding-based models are characterized by various sources
of randomness in their training, such as the initial values of the
embeddings and the sampled interactions. Different random seeds
or random generators might lead to different results in terms of
embeddings learnt and, consequently, items recommended. The
magnitude of these differences determines whether an algorithm
can be considered stable or not. If these differences are too large (i.e,
if the algorithm is not stable), we incur in severe issues that could
mine the reliability and the credibility of a recommender. First,
we cannot consider its recommendations to be reliable anymore,
as the same algorithm executed on the same dataset could make
totally different predictions for the same user-item pair [21]. Sec-
ond, the instability of users’ and items’ representations may have
strong implications in the explainability of the recommendations.
Interpreting the predictions of embedding models is a difficult task,
because there is not a clear and direct relationship between the
representations learnt by the model and the attributes or the in-
teractions of users and items. Most solutions provide explanations
identifying similarities between the embeddings obtained by the
model [1, 33], but if the representations of users and items in the
embedding space are not stable, the quality of such explanations
might be compromised. Third, our definition of stability is strictly
connected to that of repeatability as defined, for instance, in the SI-
GIR Initiative to implement the ACM Artifact Review and Badging
guidelines1. According to this definition, an unstable algorithm is
not repeatable.

Alongside these examples, the works that leverage the embed-
dings of a model to various extents are not concerned with the
potential consequences of this instability. Indeed, our notion of
1acm.org/publications/policies/artifact-review-and-badging-current
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stability of a recommender system is different from what has been
commonly addressed in the literature. Some works focus on the
stability of the model when you introduce noisy or malicious per-
turbations in the dataset [23, 30], or when it evolves naturally with
more interactions [3, 4]. In this work we focus on the stability of
a recommender system when the same model is trained on the
same dataset in exactly the same experimental conditions but with
a different random sequence (e.g., due to a different random seed).

The variance in both the internal representation of the model
(embeddings) and the output of the model (estimated relevance)
can be reduced if enough samples are collected for each user and
item to be modeled. Unfortunately, most datasets exhibit strong
popularity biases [5]. Because of these biases, unpopular items
(i.e., items with very few interactions) and short-profile users (i.e.,
users with very few interactions) will not collect enough samples
during their training to smooth out the noise introduced by the
randomness. Embeddings learnt on a small sample size will be
biased and unstable [32].

Different techniques exist to improve the generalization capa-
bilities of a model by leveraging or controlling the randomness of
the training procedure. Bagging [32] is an ensemble method that
trains different models from boostrap replica of the same dataset
and average their predictions. However, it requires to retrain the
model several times and is designed to improve the generalization
capabilities and not to stabilize the model. Other techniques, such
as Stochastic Weight Averaging (SWA), produce an ensemble by
averaging the weights of the same model at different epochs of
the training process [16, 21]. In case of linear models, such as with
Matrix Factorization, this is equivalent to averaging the embed-
ding vectors during the gradient descent optimization. All these
techniques are model agnostic and do not take into account the
neighborhood properties of user and item embeddings: similar items
(users) have similar embeddings.

In this paper, we focus on the stability of a widely employed
family of embedding-based models, that is Matrix Factorization, as
a function of random-seed. We are especially interested in investi-
gating if MF based models under different initializations of latent
factors generated by distinct random seeds, produce similar predic-
tions and similar embeddings. We propose a new framework called
Nearest Neighbors Matrix Factorization (NNMF), a generalization
of classic Matrix Factorization that merges MF with nearest neigh-
bors (NN) in order to alleviate the effects brought by the scarcity
of interactions for unpopular items. While in classic MF the la-
tent representations of items or users are treated independently,
in NNMF we force each embedding to be a linear combination of
the embeddings of a set of their most similar neighbors. With this
approach we map the neighborhood relationships among items or
users from the original interaction space to the new latent space.
This mapping has the effect to propagate the updates applied to an
item or a user also to their respective neighbors.

We provide an extensive set of experiments, testing NNMF with
three MF approaches (BPR-MF, Funk-MF and P-MF) over five dif-
ferent datasets. The results show that:

• all the three MF methods suffer from the instability problem:
on average, recommended items change by more than 50%;

• the three NNMF variants greatly improve stability: on aver-
age, recommended items change by less than 25%;

• the NNMF variants have better accuracy on the long tail
with respect to the original MF methods, as well as other
baselines, in almost all measures and datasets;

• the improved stability and the information propagation of
NNMF allow to reach convergence in a fraction of the num-
ber of epochs required by MF.

The rest of the paper is organized as follows. In Section 2 we list a
set of works related to the argumentwe treat in this paper. In Section
3 we introduce the issues of classic Matrix Factorization techniques
and we present our new framework called Nearest Neighbor Matrix
Factorization. We also describe some practical implementations
over three well known MF algorithms. In Section 4 we discuss the
results obtained by an extensive set of experiments over a variety
of different datasets, testing the new models under different aspects.
Finally, in Section 5, we provide some concluding remarks.

2 RELATEDWORK

There exist different definitions of stability of a recommender sys-
tem in the literature, and different ways to improve each of these
definitions. Most works define the stability of a recommender sys-
tem as the "consistent agreement of predictions" made to the same
user by the same algorithm, when new incoming interactions are
added to the system in complete agreement to system’s prior predic-
tions [3]. For instance, the work in [4] adopts bagging and iterative
smoothing in conjunction with different traditional recommenda-
tion algorithms to improve their consistency. Other works define
stability as the ability of the recommender system to provide consis-
tent recommendations whenmalicious perturbations are performed
to the dataset [3]. The work in [23] suggests hybrid collaborative
and content-based filtering as the best solution to mitigate the ef-
fects of attacks on the consistency of recommendations. Finally,
other works [29] relate the stability, or confidence, of a recom-
mender system with the quality of a dataset, either at system level
(the magic barrier described in [29]) or at user-level [6]. Our notion
of stability – the consistency of both recommendations and latent
representations of users and items when the same model is trained
on exactly the same dataset with a different random sequence – is
different from the definitions used in the literature.

There are also several works that try to control (or leverage) the
randomness intrinsic in machine learning algorithms in order to
improve the generalization capabilities of a model. Bagging is the
most widely adopted black-box method used to leverage random-
ness in the input data in order improve the classification accuracy
of a model [32]. Bagging builds an ensemble of models by (i) run-
ning the same training algorithm on different boostrap replica of
the same dataset and (ii) by aggregating their predictions. Training
multiple model for prediction averaging, as with bagging, is com-
putationally expensive. Therefore, other works train a single model
and save the model parameters (snapshots) along the optimization
path. The predictions of the snapshot models are later combined
to produce the final prediction [15]. Differently from bagging and
snapshots, that build ensambles in the model space, other works
build ensembles in the weights space. For instance, the works in
[21] and [16] use two variants of the same technique, Stochastic
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Weight Averaging (SWA), to compute a running average of the
model weights during the last epochs of the training process.

Note also that even though the idea to merge MF and NN is not
new [18, 25], this is the first work, to the best of our knowledge,
that addresses this particular stability issue and proposes a generic
framework for MF that alleviates its drawbacks.

3 MODELS

In the following Sections, we denote withU and I the sets of users
and items and with |U| and |I | their cardinalities. Lower case
letters 𝑢, 𝑣 will be used to refer to users, while 𝑖, 𝑗, 𝑘 will refer to
items. The user rating matrix (URM) is indicated by the uppercase
bold letter R and each cell 𝑟𝑢𝑖 contains the value of the preference,
either explicit or implicit, if expressed, 0 otherwise. Lower case,
bold letters indicate vectors in column format, unless differently
specified. In particular, ru indicates the user profile, intended as
the 𝑢-th row of matrix R. The set of (𝑢, 𝑖) couples for which 𝑟𝑢𝑖 is
known is denoted with ^.

In its basic form, MF consists in representing users and items in a
latent factor space of dimension 𝑓 . In particular, users and items are
represented respectively in matrices P ∈ R |U |×𝑓 and Q ∈ R |I |×𝑓 .
A row pu of P and qi ofQ handle, respectively, the representation of
a user and an item on the same latent factor space. The dot product

𝑟𝑢𝑖 = pu·qTi (1)

measures how much user 𝑢 and item 𝑖 are aligned in the new la-
tent space and therefore an estimate of the rating 𝑟𝑢𝑖 is provided.
Consequently, the user-rating matrix can be estimated as:

R = PQT (2)

3.1 Matrix Factorization drawbacks

Over the years, researchers proposed various MF algorithms, vary-
ing howmatrices P andQ are learned [11, 26, 31] in order to improve
the quality of recommendations under different aspects. Most of
them learn the parameters of the model optimizing an objective
function through stochastic gradient descent, iterating over the
available data. The training phases of such algorithms share a com-
mon schema, which is partially altered from case to case. Firstly
the two latent factor matrices P and Q are initialized with random
values, then an iterative learning procedure begins. With each it-
eration, one or more interactions are selected among the available
ones, and the objective function is computed alongside its respec-
tive gradient. Finally, the latent factors of the sampled items and
users are updated accordingly.

The interactions are strongly biased towards popular items and
long profiles. As such, the latent representations of users and items
are updated based on this biased distribution: factors belonging to
popular items (users) are updated far more often than niche ones.
This means that the random initialization of the latent represen-
tations values for unpopular items and short-profile users has a
strong impact on their final representations at convergence. We
refer to this issue as instability of representations.

This problem directly affects also the recommendation lists gen-
erated by the algorithms: if the representation of a user is unstable,
also the closest items in the latent space are unstable, leading to
the generation of different recommendation lists for the same user,

Table 1: Stability of Top-10 recommendation lists gener-

ated by three MF techniques expressed with Jaccard index.

Higher values indicate a better stability. Datasets names ab-

breviations are reported in Section 4.4.

Algorithm LFM M1M BCR PIN CUL

BPR-MF 0.70 0.78 0.28 0.50 0.49
Funk-MF 0.72 0.60 0.05 0.28 0.31
P-MF 0.62 0.60 0.23 0.39 0.37

based on different random initial conditions. We refer to this issue
as instability of recommendations. As an example, in Table 1 we show
the stability of the top-10 recommendations for three common MF
techniques, expressed with the Jaccard index, that indicates how
much the generated lists overlap. The details of the experimental
setup are described in Section 4. We compare the recommendations
provided by 10 instances of the same model, all trained on the same
data and with the same configuration, changing only the random
seed, which, in turn, affects the initial values of the latent factors.
The results in Table 1 show that, according to the Jaccard index, the
recommendation lists overlap by less than 50% for three datasets
out of five. For these datasets, more than 50% of the recommended
items change by changing the initial random seed, i.e. by simply
altering the initial values of the latent factors. For the BookCrossing
dataset the instability is even more dramatic: lists overlap by less
than 30%. More details about the experimental procedure and a
wider range of experiments are described in Section 4.

3.2 Nearest Neighbors Matrix Factorization

The objective of MF is to learn users and items representations,
also called embeddings, in a new latent space where users are
mapped close to items they have expressed positive preference
for. MF algorithms perform this task treating users and items as
independent entities, without explicitly taking into account exist-
ing relationships among users and among items. However, these
meaningful relationships should be reproduced also in the new
latent space. We hence propose a new framework called Nearest
Neighbors Matrix Factorization (NNMF), which is able to let Matrix
Factorization algorithms leverage knowledge about users and items
relationships, under the form of similarities, during the algorithm
learning procedure. Given the two latent factor matrices P and Q
defined in Section 3, we define the new neighborhood-aware latent
representations for users P∗ and items Q∗

P∗ = SUP Q∗ = SIQ

where SU and SI are a user similarity matrix and an item similarity
matrix, respectively, the first with size |U| × |U| and the second
with size |I |×|I|. Each element 𝑠𝑥𝑦 stores the value of the similarity
between entity 𝑥 and 𝑦, being them either users or items (i.e. 𝑥,𝑦 ∈
U or 𝑥,𝑦 ∈ I). We require 𝑠𝑥𝑥 to be equal to 1 for any 𝑥 . Notice that
if both similarity matrices SU and SI are identity matrices, NNMF
collapses to classic MF. It follows that the new NNMF framework
is a generalization of MF.
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An important characteristic of the new technique can be high-
lighted by exploding the neighborhood-aware representations

p∗u =
∑︁
𝑣∈U

𝑠𝑈𝑢𝑣pv = pu +
∑︁

𝑣∈U\{𝑢 }
𝑠𝑈𝑢𝑣pv (3)

q∗i =
∑︁
𝑗 ∈I

𝑠𝐼𝑖 𝑗qj = qi +
∑︁

𝑗 ∈I\{𝑖 }
𝑠𝐼𝑖 𝑗qj (4)

We can clearly distinguish the contributions of the independent
factors pu and qi from the contributions of the neighborhoods em-
beddings. The magnitude of the contribution of each neighbor is
defined by the similarity with the user or the item we are consider-
ing: the more similar they are, the stronger the contribution will
be. Finally, we can modify (2), used to estimate the preferences and
provide recommendations, with the new formulation of the latent
representations, rewriting it as:

R = P∗Q∗T = SUPQTSI
T

(5)

𝑟𝑢𝑖 = p∗u·q
∗T
i =

( ∑︁
𝑣∈𝑈

𝑠𝑈𝑢𝑣pv

)
·

(∑︁
𝑗 ∈𝐼

𝑠𝐼𝑖 𝑗qj

)
(6)

In our implementation, the similarity matrices SU and SI are con-
stant matrices that can be pre-computed by using any traditional
nearest-neighbor collaborative-filtering approach. As such, NNMF
can be easily applied to almost any MF algorithm.

Note that with the proposed formulation, P and Q do not di-
rectly contain users and items embeddings. They contain, instead,
vectors that form a generating set, not necessarily a basis, for the
vector space where users and items representations are projected.
Embeddings for users and items are now contained in P∗ and Q∗,
respectively. Another important aspect to notice is how an esti-
mated rating 𝑟𝑢𝑖 is now dependent on multiple users and items and
it is not restricted to 𝑢 and 𝑖 anymore.

There are two main advantages with NNMF over traditional MF.
The first advantage is that it allows to have a larger amount of in-
formation supporting the latent representations of items and users,
a particularly important aspect for users and items that have scarce
data available, leading to a higher stability of recommendations and
representations. The second advantage is that the updates made to
the embeddings during the learning procedure are not restricted
to the user and the item associated to the sampled interaction, but
are also propagated to the representations of users and items in the
neighborhoods of 𝑢 and 𝑖 , resulting in a faster convergence of the
model.

4 EXPERIMENTS

4.1 Similarity

In the NNMF algorithm, relationships among users and items are
modeled in the form of similarity matrices SU and SI. Even though
we did not make any assumption on how these matrices are ob-
tained, for the experimental part of this paper we assume that the
similarity values are calculated using the shrinked cosine similarity
function:

𝑠𝑢𝑣 =
ru · rv

| |ru | | · | |rv | | + ℎ𝑈
𝑠𝑖 𝑗 =

ri · rj
| |ri | | · | |rj | | + ℎ𝐼

(7)

where ru and rv are user profiles, ri and rj are item profiles and
ℎ𝑈 and ℎ𝐼 are the shrink terms. Moreover, for every item and user

we kept only a small number of the nearest neighbors, since we
noticed that this approach led to the best performance.

Note that the choice of the cosine has two main advantages. The
first is that it is simple and fast to compute. The second is that this
way, the NNMF model has the same complexity of the original MF
ones and also the same number of parameters to learn.

4.2 Instances

We experimented NNMF with three well known MF algorithms:
Funk-MF [11], BPR-MF [26] and P-MF [31].

• The NNMF loss function for Funk-MF is∑︁
(𝑢,𝑖)

(
𝑟𝑢𝑖 −

(∑︁
𝑣

𝑠𝑢𝑣pv

)
·

(∑︁
𝑗

𝑠𝑖 𝑗qj

))
+ _𝑝

∑︁
𝑣

| |pv | |2 + _𝑞
∑︁
𝑗

| |qj | |2

where _𝑝 and _𝑞 control the regularization.
• The maximum posterior estimator for the NNMF version of
BPR-MF is ∑︁

(𝑢,𝑖, 𝑗)
ln𝜎 (𝑥𝑢𝑖 𝑗 (Θ)) + _Θ ∥Θ∥2

where _Θ are model specific regularization parameters and
𝜎 (·) is the logistic function. The difference to the original
MF version is in how 𝑥𝑢𝑖 𝑗 (Θ) is calculated, that for NNMF is

𝑥𝑢𝑖 𝑗 (Θ) =
(∑︁

𝑣

𝑠𝑢𝑣pv

)
·

(∑︁
𝑘

𝑠𝑖𝑘qk

)
−
(∑︁

𝑣

𝑠𝑢𝑣pv

)
·

(∑︁
𝑘

𝑠 𝑗𝑘qk

)
• The loss of the NNMF version of P-MF is∑︁

𝑢,𝑖

(
𝑟𝑢𝑖 −𝜎

(∑︁
𝑣

𝑠𝑢𝑣pv·
∑︁
𝑘

𝑠𝑖𝑘qk

))2
+
_𝑝

2

∑︁
𝑢

| |pu | |2+
_𝑞

2

∑︁
𝑖

| |qi | |2

(8)
where _𝑝 and _𝑞 are the regularization parameters.

In the experiments we forced all the NNMF models to use at
least 2 neighbors for users or items, in order to ensure that a dif-
ference exists between the MF and the NNMF instances of the
same approach2. All the algorithms have been trained using an
early stopping technique based on the accuracy performance on
the validation set. We also performed a Bayesian optimization on
a validation set to find the best parameters for every approach we
tested. The source code used to perform the experiments is publicly
available3.

4.3 Baselines

We compare the stability of the NNMF algorithms with the stability
of the corresponding standardMF algorithm.Moreover, we compare
accuracy with some additional collaborative filtering baselines:

ItemKNN, UserKNN Traditional item and user-based near-
est neighbors approaches with cosine similarity. [27]

SLIM Linear regressionmodel for top-n recommendation tasks
with Bayesian Personalized Ranking as optimization func-
tion. [24]

PureSVD Basic Matrix Factorization model based on SVD
decomposition [9]. Notice that contrarily to the other MF

2If the number of neighbors for items and users is 1, NNMF is equivalent to MF
3https://github.com/damicoedoardo/NNMF
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Table 2: Statistics of the evaluation datasets

Dataset Users Items Interactions Density

LFM 1859 2823 42798 0.81%
M1M 6038 3307 501114 2.51%
BCR 13975 33925 314499 0.06%
PIN 55186 9637 877796 0.16%
CUL 5536 15429 119919 0.14%

methods we consider in this paper, it has an exact mathe-
matical solution that can not include the similarity matrices
introduced by NNMF.

All baselines have been tuned on a validation set by using a
Bayesian optimizer.

4.4 Datasets

We carry out experiments employing a number of research datasets:
LastFM (LFM) Implicit interactions gathered from the music

website Last.fm. In particular, user listened artist relations
expressed as listening counts. [7]

Movielens1M (M1M) Explicit interactions gathered from the
website MovieLens. In particular, user rated movie relations.
[13]

BookCrossing (BCR) Explicit interactions gathered from the
online book club BookCrossing. In particular, user rated book
relations. [36]

Pinterest (PIN) Implicit interactions gathered from the social
network Pinterest. In particular, user pin-to-own-board image
relations. [12]

CiteULike (CUL) Implicit interactions gathered from the on-
line scientific community CiteULike. In particular, user saved-
to-own-library paper relations. [34]

We employ datasets with densities of interactions that range from
0.04% to 2.51%, as we want to take into account the effect of a
varying density of the datasets on both the accuracy and stability
of the models. The statistical details of the datasets are described
in Table 2.

The datasets used for the experiments have been preprocessed
in two steps. First, we brought all the interactions to either zero or
one by means of thresholding, since BPR requires binary preference
values. Among the implicit datasets, only LFM needs thresholding:
we use threshold value equal to one, hence we convert every in-
teraction to one if the user has listened at least once to an artist.
In explicit datasets we use threshold value equal to six for one to
ten ratings and equal to three for one to five ratings. Second we
applied a filtering procedure keeping only users and items with at
least five interactions, in order to remove entities with a too scarce
amount of information.

Each dataset has been randomly partitioned performing a stan-
dard holdout procedure in three sets: train, validation and test
accounting for 60, 20 and 20 percent of the available interactions.

4.5 Stability of representations

Assessing the stability of representations requires to use a tech-
nique which is invariant to transformations on the vector space,

Table 3: Stability of representations @10 expressed as Jac-

card index. Underline indicates the most stable algorithm.

Bold indicates which is more stable between MF and NNMF.

Algorithm

LFM M1M BCR PIN CUL

Item User Item User Item User Item User Item User

BPR-MF 0.73 0.67 0.70 0.70 0.47 0.32 0.45 0.30 0.57 0.58
BPR-NNMF 0.82 0.87 0.93 0.91 0.55 0.57 0.66 0.51 0.69 0.69

Funk-MF 0.66 0.61 0.36 0.33 0.17 0.13 0.34 0.19 0.48 0.48
Funk-NNMF 0.81 0.83 0.95 0.92 0.42 0.25 0.68 0.58 0.64 0.61

P-MF 0.62 0.56 0.55 0.47 0.38 0.26 0.32 0.19 0.60 0.40
P-NNMF 0.76 0.78 0.81 0.68 0.57 0.62 0.63 0.46 0.75 0.71

such as permutation or rotation of coordinates. The representation
of an item, or user, is stable if, in every new latent space, it is close
to the same items, or users. So we want to assess if the relation-
ships among items and among users are maintained in the different
embedding spaces and we can check this condition by ensuring
that the neighborhoods formed in the new spaces are composed
by the same set of users or items. Note that the cross-entity rela-
tionships between users and items are checked with the stability of
recommendations experiment in the next section.

We compare MF and NNMF in a pairwise manner considering
the differences in the stability of representations. Every algorithm
tested is executed ten times, changing the latent factor initialization,
an effect obtained simply using different seeds for the random num-
ber generator used to assign the initial values. The order in which
the training data samples are explored during the different runs of
the algorithms, instead, is ensured to be constant. We consider the
latent factors representations learned and we create a list of the
closest items to every item and users to every user, by means of a
cosine similarity on the latent factor space. We compute these lists
of 𝐾 nearest neighbors for the first of the ten models, both for MF
and NNMF approaches. Then, we measure the degree of similarity
of the 𝐾 nearest neighbors of the other nine models against the first
considering the Jaccard index, a common statistic used to asses the
similarity between sets. Higher similarity of the nearest neighbors
in the latent space across different runs suggests a higher similarity
of the latent factor representations. We performed the experiments
using both 𝐾 = 10 and 𝐾 = 100 obtaining the same results, so, for
brevity, in Table 3 we report only the results with 𝐾 = 10.

The most evident trend is that we have a large improvement in
the stability of the recommendations when applying the newNNMF
method with respect to original MF algorithm in every configu-
ration. NNMF stability is over 50% in almost all the experiments,
and well above 80% in two out of five datasets. MF approaches,
on the contrary, struggle to reach 50% of stability for both users
and items in three datasets out of five. Analyzing the results, we
observe higher stability for denser datasets, while it drops when
the density of interactions is really low. Among the MF algorithms,
it is interesting to notice that the BPR-MF approach (and its NNMF
variant) have a better stability than the other methods on almost
all the experiments.

As second step of this experiment, we alsowant to understand if a
correlation between the popularity of an item and its stability exists,
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(a) BPR-MF vs BPR-NNMF (b) Funk-MF vs Funk-NNMF
(c) P-MF vs P-NNMF

Figure 1: Stability of items representations for popularity ranges on the LFM dataset expressed as Jaccard @10. Every point

represents the average stability value of the items in a bin. A bin contains all the items that belong to a range of popularity.

so we analyze the items’ stabilities grouped by their popularity. We
divide the items in 6 bins, depending on their popularity, using
1, 0.66, 0.4, 0.3, 0.2, 0.1 and 0 as thresholds. The first bin contains
all the most popular items that account for the 1 − 0.66 = 34% of
the interactions in the dataset, i.e. the short-head4. The second bin
contains all the most popular items, excluding those in the first bin,
that account for the 0.66− 0.4 = 26% of interactions. And so on. For
each bin, we average the stability of the items that belong to it.

For brevity, in Figure 1 we show the results of the experiment
performed only on the LFM dataset, but we obtained very similar
results on all the datasets. As expected, the stability of NNMF mod-
els is globally higher than the MF counterparts. However, the plots
show another clear trend: the representations of popular items are
muchmore stable than unpopular ones. This behavior is not surpris-
ing, since higher popularity determines a higher number of updates
and, consequently, a more detailed representation supported by a
higher amount of information. Instead, niche items representations
are subject of few updates during the learning process, resulting
in more fuzzy representations even at model convergence, where
the impact of the initialization values used is still strong. It is also
evident that MF is subject to higher drops of stability, compared to
NNMF, when passing from popular to niche items, widening the
difference between them. The proposed analysis proves that the rec-
ommendations made byMFmodels are noisy and strongly impacted
the random initialization of the latent factors, since the available
information about the real user’s taste is often poor and marginally
exploited. NNMF models, instead, are overall more stable, and the
stability is high also when considering non-popular items. This
has an impact also on the stability of recommendations and on
the overall accuracy of the models, as we show in the following
Sections.

4.6 Stability of recommendations

As second experiment, we compare MF and NNMF in order to
assess the differences in the stability of recommendations. The ex-
perimental procedure is similar to the one described in last Section:
every algorithm tested is executed ten times, changing the latent
factor initialization. But in this case we consider the top-10 recom-
mendations provided by the ten models, both for MF and NNMF

4The short-head is defined as complementary to the long-tail, which is the set of less
popular items that account for the 66% of the interactions

Table 4: Stability of recommendations @10 expressed as Jac-

card index. Underline indicates the most stable algorithm.

Bold indicates which is more stable between MF and NNMF.

Algorithm LFM M1M BCR PIN CUL

BPR-MF 0.70 0.78 0.28 0.50 0.49
BPR-NNMF 0.86 0.95 0.52 0.69 0.65

Funk-MF 0.72 0.60 0.05 0.28 0.31
Funk-NNMF 0.87 0.95 0.18 0.75 0.51

P-MF 0.62 0.60 0.23 0.39 0.37
P-NNMF 0.79 0.76 0.61 0.78 0.66

approaches, measuring the degree of similarity of the recommen-
dations of the first model against the other nine, resorting again to
the Jaccard index. Table 4 shows compatible results in the stabil-
ity of recommendations with respect to what we observed for the
representations in Table 3. The recommendation lists generated by
NNMF models are always widely more stable than their MF coun-
terparts. The MF implementations fail to reach the 50% threshold
for the Jaccard index in many configurations, with a negative spike
of 5% of Funk-MF on BCR. The NNMF versions largely mitigate
this issue, as they are always able to outperform the respective
MF implementations with a wide margin. As for the representa-
tions, also in this case the difference between dense datasets and
sparse ones is evident, with a higher stability in the first scenario.
Moreover, notice how the stability in both experiments tends to be
higher for small datasets. This is not only related to the density of
the dataset, since the number of items and users influence it, but
having fewer items to take into account also reduces the different
available options in the recommendation phase. As final observa-
tion, among the MF algorithms note that the BPR-MF approach is
steadily better than the others on all the datasets, while among the
NNMF this trend is not evident anymore.

4.7 Accuracy

Recommending non-popular items adds novelty and serendipity to
the users, but it is usually a more difficult task compared to the rec-
ommendation of popular ones [9]. In this experiment we measure
the accuracy of MF and NNMF in suggesting non-trivial items with
a standard long-tail accuracy experiment, i.e. we compute the top-n
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Table 5: Long-tail accuracy. Bold indicates the best betweenMF andNNMF. Underline indicates the best performing algorithm.

Algorithm

LFM M1M BCR PIN CUL

MAP Recall MAP Recall MAP Recall MAP Recall MAP Recall

@5 @10 @5 @10 @5 @10 @5 @10 @5 @10 @5 @10 @5 @10 @5 @10 @5 @10 @5 @10

ItemKNNCF 0.028 0.030 0.040 0.073 0.005 0.005 0.006 0.013 0.014 0.014 0.018 0.027 0.013 0.016 0.023 0.044 0.047 0.051 0.065 0.110
UserKNNCF 0.020 0.022 0.032 0.065 0.005 0.006 0.007 0.022 0.007 0.007 0.010 0.016 0.010 0.013 0.019 0.037 0.047 0.052 0.071 0.116
SLIM BPR 0.024 0.026 0.038 0.068 0.002 0.003 0.003 0.010 0.004 0.005 0.006 0.010 0.010 0.012 0.017 0.035 0.045 0.050 0.071 0.114
PureSVD 0.027 0.028 0.045 0.084 0.022 0.021 0.020 0.047 0.002 0.002 0.003 0.004 0.005 0.007 0.010 0.022 0.018 0.019 0.022 0.046

BPRMF 0.035 0.037 0.050 0.087 0.022 0.022 0.025 0.051 0.006 0.007 0.009 0.014 0.010 0.012 0.018 0.035 0.037 0.042 0.060 0.099

BPR NNMF 0.039 0.040 0.058 0.099 0.017 0.016 0.018 0.039 0.009 0.008 0.011 0.016 0.012 0.015 0.023 0.046 0.039 0.043 0.060 0.099

FunkSVD 0.033 0.035 0.050 0.085 0.017 0.015 0.018 0.034 0.004 0.004 0.006 0.009 0.010 0.013 0.019 0.037 0.044 0.049 0.069 0.108
Funk NNMF 0.033 0.036 0.052 0.094 0.034 0.028 0.024 0.046 0.006 0.007 0.010 0.016 0.011 0.014 0.021 0.041 0.053 0.058 0.080 0.127

ProbMF 0.019 0.020 0.030 0.058 0.008 0.009 0.010 0.027 0.001 0.001 0.002 0.003 0.009 0.011 0.016 0.033 0.033 0.038 0.052 0.090
Prob NNMF 0.034 0.036 0.054 0.095 0.027 0.024 0.025 0.048 0.007 0.007 0.009 0.014 0.011 0.013 0.020 0.038 0.047 0.049 0.064 0.107

(a) BPR-Opt
(b) MAP

Figure 2: Comparison between the training procedures of

BPR-MF and BPR-NNMF on the CUL dataset. The plot on

the left represents the BPR-Opt value on the training set.

The plot on the right represents the MAP@5 obtained on

the validation set.

performance of the algorithms using as ground truth the long-tail
of the test set, while the training set is considered at its whole. We
define as long-tail all the least popular items that account for the
66% of the interactions in the dataset. We evaluate the behavior
of NNMF and MF approaches in this scenario, carrying out pair-
wise comparisons. Moreover, to provide context to our results, we
additionally score other competitive collaborative baselines [10]
described in Section 4.3. In Table 5 we report the performance ob-
tained by the different algorithms, expressed by the Mean Average
Precision and the Recall at two cutoffs, 5 and 10. In almost 90% of
the measures, the NNMF algorithms perform better than or equal
to the corresponding MF versions, and in more than 80% of the
measures, the improvement provided by NNMF is consistent.

NNMF models achieve highest accuracy on three datasets over
five and in the remaining cases they try to fill the gap between
the best performing model (usually ItemKNN) and classic MF algo-
rithms, proving to be at least competitive against the other models
across the datasets. Indeed, notice that even when a NNMF model
is not the most accurate model on the long tail, it is the second best
performing algorithm. The poor long-tail accuracy of MF obtained
in many scenarios is quite surprising, especially if we consider that
MF approaches are known for being less popularity biased than
other CF approaches [2, 8, 17]. We can conclude that these models

are able to recommend niche items, but they are often noisy rec-
ommendations, resulting from the low number of updates on the
latent factors of non-popular items, rather than a real evidence of
the user’s taste. NNMF models, instead, leverage the knowledge of
the neighborhood to construct more consistent item representations
on the long-tail, transforming its part of non-popular recommenda-
tions in higher quality long-tail accuracy.

4.8 Model training

As last experiment, we also investigated the behavior of the models
during the training procedure. For brevity, in Figure 2 we show, as
an example, the comparison between BPR-MF and BPR-NNMF on
the CUL dataset, but we could observe the same trend in all the other
configurations. The plot on the left shows the maximum posterior
estimator, called BPR-Opt in [26], on the training set, while the one
on the right shows the performance on the validation set, expressed
as the MAP@5. Even if the starting and the convergence values
of both the BPR-Opt and the MAP are quite similar between the
two models, the NNMF version of the algorithm reaches lower BPR-
Opt values and higher performance in a largely smaller amount of
epochs. Indeed, notice that the NNMF version reaches convergence
after about 200 epochs and the training is interrupted by the early
stopping technique, while the original MF version needs about 1000
epochs to reach the same performance. This result proves that the
propagation of the information we have about a user or an item
also to its neighbors is very effective and useful, allowing the model
to reach the optimal performance in a lower number of iterations
over the training data.

5 CONCLUSIONS AND FUTUREWORKS

In this paper we present Nearest Neighbors Matrix Factorization, a
generalization of classic Matrix Factorization. The new framework
merges nearest neighbors and Matrix Factorization techniques in
order to mitigate the drawbacks induced by the scarcity of collabo-
rative information available, especially for unpopular items.

The results of extensive experiments on five different datasets
show that classic MF approaches are particularly affected by insta-
bility. By simply changing the initial values assigned to the latent
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factors of users and items, the same model, trained on the same data
and with the exactly same configuration, provides very different
recommendations and latent representations of users and items
at convergence, two issues that we call, respectively, instability of
recommendations and instability of representations. Moreover, we
show that exists a correlation between the popularity of an item
and the stability of its representation.

To assess the validity of the new technique, we propose the
NNMF extensions of three of the most common MF algorithms,
checking the accuracy and the stability of the new models. The
NNMF approaches provide large and consistent stability improve-
ments in every scenario, and they are also able to increase the
accuracy of their MF counterparts in almost every configuration,
certifying the quality of the proposed framework. Finally, we show
that the new models are able to reach convergence in a fraction of
the epochs necessary to the MF approaches, thanks to the propaga-
tion of the information through the neighborhood relations.

Future works are addressed towards the study of the stability of
more complex embedding-based models.
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