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Abstract

Globally about 800 million people live without electricity at home, over two thirds of which are in
sub-Saharan Africa. Planning electricity access infrastructure and allocating resources efficiently
requires a careful assessment of the diverse energy needs across space, time, and sectors. Because of
data scarcity, most country or regional-scale electrification planning studies have however assumed
a spatio-temporally homogeneous (top-down) potential electricity demand. Poorly representing
the heterogeneity in the potential electricity demand across space, time, and energy sectors can
lead to inappropriate energy planning, inaccurate energy system sizing, and misleading cost
assessments. Here we introduce M-LED, a Multi-sectoral Latent Electricity Demand geospatial data
processing platform to estimate electricity demand in communities that live in energy poverty. The
platform shows how big data and bottom-up energy modelling can be leveraged together to
represent the potential electricity demand with high spatio-temporal and sectoral granularity. We

apply the methodology to Kenya as a country-study and devote specific attention to the
implications for water-energy-agriculture-development interlinkages. A more detailed
representation of the demand-side in large-scale electrification planning tools bears a potential for

improving energy planning and policy.

1. Introduction

Electricity is a direct input to virtually every economic
sector. An abundant, affordable, and reliable provi-
sion of power is a necessary condition for human
livelihoods to prosper. This involves the achieve-
ment of nearly all the United Nations’ Sustainable
Development Goals (SDGs) [1, 2]. Recent statistics
on electricity access show that globally just under
800 million people (about 10% of the global pop-
ulation) live without electricity access, more than
two-thirds of which are in sub-Saharan Africa (SSA)
[3]. Even in areas reached by electricity infrastruc-
ture, significant unmet demand can persist [4—6]
because consumers cannot afford appliances, the

© 2021 The Author(s). Published by IOP Publishing Ltd

service, or because electricity services are not fully
available.

In the context of energy planning to elimin-
ate energy poverty, assessing the long-run electricity
demand is crucial [7]. The choice of the most efficient
electricity supply option and the size of the local gen-
eration capacity and storage system strongly depend
on the assumed local demand. In turn, this demand is
defined both by the hourly load curve and its peaks,
and by the total energy consumption. An inadequate
or generic formulation of this potential demand can
lead to inefficient budget allocation and electricity
infrastructure sizing [8]. Moreover, enabling services
for the community and productive uses of electri-
city beyond household (HH) needs—such as energy
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use in agriculture, small businesses, and health-
care and education facilities—is crucial to unleash
local economic development and ensure the financial
sustainability of energy access investments [9]. While
substantial uncertainty persists over the structural
welfare impacts of electrification programs [10], there
is robust evidence of the positive effect of electricity
provision on time spent by HH members in income-
generating activities [11-14]. In turn—provided a set
of conditions is satisfied—the electricity input might
improve the income of the whole community [15].

The link between the target demand and elec-
tricity supply planning becomes very evident when
carrying out country or regional scale studies with
geospatial electrification models (GEMs). GEMs are
data-intensive computer-based tools that can sup-
port policymakers in the integrated evaluation of
the most suitable and cost-effective technology for
providing universal electricity access [16—28]. Thanks
to growing data collection and management facilities,
bottom-up techno-economic electrification analysis
has become widely available (e.g. the Global Electri-
fication Platform and the World Resources Institute’s
Energy Access Explorer). Differently from approaches
based on linear programming, GEMs do not aim at
locally optimising energy systems for specific com-
munities. Their main characteristic is that they allow
to identify—country or region-wide—the technology
with the lowest local levelized cost of electricity for
providing electricity access at each settlement, along
with the generation capacity and investment require-
ments. Besides electricity demand, the cost-optimal
set-up depends on the local energy resources and
infrastructure. Most GEM-based studies have con-
cluded that decentralised energy solutions will play a
prominent role in guaranteeing that SDG 7.1.1 (the
universal electricity access target) is met in SSA. For
instance, the Africa Energy Outlook 2019 [29] argues
that mini-grids and stand-alone systems will serve
30% and 25% of those gaining access, respectively.

Yet, most GEM-based literature has been strongly
supply-side oriented [23]. Efforts have focused
mainly on modelling residential energy services and
have so far exhibited limited capacity of accounting
for the electricity demand from services and pro-
ductive uses driven by the presence of farms, small
businesses, commercial activities, healthcare, and
educational facilities. In these studies, the residen-
tial demand itself has mostly been calibrated with
regional average residential electricity consumption
levels of urban and rural consumers [20, 27, 28, 30],
with little within-country heterogeneity. Archetyp-
ical demand targets include e.g. values for SSA from
the World Bank Multi-Tier Framework (MTF) [31]
or generic per-capita consumption levels defined by
decision makers under a medium-run time horizon
(usually 2030, the SDGs target year).

Tables SI1 and SI2 (available online at
stacks.iop.org/ERL/16/074038/mmedia) summarise
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the main characteristics of existing GEMs or electri-
city needs assessments in terms of the demand charac-
terisation. The two tables highlight that several gaps
persist in demand estimation, as no previous pub-
lished study adopted a comprehensive multi-sectoral,
bottom-up, high spatio-temporal resolution, open-
source methodology. This is consistent with the find-
ings of [7] and [23]. Thus, while substantial advances
have been made in supply-side modelling of electri-
city access, a literature gap remains when it comes
to evaluating how big data and bottom-up energy
modelling can be together leveraged to represent the
potential demand for electricity with high spatio-
temporal and sectoral granularity.

To provide a more granular representation of
the demand-side in large-scale electrification plan-
ning tools, here we introduce the open-source Multi-
sectoral Latent Electricity Demand (M-LED) geospa-
tial data processing platform. M-LED is designed to
estimate the electricity demand in communities liv-
ing in energy poverty and expand the level of insight
that can be drawn with GEM:s by allowing for a more
granular representation of energy services that can
empower communities in the context of electrific-
ation planning. The key novelty of the platform is
its multi-sectoral, bottom-up, high spatio-temporal
resolution evaluation, which altogether advances the
state-of-the-art on latent electricity demand charac-
terisation. Latent (or potential) demand refers to the
electricity that would be consumed if the infrastruc-
ture (power generation, transmission, and distribu-
tion) and socio-economic conditions (income and
appliances) were met.

2. Materials and methods

2.1. The M-LED platform

The M-LED platform is an open-source, bottom-up
toolkit designed to characterise power requirements
across different sectors. M-LED combines openly
available geospatial information, modelling instru-
ments, and scenario analysis to support a sectoral-
inclusive electrification planning. Residential, health,
and education load profiles are computed follow-
ing a probabilistic distribution starting from field
campaign or literature-validated appliance owner-
ship and use patterns. Agricultural (irrigation and
crop processing) and micro enterprises loads are
assessed combining techno-economic modelling and
literature estimates.

Figure 1 offers an overview of the workflow, which
is divided into thematic modules for each of the
three sectors of power requirements identified: (a)
residential; (b) services; (c) productive. Three addi-
tional blocks of the figure describe: (d) the platform
outputs; (e) the module for estimating the eco-
nomic implications of meeting the agricultural elec-
tricity needs; and (f) the potential integration of M-
LED outputs with existing supply-side electrification
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models. Detailed figures presenting the methodology
of each module are found in section 2 of the paper. All
modules of M-LED are based on an array of open-
source Geographic Information System algorithms
written in R and Python.

The input data considered in the application
presented in this paper and their sources are openly
accessible and reported in table SI3. The data pro-
cessing procedure collates (a) publicly available spa-
tially explicit information with (b) additional inform-
ation from the field. The publicly available category
data consist of (a) socio-demographic informa-
tion (gridded population and urbanisation data;
subnational wealth and employment information
from Demographic and Health Surveys (DHS) sur-
veys; nighttime lights data; city accessibility data;
administrative boundaries); (b) agriculture-related
data (gridded cropland extent and yield estimates;
crop calendar; agroclimatic zones data; surface and
groundwater availability and characteristics; crop
processing energy requirements; historical climate
data); (c) service-sector data (healthcare and edu-
cational facilities location and characteristics). A
field campaign provides an added value for ensur-
ing that the design of the baskets of appliances for
residential and service customers is coherent with
current appliance use patterns. As a result of the
data-intensiveness of the platform, an extensive dis-
cussion of the uncertainty implications is found in
section 5.3.

Based on a bottom-up approach, M-LED gener-
ates electricity demand load curves rendered at a one
hour time step. Then, M-LED derives the monthly
(seasonal-varying) load curves and yearly-aggregated
consumption levels. The outputs consist of geore-
ferenced layers for the estimated currently unsup-
plied electricity demand within population clusters
(detailed in the SI-A1) generated from a set of res-
idential, productive activities, and services. The key
added value of the M-LED methodology is that
its outputs allow carrying out supply-side planning
of electricity access systems according not only to
the energy resource availability but also to the spe-
cific local community and productive load profiles,
including daily, weekly, and seasonal variation, which
can significantly affect system design [32].

The methodology described in the following
sections has a general validity and is therefore applic-
able to any area facing an electricity access gap.
For the applicative example, we select Kenya as a
country-case study to provide a proof-of-concept
of the implementation of M-LED. The selection is
driven by (a) the abundancy of data and geospatial
information compared to most of SSA countries and
(b) by the alarge number of electricity planning stud-
ies carried out applying different tools and assump-
tions [5, 20, 21, 25, 33], and thus the significant
opportunities for better understanding the impact of
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amulti-sectoral, bottom-up electricity demand mod-
elling approach.

2.2. Residential electricity demand

Residential electrification plays a crucial role for
human wellbeing, for instance by enabling tele-
communications, conserving food, indoor air cir-
culation and cooling, and night-time activities. In
fact, most electrification efforts and targets, includ-
ing SDG 7.1.1, focus on bringing electricity to all
households. To estimate residential demand, M-LED
exploits the Remote-Areas Multi-energy systems load
Profiles (RAMP) model [34], which supports the cre-
ation of stochastic, seasonal-heterogeneous electricity
demand profiles. The underlying stochastic process
lies in the structure of the bottom-up model adopted
for load profile generation, for a more detailed char-
acterization the reader can refer to SI-A2.

To efficiently tailor electrification infrastructure,
it is necessary to distinguish among different HH
types, which will consume electricity differently
according to their opportunity of having access to dif-
ferent electrical appliances. To estimate HH demand
in a flexible way, the M-LED framework (figure 2(A))
is designed to ensure a large degree of heterogeneity in
residential power demand. We construct 5 x 2 = 10
archetypical types of households (five in urban areas,
and five in rural settlements) defined by electrical
appliance ownership and use patterns. In the con-
text of this paper, the appliance baskets considered are
designed starting from a systematic screening of the
literature [35-42] about electricity consumption in
SSA countries and parametrised based on data from
recent field visits in Kenya by the authors and their
team (2019). The empirical screening provides the
rationale to compile tables of appliances and usage
patterns for each HH type. A total number of 22
appliances is selected and modelled across 11 dimen-
sions (table 1).

To account for seasonality of the load, the cli-
mate variability is considered. In the specific case of
Kenya, the months of January and December are con-
sidered the hottest in the country, while June and
July the cooler. Fans and air conditioning systems
are hence modelled accordingly. June and July are
assumed to have no use of such appliances, and the
other months gradually increase their use up to a full
use in the months of January and December. Given
the proximity to the equator of Kenya, in this coun-
try study dusk and dawn times are considered to not
vary significantly enough to justify seasonal variation
of time of use of appliances and lights. The entire
set of modelled appliances, users and user types with
relative parameters are reported in supplementary
file F1.

The RAMP model is used to simulate for each of
the ten user classes a representative sample of n = 100
households (to ensure sufficient stochasticity effects).



10P Publishing

Environ. Res. Lett. 16 (2021) 074038 G Falchetta et al

HRSL2019 * Clustering Population and Classification . PO e
——— — = Identlflcatm:lunsft:rczn—electnfled Share of Wealth Classes in
alchetta - Nig .
. . B non-electrified clusters
* Distribution of Wealth across Clusters + Distribution of Wealth in each cluster
Ay — « Appliances Ownership — a2
—@— Scientific Literature + Seasonal Usage Variability
g « Appliances Use Patterns ifi
= . i ion of Appliances ownership to user Classes Class SpECl(f:IE Monthly Load
Identification of: * Identification of Use Behaviors among Classes urves
E * 5Urban User Classes + Formulation of Load Curves per each Class
* 5 Rural User Classes
a3
* Night-time Lights Based Consumption Estimates Prediction of Future
-— Consumption Tiers based
+ Distribution of Wealth across Clusters on Wealth
S—
* Distribution of Schools in the Country
Eﬁ + Number of Pupils per School Identilisaticn of agpliances Schools’ Pupil-Specific Load
'\ [S— per pupil ownership and use Demand Curves
:
* Typical School Appliances Adoption
}—ol Distribution of Health Facilities in the Country
\dentification of 5 different Categories Identification of appliances 5 Health’ Bed-Specific Load
ownership per each identified Demand Curves based on Facility
Average Number of Beds per Health Category category Category
Typical Health Facility Appliances Adoption
c « Cropland
S —— "~ extent (ha) cl
You et al. 2014 ~ Crop Type
f————— . A 1 .
% Irrigation Needs Irngat»lon Water
— ——— * Precipitation and Evapotranspiration Requirements
* Crop Scheduling, Growing Periods and Crop Factors
* Ground Water Well Sustainable Water c2
- Depth (m) Pumping Requirements
- Storage (mm) ping Req
acDonald et al. 2012 - Productivity (Ifs) + Power (W)
+ Energy Consumption
* Surface Water Basin
- Distance from Cropland (m)
* Crop Specific Yield c3
@ et
ouetal.
-_Crop Type Crop Processing Energy
g + Crop scheduling and growing periods Demand (kwh)
Suppl. File F3
* Crop-specific processing energy intensity
A= ‘ + Additional yield thanks to irrigation PP T— c4
Calculation Y N
® + Groundwater Pumping Costs revenue gain potential
:137 N * Nearest wholesale market Model
- Travel time
c5
. + Roads Density . Markeup Factor
0 + Employment Levels Manthly Productive and
*  Wealth Distrisution * Residential Demand
[ — "
+ Productive sector lcad curve Seasonal Adustment
Figure 2. Schematic framework of the methodology and data sources underlying the Kenya case study. (A) Estimation of
residential electricity demand. (al) Generation of population clusters; (a2) estimation of residential electricity demand;
(a3) parsing of residential demand to population clusters. (B) Estimation of healthcare and education services electricity demand.
(b1) Education electricity demand; (b2) healthcare electricity demand. (C) Workflow of the agricultural sector and of the micro
enterprises and commercial electricity demand estimation. (c1) Estimation of Irrigation requirements; (c2) estimation of
electricity requirement for water pumping; (c3) estimation of electricity needs for crop processing; (c4) agricultural revenues
calculation. (c5) Micro enterprises and commercial electricity demand estimation. Abbreviations: HRSL = high resolution
settlement layer; DHS = Demographic and Health Surveys; gROADS = Global Roads Open Access Data Set. KODI = Kenya
Open Data Initiative; FAO = Food and Agriculture Organization; NAFIS Kenya = National Farmers Information Service of
Kenya. See table SI1 for data details and sources.

For each user sample, RAMP generates 12 month- To match the simulated electricity demand pro-
specific load curves (in W), at a minute time-step for files with each population cluster detailed we eval-
365 d, from which the total energy consumption can  uate the statistical association between the distribu-
be easily calculated (in kWh). tion of the population with electricity access across
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Table 1. Dimensions considered in the stochastic demand assessment.

Dimension Description Range (unit)

Ownership Category of User that owns the appliance User Type

Number of appliances per user Number of that specific appliance owned by 0-22 (—)
the user

Appliance power Nominal power of the specific appliance, 0-1000 (W)
allows for a random variability in a defined
range for thermal appliances

Number of daily functioning windows Number of time ‘windows’ in which the 1-3 (—)
appliance is used during the day

Window start and end times Hours of start and end of time windows in 00:00-23:59
which the appliance can be used

% variability of window start and end times Percentage of allowed random variation of the ~ 0-100 (%)

length of the usage windows

Daily functioning time

Total amount of time that the appliance is used

0-1440 (minutes)

during one day

% of random variability of daily functioning

Percentage of allowed random variation of the

0-100 (%)

time total daily time of use

Minimum time the appliance is kept on after
switch-on event
Percentage of occasional use

Minimum amount of time the appliance stays
on after has been switched on

0-1440 (minutes)

Probability that the appliance is used on a 0-100 (%)
single day
Allows to constrain the usage of the appliance we/wd/none

Weekends or weekdays use

only in weekdays or in weekends periods

electricity access tiers (based on validated, satellite-
derived data on the prevalent tier of electricity access
at each pixel [43] and with reference to the World
Bank MTF [31]) and the type of settlement (urban
or rural [44]), the local population density and the
distribution of wealth within of SSA countries (based
on HH survey data from the DHS surveys [45]).
Then, based on the regression results, we allocate
each demand profile archetype to HH without access
to electricity enclosed in each cluster. The process
assumes that in the future households without access
to electricity will be distributed among the electrific-
ation tiers based on the same proportion of house-
holds that today benefit from electricity in the admin-
istrative unit within which each cluster falls. For more
details on the matching of demand profiles to each
cluster, refer to SI-A3.

2.3. Healthcare and education services electricity
demand
A large number of healthcare and education facilit-
ies also face significant constraints in their activity
because they are unable to operate appliances that
are crucial for guaranteeing the wellbeing and devel-
opment prospects of local population [46, 47]. In
M-LED, the services electricity demand is modelled
(figure 2(B)) in a similar fashion to the residential: we
design baskets of appliances ownership and use tiers
of each category of facility (reported in supplement-
ary file F2). Scientific [48, 49] and grey [50] literature
on the theme exists, but is often generic and usually
scarce when it comes to SSA.

To tailor the application presented in this paper
to the specific country-study, a field campaign was
conducted in primary schools and rural healthcare

6

facilities of Kenya to perform surveys and empir-
ical observations of the appliance ownership and use,
energy consumption. Based on these observations, we
could construct the consumption patterns of health
and education facilities in RAMP and allocate it to
the (latent) demand of clusters where similar facil-
ities are located. Information on operational health-
care facilities in Kenya is based on open-data on
the location and characteristics of public’ healthcare
facilities [51]. Similarly, open-data for the position
and size of schools is retrieved [52].

We classify healthcare facilities into five tiers
combining results from the observations and the
facility type explicated in the original dataset [51].
Once information about the location and typology
of healthcare and education facilities is compiled, we
calculate the density of facilities of each tier in each
cluster. Based on this information, we estimate the
total local sectoral demand exploiting the monthly
load demand profiles calculated with RAMP. The sea-
sonality of school facilities is indeed dependent on
the national school calendar®, and has been modelled
accordingly. A detailed discussion on classification
methodology is available in the SI A-4.

2.4. Agricultural sector demand: the relevance of
the WEF nexus (Water, Energy, Food security)
Currently in SSA more than 90% of total cropland is
rainfed [53], with this figure standing at about 95% in
Kenya [54]. Remarkably, currently 85% of the global
population without electricity access is concentrated

7 To date there is no comprehensive publicly available dataset of
private healthcare facilities in sub-Saharan Africa.
8 https://publicholidays.co.ke/school-holidays/2020-dates/
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in rural areas [3]. Together with the lack of fertilisa-
tion, the unmet irrigation water demand implies a
situation of sub-optimal production, in what has been
defined the yield gap [55, 56]. Moreover, the bulk of
the production is either for subsistence purposes or
it is sold to unprocessed wholesale markets. This is
because of the lack of crop processing facilities in most
small and medium farm businesses [57, 58], because
of the lack of energy supply to power those plants, as
well as due to market accessibility. To enable growing
agriculture productivity and profitability, the provi-
sion of energy is necessary [59-62], along with the
purchase of machineries and infrastructure.

The M-LED geospatial analysis estimates the
energy requirements to enable artificial irrigation and
raw crop processing (figure 2(C)). Agricultural land,
hydroclimatic factors, and cropping patterns inform-
ation is conveyed in a set of agroclimatic equations
to estimate daily irrigation water requirements in
each cluster. The input data and estimation pro-
cedure are described in SI-A5. Then, a groundwa-
ter pump model estimates the required power and
flow rate of the pump as a function of the groundwa-
ter dwell characteristics and of the irrigation require-
ments (SI-A6). An extensive literature review of crop
processing energy requirements in the context of
developing countries is carried out (results in table
SI4). Based on this review the energy requirements are
associated to crop-specific cropland extent and aver-
age vield in each cluster, as discussed in SI-A7.

In addition, M-LED can identify hotspots where
investment can be prioritized to onset rural develop-
ment. As an example, we demonstrate that the plat-
form can estimate the increase in the revenues from
the potential boost in the per-hectare yield due to
artificial irrigation, which in turn might compensate
for the low ability-to-pay for energy services of rural
dwellers [63]. In our analysis, we consider a recent
database of wholesale prices for a basket of crops in
Kenya relative the location of each wholesale market.
Prices are multiplied to the local potential for yield
increase of each crop, net of transportation and total
(installation, operation, and maintenance) pumping
costs, as detailed in SI-A8.

2.5. Micro enterprises and commercial electricity
demand

The provision of electricity can foster small entre-
preneurial activities such as small shops, mini-
markets, handcraft and telecommunication services
retail [64—66] which can represent a significant lever-
age for broader socio-economic development [67]
and be anchor customers for financing electrification
projects. In the context of developing countries
microenterprises are defined as small businesses
employing few people, generally HH-related, and
with a limited turnover. Modelling the residual
productive demand from microenterprises with a
bottom-up approach is challenging because of the
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lack of granular country or region-wide data, which
makes it impossible to model at an appliance or
facility level. Proxy estimation approaches have been
introduced in previous studies [21, 25]. Here we
build on the estimated residential demand as a base
layer and calculate a multiplier factor to derive the
yearly productive demand on top of given residen-
tial demand (figure 2(C)). As detailed in the SI-A9,
we carry out a principal component analysis to create
a composite index based on relevant drivers of pro-
ductive activities (road density, accessibility, employ-
ment levels and wealth distribution, visualised in
figure SI6). The composite index is used to define
the local residential demand multiplier factor, ran-
ging between +30% and +60% (similarly to [21]).

The baseline load curve (share of demand at each
hour of the day over the total daily demand) of micro
productive activities is assumed to follow the same
path of that described in Moner-Girona et al [22] for
Kenya, which in turn is derived from field metered
data. A seasonal variation is imposed on the baseline
load curve, so that each monthly curve follows the
same monthly relative mark-up observed in the resid-
ential demand. Equation SI13 describes this proced-
ure algebraically.

3. Results

3.1. An applicative example for Kenya: granular
electricity demand estimates

This section illustrates the resulting spatially-explicit
sectoral electricity latent demand generated for Kenya
with the M-LED platform. The estimated demand
encompasses multiple dimensions: sectoral granular-
ity; monthly seasonality in the demand; hourly pro-
file; and spatial distribution of the demand.

Figure 3 shows the geographical distribution
of yearly sectoral latent electricity demand density
(MWh yr~! km~2). The original results are at a poly-
gonal cluster-dependent resolution; here to ensure a
more immediate understanding, they are plotted on a
1 x 1 km grid. White pixels identify areas with either
no population or no sectoral electricity demand,
such as natural parks, protected areas, or cropland
(for sectors different from agriculture). The results
show that substantial heterogeneity is observed in
the residential and commercial and micro-enterprise
sectors: both are highly correlated with popula-
tion density, with significantly higher demand in
south-western Kenya. Yet in some areas (e.g. in
northern Kenya) commercial and micro-enterprise
demand is comparatively lower than the residential
demand because of lower employment and market
accessibility. Irrigation and crop processing electricity
demand are concentrated in the agricultural districts
in the south-west of Kenya, while healthcare and edu-
cation demand are more scattered across the coun-
try, although with higher density in higher density
populated areas. Healthcare facilities are highly sparse
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Figure 3. Sectoral demand loads estimated for each population clusters. Maps of Kenya representing: (i) the estimated annual
residential demand (per pixel) for households that require electrification (MWh yr—! km™2); (ii) the total healthcare and
education demand (per pixel) for facilities requiring electrification (MWh yr—! km=2); (iii) the water pumping and crop
processing demand (per pixel) (MWh yr km~2); (iv) the micro-enterprise and commercial activities electricity demand

(per pixel) (MWh yr—! km—2).

but at the same time exhibit a high demand density,
while schools are relatively more distributed but less
electricity intensive.

Figure 4 depicts the hourly load demand profiles
across sectors and compare the loads in each month
of the year. Residential demand shows a curve profile
with three peaks, during wake-up, lunch, and evening
times. A similar polymodal distribution characterises
commercial and micro-enterprise demand. Most of
the seasonality is explained by the variation in the
use of air circulation and cooling appliances, since
residual uses are rather invariant throughout the year
given the proximity of Kenya to the equator. Educa-
tional centres show variation in months of year and
term breaks with energy demand bimodal distribu-
tion with peaks in the morning and in the afternoon.
Healthcare results show relatively little seasonal vari-
ation, with unimodal normal distribution with a peak

at midday for healthcare. Agricultural-related activit-
ies show high seasonal variance in the monthly pro-
files, but the load of the irrigation and crop pro-
cessing curves is however flat throughout the energy
use windows, 5-9 am and 9-11 pm for irrigation and
6 am—6 pm for crop processing machinery.

Figure 5 summarises the yearly aggregated lat-
ent demand across sectors in Kenya and its repar-
tition among the eight regions of Kenya. The
country-wide aggregation shows that the supply
requirements are unevenly split into the residen-
tial (at about 1.5 TWh yr—!, or 48% of the total
3.1 TWh yrfl), commercial activities and micro-
enterprises (nearly 0.75 TWh yr~!, about one quarter
of the total), healthcare (about 0.22 TWh yr~!, or
7%), education (0.18 TWh yr—!, 5.7%), irrigation
(0.42 TWh yr—1, 13.5%), and crop processing sectors
(about 0.07 TWh yr—!, only about 2%). Additional
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Figure 4. Demand loads per sector generated by the M-LED methodology. Hourly load profiles (MW) are compared for each
month of the year per each sector (typical daily load per population cluster averaged at country-level).
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Figure 5. Regional sectoral demand in Kenya estimated with the M-LED methodology. Total annual latent electricity demand

(TWh yr~1) by region and country-level. Each electricity demand is divided by sector: residential, commercial (Comm_prod),
agriculture (crop processing and irrigation), education and health infrastructure).
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insights are drawn when considering the repartition
of those aggregate energy requirements across the
eight main regions of Kenya, as well as the shares
of each sector within each region. The Rift Valley

region is the region with the largest latent demand
(about one third of the total latent demand), driven
mainly by the residential and productive sectors; it
is followed by the Western region (about 25% of the
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country latent demand), with a similar repartition.
Notably, in the Central region irrigation latent energy
is by far the first sector (>two thirds of the total).

3.2. Potential economic returns estimation

On top of the detailed latent electricity demand res-
ults, the M-LED platform enables an analysis of
the potential economic returns from the agricultural
sector thanks to artificial irrigation. These results
(reported and commented in the SI-B) reveal an
untapped revenue potential (net of transportation
and groundwater pumping costs) of about $4.9 bil-
lion/year (about 5% of the 2019 Kenyan GDP). This
suggests significant economic potential that in many
areas may quickly pay back the investment in electri-
fication when properly accounted by decision makers
in the cost-benefit analysis and supported by policies
stimulating improved land management and fertilisa-
tion. Yet, it must be remarked that additional relevant
dimensions that might affect the results of the ana-
lysis in the future include the price change of products
owing to crop processing and local value creation and
the efficiency gains in transport from improved road
or rail transportation and logistics.

4, Discussion

4.1. Planning-oriented implications

A detailed formulation of electricity demand is a cru-
cial factor in energy access planning. This is also
reflected in the outcome of supply-side electrification
models. In this paper we have introduced M-LED,
a new, open-source, flexible platform for generating
electricity demand curves based on a multi-sectoral
bottom-up device-based approach. We have then
applied the platform to the country-study of Kenya
as an applicative example. We have thus addressed
the research question of how big data and bottom-
up energy modelling can be together leveraged to rep-
resent the potential demand for electricity with high
spatio-temporal and sectoral granularity.

The application provided an array of insights,
the crucial ones being that planning electricity access
based on residential demand only is likely to under-
estimate the total demand of settlements (and chiefly
in rural areas), confirming similar recent claims
in the literature [21]. Accounting for healthcare,
education, commercial and micro-enterprise, and
agricultural energy uses implies a more than doubling
of the estimated yearly potential demand vis-a-vis
residential only (country-wide). This mark-up is
even greater in agriculture-intensive rural areas where
energy uses for irrigation and crop processing might
be significant higher in relative terms.

In the scope of our country-study of Kenya,
the analysis reveals that the non-residential sectors
considered constitute a very relevant share of the
total potential electricity demand in areas electricity
access deficit. In aggregated terms, they account for
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~53% of the yearly latent electricity demand, or
1.65 TWh yr~!. The ratio between residential and
non-residential demand is even more pronounced in
the Central region, where although the HH electricity
access levels are already quite high, agriculture-related
activities require significant electricity input which
today is largely missing. Additionally, in population-
dense areas productive and commercial demand also
has a significant impact on the final regional demand.
Another novel insight is offered by our hourly and
seasonal-variant formulation of sectoral load curves,
which might have a significant impact on the optim-
isation of energy systems, in particular when paired
with variable renewable energy supply curves.

Finally, as demonstrated by our analysis, while
planning energy solutions which can comprehens-
ively enable agricultural uses might increase the
required power capacity and upfront investment, it
might also render them economically attractive. This
is because of the significant reduction in the payback
time of those investment that could be achieved if
the local agricultural productivity and profitability
grows [68]. Today most smallholder farmers currently
sell their production to few large processing plants
or supply it directly to wholesale markets, where
crops are shipped abroad for overseas processing
in more efficient and larger-scale plants. The trans-
ition from rainfed to artificially irrigated agriculture
through surface or groundwater electrical pumping
thus provides a relevant example of how an electri-
city input could dramatically boost rural productiv-
ity. Moreover, generating value added through local
crop processing [68] and retaining it among farms
would considerably boost local socio-economic pro-
spects, with the potential to set a positive feedback
involving the entire local rural community.

4.2. Comparison of the estimated demand with
previous studies

A systematic comparison of our results with pre-
vious demand estimates found in the literature (in
most cases used to parametrise geospatial supply-side
electrification models) is not straightforward. This is
because of the differences in both how this demand is
formulated (e.g. yearly sectoral consumption in kWh
or representative day load curves in W) and how it is
parsed to settlements (urban/rural, poor/non-poor).
Nonetheless, several insights can still be drawn.

As reported in figure 6 our results, even based
on a substantially different approach from other
studies, do not fall distant from other works’ res-
ults in terms of estimated total yearly consump-
tion at the HH level. In the M-LED platform
application for Kenya we estimate average urban
and rural residential electricity demand of 62 and
840 kWh HH™! yr~!, respectively. Yet, it must
be remarked that—while informative—these val-
ues alone mask the heterogeneity in the electricity
demand that characterises our methodology. The
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Figure 6. Comparison of the harmonised estimated potential electricity demand of non-electrified households in Kenya. The
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SI-B2 reports a more detailed comparative account of
our results with previous published studies, including
productive and services sectors demand.

This comparison suggests that the detailed char-
acterisation of our study leads to significant dif-
ferences with previous studies. Firstly, including
productive sectors in our characterisation increases
notably both the total load of settlements and the
productive-to-residential demand ratio. Secondly, it
leads to a larger spread in the residential demand
between urban and rural areas. Yet, when encapsu-
lating activities such as artificial irrigation and crop
processing, the gap in the demand between settlement
types is reduced.

On the other hand, a visual comparison of
demand maps suggests that the spatial distribu-
tion of demand hotspots is identified similarly
through different approaches, provided sectors addi-
tional to the residential demand are considered. This
is because the key non-residential demand drivers
considered in these studies are often similar and
highly correlated among each other, such as popu-
lation density, urban/rural prevalence, poverty dens-
ity or wealth distribution, and the geographical pos-
ition of service and productive infrastructure and
of crop fields. Yet, studies focussing on achieving
universal electrification based on residential demand
only flatten the heterogeneity in the demand. For
instance, by setting a top-down rural demand, they
significantly underestimate the demand of rural
settlements.

4.3. Data uncertainty and modelling limitations
Irrespective of the large amount of work involved in
the development of the M-LED platform and in the
formulation of its assumptions, limitations remain.

The M-LED platform is open-source and fully
customisable to let the user define the bulk of the
input data sources (both for the Kenya case study
presented in this paper and for future applications),
including technical and economic parameters, the
devices ownership and usage patterns, and the over-
all infrastructure. Yet, the data-intensiveness (table
SI3) of the analysis implies growing uncertainty over
the reliability of the database, as (despite a careful
data selection and wrangling) some sources such as
infrastructure and facilities location and characterist-
ics might be outdated or biased.

For instance, gridded population data products
are based on census data downscaling based on dasy-
metric methods applied on building footprint data
[69], which can result in systematic undercounting
of certain population groups [70]. Electricity access
is estimated with nighttime lights, which has own
limitations [6, 43]. Cropland information is limited
by quality of official data and downscaling methods
[71]. Groundwater availability maps are produced
by interpolating a set of in-situ measurements under
given hydrological constraints [72]. Moreover, the
water and agricultural analysis relies on the assump-
tion of an optimal irrigation scheduling (as described
in [73]) and local crop processing based on current
cropping patterns. Healthcare and education facility
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databases have their own data availability and quality
limitations [51].

Furthermore, while the appliance ownership and
use baskets considered in the Kenya application are
designed after a careful literature screening supported
by field campaign experience of the authors, residual
cultural, service, and economic heterogeneity might
not be captured in the analysis.

Thirdly, a limited number of sectors is considered,
as a number of productive activities are not explicitly
modelled and simply fall within the generic residual
productive and commercial activities.

Overall, the output of the M-LED platform is
suitable for informing policymakers in their infra-
structure decisions and prioritisation strategies. Non-
etheless, local detailed assessments with field visits
are required to precisely assess the needs (including
future evolution of the load) of specific identified
communities and design the power generation and
distribution infrastructure necessary to supply elec-
tricity to households and other customers.

5. Conclusion

We have introduced the M-LED, a M-LED geospa-
tial data processing platform to estimate electricity
demand across space, time, and energy sectors in
communities that live in energy poverty. The applic-
ation to the country study of Kenya shows how
big data and bottom-up energy modelling can be
together leveraged to represent the sectoral poten-
tial demand for electricity with high spatio-temporal
granularity.

Our results are potentially beneficial for policy
makers, researchers, consultants, and other stake-
holders involved in the electrification planning. For
instance, the results could contribute to the prior-
itisation decisions for the allocation of limited gov-
ernmental funding by leveraging consumers who are
likely to have the greatest impact on increasing eco-
nomic growth thanks to the provision of electricity
to existing productive activities or attracting private
investments in the most productive areas.

It must be remarked that this paper has focused
on the demand estimation methodology. Yet, future
functionalities, currently in the design stage, will link
the high-resolution hourly, seasonal, and sectoral
demand estimates into an array of electricity supply
planning models. The new functionality will allow to
carry out an independent assessment for several elec-
trification planning models and understand the sig-
nificance of considering the new multi-sectoral and
seasonal dimensions as opposed to conventional top-
down demand characterisations.

We encourage further research on the topic and
improvements to the state of the M-LED plat-
form introduced at the time of the writing of this
paper. A better characterisation of potential indus-
trial demand and a dynamic formulation of demand
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(with intertemporal growth based on income and
other determinants) represent potential first-order
improvements.

Code and data availability

The M-LED platform source code and the
accompanying documentation are available at
https://github.com/giacfalk/ MLED. ~ An  archive
containing all the data inputs for replicating
the Kenya analysis is available on Zenodo at
https://zenodo.org/record/3980355.
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The data that support the findings of this study
are openly available at the following URL/DOI:
https://doi.org/10.5281/zenodo.3980355.
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